
Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Zijian Liu * 1 Ta Duy Nguyen * 1 Alina Ene 1 Huy L. Nguyen 2

Abstract
In this paper, we study the finite-sum convex opti-
mization problem focusing on the general convex
case. Recently, the study of variance reduced
(VR) methods and their accelerated variants has
made exciting progress. However, the step size
used in the existing VR algorithms typically de-
pends on the smoothness parameter, which is
often unknown and requires tuning in practice.
To address this problem, we propose two novel
adaptive VR algorithms: Adaptive Variance Re-
duced Accelerated Extra-Gradient (AdaVRAE)
and Adaptive Variance Reduced Accelerated Gra-
dient (AdaVRAG). Our algorithms do not re-
quire knowledge of the smoothness parameter.

AdaVRAE uses O
(︃
n log log n+

√︂
nβ
ϵ

)︃
and

AdaVRAG uses O
(︃
n log log n+

√︂
nβ log β

ϵ

)︃
gradient evaluations to attain an O(ϵ)-suboptimal
solution, where n is the number of functions in
the finite sum and β is the smoothness parameter.
This result matches the best-known convergence
rate of non-adaptive VR methods and it improves
upon the convergence of the state of the art adap-
tive VR method, AdaSVRG. We demonstrate the
superior performance of our algorithms compared
with previous methods in experiments on real-
world datasets.

1. Introduction
In this paper, we consider the finite-sum optimization prob-
lem in the form of

min
x∈X

{︄
1

n

n∑︂
i=1

fi(x) + h(x)

}︄
(1)

*Equal contribution 1Department of Computer Science, Boston
University 2Khoury College of Computer and Information Science,
Northeastern University. Correspondence to: Ta Duy Nguyen
<taduy@bu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

where each function fi is convex and β-smooth, h is con-
vex and potentially nonsmooth but admitting an efficient
proximal operator, and X ⊆ Rd is a closed convex set. Ad-
ditionally, we further assume that X is compact when β
is unknown. Problem (1) has found a wide range of ap-
plications in machine learning, typically in empirical risk
minimization problems, and has been extensively studied in
the past few years.

Among existing approaches to solve this problem, variance
reduced (VR) methods (Johnson & Zhang, 2013; Defazio
et al., 2014; Schmidt et al., 2017; Roux et al., 2012) have
recently shown significant improvement over the classic
stochastic gradient methods such as stochastic gradient de-
scent (SGD) and its variants. For example, in strongly
convex problems, VR methods such as (Allen-Zhu, 2017;
Lan et al., 2019; Lin et al., 2015) can achieve the optimal
number of gradient evaluations of O

(︁
(n+

√
nκ) log 1

ϵ

)︁
to attain an O(ϵ)-suboptimal solution, where κ is the con-
dition number, which improves over full-batch gradient
descent (O

(︁
nκ log 1

ϵ

)︁
) and Nesterov’s accelerated gradi-

ent descent (Nesterov, 1983; 2003) (O
(︁
n
√
κ log 1

ϵ

)︁
). For

general convex problems, the current state-of-the-art VR
methods, namely VRADA (Song et al., 2020) can find an

O(ϵ)-suboptimal solution using O
(︃
n log log n+

√︂
nβ
ϵ

)︃
gradient evaluations, which nearly-matches the lower bound

of Ω
(︃
n+

√︂
nβ
ϵ

)︃
(Woodworth & Srebro, 2016).

However, most of existing VR gradient methods have the
same limitation as classic gradient methods; that is, they
require the prior knowledge of the smoothness parameter in
order to set the step size. Lacking this information, one may
have to carefully perform hyper-parameter tuning to avoid
the situation that the algorithm divergences or converges too
slowly due to too large or too small step size. This limitation
of gradient methods motivates the development of methods
that aim to adapt to unknown problem structures. A notable
line of work starting with the influential AdaGrad algorithm
has designed a family of gradient descent based methods that
set the step size based on the gradients or iterates observed in
previous iterations (McMahan & Streeter, 2010; Duchi et al.,
2011; Kingma & Ba, 2014; Levy, 2017; Levy et al., 2018;
Bach & Levy, 2019; Cutkosky, 2019; Kavis et al., 2019;
Joulani et al., 2020; Ene et al., 2021; Antonakopoulos et al.,

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Table 1. Our results and comparison with prior works.

Algorithm General convex Adaptive

SVRG (Johnson & Zhang, 2013) - No

SVRG++ (Allen-Zhu & Yuan, 2016) O
(︁
n log β

ϵ
+ β

ϵ

)︁
No

Katyusha (Allen-Zhu, 2017) O
(︃
n log β

ϵ
+

√︂
nβ
ϵ

)︃
No

VARAG (Lan et al., 2019) O
(︃
nmin

{︁
log β

ϵ
, logn

}︁
+

√︂
nβ
ϵ

)︃
No

VRADA (Song et al., 2020) O
(︃
nmin

{︁
log log β

ϵ
, log log n

}︁
+

√︂
nβ
ϵ

)︃
No

AdaSVRG (Dubois-Taine et al., 2021)
O

(︁
nβ
ϵ

)︁
(fixed sized inner loop, only if ϵ = Ω(β

n
))

Yes
O

(︁
n log β

ϵ
+ β

ϵ

)︁
(multi-stage)

AdaVRAE (unknown β) (This Paper) O
(︃
nmin

{︁
log log β

ϵ
, log log n

}︁
+

√︂
nβ
ϵ

)︃
Yes

VRAE (known β) (This Paper) O
(︃
nmin

{︁
log log β

ϵ
, log log n

}︁
+

√︂
nβ
ϵ

)︃
No

AdaVRAG (unknown β) (This Paper) O
(︃
nmin

{︁
log log β log β

ϵ
, log log n

}︁
+

√︂
nβ log β

ϵ

)︃
Yes

VRAG (known β) (This Paper) O
(︃
nmin

{︁
log log β

ϵ
, log log n

}︁
+

√︂
nβ
ϵ

)︃
No

Lower Bound (Woodworth & Srebro, 2016) Ω

(︃
n+

√︂
nβ
ϵ

)︃
-

2021; Ene & Nguyen, 2021). Remarkably, these works have
shown that, in the setting where we have access to the exact
full gradient in each iteration, it is possible to match the
convergence rates of both unaccelerated and accelerated
gradient descent methods without any prior knowledge of
the smoothness parameter. These methods have also been
analyzed in the stochastic setting under a bounded variance
assumption, and they achieve a convergence rate that is
comparable to that of SGD.

Given the theoretical and practical success of adaptive meth-
ods, it is natural to ask whether one can design VR methods
that achieve state of the art convergence guarantees with-
out any prior knowledge of the smoothness parameter. The
recent work of (Dubois-Taine et al., 2021) gives the first
adaptive VR method — AdaSVRG — with the gradient
complexity of O

(︂
n log β

ϵ + β
ϵ

)︂
. AdaSVRG builds on the

AdaGrad (Duchi et al., 2011) and SVRG algorithms (John-
son & Zhang, 2013), both of which are not accelerated.

Our contributions: In this work, we take this line of
work further and design the first accelerated VR meth-
ods that do not require any prior knowledge of the
smoothness parameter. Our algorithms, Adaptive Vari-
ance Reduced Accelerated Extra-Gradient (AdaVRAE)
and Adaptive Variance Reduced Accelerated Gradi-

ent (AdaVRAG), only use O
(︃
n log log n+

√︂
nβ
ϵ

)︃
and

O
(︃
n log logn+

√︂
nβ log β

ϵ

)︃
gradient evaluations respec-

tively to attain an O(ϵ)-suboptimal solution when β is un-
known, both of which significantly improve the convergence
rate of AdaSVRG. Table 1 compares our algorithms and
prior VR methods and Section 2 discusses our algorith-
mic approaches and techniques. The convergence rate of
AdaVRAE matches up to constant factors the best-known
convergence rate of non-adaptive VR methods (Song et al.,
2020; Joulani et al., 2020). Both of our algorithms follow
a different approach from these methods and are based on
extra-gradient and mirror descent, instead of dual averaging.

We demonstrate the efficiency of our algorithms in practice
on multiple real-world datasets. We show that AdaVRAG
and AdaVRAE are competitive with existing standard
and adaptive VR methods while having the advantage of
not requiring hyperparameter tuning, and in many cases
AdaVRAG outperforms these benchmarks.

1.1. Related work

Variance reduced gradient methods: Variance reduction
technique (Roux et al., 2012; Schmidt et al., 2017; Shalev-

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Shwartz & Zhang, 2013; Mairal, 2013; Johnson & Zhang,
2013; Defazio et al., 2014) has been proposed to improve
the convergence rate of stochastic gradient descent algo-
rithms in the finite sum problem and has since become
widely-used in many successful algorithms. Notable im-
provements can be seen in strongly convex optimization
problems where earliest algorithms such as SVRG (John-
son & Zhang, 2013) or SAGA (Defazio et al., 2014) ob-
tain O

(︁
(n+ κ) log 1

ϵ

)︁
convergence rate compared with

O
(︂

σ2κ
βϵ

)︂
of plain SGD, with the latter requiring an ad-

ditional assumption on the σ2-boundedness of the variance
term, i.e., Ei

[︂
∥∇fi(x)−∇f(x)∥2

]︂
≤ σ2. However, these

non-accelerated methods do not achieve the optimal conver-
gence rate. Recent works such as (Lin et al., 2015; Allen-
Zhu, 2017; Lan et al., 2019) focus on designing accelerated
methods and successfully match the optimal lower bound
for strongly convex optimization of Ω

(︁
(n+

√
nκ) log 1

ϵ

)︁
given by (Lan & Zhou, 2018).

In non-strongly convex problems, however, existing works

do not yet match the lower bound of Ω
(︃
n+

√︂
βn
ϵ

)︃
shown

in (Woodworth & Srebro, 2016). The best effort so far can
be found in the line of accelerated methods started by (Allen-
Zhu, 2017) and followed by (Allen-Zhu, 2018; Lan et al.,
2019; Li, 2021) that rely on incorporating the checkpoint in
each update. AdaVRAG follows the same idea but offers
simpler update and more efficient choice of coefficients that
results in a better convergence rate, equivalent to VRADA
(Song et al., 2020). By comparison, while VRADA is a dual-
averaging scheme, AdaVRAG is a mirror descent method
and AdaVRAE is an extra-gradient algorithm.

In a different line of research (Allen-Zhu & Hazan, 2016;
Fang et al., 2018; Zhou et al., 2018), variance reduction
has been applied to non-convex optimization to find critical
points with much better convergence rate.

Adaptive methods with variance reduction: There has
been extensive research on adaptive methods (Duchi et al.,
2011; Kingma & Ba, 2014; Reddi et al., 2018; Tieleman
et al., 2012; Dozat, 2016) in the setting where we com-
pute a full gradient in each iteration. However, there are
only few works combining adaptive methods with VR tech-
niques in the finite sum setup. Most relevant for our work
is AdaSVRG (Dubois-Taine et al., 2021). This algorithm
is built upon SVRG which as mentioned earlier is a non-
accelerated method and has a slower convergence rate.
AdaSVRG uses the gradient norm to update the step size,
similar to (Duchi et al., 2011) and the step is reset in every
epoch, which could lead to step sizes that are too large in
later stages. In contrast, both AdaVRAG and AdaVRAE
are accelerated VR methods and use a cumulative step size.
AdaVRAG uses the iterate movement to update the step size,

as in (Bach & Levy, 2019; Ene et al., 2021). AdaVRAE
improves the convergence rate by a

√
log β factor by using

the gradient difference similarly to (Mohri & Yang, 2016;
Joulani et al., 2020; Ene & Nguyen, 2021). In a different di-
rection,(Xu et al., 2017) propose an adaptive VR algorithm
adaptive to the unknown growth parameter instead of the
smoothness parameter.

A different line of work considers VR methods that set the
step size using stochastic line search (Schmidt et al., 2017;
Mairal, 2013) or Barzilai-Borwein step size (Tan et al., 2016;
Li et al., 2020). The former methods do not have theoretical
guarantees, and the latter methods require knowledge of the
smoothness parameter in order to obtain theoretical bounds.

Recent works design variance-reduced methods for non-
convex optimization. STORM (Cutkosky & Orabona, 2019)
and STORM+(Levy et al., 2021) design an adaptive step
size, though the former still requires the smoothness pa-
rameter in the step size. Super-Adam (Huang et al., 2021)
also requires their parameters to satisfy some inequality
involving the smoothness parameter like STORM.

1.2. Notation and problem setup

Let [n] denote the set {1, 2, · · · , n}. For simplicity, we only
consider the Euclidean norm ∥·∥ := ∥·∥2 (Our work can be
extended to ∥x∥A :=

√
x⊤Ax for any A ≻ 0 with almost

no change). x+ represents max {x, 0}.

We are interested in solving the following problem

min
x∈X

{F (x) = f(x) + h(x)}

where f(x) := 1
n

∑︁n
i=1 fi(x) and for i ∈ [n], fi : Rd → R

and h : X → R are convex functions with a closed
convex set X ⊆ Rd. Let x∗ = argminx∈X F (x). We
say a function G is β-smooth if ∥∇G(x)−∇G(y)∥ ≤
β ∥x− y∥ for all x, y ∈ Rd. Equivalently, we have
G(y) ≤ G(x) + ⟨∇G(x), y − x⟩ + β

2 ∥y − x∥2. In this
paper we always assume that each fi is β-smooth, which
implies that f is also β-smooth. We assume that we
can efficiently solve optimization problems of the form
argminx∈X

(︂
γh(x) + 1

2 ∥x− v∥2
)︂

where γ ≥ 0 and v ∈
Rd. When the smoothness parameter β is unknown, we
additionally assume that X is compact with diameter D, i.e.,
supx,y∈X ∥x− y∥ ≤ D.

2. Our algorithms and convergence
guarantees

In this section, we describe our algorithms and state their
convergence guarantees. Our algorithm AdaVRAE shown
in Algorithm 1 is a novel accelerated scheme that uses past
extra-gradient update steps in the inner loop and novel av-

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Algorithm 1 AdaVRAE

Input: initial point u(0), domain diameter D.
Parameters: {a(s)},{Ts}, A(0)

T0
> 0, η > 0.

x
(1)
0 = z

(1)
0 = u(0), compute ∇f(u(0))

Initialize γ
(1)
0 = γ, where γ is any small constant

for s = 1 to S:
A

(s)
0 = A

(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

for t = 1 to Ts:
x
(s)
t = argminx∈X

{︂
a(s)

⟨︂
g
(s)
t−1, x

⟩︂
+ a(s)h(x)

+
γ
(s)
t−1

2

⃦⃦⃦
x− z

(s)
t−1

⃦⃦⃦2}︃
Let A(s)

t = A
(s)
t−1 + a(s) +

(︁
a(s)
)︁2

x
(s)
t = 1

A
(s)
t

(︂
A

(s)
t−1x

(s)
t−1 + a(s)x

(s)
t +

(︁
a(s)
)︁2

u(s−1)
)︂

if t ̸= Ts:
Pick i

(s)
t ∼ Uniform ([n])

g
(s)
t = ∇f

i
(s)
t
(x

(s)
t)−∇f

i
(s)
t
(u(s−1))+∇f(u(s−1))

else:
g
(s)
t = ∇f(x

(s)
t)

γ
(s)
t = 1

η

√︃
η2
(︂
γ
(s)
t−1

)︂2
+
(︁
a(s)
)︁2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
z
(s)
t = argminz∈X

{︂
a(s)

⟨︂
g
(s)
t , z

⟩︂
+ a(s)h(z)

+
γ
(s)
t−1

2

⃦⃦⃦
z − z

(s)
t−1

⃦⃦⃦2
+

γ
(s)
t −γ

(s)
t−1

2

⃦⃦⃦
z − x

(s)
t

⃦⃦⃦2}︃
u(s) = x

(s+1)
0 = x

(s)
Ts

, z(s+1)
0 = z

(s)
Ts

, g(s+1)
0 = g

(s)
Ts

,

γ
(s+1)
0 = γ

(s)
Ts

return u(S)

Algorithm 2 AdaVRAG

Input: initial point u(0), domain diameter D.
Parameters: {a(s)}, a(s) ∈ (0, 1), {q(s)}, {Ts}, η > 0.
x
(1)
0 = u(0)

Initialize γ
(1)
0 = γ, where γ is any small constant

for s = 1 to S:
x
(s)
0 = a(s)x

(s)
0 +(1−a(s))u(s−1), compute ∇f(u(s−1))

for t = 1 to Ts:
Pick i

(s)
t ∼ Uniform ([n])

g
(s)
t = ∇f

i
(s)
t
(x

(s)
t−1)−∇f

i
(s)
t
(u(s−1)) +∇f(u(s−1))

x
(s)
t = argminx∈X

{︂⟨︂
g
(s)
t , x

⟩︂
+ h(x)

+
γ
(s)
t−1q

(s)

2

⃦⃦⃦
x− x

(s)
t−1

⃦⃦⃦2}︃
x
(s)
t = a(s)x

(s)
t + (1− a(s))u(s−1)

Option I: γ(s)
t = γ

(s)
t−1

√︃
1 +

⃦⃦⃦
x
(s)
t −x

(s)
t−1

⃦⃦⃦2

η2

Option II: γ(s)
t = γ

(s)
t−1 +

⃦⃦⃦
x
(s)
t −x

(s)
t−1

⃦⃦⃦2

η2

u(s) = 1
Ts

∑︁Ts

t=1 x
(s)
t , x(s+1)

0 = x
(s)
Ts

, γ
(s+1)
0 = γ

(s)
Ts

return u(S)

eraging to achieve acceleration. In each inner iteration, the
new average iterate x

(s)
t is obtained by combining the old

average iterate x(s)
t−1, the new iterate x(s)

t and the checkpoint

u(s−1) with coefficients A(s)
t−1, a(s) and

(︁
a(s)
)︁2

normalized

by the sum of them, i.e by A
(s)
t = A

(s)
t−1 + a(s) +

(︁
a(s)
)︁2

.
We will explain the intuition behind this choice of coef-
ficients in the analysis outline. At the beginning of each
epoch, we set A(s)

0 = A
(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

so that at the
end, we only accumulate the coefficients of the new iterates
x
(s)
t . AdaVRAE adaptively sets the step sizes based on the

stochastic gradient difference. Our choice of step sizes is a
novel adaptation to the VR setting of the step sizes used by
the works (Mohri & Yang, 2016; Kavis et al., 2019; Joulani
et al., 2020; Ene & Nguyen, 2021) in the batch/full-gradient
setting. Our algorithm builds on the work (Ene & Nguyen,
2021), which provides an unaccelerated past extra-gradient
algorithm in the batch/full-gradient setting.

