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Abstract—Computational natural language processing (NLP)
is indispensable in a humanized ambience intelligence envi-
ronment. NLP facilitates ambient intelligence by making ma-
chines understand, and be understood by, humans. This in turn
makes machines behave more human-like than they typically
are today. Technological advances in machine learning (ML),
and especially deep learning (DL), have been a key enabler
of NLP research. This paper begins with a survey of recent
developments of ML/DL for NLP. It then identifies some of the
most promising techniques reported in recent literature. These
most promising techniques are then assembled into a reusable
toolkit for computational NLP. The adaptable nature of the
assembled toolkit allows it to be reused in a broad range of NLP
applications. The paper then describes experimental evaluation of
our implemented solutions for comparative analysis. Two specific
NLP applications form the basis of comparative evaluation. The
first involves identifying one of M English sentences that does not
make sense. The second, which is harder than the first, involves
choosing from among N sentences the one that best explains
why a presented sentence is invalid. Human baseline accuracies
for these applications are 99.1% and 97.8%, respectively. The
observation that these results are somewhat less than perfect
demonstrates that even humans can occasionally find these tasks
difficult. It further underscores the difficulties involved in some
of these computational NLP applications. Experiments conducted
on benchmark data show that advanced ML/DL can achieve near-
human performance in both computational NLP applications
with accuracy scores of 96.1% and 93.7%, respectively.

Index Terms—Computational intelligence, human-like intel-
ligence, natural language processing, machine learning, deep
learning, transfer learning, language modeling, transformers,
neural networks

I. INTRODUCTION

Technological improvements in machine learning (ML) [1]
have been fueled by algorithmic developments in deep learning
(DL) [2] neural networks (NN), increased availability of big
data, as well as advances in computer hardware. Ready ac-
cessibility of compute-intensive ML/DL methods to affordable
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cloud services has also contributed to the popularity of ML/DL
usage well beyond traditional computer science (CS) applica-
tions. All these developments have enabled a range of human-
like intelligence applications previously considered very dif-
ficult or even impossible. These include applications in areas
such as smart cities and transportation, intelligent healthcare,
and many others. Indeed, there has been tremendous progress
made in various applications of computational intelligence
(CI) to natural language processing (NLP), such as conceptual
and semantic analysis in social media [3], [4], realistic text
generation tools [5], intelligent question and answer (Q&A)
systems [6], and text summarization [7].

Members of the Western Michigan University (WMU)
Transformative Interdisciplinary Human+AI Research Group
(https://fong.cs.wmich.edu/) are committed to the research
and development of next-generation human-centric intelligent
machines and user-friendly smart applications. It is also an
aim of the group to ensure that such enhanced human-centric
machine intelligence will positively impact a broad range
of disciplines beyond computer science. These include me-
chanical engineering, civil engineering, statistics, and business
analytics. Use cases span commercial, industry, and consumer
applications. Machine NLP is one of the key focus areas of
the group due to its wide applicability.

This paper presents research intended to address two in-
tertwined problems in NLP. The first problem is sentence
validation, which begins with preparing M , where M > 1,
English sentences with exactly one out of M sentences that is
not valid. Under this scenario, when a computational machine
is presented with the prepared M sentences, it must choose
the one that is not valid because it is illogical or violates some
natural language rules.

The second problem is reasoning about the validity (or
otherwise) of a sentence. For example, suppose that the NLP
machine is presented with an English sentence that is known to
be invalid. The machine’s task then is to choose from N , where
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N > 1, alternative sentences exactly one that best explains
why the given sentence is invalid. Obviously, the “best” reason
must itself not violate any logical or natural language rules.

Specific contributions of this research include:

• A survey of recent advances in computational intelligence
for NLP applications.

• Based on the survey, an effective and reusable learning
toolkit is assembled for addressing the two categories of
NLP problems outlined above (i.e., sentence validation
and validity reasoning).

• A novel way of applying the masked language model
(MLM) technique for predicting probabilities of masked
tokens for a given set of sentences.

• A method for enhancing the performance of all applied
models based on the idea of reformulating the input of
sentence validation as a classification task to the input
of another downstream stage, i.e., treatment as multiple
choice questions.

The rest of this paper is organized as follows. By presenting
pertinent research background information with a motivating
example, Section II sets the scene and lays the foundation
for further discussion. Section III presents a survey of recent
computational models for NLP, identifying the most promising
ones as the basis for further development. Section IV discusses
the key components of an effective and reusable toolkit for
NLP applications. These include recurrent neural network
(RNN), transfer learning (TL), and transformers. Section V
presents experimental details of our developed tools for ad-
dressing sentence validation and validity reasoning, leading
to near-human level of performance in both applications.
Finally, Section VI concludes the paper by summarizing the
key advances, as well as limitations, reported in this paper.
The concluding section also suggests possible futue research
directions, some of which are currently underway.