Theorem 2.1 states the parameter choices and the conver-
gence guarantee for AdaVRAE, and we give its proof in Sec-
tion A in the appendix. The convergence rate of AdaVRAE
matches up to constant factors the rate of the state of the art
non-adaptive VR methods (Joulani et al., 2020; Song et al.,
2020). The initial step size γ

(1)
0 can be set to any small

constant γ, which in practice we choose γ = 0.01. Simi-
larly to AdaGrad, setting η = Θ(D) gives us the optimal
dependence of the convergence rate in the domain diameter.
For simplicity, we state the convergence in Theorem 2.1 and
2.2 when η = Θ(D). We refer the reader to Theorems A.1
and B.1 in the appendix for the precise choice of parameters
as well as the full dependence of the convergence rate on
arbitrary choices of γ and η. In both Theorem 2.1 and 2.2,
we measure convergence using the number of individual gra-
dient evaluations ∇fi, assuming that the exact computation
of ∇f takes n gradient evaluations.

Theorem 2.1. (Convergence of AdaVRAE) Define s0 =
⌈log2 log2 4n⌉, c = 3

2 . Suppose we set the parameters of
Algorithm 1 as follows:

a(s) =

{︄
(4n)−0.5s 1 ≤ s ≤ s0
s−s0−1+c

2c s0 < s
,

Ts = n,

A
(0)
T0

=
5

4
.

Suppose that X is a compact convex set with diameter
D and we set η = Θ(D). The number of individual
gradient evaluations to achieve a solution u(S) such that
E
[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm 1 is

#grads =

⎧⎨⎩O
(︁
n log log V1

ϵ

)︁
if ϵ ≥ V1

n

O
(︃
n log log n+

√︂
nV1

ϵ

)︃
if ϵ < V1

n

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where V1 = O
(︁
F (u(0))− F (x∗) + (γ + β)D2

)︁
.

Our algorithm AdaVRAG is shown in Algorithm 2. Com-
pared with AdaVRAE, AdaVRAG has a worse dependence
on the smoothness parameter β but it performs only one
projection onto X in each inner iteration. Additionally, as
we discuss in more detail below, it uses adaptive step sizes
based on the iterate movement.

AdaVRAG follows a similar framework to existing VR
methods such as VARAG (Lan et al., 2019) and VRADA
(Song et al., 2020). Similarly to VRADA, the algorithm
achieves acceleration at the epoch level, where an epoch is
an iteration of the outer loop. The iterations in an epoch up-
date the main iterates via mirror descent with novel choices
of step sizes and coefficients. The stochastic gradient is
computed at a point that is a convex combination between
the current iterate and the checkpoint; the coefficients of
this combination remain fixed throughout the epoch. The
step sizes are adaptively set based on the iterate movement.

The structure of the inner iterations of our algorithm differs
from both VARAG and VRADA in several notable aspects.
VARAG also uses mirror descent to update the main iterates
and it computes the stochastic gradient at suitable combina-
tions of the iterates and the checkpoint. AdaVARAG uses a
different averaging of the iterates to compute the snapshots.
Moreover, it uses a very different and simpler choice for the
coefficient used to combine the main iterates and the check-
point in order to obtain the points at which the stochastic
gradients are evaluated. In VARAG, this coefficient is set to
a constant (namely, 1/2) in the initial iterations, whereas in
AdaVRAG, it starts from a small number and is increased
gradually. This choice is critical for improving the first term
in the convergence from O(n log n) to O(n log log n). In a
similar manner, VRADA attains the same convergence by a
new choice of coefficient. However, this is achieved via a
very different approach based on dual-averaging.

The step sizes used by AdaVRAG have two components:
the step γ

(s)
t that is updated based on the iterate movement

and the per-epoch coefficient q(s) to achieve acceleration
at the epoch level. Our analysis is flexible and allows the
use of several approaches for updating the steps γ(s)

t . One
approach, shown as option I in Algorithm 2, is based on the
multiplicative update rule of AdaGrad+ (Ene et al., 2021)
which generalizes the AdaGrad update to the constrained
setting. We also propose a different variant, shown as op-
tion II, that updates the steps in an additive manner. Our
analysis shows a similar convergence guarantee for both op-
tions, with the main difference being in the dependence on
the smoothness: option I incurs a dependence of

√
β log β,

whereas option II has a worse dependence of β. Option II
achieved improved performance in our experiments.

Theorem 2.2 states the parameter choices and the conver-

gence guarantee for AdaVRAG, and we give its proof in
Section B in the appendix. Analogously to AdaVRAE, the
initial step size γ can be set to any small constant.

Theorem 2.2. (Convergence of AdaVRAG) Define s0 =

⌈log2 log2 4n⌉, c = 3+
√
33

4 . Suppose we set the parameters
of Algorithm 2 as follows:

a(s) =

{︄
1− (4n)

−0.5s
1 ≤ s ≤ s0

c
s−s0+2c s0 < s

,

q(s) =

⎧⎨⎩
1

(1−a(s))a(s)
1 ≤ s ≤ s0

8(2−a(s))a(s)

3(1−a(s))
s0 < s

,

Ts = n.

Suppose that X is a compact convex set with diameter D and
we set η = Θ(D). Additionally, we assume that 2η2 > D2

if Option I is used for setting the step size. The number of
individual gradient evaluations to achieve a solution u(S)

such that E
[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm 2 is

#grads =

⎧⎨⎩O
(︁
n log log V2

ϵ

)︁
ϵ ≥ V2

n

O
(︃
n log log n+

√︂
nV2

ϵ

)︃
ϵ < V2

n

,

where

V2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O
(︂
F (u(0))− F (x∗) +

(︂
γ + β log

(︂
β
γ

)︂)︂
D2
)︂

for Option I
O
(︁
F (u(0))− F (x∗) +

(︁
γ + β2

)︁
D2
)︁

for Option II

Comparison to AdaSVRG: As noted in the introduction,
the state of the art adaptive VR method is the AdaSVRG
algorithm (Dubois-Taine et al., 2021), which is a non-
accelerated method. Both of our algorithms achieve a
faster convergence using different approaches and step sizes.
AdaSVRG resets the step sizes in each epoch, whereas
our algorithms use a cumulative update approach for the
step sizes. In our experimental evaluation, the resetting
of the step sizes led to slower convergence. AdaSVRG
(multi-stage variant) uses varying epoch lengths similarly
to SVRG++ (Allen-Zhu & Yuan, 2016), whereas our algo-
rithms use epoch lengths that are set to n. Using an epoch of
length n allows for implementing the random sampling via
a random permutation of [n] and is the preferred approach
in practice.

Both our algorithms and AdaSVRG require that the do-
main X has bounded diameter. This is a restriction that
is shared by almost all existing adaptive methods. Recent
work (Antonakopoulos et al., 2021; Ene & Nguyen, 2021) in
the batch/full-gradient setting have proposed unaccelerated
methods that are suitable for unbounded domains, at a loss

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

of additional factors in the convergence. All of the existing
accelerated methods require that the domain is bounded,
even in the batch/full-gradient setting. We note that our
analysis holds for arbitrary compact domains, whereas the
analysis of AdaSVRG only applies to domains that contain
the global optimum. Similarly to AdaGrad, both our al-
gorithms and AdaSVRG can be used in the unconstrained
setting under the promise that the iterates do not move too
far from the optimum.

Non-adaptive variants of our algorithms: In the setting
where the smoothness parameter is known, we can set the
step sizes of our algorithms based on the smoothness, as
shown in Algorithms 3 and 4 (Sections C and D in the
appendix). Both algorithms match the convergence rates of
the state of the art VR methods (Joulani et al., 2020; Song
et al., 2020) using different algorithmic approaches based on
mirror descent and extra-gradient instead of dual-averaging.
We experimentally compare the non-adaptive algorithms to
existing methods in Section E of the appendix.

2.1. Analysis outline

We outline some of the key steps in the analysis of
AdaVRAE. For the purpose of simplicity, we assume
h = 0 and η = D. Starting from the observation
x
(s)
t = 1

A
(s)
t

(︂
A

(s)
t−1x

(s)
t−1 + a(s)x

(s)
t +

(︁
a(s)
)︁2

u(s−1)
)︂

and

A
(s)
t = A

(s)
t−1 + a(s) +

(︁
a(s)
)︁2

, we have

x
(s)
t −x

(s)
t−1 =

a(s)

A
(s)
t−1

(︂
x
(s)
t − x

(s)
t

)︂
+

(︁
a(s)
)︁2

A
(s)
t−1

(︂
u(s−1) − x

(s)
t

)︂

which allows us to carry out the analysis for the function
progress in one iteration, i.e, f(x(s)

t)− f(x
(s)
t−1) and obtain

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

f(x
(s)
t)− f(x∗)

)︂
− A

(s)
t−1

(︂
f(x

(s)
t−1)− f(x∗)

)︂]︂

≤E

⎡⎢⎢⎣a(s) ⟨︂g(s)t , x
(s)
t − x∗

⟩︂
⏞ ⏟⏟ ⏞

stochastic regret

⎤⎥⎥⎦
+ E

[︃(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
− E

[︄
A

(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
.

By building on the standard analysis of the stochastic regret
for extra-gradient methods, we obtain the following result

for the progress of one iteration:

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

f(x
(s)
t)− f(x∗)

)︂
− A

(s)
t−1

(︂
f(x

(s)
t−1)− f(x∗)

)︂]︂
≤E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
+ E

[︄(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄

− E

[︄
A

(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
⏞ ⏟⏟ ⏞

gain

. (2)

In comparison to the standard analysis, the coefficient for
the checkpoint appears in the coefficient of f(x(s)

t)−f(x∗),
which becomes

(︂
A

(s)
t −

(︁
a(s)
)︁2)︂

instead of the usual

A
(s)
t , making the sum not telescope immediately. To

resolve this, we first turn our attention to the analysis

of the stochastic gradient difference
⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
.

The key idea is to split (a(s))
2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
into

(︃
1

2γ
(s)
t

− 1
16β

)︃(︁
a(s)
)︁2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(a(s))
2

16β

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
, and bound each term in turn.

For the first term, we build on the techniques from
prior work in the batch/full-gradient setting (Ene &
Nguyen, 2021) when taking the sum over the iter-
ations and epochs. For intuition, part of the gain

− 1
16β

(︁
a(s)
)︁2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
will be used to cancel out the

term E
[︃
γ
(s)
t −γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︃
. We then only need to

consider the time before γ
(s)
t goes above O(β), and notice

that
(︁
a(s)
)︁2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
=
(︂
γ
(s)
t

)︂2
−
(︂
γ
(s)
t−1

)︂2
, thus

we can upperbound the first term via the last γ(s)
t that is still

small than O(β). We provide more details below.

For the second term, we use Young’s in-

equality to write E
[︃⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︃
≤

E
[︃
4
⃦⃦⃦
∇f(x

(s)
t)− g

(s)
t

⃦⃦⃦2
+ 4

⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t−1

⃦⃦⃦2]︃
+

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

E
[︃
2
⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︃
. The gradient difference

loss term is cancelled by the gain term in (2), and thus we
can focus on the first two variance terms. We apply the
usual variance reduction technique put forward by (Lan
et al., 2019) (see Lemma A.2) to bound the two variance
terms, as follows:

E
[︃⃦⃦⃦

g
(s)
t −∇f(x

(s)
t)
⃦⃦⃦2]︃

≤ E
[︂
2β
(︂
f(u(s−1))− f(x

(s)
t)

−
⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂)︂]︂
.

Thus we obtain an upper bound on (a(s))
2

16β

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
in terms of

(︁
a(s)
)︁2 (︂

f(u(s−1))− f(x
(s)
t)
)︂

. This is the rea-

son for setting the coefficient for the checkpoint to
(︁
a(s)
)︁2

,
so that the LHS of (2) can become the usual telescoping
sum A

(s)
t

(︂
f(x

(s)
t)− f(x∗)

)︂
−A

(s)
t−1

(︂
f(x

(s)
t−1)− f(x∗)

)︂
.

Using the convexity of f , we obtain the following key result
for the progress of each epoch:

E
[︂
A

(s)
Ts

(︂
f(x

(s)
Ts

)− f(x∗)
)︂
−A

(s)
0

(︂
f(x

(s)
0)− f(x∗)

)︂]︂
≤E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
−

γ
(s)
Ts

2

⃦⃦⃦
z
(s)
Ts

− x∗
⃦⃦⃦2]︄

+ E

[︄
Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃
Ts

(︂
a(s)
)︂2 (︂

f(u(s−1))− f(x∗)
)︂]︃

+ E

[︄
Ts∑︂
t=1

(︄
1

2γ
(s)
t

− 1

16β

)︄(︂
a(s)
)︂2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄
.

Intuitively, we want to have another telescoping sum when
summing up the above inequality across all epochs s. To
do so, we can set the starting points of the next epoch to be
the ending points of the previous one, i.e., x(s)

Ts
= x

(s+1)
0 =

u(s), γ(s)
Ts

= γ
(s+1)
0 , z(s)Ts

= z
(s+1)
0 . However, an extra term

Ts

(︁
a(s)
)︁2 (︁

f(u(s−1))− f(x∗)
)︁

appears on the RHS. We
need to reset the new starting coefficient in the new epoch
A

(s)
0 to A

(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

so that we can telescope the
LHS.

To bound the term
∑︁S

s=1

∑︁Ts

t=1

γ
(s)
t −γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+(︃

1

2γ
(s)
t

− 1
16β

)︃(︁
a(s)
)︁2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
, since

γ
(s)
Ts

= γ
(s+1)
0 and, the sequence

(︂
γ
(s)
t

)︂
is not de-

creasing, we can make the first part of the sum

telescope:
∑︁S

s=1

∑︁Ts

t=1

γ
(s)
t −γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
≤∑︁S

s=1

∑︁Ts

t=1

γ
(s)
t −γ

(s)
t−1

2 D2 = D2

2

(︂
γ
(S)
TS

− γ
(1)
0

)︂
. More-

over, g(s)Ts
= g

(s+1)
0 , we can consider the doubly indexed

sequences
(︂
γ
(s)
t

)︂
and

(︂
g
(s)
t

)︂
as two singly indexed

sequences (γk) and (gk) and the coefficient a(s) to be
another sequence (ak). Then we can employ the following
two inequalities:

D2

2
(γK − γ0)−

1

48β

K∑︂
k=1

a2k ∥gk − gk−1∥2

≤12βD2

K∑︂
k=1

(︃
1

2γk
− 1

24β

)︃
a2k ∥gk − gk−1∥2

≤12βD2

Finally, we need to choose the parameters a(s) so that the
conditions needed for our analysis are satisfied and A

(s)
Ts

is sufficiently large, so that we attain a fast convergence.
We have to choose a(s) such that

(︁
a(s)
)︁2 ≤ 4A

(s)
t−1 for all

s, t ≥ 1 and that A(s)
0 = A

(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2 ≥ 0. The

main idea is to divide the epochs into two phases: in the first
phase, A(s)

Ts
quickly rises to Ω(n) and in the second phase,

to achieve the optimal
√︂

nβ
ϵ rate, A

(s)
Ts

= Ω(n2). The

nearly-optimal choice of a(s) in the first phase is (4n)−0.5s ,
stopping at s = s0 = ⌈log2 log2 4n⌉, while in the second
phase, we have to be more conservative and choose a(s) =
s−s0+

1
2

3 . With this we can obtain the convergence rate of

O
(︃
nmin

{︂
log log β

ϵ , log logn
}︂
+
√︂

nβ
ϵ

)︃
.

3. Experiments
In this section we demonstrate the performances of
AdaVRAG and AdaVRAE in comparison with the existing
standard and adaptive VR methods. We use the experimental
setup and the code base of (Dubois-Taine et al., 2021)1.

Datasets and loss functions: We experiment with binary
classification on four standard LIBSVM datasets: a1a, mush-
rooms, w8a and phishing (Chang & Lin, 2011). For each
dataset, we show the results for three different objective
functions: logistic, squared and huber loss. Following
the setting in (Dubois-Taine et al., 2021) we add a ℓ2-
regularization term to the loss function, with regularization
set to 1/n.

Constraint: In all experiments, we evaluate the algorithms
under a ball constraint. That is, the domain of each problem
in our experiment is a ball of radius R = 100 around the
initial point, which means for every algorithm, in the update
step, we need to do a projection onto this ball.

1Their code can be found at
https://github.com/bpauld/AdaSVRG

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 1. a1a

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 2. mushrooms

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 3. w8a

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 4. phishing

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Algorithms and hyperparameter selection: We compare
AdaVRAE and AdaVRAG with the common VR algo-
rithms: SVRG (Johnson & Zhang, 2013), SVRG++(Allen-
Zhu & Yuan, 2016), VARAG (Lan et al., 2019), VRADA
(Song et al., 2020), and AdaSVRG (Dubois-Taine et al.,
2021) (in the experiment the multi-stage variant performs
worse than the fixed-sized inner loop variant, and we omit
it from the plots). Among these, only AdaSVRG is an
adaptive VR method, which does not require parameter
tuning. For the non-adaptive methods we chose the step
size (or equivalently, the inverse of the smoothness param-
eter (1/β) for VRADA) via hyperparameter search over
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100}. For each experiment,
we used the choice that led to the best performance, and we
report the parameters used in Table 2. The adaptive meth-
ods — AdaSVRG, AdaVRAE, AdaVRAG — do not require
any hyperparameter tuning and we set their parameters as
prescribed by the theoretical analysis. For AdaSVRG, we
used η = D/

√
2 =

√
2R as recommended in the original

paper. For AdaVRAE and AdaVRAG, we used γ = 0.01
and η = D/2 = R.

Implementation and initialization: For all algorithms, in
the inner loop, we use a random permutation of the data
points to select a function. We also fix the batch size to 1
in all cases to match the theoretical setting. We initialize
u(0) to be a random point in [0, 10]d where each dimension
is uniformly chosen in [0, 10]. Each experiment is repeated
five times with different initial point, which is kept the same
across all algorithms.

Results: The results are shown in Figures 1, 2, 3, 4. For
each experiment, we plot the mean value and standard devia-
tion of the training objective against the number of gradient
evaluations normalized by the number of examples.

Discussion: We observe that, in all experiments, AdaVRAG
consistently performs competitively with all methods and
generally have the best performances. The non-accelerated
methods in general converge more slowly compared with
accelerated methods, especially in the later epochs. In some
cases, VARAG suffers from a slow convergence rate in
the first phase. This is possibly due to the fact that it sets
to 1/2 the coefficient for the checkpoint in the first phase.
VRADA sometimes exhibits similar behavior but to a lesser
extent. In AdaVRAG and AdaVRAE, the coefficient for the
checkpoint is set to be small in the beginning and gradually
increased over time when the quality of the checkpoint is
improved. The other adaptive method, AdaSVRG, exhibits
slow convergence in many cases. One reason might be that
AdaSVRG resets the step size in every epoch and, in later
epochs, the step size may be too large for the algorithm
to converge. In contrast, AdaVRAG and AdaVRAE use
cumulative step sizes.

4. Conclusion and future work
In this paper, we propose two accelerated variance re-
duced algorithms for the general finite-sum convex opti-
mization problem with the step size set adaptively to the
smoothness parameter. By a careful design of the coeffi-
cient choices, the first extra-gradient algorithm, AdaVRAE,
which sets the step size via the gradient difference, uses

O
(︃
n log logn+

√︂
nβ
ϵ

)︃
gradient evaluations to attain

an O(ϵ)-suboptimal solution, matching the best-known
convergence rate of non-adaptive VR methods, while
removing the requirement of the knowledge about the
smoothness parameter. The second algorithm, AdaVRAG,
which uses the iterate moment in the step size, needs

O
(︃
n log logn+

√︂
nβ log β

ϵ

)︃
gradient evaluations, but hav-

ing the advantage of using a single projection in each it-
eration and performing better in practice. For both al-
gorithms, as well as the other state-of-the-art VR algo-
rithms, there is still a gap to the lower bound convergence(︃
Ω

(︃
n+

√︂
nβ
ϵ

)︃)︃
for the general finite-sum convex opti-

mization problem. Finding an algorithm that can achieve
this lower bound and making it adaptive remain an open
question for the future work.

Acknowledgments
ZL, TN, and AE were supported in part by NSF CAREER
grant CCF-1750333, NSF grant III-1908510, and an Alfred
P. Sloan Research Fellowship. HN was supported in part
by NSF CAREER grant CCF-1750716 and NSF grant CCF-
1909314.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

References
Allen-Zhu, Z. Katyusha: The first direct acceleration of

stochastic gradient methods. The Journal of Machine
Learning Research, 18(1):8194–8244, 2017.

Allen-Zhu, Z. Katyusha x: Practical momentum method
for stochastic sum-of-nonconvex optimization. arXiv
preprint arXiv:1802.03866, 2018.

Allen-Zhu, Z. and Hazan, E. Variance reduction for faster
non-convex optimization. In International conference on
machine learning, pp. 699–707. PMLR, 2016.

Allen-Zhu, Z. and Yuan, Y. Improved svrg for non-strongly-
convex or sum-of-non-convex objectives. In International
conference on machine learning, pp. 1080–1089. PMLR,
2016.

Antonakopoulos, K., Belmega, V., and Mertikopoulos, P.
Adaptive extra-gradient methods for min-max optimiza-
tion and games. In International Conference on Learning
Representations (ICLR), 2021.

Bach, F. and Levy, K. Y. A universal algorithm for varia-
tional inequalities adaptive to smoothness and noise. In
Conference on Learning Theory, pp. 164–194. PMLR,
2019.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):1–27, 2011.

Cutkosky, A. Anytime online-to-batch, optimism and accel-
eration. In International Conference of Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning
Research, pp. 1446–1454. PMLR, 2019.

Cutkosky, A. and Orabona, F. Momentum-based variance
reduction in non-convex sgd. Advances in neural infor-
mation processing systems, 32, 2019.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
neural information processing systems, pp. 1646–1654,
2014.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Dubois-Taine, B., Vaswani, S., Babanezhad, R., Schmidt,
M., and Lacoste-Julien, S. Svrg meets adagrad: Painless
variance reduction. arXiv preprint arXiv:2102.09645,
2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Ene, A. and Nguyen, H. L. Adaptive and universal algo-
rithms for variational inequalities with optimal conver-
gence s. arXiv preprint arXiv:2010.07799, 2021.

Ene, A., Nguyen, H. L., and Vladu, A. Adaptive gradient
methods for constrained convex optimization and varia-
tional inequalities. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 7314–7321,
2021.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider:
Near-optimal non-convex optimization via stochastic
path integrated differential estimator. arXiv preprint
arXiv:1807.01695, 2018.

Huang, F., Li, J., and Huang, H. Super-adam: Faster and
universal framework of adaptive gradients. arXiv preprint
arXiv:2106.08208, 2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances
in neural information processing systems, 26:315–323,
2013.

Joulani, P., Raj, A., Gyorgy, A., and Szepesvári, C. A
simpler approach to accelerated optimization: iterative
averaging meets optimism. In International Conference
on Machine Learning, pp. 4984–4993. PMLR, 2020.

Kavis, A., Levy, K. Y., Bach, F., and Cevher, V. Unixgrad:
A universal, adaptive algorithm with optimal guarantees
for constrained optimization. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 6257–
6266, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lan, G. and Zhou, Y. Random gradient extrapolation for
distributed and stochastic optimization. SIAM Journal on
Optimization, 28(4):2753–2782, 2018.

Lan, G., Li, Z., and Zhou, Y. A unified variance-reduced ac-
celerated gradient method for convex optimization. arXiv
preprint arXiv:1905.12412, 2019.

Levy, K., Kavis, A., and Cevher, V. Storm+: Fully adaptive
sgd with recursive momentum for nonconvex optimiza-
tion. Advances in Neural Information Processing Systems,
34, 2021.

Levy, K. Y. Online to offline conversions, universality and
adaptive minibatch sizes. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 1613–1622,
2017.

Levy, K. Y., Yurtsever, A., and Cevher, V. Online adaptive
methods, universality and acceleration. In Advances in

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Neural Information Processing Systems (NeurIPS), pp.
6500–6509, 2018.

Li, B., Wang, L., and Giannakis, G. B. Almost tune-free
variance reduction. In International Conference on Ma-
chine Learning, pp. 5969–5978. PMLR, 2020.

Li, Z. Anita: An optimal loopless accelerated
variance-reduced gradient method. arXiv preprint
arXiv:2103.11333, 2021.

Lin, H., Mairal, J., and Harchaoui, Z. A universal
catalyst for first-order optimization. arXiv preprint
arXiv:1506.02186, 2015.

Mairal, J. Optimization with first-order surrogate functions.
In International Conference on Machine Learning, pp.
783–791. PMLR, 2013.

McMahan, H. B. and Streeter, M. J. Adaptive bound opti-
mization for online convex optimization. In Conference
on Learning Theory (COLT), pp. 244–256. Omnipress,
2010.

Mohri, M. and Yang, S. Accelerating online convex opti-
mization via adaptive prediction. In Artificial Intelligence
and Statistics (AISTATS), pp. 848–856, 2016.

Nesterov, Y. A method for unconstrained convex minimiza-
tion problem with the rate of convergence o (1/kˆ 2). In
Doklady an ussr, volume 269, pp. 543–547, 1983.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. In International Conference on
Learning Representations, 2018.

Roux, N. L., Schmidt, M., and Bach, F. A stochastic gradient
method with an exponential convergence rate for finite
training sets. arXiv preprint arXiv:1202.6258, 2012.

Schmidt, M., Le Roux, N., and Bach, F. Minimizing finite
sums with the stochastic average gradient. Mathematical
Programming, 162(1-2):83–112, 2017.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordi-
nate ascent methods for regularized loss minimization.
Journal of Machine Learning Research, 14(2), 2013.

Song, C., Jiang, Y., and Ma, Y. Variance reduction via
accelerated dual averaging for finite-sum optimization.
Advances in Neural Information Processing Systems, 33,
2020.

Tan, C., Ma, S., Dai, Y.-H., and Qian, Y. Barzilai-borwein
step size for stochastic gradient descent. Advances in Neu-
ral Information Processing Systems, 29:685–693, 2016.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Woodworth, B. E. and Srebro, N. Tight complexity bounds
for optimizing composite objectives. Advances in neural
information processing systems, 29:3639–3647, 2016.

Xu, Y., Lin, Q., and Yang, T. Adaptive svrg methods under
error bound conditions with unknown growth parameter.
Advances in Neural Information Processing Systems, 30,
2017.

Zhou, D., Xu, P., and Gu, Q. Stochastic nested variance
reduction for nonconvex optimization. arXiv preprint
arXiv:1806.07811, 2018.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

A. Analysis of algorithm 1
In this section, we analyze Algorithm 1 and prove the following convergence guarantee:

Theorem A.1 (Convergence of AdaVRAE). Define s0 = ⌈log2 log2 4n⌉, c = 3
2 . If we choose parameters as follows

a(s) =

{︄
(4n)−0.5s 1 ≤ s ≤ s0
s−s0−1+c

2c s0 < s
,

Ts = n,

A
(0)
T0

=
5

4
.

Assuming X is a compact convex set with diameter D, the number of individual gradient evaluations to achieve a solution
u(S) such that E

[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm 1 is

#grads =

⎧⎨⎩O
(︁
n log log V

ϵ

)︁
if ϵ ≥ V

n

O
(︂
n log logn+

√︂
V n
ϵ

)︂
if ϵ < V

n

where V = 5
2

(︁
F (u(0))− F (x∗)

)︁
+ γ

⃦⃦
u(0) − x∗

⃦⃦2
+

16β(D4+2η4)
η2 .

To start with, we state and prove the following variance reduction lemma commonly used in accelerated methods:

Lemma A.2. (Variance Reduction) Let i ∼ Uniform([n]) and g = ∇fi(x) − ∇fi(u) + ∇f(u) be an estimate of the
gradient of f at x. We have

Ei

[︂
∥g −∇f(x)∥2

]︂
≤ 2β (f(u)− f(x)− ⟨∇f(x), u− x⟩) .

Proof. By the definition of g,

Ei

[︂
∥g −∇f(x)∥2

]︂
= Ei

[︂
∥∇fi(x)−∇fi(u) +∇f(u)−∇f(x)∥2

]︂
(a)

≤ Ei

[︂
∥∇fi(u)−∇fi(x)∥2

]︂
(b)

≤ Ei [2β (fi(u)− fi(x)− ⟨∇fi(x), u− x⟩)]
(c)
= 2β (f(u)− f(x)− ⟨∇f(x), u− x⟩) ,

where (a) is because Ei [∇fi(u)−∇fi(x)] = ∇f(u) − ∇f(x) and E
[︂
∥X − E [X]∥2

]︂
≤ E

[︂
∥X∥2

]︂
, (b) is by the

convexity and β-smoothness of fi, (c) is by i ∼ Uniform([n]) and the definition of f .

A.1. Single iteration progress

We first analyze the progress in function value made in a single iteration of an epoch. The analysis follows the standard
method as in (Ene & Nguyen, 2021); however, we need to pay attention to the extra term for the checkpoint that appears in
the convex combination for x(s)

t . We start off by the following observation

Lemma A.3. For any s ≥ 1 and t ∈ [Ts],

x
(s)
t − x

(s)
t−1 =

a(s)

A
(s)
t−1

(︂
x
(s)
t − x

(s)
t

)︂
+

(︁
a(s)
)︁2

A
(s)
t−1

(︂
u(s−1) − x

(s)
t

)︂
.

Proof. We note that the definition x
(s)
t = 1

A
(s)
t

(︂
A

(s)
t−1x

(s)
t−1 + a(s)x

(s)
t +

(︁
a(s)
)︁2

u(s−1)
)︂

implies

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

A
(s)
t x

(s)
t = A

(s)
t−1x

(s)
t−1 + a(s)x

(s)
t +

(︂
a(s)
)︂2

u(s−1)

(a)⇔ A
(s)
t−1(x

(s)
t − x

(s)
t−1) = a(s)(x

(s)
t − x

(s)
t) +

(︂
a(s)
)︂2

(u(s−1) − x
(s)
t)

⇔ x
(s)
t − x

(s)
t−1 =

a(s)

A
(s)
t−1

(︂
x
(s)
t − x

(s)
t

)︂
+

(︁
a(s)
)︁2

A
(s)
t−1

(︂
u(s−1) − x

(s)
t

)︂
,

where (a) is by A
(s)
t = A

(s)
t−1 + a(s) +

(︁
a(s)
)︁2

.

Next, we bound the function progress in a single epoch via the stochastic regret. Note that, this lemma is somewhat weaker
than we would desire, due to the appearance the coefficient of the checkpoint, making the LHS not immediately telescope.
We will account for this factor later in the analysis.

Lemma A.4. For all epochs s ≥ 1 and all iterations t ∈ [Ts]

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃

≤E

⎡⎢⎢⎣a(s) ⟨︂g(s)t , x
(s)
t − x∗

⟩︂
⏞ ⏟⏟ ⏞

stochastic regret

+
(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂⎤⎥⎥⎦
− E

[︄
A

(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂]︃
.

Proof. Using the observation in Lemma A.3, we have

F (x
(s)
t)− F (x

(s)
t−1)

=f(x
(s)
t)− f(x

(s)
t−1) + h(x

(s)
t)− h(x

(s)
t−1)

(a)

≤
⟨︂
∇f(x

(s)
t), x

(s)
t − x

(s)
t−1

⟩︂
− 1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2
+ h(x

(s)
t)− h(x

(s)
t−1)

(b)
=

a(s)

At−1

⟨︂
∇f(x

(s)
t), x

(s)
t − x

(s)
t

⟩︂
+

(︁
a(s)
)︁2

A
(s)
t−1

⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂
− 1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2
+ h(x

(s)
t)− h(x

(s)
t−1)

where (a) is due to the smoothness of f and (b) comes from Lemma A.3. By the convexity of f , we also have

F (x
(s)
t)− F (x∗)

=f(x
(s)
t)− f(x∗) + h(x

(s)
t)− h(x∗)

≤
⟨︂
∇f(x

(s)
t), x

(s)
t − x∗

⟩︂
+ h(x

(s)
t)− h(x∗)

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

We combine the two inequalities and obtain

A
(s)
t−1

(︂
F (x

(s)
t)− F (x

(s)
t−1)

)︂
+ a(s)

(︂
F (x

(s)
t)− F (x∗)

)︂
≤a(s)

⟨︂
∇f(x

(s)
t), x

(s)
t − x∗

⟩︂
+
(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂
− At−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2
+A

(s)
t−1

(︂
h(x

(s)
t)− h(x

(s)
t−1)

)︂
+ a(s)

(︂
h(x

(s)
t)− h(x∗)

)︂
=a(s)

⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
+
(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂
+ a(s)

⟨︂
∇f(x

(s)
t)− g

(s)
t , x

(s)
t − x∗

⟩︂
−

A
(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2
+A

(s)
t−1

(︂
h(x

(s)
t)− h(x

(s)
t−1)

)︂
+ a(s)

(︂
h(x

(s)
t)− h(x∗)

)︂
.

Note that we can rearrange the terms

A
(s)
t−1

(︂
F (x

(s)
t)− F (x

(s)
t−1)

)︂
+ a(s)

(︂
F (x

(s)
t)− F (x∗)

)︂
=

(︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂
,

A
(s)
t−1

(︂
h(x

(s)
t)− h(x

(s)
t−1)

)︂
+ a(s)

(︂
h(x

(s)
t)− h(x∗)

)︂
=

(︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂
.

Thus we obtain (︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂
≤a(s)

⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
+
(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂
+ a(s)

⟨︂
∇f(x

(s)
t)− g

(s)
t , x

(s)
t − x∗

⟩︂
−

A
(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2
+

(︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂
. (3)

Observe that for t < Ts

E
[︂
a(s)

⟨︂
∇f(x

(s)
t)− g

(s)
t , x

(s)
t − x∗

⟩︂]︂
= E

[︂
E
i
(s)
t

[︂
a(s)

⟨︂
∇f(x

(s)
t)− g

(s)
t , x

(s)
t − x∗

⟩︂]︂]︂
= 0.

and for t = Ts,we have ∇f(x
(s)
t) = g

(s)
t thus E

[︂
a(s)

⟨︂
∇f(x

(s)
t)− g

(s)
t , x

(s)
t − x∗

⟩︂]︂
= 0. By taking expectations w.r.t.

both sides of (3), we get

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃
≤E

[︃
a(s)

⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
+
(︂
a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
− E

[︄
A

(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂]︃
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

To analyze the stochastic regret, we split the inner product as follows

⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
=
⟨︂
g
(s)
t , z

(s)
t − x∗

⟩︂
+
⟨︂
g
(s)
t − g

(s)
t−1, x

(s)
t − z

(s)
t

⟩︂
+
⟨︂
g
(s)
t−1, x

(s)
t − z

(s)
t

⟩︂
.

For each term we give a bound as stated in Lemma A.5.

Lemma A.5. For any s ≥ 1 all iterations t ∈ [Ts], we have

a(s)
⟨︂
g
(s)
t−1, x

(s)
t − z

(s)
t

⟩︂
≤

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − z

(s)
t

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x

(s)
t

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
+ a(s)

(︂
h(z

(s)
t)− h(x

(s)
t)
)︂
.

a(s)
⟨︂
g
(s)
t , z

(s)
t − x∗

⟩︂
≤

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t − z

(s)
t−1

⃦⃦⃦2
−

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
+ a(s)

(︂
h(x∗)− h(z

(s)
t)
)︂
.

a(s)
⟨︂
g
(s)
t − g

(s)
t−1, x

(s)
t − z

(s)
t

⟩︂
≤
(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

γ
(s)
t

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
.

Proof. Since x
(s)
t = argminx∈X

{︃
a(s)

⟨︂
g
(s)
t−1, x

⟩︂
+ a(s)h(x) +

γ
(s)
t−1

2

⃦⃦⃦
x− z

(s)
t−1

⃦⃦⃦2}︃
, by the optimality condition of x(s)

t ,

we have ⟨︂
a(s)g

(s)
t−1 + a(s)h′(x

(s)
t) + γ

(s)
t−1

(︂
x
(s)
t − z

(s)
t−1

)︂
, x

(s)
t − z

(s)
t

⟩︂
≤ 0,

where h′(x
(s)
t) ∈ ∂h(x

(s)
t) is a subgradient of h at x(s)

t . We rearrange the above inequality and obtain

a(s)
⟨︂
g
(s)
t−1, x

(s)
t − z

(s)
t

⟩︂
≤ γ

(s)
t−1

⟨︂
x
(s)
t − z

(s)
t−1, z

(s)
t − x

(s)
t

⟩︂
+ a(s)

⟨︂
h′(x

(s)
t), z

(s)
t − x

(s)
t

⟩︂
(a)

≤ γ
(s)
t−1

⟨︂
x
(s)
t − z

(s)
t−1, z

(s)
t − x

(s)
t

⟩︂
+ a(s)

(︂
h(z

(s)
t)− h(x

(s)
t)
)︂

(b)
=

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − z

(s)
t

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x

(s)
t

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
+ a(s)

(︂
h(z

(s)
t)− h(x

(s)
t)
)︂
,

where (a) follows from the convexity of h and the fact that h′(x
(s)
t) ∈ ∂h(x

(s)
t), and (b) is due to the identity ⟨a, b⟩ =

1
2

(︂
∥a+ b∥2 − ∥a∥2 − ∥b∥2

)︂
.

Using the optimality condition of z(s)t , we have⟨︂
a(s)g

(s)
t + a(s)h′(z

(s)
t) + γ

(s)
t−1

(︂
z
(s)
t − z

(s)
t−1

)︂
+
(︂
γ
(s)
t − γ

(s)
t−1

)︂(︂
z
(s)
t − x

(s)
t

)︂
, z

(s)
t − x∗

⟩︂
≤ 0

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where h′(z
(s)
t) ∈ ∂h(z

(s)
t) is a subgradient of h at z(s)t . We rearrange the above inequality and obtain

a(s)
⟨︂
g
(s)
t , z

(s)
t − x∗

⟩︂
≤ γ

(s)
t−1

⟨︂
z
(s)
t − z

(s)
t−1, x

∗ − z
(s)
t

⟩︂
+
(︂
γ
(s)
t − γ

(s)
t−1

)︂⟨︂
z
(s)
t − x

(s)
t , x∗ − z

(s)
t

⟩︂
+ a(s)

⟨︂
h′(z

(s)
t), x∗ − z

(s)
t

⟩︂
(c)

≤ γ
(s)
t−1

⟨︂
z
(s)
t − z

(s)
t−1, x

∗ − z
(s)
t

⟩︂
+
(︂
γ
(s)
t − γ

(s)
t−1

)︂⟨︂
z
(s)
t − x

(s)
t , x∗ − z

(s)
t

⟩︂
+ a(s)

(︂
h(x∗)− h(z

(s)
t)
)︂

(d)
=

γ
(s)
t−1

2

[︃⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
−
⃦⃦⃦
z
(s)
t − z

(s)
t−1

⃦⃦⃦2]︃
+

γ
(s)
t − γ

(s)
t−1

2

[︃⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
−
⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2]︃
+ a(s)

(︂
h(x∗)− h(z

(s)
t)
)︂

=
γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t − z

(s)
t−1

⃦⃦⃦2
−

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
+ a(s)

(︂
h(x)− h(z

(s)
t)
)︂
,

where (c) follows from the convexity of h and the fact that h′(z
(s)
t) ∈ ∂h(z

(s)
t), and (d) is due to the identity ⟨a, b⟩ =

1
2

(︂
∥a+ b∥2 − ∥a∥2 − ∥b∥2

)︂
.

For the third inequality, we have

a(s)
⟨︂
g
(s)
t − g

(s)
t−1, x

(s)
t − z

(s)
t

⟩︂ (e)

≤ a(s)
⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦ ⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦
(f)

≤
(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

γ
(s)
t

2

⃦⃦⃦
x
(s)
t − z

(s)
t

⃦⃦⃦2
.

where (e) is by the Cauchy–Schwarz inequality, (f) is by Young’s inequality.

With above results, we obtain the descent lemma for one iteration. A key idea to remove
(︁
a(s)
)︁2

from the co-

efficient of
(︂
F (x

(s)
t)− F (x∗)

)︂
is to split the term (a(s))

2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
into

(︃
(a(s))

2

2γ
(s)
t

− (a(s))
2

16β

)︃ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(a(s))
2

16β

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
and apply the VR lemma for the second term.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Lemma A.6. For all epochs s ≥ 1 and all iterations t ∈ [Ts], we have

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃
≤E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
+ E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t)−

⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂)︂]︄

+ E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t−1)−

⟨︂
∇f(x

(s)
t−1), u

(s−1) − x
(s)
t−1

⟩︂)︂]︄

+ E

[︄(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂]︃

.

Proof. By Lemma A.5, we can bound a(s)
⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
as follows

a(s)
⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
≤

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x

(s)
t

⃦⃦⃦2
+ a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂
+

(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
.

≤
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+ a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂
+

(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
.

Combining the above result with Lemma A.4, we know

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃
≤E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
+ E

[︄(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
−

A
(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂
+ a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂]︃

. (4)

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Note that (︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂
+ a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂

=

(︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
+
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x∗)
)︂

−
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x∗)
)︂
−A

(s)
t−1

(︂
h(x

(s)
t−1)− h(x∗)

)︂
− a(s)

(︂
h(x

(s)
t)− h(x∗)

)︂
(a)

≤
(︃
A

(s)
t −

(︂
a(s)
)︂2)︃(︂

h(x
(s)
t)− h(x∗)

)︂
+
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x∗)
)︂

−A
(s)
t (h(x

(s)
t)− h(x∗))

=
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂
, (5)

where (a) is by the convexity of h and A
(s)
t = A

(s)
t−1 + a(s) +

(︁
a(s)
)︁2

. Plugging in (5) into (4), we know

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃
≤E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
+ E

[︄(︁
a(s)
)︁2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
−

A
(s)
t−1

2β

⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂]︃

.

Now for E
[︃⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︃
, when 1 < t < Ts, we have

E
[︃⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︃
≤ E

[︃
4
⃦⃦⃦
∇f(x

(s)
t)− g

(s)
t

⃦⃦⃦2
+ 4

⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t−1

⃦⃦⃦2]︃
+ E

[︃
2
⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︃
(b)

≤ E
[︂
8β
(︂
f(u(s−1))− f(x

(s)
t)−

⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂)︂]︂
+ E

[︂
8β
(︂
f(u(s−1))− f(x

(s)
t−1)−

⟨︂
∇f(x

(s)
t−1), u

(s−1) − x
(s)
t−1

⟩︂)︂]︂
+ E

[︃
2
⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︃
, (6)

where (b) is by Lemma A.2 for all 1 < t < Ts. When t = 1, note that both
⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t−1

⃦⃦⃦2
and f(u(s−1))−f(x

(s)
t−1)−⟨︂

∇f(x
(s)
t−1), u

(s−1) − x
(s)
t−1

⟩︂
are zero by our definition x

(s)
0 = u(s−1) and ∇f(x

(s)
0) = ∇f(x

(s−1)
Ts−1

) = g
(s−1)
Ts−1

= g
(s)
0 ,

which means the above inequality is still true. When t = Ts, note that
⃦⃦⃦
∇f(x

(s)
t)− g

(s)
t

⃦⃦⃦2
= 0 and f(u(s−1))− f(x

(s)
t)−⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂
is always non-negative due to the convexity of f . So the above inequality also holds in this case.

Now we conlclude the above inequality is right for t ∈ [Ts].

Splitting (a(s))
2

2γ
(s)
t

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
into

(︃
(a(s))

2

2γ
(s)
t

− (a(s))
2

16β

)︃ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(a(s))
2

16β

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
and applying (6) to

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

(a(s))
2

16β

⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
, we have

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃
≤E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂]︃
+ E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t)−

⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂)︂]︄

+ E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t−1)−

⟨︂
∇f(x

(s)
t−1), u

(s−1) − x
(s)
t−1

⟩︂)︂]︄

+ E

[︄(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄

+ E
[︃(︂

a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂]︃

.

A.2. Single epoch progress and final output

Even though Lemma A.6 looks somewhat more convoluted, when we sum up over all iterations in one epoch, many terms
are canceled out nicely and we obtain the following lemma that states the progress of the function value in one epoch. The
trick is to set the value for each term at the end of one epoch equal to its value in the next one, with an exception for A(s−1)

Ts−1
.

Due to the accumulation of the term
(︁
F (u(s−1))− F (x∗)

)︁
throughout the epoch, we will set A(s)

0 = A
(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

.

Lemma A.7. For all epochs s ≥ 1, if

(︂
a(s)
)︂2

≤ 4A
(s)
t−1,∀t ∈ [Ts] .

We have

E
[︂
A

(s)
Ts

(︂
F (u(s))− F (x∗)

)︂
−A

(s−1)
Ts−1

(︂
F (u(s−1))− F (x∗)

)︂]︂
≤E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Proof. Using Lemma A.6, we know

Ts∑︂
t=1

E
[︃(︃

A
(s)
t −

(︂
a(s)
)︂2)︃(︂

F (x
(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︃

≤
Ts∑︂
t=1

E

[︄
γ
(s)
t−1

2

⃦⃦⃦
z
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
z
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+

Ts∑︂
t=1

E
[︃(︂

a(s)
)︂2 ⟨︂

∇f(x
(s)
t), u(s−1) − x

(s)
t

⟩︂
+
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂]︃

+

Ts∑︂
t=1

E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t)−

⟨︂
∇f(x

(s)
t), u(s−1) − x

(s)
t

⟩︂)︂]︄

+

Ts∑︂
t=1

E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
t−1)−

⟨︂
∇f(x

(s)
t−1), u

(s−1) − x
(s)
t−1

⟩︂)︂]︄

+

Ts∑︂
t=1

E

[︄(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
(a)
=E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
Ts−1∑︂
t=1

(︂
a(s)
)︂2 (︂

f(u(s−1))− f(x
(s)
t)
)︂
+
(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂]︄

+ E

[︄(︁
a(s)
)︁2

2

(︂
f(u(s−1))− f(x

(s)
Ts

) +
⟨︂
∇f(x

(s)
Ts

), u(s−1) − x
(s)
Ts

⟩︂)︂]︄

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
(b)

≤E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
Ts∑︂
t=1

(︂
a(s)
)︂2(︃

f(u(s−1))− f(x
(s)
t) +

(︂
a(s)
)︂2 (︂

h(u(s−1))− h(x
(s)
t)
)︂)︃]︄

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
(c)
=E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
Ts∑︂
t=1

(︂
a(s)
)︂2 (︂

F (u(s−1))− F (x
(s)
t)
)︂]︄

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
. (7)

where (a) is due to z
(s+1)
0 = z

(s)
Ts

, γ(s+1)
0 = γ

(s)
Ts

, x(s)
0 = u(s−1), (b) is by the convexity of f

⟨︂
∇f(x

(s)
Ts

), u(s−1) − x
(s)
Ts

⟩︂
≤ f(u(s−1))− f(x

(s)
Ts

),

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

(c) is by the definition of F = f + h. By adding
∑︁Ts

t=1

(︁
a(s)
)︁2 (︂

F (x
(s)
t)− F (x∗)

)︂
to both sides of 7. we obtain

E

[︄
Ts∑︂
t=1

A
(s)
t

(︂
F (x

(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︄

≤E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E
[︃
Ts

(︂
a(s)
)︂2 (︂

F (u(s−1))− F (x∗)
)︂]︃

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
.

Note that

E

[︄
Ts∑︂
t=1

A
(s)
t

(︂
F (x

(s)
t)− F (x∗)

)︂
−A

(s)
t−1

(︂
F (x

(s)
t−1)− F (x∗)

)︂]︄
=E

[︂
A

(s)
Ts

(︂
F (x

(s)
Ts

)− F (x∗)
)︂
−A

(s)
0

(︂
F (x

(s)
0)− F (x∗)

)︂]︂
(d)
=E

[︂
A

(s)
Ts

(︂
F (u(s))− F (x∗)

)︂
−A

(s)
0

(︂
F (u(s−1))− F (x∗)

)︂]︂
,

where (d) is due to the definition u(s) = x
(s)
Ts

and x
(s)
0 = u(s−1). Finally we have

E
[︃
A

(s)
Ts

(︂
F (u(s))− F (x∗)

)︂
−
(︃
A

(s)
0 + Ts

(︂
a(s)
)︂2)︃(︂

F (u(s−1))− F (x∗)
)︂]︃

≤E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
z
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

+ E

[︄
Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

8β
−

A
(s)
t−1

2β

)︄ ⃦⃦⃦
∇f(x

(s)
t)−∇f(x

(s)
t−1)

⃦⃦⃦2]︄
.

Combining the fact A(s)
0 = A

(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

and our condition
(︁
a(s)
)︁2 ≤ 4A

(s)
t−1, we get the desired result.

The telescoping sum on the LSH allows us to obtain the guarantee for the final output u(S).

Lemma A.8. For all S ≥ 1, assume we have(︂
a(s)
)︂2

≤ 4A
(s)
t−1,∀t ∈ [Ts] ,∀s ∈ [S] .

Then

E
[︂
A

(S)
TS

(︂
F (u(S))− F (x∗)

)︂]︂
≤A

(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄
.

Proof. Note that our assumptions satisfy the requirements for Lemma A.7, by Applying Lemma A.7 and make the

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

telescoping sum from s = 1 to S, we obtain

E
[︂
A

(S)
TS

(︂
F (u(S))− F (x∗)

)︂]︂
≤A

(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+ E

[︄
γ
(s)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
− γ

(S+1)
0

2

⃦⃦⃦
z
(S+1)
0 − x∗

⃦⃦⃦2]︄

+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄

≤A
(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+

γ
(1)
0

2

⃦⃦⃦
z
(s)
0 − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄

=A
(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄
,

where we use γ
(1)
0 = γ and z

(1)
0 = u(0).

A.3. Bound for the residual term

We turn to bound the term
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
This follows the standard analysis used to bound the residual term in adaptive methods. We first admit Lemma A.10 to give
the final bound for this term.
Lemma A.9. If X is a compact convex set with diameter D, we have

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
≤

8β
(︁
D4 + 2η4

)︁
η2

Proof. It follows that

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
(a)

≤
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
(b)
=
γ
(s)
Ts

− γ
(1)
0

2
D2 +

S∑︂
s=1

Ts∑︂
t=1

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2
=
γ
(s)
Ts

− γ
(1)
0

2
D2 − D4

16β (D4 + 2η4)

S∑︂
s=1

Ts∑︂
t=1

(︂
a(s)
)︂2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
+

S∑︂
s=1

Ts∑︂
t=1

(︄
1

2γ
(s)
t

− η4

8β (D4 + 2η4)

)︄(︂
a(s)
)︂2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
(c)

≤
8β
(︁
D4 + 2η4

)︁
η2

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (a) is by γ
(s)
t ≥ γ

(s)
t−1 and

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦
≤ D, (b) is by noticing γ

(s+1)
0 = γ

(s)
Ts

, (c) is by Lemma A.10.

Lemma A.10. Under our update rule of γ(s)
t , we have

D2

2

(︂
γ
(S)
TS

− γ
(1)
0

)︂
− D4

16β (D4 + 2η4)

S∑︂
s=1

Ts∑︂
t=1

(︂
a(s)
)︂2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
≤

4β
(︁
D4 + 2η4

)︁
η2

S∑︂
s=1

Ts∑︂
t=1

(︄
1

2γ
(s)
t

− η4

8β (D4 + 2η4)

)︄(︂
a(s)
)︂2 ⃦⃦⃦

g
(s)
t − g

(s)
t−1

⃦⃦⃦2
≤

4β
(︁
D4 + 2η4

)︁
η2

Proof. For simplicity, g
(1)
0 , g

(1)
1 , . . . , g

(1)
T1

= g
(2)
0 , g

(2)
1 , . . . , g

(2)
T2

, . . . as (gk)k≥0 and γ
(1)
0 , γ

(1)
1 , . . . , γ

(1)
T1

=

γ
(2)
0 , γ

(2)
1 , . . . , γ

(2)
T2

, . . . as (γk)k≥0. For k ≥ 1, assume that g(s)t is the element that correspond to gk, and let ak = a(s).

Then we can write γk = 1
η

√︂
η2γ2

k−1 + a2k ∥gk − gk−1∥2. By writing η2γ2
k = η2γ2

k−1 + a2k ∥gk − gk−1∥2 we obtain

η2γ2
k = η2γ2

0 +
∑︁k

t=1 a
2
t ∥gt − gt−1∥2 and hence γk = 1

η

√︂
η2γ0 +

∑︁k
t=1 a

2
t ∥gt − gt−1∥2.

For 1). Using
√
a+ b ≤

√
a+

√
b we have γk ≤ γ0 +

1
η

√︂∑︁k
t=1 a

2
t ∥gt − gt−1∥2. Therefore

D2

2
(γk − γ0)−

D4

16β (D4 + 2η4)

k∑︂
t=1

a2t ∥gt − gt−1∥2

≤D2

2η

⌜⃓⃓⎷ k∑︂
t=1

a2t ∥gt − gt−1∥2 −
D4

16β (D4 + 2η4)

k∑︂
t=1

a2t ∥gt − gt−1∥2

(a)

≤
4β
(︁
D4 + 2η4

)︁
η2

where for (a) we use ax− bx2 ≤ a2

4b .

For 2). Let τ be the last index such that γτ ≤ 4β(D4+2η4)
η4 or τ = −1 if γ0 >

4β(D4+2η4)
η4 . If τ ≤ 0 we have∑︁k

t=1

(︂
1

2γt
− η4

8β(D4+2η4)

)︂
a2t ∥gt − gt−1∥2 ≤ 0 for all k. Assume τ > 0

k∑︂
t=1

(︃
1

2γt
− η4

8β (D4 + 2η4)

)︃
a2t ∥gt − gt−1∥2

≤
τ∑︂

t=1

1

2γt
a2t ∥gt − gt−1∥2

=η2
τ∑︂

t=1

γ2
t − γ2

t−1

2γt

=η2
τ∑︂

t=1

(γt − γt−1) (γt + γt−1)

2γt

(b)

≤η2
τ∑︂

t=1

(γt − γt−1)

≤η2γτ

(c)

≤
4β
(︁
D4 + 2η4

)︁
η2

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (b) is due to γt−1 ≤ γt, (c) is by the definition of τ .

Finally we give an explicit choice for the parameters to satisfy all conditions and give the final necessary bound.

A.4. Parameter choice and bound

The following lemma states the bound for the coefficients.

Lemma A.11. Under the choice of parameters in Theorem A.1, ∀s ≥ 1, we have

(︂
a(s)
)︂2

< 4A
(s)
0

and

A
(s)
Ts

≥

{︄
n(4n)−0.5s 1 ≤ s ≤ s0
n
4c (s− s0)

2 s0 < s

Proof. As a reminder, we choose the parameters as follows, where c = 3
2 and s = s0 = ⌈log2 log2 4n⌉

a(s) =

{︄
(4n)−0.5s 1 ≤ s ≤ s0
s−s0−1+c

2c s0 < s
,

Ts = n,

A
(0)
T0

=
5

4
.

The idea in this choice is that we divide the time into two phases in which the convergence behaves differently. In the first
phase, A(s)

Ts
quickly gets to Ω(n) and we can set the coefficients for the checkpoint relatively small. In the second phase, to

achieve the optimal
√︂

nβ
ϵ rate, A(s)

Ts
= Ω(n2). In this phase, we need to be more conservative and set the coefficients for the

checkpoint large. We analyze the two phases separately.

First we show by induction that for 1 ≤ s ≤ s0,

A
(s)
0 = 1 + n

s−2∑︂
k=0

(4n)−0.5k , (8)

A
(s)
Ts

= 1 + n

s∑︂
k=0

(4n)−0.5k . (9)

Indeed, we have

A
(1)
0 = A

(0)
T0

− T1

(︂
a(1)

)︂2 (a)
=

5

4
− n(4n)−1 =

5

4
− 1

4
= 1,

A
(1)
T1

= A
(1)
0 + T1

(︃
a(1) +

(︂
a(1)

)︂2)︃ (b)
= 1 + n

(︁
(4n)−0.5 + (4n)−1

)︁
,

where (a) and (b) are both by plugging in a(1) = (4n)−0.5 and T1 = n. Supposed that 8 and 9 hold for all k ≤ s < s0. For

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

k = s+ 1 ≤ s0, we have

A
(s+1)
0 = A

(s)
Ts

− Ts+1

(︂
a(s+1)

)︂2
(c)
=

(︄
1 + n

s∑︂
k=0

(4n)−0.5k

)︄
− n(4n)−0.5s

= 1 + n

s−1∑︂
k=0

(4n)−0.5k ,

A
(s+1)
Ts+1

= A
(s+1)
0 + Ts+1

(︃
a(s+1) +

(︂
a(s+1)

)︂2)︃
(d)
=

(︄
1 + n

s−1∑︂
k=0

(4n)−0.5k

)︄
+ n

(︂
(4n)−0.5s+1

+ (4n)−0.5s
)︂

= 1 + n

s+1∑︂
k=0

(4n)−0.5k ,

where (c) is by plugging a(s+1) = (4n)−0.5s+1

, Ts+1 = n and the assumption on A
(s)
Ts

, (d) is by plugging a(s+1) =

(4n)−0.5s+1

and Ts+1 = n. Now the induction is completed. From this we can see that A(s)
0 ≥ 1 >

(a(s))
2

4 and
A

(s)
Ts

> n(4n)−0.5s .

Next, for s > s0, we show by induction that

A
(s)
0 >

n

2
+

n

4c
(s− s0 − 2 + 2c)(s− s0 − 1)− n

4c2
(s− s0 − 1 + c)2, (10)

A
(s)
Ts

>
n

2
+

n

4c
(s− s0 − 1 + 2c)(s− s0). (11)

Indeed we have A
(s0)
Ts0

= 1 + n
∑︁s0

k=0(4n)
−0.5k > n(4n)−0.5s0 ≥ n(4n)−0.5log2 log2 4n

= n
2 . Hence

A
(s0+1)
0 = A

(s0)
Ts0

− Ts0+1

(︂
a(s0+1)

)︂2
(e)

≥ n

2
− n

4
,

A
(s0+1)
Ts0+1

= A
(s0+1)
0 + Ts0+1

(︃(︂
a(s0+1)

)︂
+
(︂
a(s0+1)

)︂2)︃
(f)

≥ n

2
+ n

(︃
1

2
+

1

4

)︃
>

n

2
+

n

2
,

where (e) and (f) are both by a(s0+1) = 1
2 , Ts0+1 = n. Supposed that 10 and 11 hold for all s0 < k ≤ s. For k = s+ 1

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

we have

A
(s+1)
0 = A

(s)
Ts

− Ts+1

(︂
a(s+1)

)︂2
(g)
>

n

2
+

n

4c
(s− s0 − 1 + 2c)(s− s0)− n

(︃
s− s0 + c

2c

)︃2

=
n

2
+

n

4c
(s− s0 − 1 + 2c)(s− s0)−

n

4c2
(s− s0 + c)2,

A
(s+1)
Ts+1

= A
(s+1)
0 + Ts+1

(︃
a(s+1) +

(︂
a(s+1)

)︂2)︃
= A

(s)
Ts

+ Ts+1a
(s+1)

(h)
>

n

2
+

n

4c
(s− s0 − 1 + 2c)(s− s0) +

n

2c
(s− s0 + c)

=
n

2
+

n

4c
(s− s0 + 2c)(s− s0 + 1),

where (g) and (h) are both due to Ts+1 = n, a(s+1) = s−s0+c
2c and the assumption on A

(s)
Ts

. Now the induction is completed.
We can see that if c = 3

2 . we have

A
(s)
0 > n

(︃
1

2
+

(s− s0 − 1 + c)2

4c

(︃
1− 1

c

)︃
− s− s0 − 1 + c2

4c

)︃
= n

(︃
1

2
+

(s− s0 − 1 + c)2

12c
− s− s0 − 1 + c2

4c

)︃
= n

(︃
1

2
+

(s− s0 − 1 + c)2

16c2
+

(s− s0 − 1 + c)2

24c
− s− s0 − 1 + c2

4c

)︃
= n

(︃
(s− s0 − 1 + c)2

16c2
+

(s− s0 − 1)2 − 3(s− s0 − 1) + (c2 − 6c2 + 12c)

24c

)︃
>

(s− s0 − 1 + c)2

16c2
=

(︁
a(s)
)︁2

4

and A
(s)
Ts

> n
4c (s− s0)

2.

A.5. Putting all together

We are now ready to put everything together and complete the proof of Theorem A.1.

Proof. (Theorem A.1) From Lemma A.11, we know
(︁
a(s)
)︁2

< 4A
(s)
0 for any s ≥ 1, which implies for any s ≥ 1, t ∈ [Ts]

(︂
a(s)
)︂2

< 4A
(s)
t−1.

Combining our parameters, we can find the requirements for Lemma A.8 are satisfied, which will give us

E
[︂
A

(S)
TS

(︂
F (u(S))− F (x∗)

)︂]︂
≤ A

(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

(︄(︁
a(s)
)︁2

2γ
(s)
t

−
(︁
a(s)
)︁2

16β

)︄ ⃦⃦⃦
g
(s)
t − g

(s)
t−1

⃦⃦⃦2]︄
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

By using Lemma A.9, we know

E
[︂
A

(S)
TS

(︂
F (u(S))− F (x∗)

)︂]︂
≤ A

(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

8β
(︁
D4 + 2η4

)︁
η2

(a)

≤ 5

4

(︂
F (u(0))− F (x∗)

)︂
+

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

8β
(︁
D4 + 2η4

)︁
η2

⇒ E
[︂
F (u(S))− F (x∗)

]︂
≤ V

2A
(S)
TS

(b)

≤

{︄
2V

(4n)1−0.5S
1 ≤ S ≤ s0

2cV
n(S−s0)2

s0 < S

where (a) is by plugging in A
(0)
T0

= 5
4 , (b) is by A.11.

• If ϵ ≥ V
n , we choose S =

⌈︁
log2 log2

4V
ϵ

⌉︁
≤ ⌈log2 log2 4n⌉ = s0, so we have

E
[︂
F (u(S))− F (x∗)

]︂
≤ 2V

(4n)1−0.5S

(c)

≤ 2V(︁
4V
ϵ

)︁
1−0.5S

=
ϵ

2
(︁
4V
ϵ

)︁
−0.5S

(d)

≤ ϵ,

where (c) is by n ≥ V
ϵ , (d) is by

(︁
4V
ϵ

)︁−0.5S =
(︁
4V
ϵ

)︁−0.5⌈log2 log2
4V
ϵ ⌉

≥
(︁
4V
ϵ

)︁−0.5log2 log2
4V
ϵ = 1

2 . Note that the
final full gradient computation in the last epoch is not needed, therefore the number of individual gradient evaluations is

#grads = n+

S−1∑︂
s=1

(2(Ts − 1) + n) + 2(TS − 1)

< 3nS

= 3n

⌈︃
log2 log2

4V

ϵ

⌉︃
= O

(︃
n log log

V

ϵ

)︃
.

• If ϵ < V
n , we choose S = s0 +

⌈︂√︂
2cV
nϵ

⌉︂
≥ s0 + 1, so we have

E
[︂
F (u(S))− F (x∗)

]︂
≤ 2cV

n(S − s0)2

=
2cV

n
(︂⌈︂√︂

2cV
nϵ

⌉︂)︂2
≤ 2cV

n
(︂√︂

2cV
nϵ

)︂2
= ϵ.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

The number of individual gradient evaluations is

#grads = n+

S−1∑︂
s=1

(2(Ts − 1) + n) + 2(TS − 1)

< 3nS

= 3ns0 + 3n(S − s0)

= 3n ⌈log2 log2 4n⌉+ 3n

⌈︄√︃
2cV

nϵ

⌉︄

= O

(︄
n log log n+

√︃
nV (z)

ϵ

)︄
.

B. Analysis of algorithm 2
In this section, we analyze Algorithm 2 and prove the following convergence guarantee:

Theorem B.1. (Convergence of AdaVRAG) Define s0 = ⌈log2 log2 4n⌉, c = 3+
√
33

4 . Suppose we set the parameters of
Algorithm 2 as follows:

a(s) =

{︄
1− (4n)

−0.5s
1 ≤ s ≤ s0

c
s−s0+2c s0 < s

,

q(s) =

⎧⎨⎩
1

(1−a(s))a(s)
1 ≤ s ≤ s0

8(2−a(s))a(s)

3(1−a(s))
s0 < s

,

Ts = n.

Suppose that X is a compact convex set with diameter D and we set η = Θ(D). Addtionally, we assume that 2η2 > D2 if
Option I is used for setting the step size. The number of individual gradient evaluations to achieve a solution u(S) such that
E
[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm 2 is

#grads =

⎧⎨⎩O
(︁
n log log V

ϵ

)︁
ϵ ≥ V

n

O
(︂
n log log n+

√︂
nV
ϵ

)︂
ϵ < V

n

,

where

V =

⎧⎪⎪⎨⎪⎪⎩
1
2 (F (u(0))− F (x∗)) + γ

⃦⃦
u(0) − x∗

⃦⃦2
+
[︂
β −

(︂
1− D2

2η2

)︂
γ
]︂+(︄

D2 + 2(η2 +D2) log
2η2β

2η2−D2

γ

)︄
for Option I

1
2 (F (u(0))− F (x∗)) + γ

⃦⃦
u(0) − x∗

⃦⃦2
+ η2

(︂
D2

η2 + β − γ
)︂+ (︂

2D2

η2 + β − γ
)︂

for Option II

.

B.1. Single epoch progress and final output

We first analyze the progress in function value made in a single iteration of an epoch. The analysis is done in a standard way
by combining the smoothness and convexity of f , the convexity of h and the optimality condition of x(s)

t .

Lemma B.2. For all epochs s ≥ 1 and all iterations t ∈ [Ts], we have

E
[︂
F (x

(s)
t)− F (x∗)

]︂
≤ E

[︂(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂]︂
+ E

[︄
γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Proof. We have

E
[︂
f(x

(s)
t)− f(x

(s)
t−1)

]︂
(a)

≤E
[︃⟨︂

∇f(x
(s)
t−1), x

(s)
t − x

(s)
t−1

⟩︂
+

β

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︃
=E

[︃⟨︂
g
(s)
t , x

(s)
t − x

(s)
t−1

⟩︂
+
⟨︂
∇f(x

(s)
t−1)− g

(s)
t , x

(s)
t − x

(s)
t−1

⟩︂
+

β

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︃
,

where (a) is due to f being β-smooth. Using Cauchy–Schwarz inequality and Young’s inequality (ab ≤ λ
2a

2 + 1
2λb

2 with
λ > 0) we have

⟨︂
∇f(x

(s)
t−1)− g

(s)
t , x

(s)
t − x

(s)
t−1

⟩︂
≤
⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t

⃦⃦⃦ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦
≤1− a(s)

2β

⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t

⃦⃦⃦2
+

β

2(1− a(s))

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
,

also note that

x
(s)
t − x

(s)
t−1 =

(︂
a(s)x

(s)
t + (1− a(s))u(s−1)

)︂
−
(︂
a(s)x

(s)
t−1 + (1− a(s))u(s−1)

)︂
= a(s)

(︂
x
(s)
t − x

(s)
t−1

)︂
.

Hence, we obtain

E
[︂
f(x

(s)
t)− f(x

(s)
t−1)

]︂
≤E

[︄⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x

(s)
t−1

)︂⟩︂
+

1− a(s)

2β

⃦⃦⃦
∇f(x

(s)
t−1)− g

(s)
t

⃦⃦⃦2
+

β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(b)

≤E
[︂⟨︂

g
(s)
t , a(s)

(︂
x
(s)
t − x

(s)
t−1

)︂⟩︂
+
(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x

(s)
t−1)− ⟨∇f(x

(s)
t−1), u

(s−1) − x
(s)
t−1⟩

)︂]︂
+ E

[︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
=E

[︂⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
+
⟨︂
g
(s)
t , a(s)

(︂
x∗ − x

(s)
t−1

)︂⟩︂
−
⟨︂
∇f(x

(s)
t−1),

(︂
1− a(s)

)︂(︂
u(s−1) − x

(s)
t−1

)︂⟩︂]︂
+ E

[︂(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x

(s)
t−1)

)︂]︂
+ E

[︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(c)
=E

[︂⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
+
⟨︂
∇f(x

(s)
t−1), a

(s)
(︂
x∗ − x

(s)
t−1

)︂
−
(︂
1− a(s)

)︂(︂
u(s−1) − x

(s)
t−1

)︂⟩︂]︂
+ E

[︂(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x

(s)
t−1)

)︂]︂
+ E

[︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(d)
=E

[︂⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
+
⟨︂
∇f(x

(s)
t−1), a

(s)
(︂
x∗ − x

(s)
t−1

)︂⟩︂
+
(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x

(s)
t−1)

)︂]︂
+ E

[︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(e)

≤E

[︄⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
+

β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
+
(︂
1− a(s)

)︂
f(u(s−1)) + a(s)f(x∗)− f(x

(s)
t−1)

]︂
, (12)

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (b) is by Lemma A.2, (c) is because of

E
[︂⟨︂

g
(s)
t , a(s)

(︂
x∗ − x

(s)
t−1

)︂⟩︂]︂
= E

[︂⟨︂
∇f(x

(s)
t−1), a

(s)
(︂
x∗ − x

(s)
t−1

)︂⟩︂]︂
,

(d) is by x
(s)
t−1 = a(s)x

(s)
t−1 +

(︁
1− a(s)

)︁
u(s−1), (e) is due to the convexity of f which implies⟨︂

∇f(x
(s)
t−1), a

(s)
(︂
x∗ − x

(s)
t−1

)︂⟩︂
≤ a(s)

(︂
f(x∗)− f(x

(s)
t−1)

)︂
.

By adding E
[︂
f(x

(s)
t−1)− f(x∗)

]︂
to both sides of (12), we obtain

E
[︂
f(x

(s)
t)− f(x∗)

]︂
≤E

[︄⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
+

β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
+
(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x∗)

)︂]︄
. (13)

Next, we upper bound the inner product
⟨︂
g
(s)
t , a(s)

(︂
x
(s)
t − x∗

)︂⟩︂
. By the optimality condition of x(s)

t , we have⟨︂
g
(s)
t + h′(x

(s)
t) + γ

(s)
t−1q

(s)
(︂
x
(s)
t − x

(s)
t−1

)︂
, x

(s)
t − x∗

⟩︂
≤ 0,

where h′(x
(s)
t) ∈ ∂h(x

(s)
t) is a subgradient of h at x(s)

t . We rearrange the above inequality and obtain

a(s)
⟨︂
g
(s)
t , x

(s)
t − x∗

⟩︂
≤a(s)

⟨︂
h′(x

(s)
t) + γ

(s)
t−1q

(s)
(︂
x
(s)
t − x

(s)
t−1

)︂
, x∗ − x

(s)
t

⟩︂
(f)

≤a(s)
(︂
h(x∗)− h(x

(s)
t)
)︂
+ a(s)γ

(s)
t−1q

(s)
⟨︂
x
(s)
t − x

(s)
t−1, x

∗ − x
(s)
t

⟩︂
(g)
=a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂
+

a(s)γ
(s)
t−1q

(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t−1 − x

(s)
t

⃦⃦⃦2)︃
, (14)

where (f) follows from the convexity of h and the fact that h′(x
(s)
t) ∈ ∂h(x

(s)
t), and (g) is due to the identity ⟨a, b⟩ =

1
2

(︂
∥a+ b∥2 − ∥a∥2 − ∥b∥2

)︂
.

We plug in (14) into (13), and obtain

E
[︂
f(x

(s)
t)− f(x∗)

]︂
≤E

[︂(︂
1− a(s)

)︂(︂
f(u(s−1))− f(x∗)

)︂
+ a(s)

(︂
h(x∗)− h(x

(s)
t)
)︂]︂

+ E

[︄
γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃
+

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(h)
=E

[︂(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂
+ h(x∗)− a(s)h(x

(s)
t)−

(︂
1− a(s)

)︂
h(u(s−1))

]︂
+ E

[︄
γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃
+

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(i)

≤E
[︂(︂

1− a(s)
)︂(︂

F (u(s−1))− F (x∗)
)︂
+ h(x∗)− h(x

(s)
t)
]︂

+ E

[︄
γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃
+

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
,

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (h) is by the definition of F = f + h, and (i) is by the convexity of h which implies

h(x
(s)
t) = h

(︂
a(s)x

(s)
t + (1− a(s))u(s−1)

)︂
≤ a(s)h(x

(s)
t) + (1− a(s))h(u(s−1)).

Now we move the term E
[︂
h(x∗)− h(x

(s)
t)
]︂

to the LHS, and obtain

E
[︂
F (x

(s)
t)− F (x∗)

]︂
≤E

[︄(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂
+

γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

By Lemma B.2, if 1
Ts

∑︁Ts

t=1 x
(s)
t is defined as a new chekpoint like what we do in Algorithm 2, the following guarantee for

the function value progress in one epoch comes up immediately by the convexity of F .

Lemma B.3. For all epochs s ≥ 1, we have

E
[︂
F (u(s))− F (x∗)

]︂
≤ E

[︂(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂]︂
+ E

[︄
1

Ts

Ts∑︂
t=1

γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄
1

Ts

Ts∑︂
t=1

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

Proof. We have

E
[︂
F (u(s))− F (x∗)

]︂
(a)

≤E

[︄
1

Ts

Ts∑︂
t=1

(︂
F (x

(s)
t)− F (x∗)

)︂]︄
(b)

≤E
[︂(︂

1− a(s)
)︂(︂

F (u(s−1))− F (x∗)
)︂]︂

+ E

[︄
1

Ts

Ts∑︂
t=1

γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄
1

Ts

Ts∑︂
t=1

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
,

where (a) is by the convexity of F and the definition of u(s) = 1
Ts

∑︁Ts

t=1 x
(s)
t , and (b) is by Lemma B.2.

Lemma A.8 is a quite general result without any assumptions on any parameters. To ensure that we can make the telescoping
sum over the function value part, and also to simplify the term besides the function value part, we need some specific
conditions on our parameters to be satisfied, which is stated in Lemma B.4. With these extra conditions, we can finally find
the following guarantee for the function value gap of the final output u(S).

Lemma B.4. For all S ≥ 1, if the parameters satisfy(︁
2− a(s)

)︁
a(s)

1− a(s)
≤ q(s),∀s ∈ [S]

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

and
(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)
,∀s ∈ [S − 1] .

then we have

E
[︃

TS

q(S)a(S)
(F (u(S))− F (x∗))

]︃
≤ (1− a(1))T1

q(1)a(1)
(F (u(0))− F (x∗))

+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

Proof. If (2−a(s))a(s)

1−a(s) ≤ q(s) for any s ∈ [S], by using Lemma B.3, we know

E
[︂
F (u(s))− F (x∗)

]︂
≤E

[︂(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂]︂
+ E

[︄
1

Ts

Ts∑︂
t=1

γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄
1

Ts

Ts∑︂
t=1

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
≤E

[︂
(1− a(s))(F (u(s−1))− F (x∗))

]︂
+ E

[︄
q(s)a(s)

Ts

(︄
Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2)︄]︄

Now multiply both sides by Ts

q(s)a(s) , we have

E
[︃

Ts

q(s)a(s)
(F (u(s))− F (x∗))

]︃
≤E

[︃
(1− a(s))Ts

q(s)a(s)
(F (u(s−1))− F (x∗))

]︃
+ E

[︄
Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

If (1−a(s+1))Ts+1

q(s+1)a(s+1) ≤ Ts

q(s)a(s) is satisfied for any s ∈ [S − 1], we can make the telescoping sum from s = 1 to S to get

E
[︃

TS

q(S)a(S)
(F (u(S))− F (x∗))

]︃
≤ (1− a(1))T1

q(1)a(1)
(F (u(0))− F (x∗))

+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

B.2. Bound for the residual term

By the analysis in the previous subsection, we get an upper bound for the function value gap of u(S) involving F (u(0))−
F (x∗) and

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
. (15)

In this subsection we will show how to bound 15 under the compact assumption of X . Before giving the detailed analysis of
the two different update options, we first state the following lemma to simplify 15.

Lemma B.5. If γ(s)
t ≥ γ

(s)
t−1 for any s ∈ [S], t ∈ [Ts] and X is a compact convex set with diameter D, then we have

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
.

Proof. It follows that

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
(a)

≤
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
− γ

(s)
t

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

S∑︂
s=1

(︄
γ
(s)
0

2

⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−

γ
(s)
Ts

2

⃦⃦⃦
x
(s)
Ts

− x∗
⃦⃦⃦2

+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2)︄
(b)
=

S∑︂
s=1

(︄
γ
(s)
0

2

⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
− γ

(s+1)
0

2

⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2
+

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2)︄

=
γ
(1)
0

2

⃦⃦⃦
x
(1)
0 − x∗

⃦⃦⃦2
− γ

(S+1)
0

2

⃦⃦⃦
x
(S+1)
0 − x∗

⃦⃦⃦2
+

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
≤γ

(1)
0

2

⃦⃦⃦
x
(1)
0 − x∗

⃦⃦⃦2
+

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
(c)
=

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
,

where (a) is due to γ
(s)
t ≥ γ

(s)
t−1 and

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦
≤ D, (b) follows from the definition of x(s+1)

0 = x
(s)
Ts

and γ
(s+1)
0 = γ

(s)
Ts

,

(c) is by the definition of x(1)
0 = u(0) and γ

(1)
0 = γ. Now Taking expectations with both sides yields what we want.

With the above result, we can show the bound of 15 under Option I and Option II respectively. There are two key common
parts in our analysis, the first one is to notice that we can reduce the doubly indexed sequence

{︂
x
(s)
t

}︂
and

{︂
γ
(s)
t

}︂
into two

singly indexed sequences, which are much easier to bound. The second technique is to define a hitting time τ to upper
bound γ

(s)
t . Read our proof for the details.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Lemma B.6. For Option I, if X is a compact convex set with diameter D and 2η2 > D2, we have

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃+⎛⎝D2 + 2(η2 +D2) log

2η2β
2η2−D2

γ

⎞⎠ .

Proof. For Option I, by the definition of γ(s)
t , we have

γ
(s)
t ≥ γ

(s)
t−1,∀s ∈ [S] , t ∈ [Ts] .

By requiring that X is a compact convex set with diameter D, we can apply Lemma B.5 and obtain

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
. (16)

Note that the last element x(s)
Ts

(resp. γ(s)
Ts

) in the s-th epoch is just the start element x(s+1)
0 (resp. γ(s+1)

0) in the (s+ 1)-th

epoch, which means we can consider the doubly indexed sequences {x(s)
t } and {γ(s)

t } as two singly indexed sequences
{x′

t, t ≥ 0} and {γ′
t, t ≥ 0, γ′

0 = γ} with the reformulated update rule as follows

γ′
t = γ′

t−1

√︄
1 +

⃦⃦
x′
t − x′

t−1

⃦⃦2
η2

.

Besides, by defining T ′ =
∑︁S

s=1 Ts, we have

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
.

Note that we require 2η2 > D2, so if γ ≥ 2η2β
2η2−D2 ⇔ β

2 −
(︂

1
2 − D2

4η2

)︂
γ ≤ 0 ⇒ β

2 −
(︂

1
2 − D2

4η2

)︂
γ′
t−1 ≤ 0, by using the

reformulated update rule, we have

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
=

T ′∑︂
t=1

(γ′
t)

2 − (γ′
t−1)

2

2(γ′
t + γ′

t−1)
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
=

T ′∑︂
t=1

(γ′
t−1)

2D2

2η2(γ′
t + γ′

t−1)

⃦⃦
x′
t − x′

t−1

⃦⃦2
+

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
(a)

≤
T ′∑︂
t=1

(︃
γ′
t−1

4η2
D2 +

β − γ′
t−1

2

)︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
=

T ′∑︂
t=1

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ′
t−1

]︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
≤0,

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (a) is by γ′
t ≥ γ′

t−1. Now we assume γ < 2η2β
2η2−D2 , define

τ = max

{︃
t ∈ [T ′], γ′

t−1 <
2η2β

2η2 −D2

}︃
.

By our assumption on γ, we know τ ≥ 1, Combining the reformulated update rule, we have

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
≤

T ′∑︂
t=1

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ′
t−1

]︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
≤

τ∑︂
t=1

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ′
t−1

]︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
(b)

≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃ τ∑︂
t=1

⃦⃦
x′
t − x′

t−1

⃦⃦2
(c)

≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃(︄
D2 +

τ−1∑︂
t=1

⃦⃦
x′
t − x′

t−1

⃦⃦2)︄
(d)
=

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃(︄
D2 +

τ−1∑︂
t=1

η2
(γ′

t)
2 − (γ′

t−1)
2

(γ′
t−1)

2

)︄
(e)

≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃(︄
D2 +

(︁
η2 +D2

)︁ τ−1∑︂
t=1

(γ′
t)

2 − (γ′
t−1)

2

(γ′
t)

2

)︄
(f)

≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃(︄
D2 + 2

(︁
η2 +D2

)︁ τ−1∑︂
t=1

log
γ′
t

γ′
t−1

)︄

=

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃(︃
D2 + 2

(︁
η2 +D2

)︁
log

γ′
τ−1

γ

)︃
(g)

≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃⎛⎝D2 + 2
(︁
η2 +D2

)︁
log

2η2β
2η2−D2

γ

⎞⎠ ,

where (b) is by γ′
t−1 ≥ γ, (c) is by

⃦⃦
x′
τ − x′

τ−1

⃦⃦
≤ D, (d) is by the reformulated update rule, (e) is due to

γ′
t = γ′

t−1

√︄
1 +

⃦⃦
x′
t − x′

t−1

⃦⃦2
η2

≤ γ′
t−1

√︄
1 +

D2

η2
,

(f) is by the inequality 1− 1
x2 ≤ log x2 = 2 log x, (g) is by the definition of τ .

Combining two cases of γ, we obtain the bound

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
≤
[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃+⎛⎝D2 + 2
(︁
η2 +D2

)︁
log

2η2β
2η2−D2

γ

⎞⎠ .

(17)

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

By plugging in (17) into (16), we have

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃+⎛⎝D2 + 2
(︁
η2 +D2

)︁
log

2η2β
2η2−D2

γ

⎞⎠ .

Lemma B.7. For Option II, if X is a compact set with diameter D, we have

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

η2

2

(︃
D2

η2
+ β − γ

)︃+(︃
2D2

η2
+ β − γ

)︃
.

Proof. For Option II, by the definition of γ(s)
t , we have

γ
(s)
t ≥ γ

(s)
t−1,∀s ∈ [S] , t ∈ [Ts] .

By requiring that X is a compact convex set with diameter D, we can apply Lemma B.5 and obtain

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+ E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
. (18)

Note that the last element x(s)
Ts

(resp. γ(s)
Ts

) in the s-th epoch is just the starting element x(s+1)
0 (resp. γ(s+1)

0) in the (s+1)-th

epoch, which means we can consider the doubly indexed sequences {x(s)
t } and {γ(s)

t } as two singly indexed sequences
{x′

t, t ≥ 0} and {γ′
t, t ≥ 0, γ′

0 = γ} with the reformulated update rule as follows

γ′
t = γ′

t−1 +

⃦⃦
x′
t − x′

t−1

⃦⃦2
η2

.

Besides, by defining T ′ =
∑︁S

s=1 Ts, we have

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
.

If γ ≥ D2

η2 + β ⇔ D2

2η2 + β−γ
2 ≤ 0 ⇒ D2

2η2 +
β−γ′

t−1

2 ≤ 0, by using the reformulated update rule, we have

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
=

T ′∑︂
t=1

(︃
D2

2η2
+

β − γ′
t−1

2

)︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
≤ 0.

Now we assume γ < D2

η2 + β. Define

τ = max

{︃
t ∈ [T ′], γ′

t−1 <
D2

η2
+ β

}︃
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

By our assumption on γ, we know τ ≥ 1. Combining the reformulated update rule, we have

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
=

T ′∑︂
t=1

(︃
D2

2η2
+

β − γ′
t−1

2

)︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
≤

τ∑︂
t=1

(︃
D2

2η2
+

β − γ′
t−1

2

)︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
(a)

≤
τ∑︂

t=1

(︃
D2

2η2
+

β − γ

2

)︃ ⃦⃦
x′
t − x′

t−1

⃦⃦2
(b)
=

τ∑︂
t=1

(︃
D2

2η2
+

β − γ

2

)︃
η2
(︁
γ′
t − γ′

t−1

)︁
=

(︃
D2

2η2
+

β − γ

2

)︃
η2 (γ′

τ − γ)

(c)
=

(︃
D2

2η2
+

β − γ

2

)︃
η2

(︄
γ′
τ−1 +

⃦⃦
x′
τ − x′

τ−1

⃦⃦2
η2

− γ

)︄
(d)

≤
(︃
D2

2η2
+

β − γ

2

)︃
η2
(︃
2
D2

η2
+ β − γ

)︃
=
η2

2

(︃
D2

η2
+ β − γ

)︃(︃
2D2

η2
+ β − γ

)︃
,

where (a) is by the fact γ′
t−1 ≥ γ, (b) and (c) are by the reformulated update rule, (d) is by the definition of τ and⃦⃦

x′
τ − x′

τ−1

⃦⃦
≤ D.

Combining two cases of γ, we obtain the bound

S∑︂
s=1

Ts∑︂
t=1

γ
(s)
t − γ

(s)
t−1

2
D2 +

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2
=

T ′∑︂
t=1

γ′
t − γ′

t−1

2
D2 +

β − γ′
t−1

2

⃦⃦
x′
t − x′

t−1

⃦⃦2
≤η2

2

(︃
D2

η2
+ β − γ

)︃+(︃
2D2

η2
+ β − γ

)︃
. (19)

By plugging in (19) into (18), we have

E

[︄
S∑︂

s=1

Ts∑︂
t=1

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−

γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2
+

β − γ
(s)
t−1

2

⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄

≤γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

η2

2

(︃
D2

η2
+ β − γ

)︃+(︃
2D2

η2
+ β − γ

)︃
.

B.3. Parameter bound

Combining the previous two parts analysis on the function value gap and the residual term, we already can see the bound for
F (u(S))− F (x∗). However, we need to make sure that our choice stated in Theorem B.1 indeed satisfies the conditions
used in previous lemmas, besides, we also need to give the bounds for our choice explicitly. The following two lemmas can
help us to do this.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Lemma B.8. Under the choice of parameters in Theorem B.1, ∀s ≥ 1, we have the following facts

a(s0) ≤ 1

2
,(︁

2− a(s)
)︁
a(s)

1− a(s)
≤ q(s),

(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)
.

Proof. Under the choice of parameters in Theorem B.1, the first inequality follows that

a(s0) = 1− (4n)
−0.5s0 ≤ 1− (4n)

−0.5log2 log2 4n

=
1

2
.

For the second inequality, note that(︁
2− a(s)

)︁
a(s)(︁

1− a(s)
)︁
q(s)

=

{︄(︁
2− a(s)

)︁ (︁
a(s)
)︁2

1 ≤ s ≤ s0
3
8 s0 < s

.

By noticing
(︁
2− a(s)

)︁ (︁
a(s)
)︁2 ≤ a(s) ≤ 1, the inequality (2−a(s))a(s)

1−a(s) ≤ q(s) becomes true immediately.

For the third inequality, note that we have Ts ≡ n, we only need to prove for any s ≥ 1, there is

1− a(s+1)

q(s+1)a(s+1)
≤ 1

q(s)a(s)
.

We consider the following three cases:

• For 1 ≤ s ≤ s0 − 1, note that
(︁
1− a(s+1)

)︁2
= (4n)

−0.5s
= 1− a(s), q(s) = 1

(1−a(s))a(s)
. We know

1− a(s+1)

q(s+1)a(s+1)
= (1− a(s+1))2

= 1− a(s)

=
1

q(s)a(s)
.

• For s = s0, note that a(s0+1) = c
1+2c = 9−

√
33

8 , q(s0+1) = 8(2−a(s0+1))a(s0+1)

3(1−a(s0+1))
we have

1− a(s0+1)

q(s0+1)a(s0+1)
=

3(1− a(s0+1))2

8(2− a(s0+1))
(︁
a(s0+1)

)︁2
=

1

2
(a)

≤ 1− a(s0)

(b)
=

1

q(s0)a(s0)
,

where (a) is by a(s0) ≤ 1
2 , (b) is by q(s0) = 1

(1−a(s0))a(s0)
.

• For s ≥ s0 + 1, note that q(s) = 8(2−a(s))a(s)

3(1−a(s))
, by plugging in q(s), we only need to show

(1− a(s+1))2

(a(s+1))2(2− a(s+1))
≤ 1− a(s)

(a(s))2(2− a(s))
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Plug in a(s) = c
s−s0+2c , the above inequality is equivalent to

(2(s− s0) + 3c)(s− s0 + 1 + 2c)(s− s0 + 1 + c)2 ≤ (2(s− s0) + 2 + 3c)(s− s0 + c)(s− s0 + 2c)2.

Let y = s− s0 ≥ 1, we need to show

(2y + 3c)(y + 1 + 2c)(y + 1 + c)2 ≤ (2y + 2 + 3c)(y + c)(y + 2c)2

is true for y ≥ 1. People can check when c = 3+
√
33

4 , the above inequality is right for y ≥ 1.

Lemma B.9. Under the choice of parameters in Theorem B.1, ∀s ≥ 1, we have the following bounds

(1− a(1))T1

q(1)a(1)
=

1

4

and
q(s)a(s)

Ts
≤

{︄
4

(4n)1−0.5s 1 ≤ s ≤ s0
2(5+

√
33)c2

3n(s−s0+2c)2 s0 < s
.

Proof. Note that a(1) = 1− 1
2
√
n

, T1 = n, q(1) = 1
(1−a(1))a(1) , plugging in these values, we obtain

(1− a(1))T1

q(1)a(1)
= (1− a(1))2T1

=
1

4

• For 1 ≤ s ≤ s0, note that q(s) = 1
(1−a(s))a(s) in our choice, so we know

q(s)a(s)

Ts
=

1

Ts(1− a(s))

(a)
=

4

(4n)1−0.5s

where (a) is by plugging in Ts = n and a(s) = 1− (4n)−0.5s .

• For s > s0, note that q(s) = 8(2−a(s))a(s)

3(1−a(s))
we have

q(s)a(s)

Ts
=

8(2− a(s))(a(s))2

3Ts(1− a(s))

(b)
=

8(2− a(s))(a(s))2

3n(1− a(s))

(c)

≤ 2(5 +
√
33)c2

3n(s− s0 + 2c)2
,

where (b) is by plugging inTs = n, (c) is by noticing 2−a(s)

1−a(s) ≤ 2−a(s0+1)

1−a(s0+1) = 5+
√
33

4 for s > s0, and plug in
a(s) = c

s−s0+2c .

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

B.4. Putting all together

We are now ready to put everything together and complete the proof of Theorem B.1.

Proof. (Theorem B.1) By Lemma B.8, ∀s ≥ 1, we have(︁
2− a(s)

)︁
a(s)

1− a(s)
≤ q(s),

(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)
.

Hence all the conditions for Lemma B.4 are satisfied. Besides, we assume X is a compact convex set with diameter D,
which satisfies the requirements for Lemma B.7 and B.6.

1. For Option I, by Lemma B.4 and B.6

E
[︃

TS

q(S)a(S)
(F (u(S))− F (x∗))

]︃
≤ (1− a(1))T1

q(1)a(1)
(F (u(0))− F (x∗)) +

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

[︃
β

2
−
(︃
1

2
− D2

4η2

)︃
γ

]︃+⎛⎝D2 + 2(η2 +D2) log

2η2β
2η2−D2

γ

⎞⎠ .

2. For Option II, by Lemma B.4 and B.7

E
[︃

TS

q(S)a(S)
(F (u(S))− F (x∗))

]︃
≤ (1− a(1))T1

q(1)a(1)
(F (u(0))− F (x∗)) +

γ

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
+

η2

2

(︃
D2

η2
+ β − γ

)︃+(︃
2D2

η2
+ β − γ

)︃
.

Plugging in the bound (1−a(1))T1

q(1)a(1) = 1
4 from Lemma B.9, we have

E
[︃

TS

q(S)a(S)
(F (u(S))− F (x∗))

]︃
≤ V

2

⇒ E
[︂
F (u(S))− F (x∗)

]︂
≤ q(S)a(S)V

2TS

(a)

≤

⎧⎨⎩
2V

(4n)1−0.5S
1 ≤ S ≤ s0

(5+
√
33)c2V

3n(S−s0+2c)2 s0 < S
,

where (a) is by the bound for q(S)a(S)

TS
from Lemma B.9.

• If ϵ ≥ V
n , we choose S =

⌈︁
log2 log2

4V
ϵ

⌉︁
≤ ⌈log2 log2 4n⌉ = s0, so we have

E
[︂
F (u(S))− F (x∗)

]︂
≤ 2V

(4n)1−0.5S

(b)

≤ 2V(︁
4V
ϵ

)︁
1−0.5S

=
ϵ

2
(︁
4V
ϵ

)︁
−0.5S

(c)

≤ ϵ,

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

where (b) is by n ≥ V
ϵ , (c) is by

(︁
4V
ϵ

)︁−0.5S =
(︁
4V
ϵ

)︁−0.5⌈log2 log2
4V
ϵ ⌉

≥
(︁
4V
ϵ

)︁−0.5log2 log2
4V
ϵ = 1

2 . The number of
individual gradient evaluations is

#grads = nS +

S∑︂
s=1

2Ts

= 3nS

= 3n

⌈︃
log2 log2

4V

ϵ

⌉︃
= O

(︃
n log log

V

ϵ

)︃
.

• If ϵ < V
n , we choose S = s0 +

⌈︃
c

(︃√︂
(5+

√
33)V

3nϵ − 15
8

)︃⌉︃
≥ s0 +

⌈︃
c

(︃√︂
5+

√
33

3 − 15
8

)︃⌉︃
= s0 + 1, so we have

E
[︂
F (u(S))− F (x∗)

]︂
≤ (5 +

√
33)c2V

3n(S − s0 + 2c)2

=
(5 +

√
33)c2V

3n

(︃
s0 +

⌈︃
c

(︃√︂
(5+

√
33)V

3nϵ − 15
8

)︃⌉︃
+ 2c

)︃2

≤ (5 +
√
33)c2V

3n

(︃
c

√︂
(5+

√
33)V

3nϵ + c
8

)︃2

≤ (5 +
√
33)c2V

3n

(︃
c

√︂
(5+

√
33)V

3nϵ

)︃2

= ϵ.

The number of individual gradient evaluations is

#grads = nS +

S∑︂
s=1

2Ts

= 3nS

= 3ns0 + 3n(S − s0)

= 3n ⌈log2 log2 4n⌉+ 3n

⎡⎢⎢⎢c
⎛⎝√︄ (5 +

√
33)V

3nϵ
− 15

8

⎞⎠⎤⎥⎥⎥
= O

(︄
n log log n+

√︃
nV

ϵ

)︄
.

C. AdaVRAE for known β

In this section, we give a non-adaptive version of our algorithm AdaVRAE. The algorithm is shown in Algorithm 3. The
only change is in the step size: we set γ(s)

t = 8β for all epochs s and iterations t. The analysis readily extends to show the
following convergence guarantee:

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Algorithm 3 VRAE

Input: initial point u(0), smoothness parameter β.
Parameters: {a(s)}, {Ts}, A(0)

T0
> 0

x
(1)
0 = z

(1)
0 = u(0), compute ∇f(u(0))

for s = 1 to S:
A

(s)
0 = A

(s−1)
Ts−1

− Ts

(︁
a(s)
)︁2

for t = 1 to Ts:

x
(s)
t = argminx∈X

{︃
a(s)

⟨︂
g
(s)
t−1, x

⟩︂
+ a(s)h(x) + 4β

⃦⃦⃦
x− z

(s)
t−1

⃦⃦⃦2}︃
Let A(s)

t = A
(s)
t−1 + a(s) +

(︁
a(s)
)︁2

x
(s)
t = 1

A
(s)
t

(︂
A

(s)
t−1x

(s)
t−1 + a(s)x

(s)
t +

(︁
a(s)
)︁2

u(s−1)
)︂

if t ̸= Ts:
Pick i

(s)
t ∼ Uniform ([n])

g
(s)
t = ∇f

i
(s)
t
(x

(s)
t)−∇f

i
(s)
t
(u(s−1)) +∇f(u(s−1))

else:
g
(s)
t = ∇f(x

(s)
t)

z
(s)
t = argminz∈X

{︃
a(s)

⟨︂
g
(s)
t , z

⟩︂
+ a(s)h(z) + 4β

⃦⃦⃦
z − z

(s)
t−1

⃦⃦⃦2}︃
u(s) = x

(s+1)
0 = x

(s)
Ts

, z(s+1)
0 = z

(s)
Ts

, g(s+1)
0 = g

(s)
Ts

return u(S)

Theorem C.1. Let s0 = ⌈log2 log2 4n⌉, c = 3
2 . If we choose parameters as follows

a(s) =

{︄
(4n)−0.5s 1 ≤ s ≤ s0
s−s0−1+c

2c s0 < s
,

Ts = n,

A
(0)
T0

=
5

4
.

The number of gradient evaluations to achieve a solution u(S) such that E
[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm 3 is

#grads =

⎧⎨⎩O
(︁
n log log V

ϵ

)︁
if ϵ ≥ V

n

O
(︂
n log logn+

√︂
V n
ϵ

)︂
if ϵ < V

n

where V = 5
2

(︁
F (u(0))− F (x∗)

)︁
+ 8β

⃦⃦
u(0) − x∗

⃦⃦2
.

Proof. Note that Algorithm 3 is essentially the same as Algorithm 1 by choosing γ
(s)
t ≡ 8β with no other changes. Hence

the requirements for Lemma A.8 still hold. So we can obtain

E
[︂
A

(S)
TS

(︂
F (u(S))− F (x∗)

)︂]︂
≤ A

(0)
T0

(︂
F (u(0))− F (x∗)

)︂
+ 4β

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

Then by the similar proof in Theorem A.1, we get the desired result.

D. AdaVRAG for known β

In this section, we give a non-adaptive version of our algorithm AdaVRAG. The algorithm is shown in Algorithm 4. VRAG
admits the following convergence guarantee:

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Algorithm 4 VRAG

Input: initial point u(0), smoothness parameter β
Parameters: {a(s)} where a(s) ∈ (0, 1), {Ts}
x
(1)
0 = u(0)

for s = 1 to S:
x
(s)
0 = a(s)x

(s)
0 + (1− a(s))u(s−1), calculate ∇f(u(s−1))

for t = 1 to Ts:
Pick i

(s)
t ∼ Uniform ([n])

g
(s)
t = ∇f

i
(s)
t
(x

(s)
t−1)−∇f

i
(s)
t
(u(s−1)) +∇f(u(s−1))

x
(s)
t = argminx∈X

{︃⟨︂
g
(s)
t , x

⟩︂
+ h(x) +

β(2−a(s))a(s)

2(1−a(s))

⃦⃦⃦
x− x

(s)
t−1

⃦⃦⃦2}︃
x
(s)
t = a(s)x

(s)
t + (1− a(s))u(s−1)

u(s) = 1
Ts

∑︁Ts

t=1 x
(s)
t , x(s+1)

0 = x
(s)
Ts

return u(S)

Theorem D.1. (Convergence of VRAG) Define s0 = ⌈log2 log2 4n⌉, c = 3+
√
33

4 . If we choose the parameters as follows

a(s) =

{︄
1− (4n)

−0.5s
1 ≤ s ≤ s0

c
s−s0+2c s0 < s

,

Ts = n.

The number of individual gradient evaluations to achieve a solution u(S) such that E
[︁
F (u(S))− F (x∗)

]︁
≤ ϵ for Algorithm

4 is

#grads =

⎧⎨⎩O
(︁
n log log V

ϵ

)︁
ϵ ≥ V

n

O
(︂
n log log n+

√︂
nV
ϵ

)︂
ϵ < V

n

,

where

V =
1

2
(F (u(0))− F (x∗)) + β

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

Before giving the proof of Theorem C.1, we state some intuition on our parameter choice. Note that by defining the following
two auxiliary sequences

q(s) =

⎧⎨⎩
1

(1−a(s))a(s)
1 ≤ s ≤ s0

(2−a(s))a(s)

1−a(s) s0 < s
,

γ
(s)
t−1 =

β
(︁
2− a(s)

)︁
a(s)

(1− a(s))q(s)
,∀t ∈ [Ts] ,

the update rule of x(s)
t in every epoch in Algorithm 4 is equivalent to the update rule of x(s)

t in every epoch in Algorithm 2.
Since γ

(s)
t−1 is a constant in the corresponding epoch now, we will use γ(s) without the subscript to simplify the notation.

The above argument means that we can apply Lemma B.3 directly to obtain the following lemma.

Lemma D.2. For all epochs s ≥ 1, we have

E
[︂
F (u(s))− F (x∗)

]︂
≤ E

[︃(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂
+

γ(s)q(s)a(s)

2Ts

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃]︃
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

Proof. By applying Lemma B.3, we know

E
[︂
F (u(s))− F (x∗)

]︂
≤E

[︂(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂]︂
+ E

[︄
1

Ts

Ts∑︂
t=1

γ
(s)
t−1q

(s)a(s)

2

(︃⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2)︃]︄

+ E

[︄
1

Ts

Ts∑︂
t=1

(︄
β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2
(︁
1− a(s)

)︁ −
γ
(s)
t−1q

(s)a(s)

2

)︄ ⃦⃦⃦
x
(s)
t − x

(s)
t−1

⃦⃦⃦2]︄
(a)
=E

[︄(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂
+

γ(s)q(s)a(s)

2Ts

Ts∑︂
t=1

⃦⃦⃦
x
(s)
t−1 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
t − x∗

⃦⃦⃦2]︄

=E
[︃(︂

1− a(s)
)︂(︂

F (u(s−1))− F (x∗)
)︂
+

γ(s)q(s)a(s)

2Ts

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s)
Ts

− x∗
⃦⃦⃦2)︃]︃

(b)
=E

[︃(︂
1− a(s)

)︂(︂
F (u(s−1))− F (x∗)

)︂
+

γ(s)q(s)a(s)

2Ts

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃]︃
,

where (a) is by γ
(s)
t−1q

(s) =
β(2−a(s))a(s)

1−a(s) and γ(s) = γ
(s)
t−1,∀t ∈ [Ts], (b) is by x

(s+1)
0 = x

(s)
Ts

.

Now if we still multiply both sides by Ts

q(s)a(s) , we need to ensure that γ(s) can help us to make a telescoping sum. However,
this is not always true. So we need some different conditions as stated in the following lemma to obtain a bound for the
function value gap of u(S). The new bound for the function value gap of u(S) for Algorithm 4 is as follows.

Lemma D.3. If ∀s ̸= s0, we have

a(s+1) ≤ a(s),

(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)
.

Additionally, for s0, assume we have (︁
1− a(s0+1)

)︁2
Ts0+1(︁

2− a(s0+1)
)︁ (︁

a(s0+1)
)︁2 ≤ (1− a(s0))Ts0(︁

2− a(s0)
)︁ (︁

a(s0)
)︁2 .

Then for S ≤ s0,

E
[︃

TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︃
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

For S > s0,

E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︄
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2

Proof. By applying Lemma D.2 and multiply both sides by Ts

q(s)a(s) ,we have

E
[︃

Ts

q(s)a(s)

(︂
F (u(s))− F (x∗)

)︂]︃
≤ E

[︄(︁
1− a(s)

)︁
Ts

q(s)a(s)

(︂
F (u(s−1))− F (x∗)

)︂
+

γ(s)

2

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃]︄
.

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

For S ≤ s0

E
[︃

TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︃
≤E

[︄(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

S∑︂
s=1

γ(s)

2

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃]︄
(a)
=

(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+ E

[︄
S∑︂

s=1

β
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

2

(︃⃦⃦⃦
x
(s)
0 − x∗

⃦⃦⃦2
−
⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃]︄

=

(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β
(︁
2− a(1)

)︁ (︁
a(1)

)︁2
2

⃦⃦⃦
x
(1)
0 − x∗

⃦⃦⃦2
+ E

⎡⎣S−1∑︂
s=1

β
[︂(︁
2− a(s+1)

)︁ (︁
a(s+1)

)︁2 − (︁2− a(s)
)︁ (︁

a(s)
)︁2]︂

2

(︃⃦⃦⃦
x
(s+1)
0 − x∗

⃦⃦⃦2)︃⎤⎦
− E

[︄
β
(︁
2− a(S)

)︁ (︁
a(S)

)︁2
2

(︃⃦⃦⃦
x
(S+1)
0 − x∗

⃦⃦⃦2)︃]︄
(b)

≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
− E

[︄
β
(︁
2− a(S)

)︁ (︁
a(S)

)︁2
2

(︃⃦⃦⃦
x
(S+1)
0 − x∗

⃦⃦⃦2)︃]︄
,

where (a) is by the definition of γ(s) when s ≤ s0, (b) is by
(︁
2− a(1)

)︁ (︁
a(1)

)︁2 ≤ 1 and x
(1)
0 = u(0), additionally, note that

our assumption a(s+1) ≤ a(s) ⇒
(︁
2− a(s+1)

)︁ (︁
a(s+1)

)︁2 ≤
(︁
2− a(s)

)︁ (︁
a(s)
)︁2

.

For S > s0, we can also make the telescoping sum from s = s0 + 1 to S by a similar argument to get

E
[︃

TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︃
≤ E

[︄(︁
1− a(s0+1)

)︁
Ts0+1

q(s0+1)a(s0+1)

(︂
F (u(s0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
x
(s0+1)
0 − x∗

⃦⃦⃦2]︄
.

Multiplying both sides by
(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
, we have

E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︄

≤E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2 (︁
1− a(s0+1)

)︁
Ts0+1

q(s0+1)a(s0+1)

(︂
F (u(s0))− F (x∗)

)︂
+

β
(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
2

⃦⃦⃦
x
(s0+1)
0 − x∗

⃦⃦⃦2]︄
(c)
=E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2 (︁
1− a(s0+1)

)︁2
Ts0+1

(2− a(s0+1))
(︁
a(s0+1)

)︁2 (︂
F (u(s0))− F (x∗)

)︂
+

β
(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
2

⃦⃦⃦
x
(s0+1)
0 − x∗

⃦⃦⃦2]︄
,

where (c) is by the definition q(s0+1) =
(2−a(s0+1))a(s0+1)

1−a(s0+1) . Note that by our assumption

(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2 (︁
1− a(s0+1)

)︁2
Ts0+1

(2− a(s0+1))
(︁
a(s0+1)

)︁2 ≤ (1− a(s0))Ts0

=
Ts0

q(s0)a(s0)
,

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

so we know

E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︄

≤E

[︄
Ts0

q(s0)a(s0)

(︂
F (u(s0))− F (x∗)

)︂
+

β
(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
2

⃦⃦⃦
x
(s0+1)
0 − x∗

⃦⃦⃦2]︄
.

Now combining

E
[︃

Ts0

q(s0)a(s0)

(︂
F (u(s0))− F (x∗)

)︂]︃
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
− E

[︄
β
(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
2

(︃⃦⃦⃦
x
(s0+1)
0 − x∗

⃦⃦⃦2)︃]︄
,

we have

E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︄
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

Using the above new lemma w.r.t. the function value gap of u(S), we finally can give the proof of Theorem D.1.

Proof. (Theorem D.1) Note that by our choice a(s+1) ≤ a(s) is true for any s ̸= s0. Besides, our parameters
{︁
a(s)
}︁

and{︁
q(s)
}︁

are totally the same as the choice in Theorem B.1 when s ≤ s0. Hence we know

(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)

is still true for s ≤ s0 − 1. For s ≥ s0 + 1, note that our new
{︁
q(s)
}︁

are only different from the choice in Theorem B.1 by a
constant, which implies

(1− a(s+1))Ts+1

q(s+1)a(s+1)
≤ Ts

q(s)a(s)

also holds for s ≥ s0 + 1. Besides, we can show(︁
1− a(s0+1)

)︁2
Ts0+1(︁

2− a(s0+1)
)︁ (︁

a(s0+1)
)︁2 ≤ (1− a(s0))Ts0(︁

2− a(s0)
)︁ (︁

a(s0)
)︁2

is true by plugging in the value of a(s0+1) = c
1+2c and noticing that a(s0) ≤ 1

2 . Hence all the conditions for Lemma D.3 are
satisfied, then we know for S ≤ s0,

E
[︃

TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︃
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

For S > s0,

E

[︄(︁
2− a(s0)

)︁ (︁
a(s0)

)︁2
TS

q(S)a(S)

(︂
F (u(S))− F (x∗)

)︂]︄
≤
(︁
1− a(1)

)︁
T1

q(1)a(1)

(︂
F (u(0))− F (x∗)

)︂
+

β

2

⃦⃦⃦
u(0) − x∗

⃦⃦⃦2
.

By noticing

a(s0) = 1− (4n)
−0.5s0

≥ 1− (4n)
−0.5(log2 log2 4n)+1

= 1− 1√
2

⇒
(︂
2− a(s0)

)︂(︂
a(s0)

)︂2
≥ 2−

√
2

4

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

and (︁
1− a(1)

)︁
T1

q(1)a(1)
=

1

4
,

combining the fact that our new
{︁
q(s)
}︁

for S > s0 have the same order of the choice in Theorem B.1. Following a similar
proof, we can arrive the desired result.

E. Hyperparameter choices and additional results
Table 2 reports the hyperparameter choices used in the experiments. VRAG and VRAE are the non-adaptive versions our
algorithms (Algorithms 3 and 4). We set their step sizes via a hyperparameter search as described in Section 3. Figures 5, 6,
7, 8 give the experimental evaluation of our non-adaptive algorithms.

Table 2. Hyperparameters used in the experiments

Dataset Loss SVRG SVRG++ VARAG VRADA VRAG VRAE

a1a
logistic 0.5 0.5 1 1 1 1

squared 0.01 0.05 0.05 0.1 0.1 0.05

huber 0.05 0.1 0.1 0.5 0.1 0.1

mushrooms
logistic 0.5 1 1 1 1 1

squared 0.01 0.01 0.05 0.1 0.05 0.01

huber 0.05 0.1 0.1 0.1 0.1 0.05

w8a
logistic 0.1 1 1 100 1 5

squared 0.01 0.01 0.01 100 0.05 0.05

huber 0.01 0.1 0.1 100 0.1 0.5

phishing
logistic 50 100 100 100 100 100

squared 0.05 0.5 1 1 1 1

huber 0.5 1 1 5 5 5

Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 5. a1a

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 6. mushrooms

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 7. w8a

(a) Logistic loss (b) Squared loss (c) Huber loss

Figure 8. phishing