II. BACKGROUND AND MOTIVATION

A specific aim of the research is to make computers exhibit
human-like ambience intelligence. This is achieved by making
computational machines understand and interact with humans
in a more humanized and intuitive manner than how they ap-
pear now. The well-known Turing test [8] is often considered
as a benchmark of inquiry in machine intelligence in general,
and NLP research in particular. Also considered an imitation
game, the test is designed to determine a computational ma-
chine’s ability to display human-like intelligence and behavior
during a series of interactions with humans.

Apart from the Turing test, there is a less well-known
test that uses Winograd schema questions [9] as the basis of
inquiry. More specifically, each Winograd schema poses a
set of multiple-choice questions in a well-defined structure.
As shown in the following examples, solving a Winograd
schema question requires effective application of real-world
knowledge generally possessed by people.

Specimen Winograd schemata
Example 1

The horse would not fit in the plastic bag because it was too
[big /small]. What was too big (small)?
Answer 1: the horse
Answer 2: the plastic bag

Example 2 The city police denied the demonstrators a
permit because they [feared/suggested] chaos. Who feared
(suggested) chaos?
Answer 1: the police
Answer 2: the demonstrators

In each of the two Winograd examples above, if the red
word is chosen to complete the sentence, then the pronoun
“it” refers to the first answer. Alternatively, choosing the
blue word means that the second answer is valid. These
examples demonstrate the importance of knowing about the
world around us (or a machine in the case of machine NLP).
It furthermore demonstrates the importance of knowing how
to apply innate general knowledge in new situations and
questions not encountered or thought of before. Evidently,
Winograd schema questions are designed to be obvious to
any typical human proficient in the natural language under
consideration (which is English in this case). However, the
challenge is to build a computational model to recognize
facts obvious to humans. This is often more difficult than
anticipated.

III. COMPUTATIONAL INTELLIGENCE MODELS FOR NLP

This section surveys CI models that have been found effec-
tive for NLP problems. The ones that are especially promising
are highlighted.

A. Recurrent Neural Network

A recurrent neural network (RNN) [10] works on sequential
data, such as text or strings of characters. RNN is often used
for NLP tasks, e.g., language translation, speech synthesis
and recognition, Q&A systems, and media captioning. These
networks are characterized by their internal memory allowing
them to save information from previous inputs to influence
the current input. This characteristic enables them to process
variable-length sequences of input text data. Different from
fully connected neural networks, the current input of a layer
in RNN depends on the earlier outputs of the hidden layer.

A disadvantage of standard RNN is that information from a
long time ago can be difficult to retrieve because it lacks the
ability to remember long term dependencies. This is in turn
caused by the problem of vanishing gradient. For example, if
the RNN’s input is a text paragraph that comprises numer-
ous sentences, then RNN may forget some of the important
features from or near the beginning.

Long Short-Term Memory (LSTM) [11] is a type of RNN
specifically designed to overcome the long-term dependency
problem associated with standard RNN. LSTM networks can
theoretically store information for an arbitrary duration. For
NLP applications, average stochastic gradient descent (SGD)
weight-dropped LSTM (AWD-LSTM) [12] has been found to
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be effective for processing and predicting sequences of words.
AWD-LSTM provides a set of regularization and optimization
strategies for existing LSTM implementation.

B. Attention-based Network

The attention mechanism is an important development that
is often considered by many to have revolutionized com-
putational NLP. Specific techniques that incorporate the at-
tention mechanism include the transformer [13] architecture,
Google’s Bidirectional Encoder Representations from Trans-
formers (BERT) [14] , and Generative Pre-trained GPT-3
Model Representation [15]. It is not an exaggeration to assert
that attention is the main component of pioneer algorithms in
human language understanding. In this research, we investigate
the attention mechanism and different state-of-the-art trans-
formers suitable for machine NLP problems. Furthermore, we
present a comprehensive view of transfer learning, which is
important for explaining the significance of our work.

1) Transfer Learning (TL): As Fig.1 shows, TL is a method
in which a model, which has been trained on a large dataset
for a specific task (primary task), is adapted to a different but
related task (secondary task). Typically, the secondary task is
the one that the user is interested in, but limited availability
of training data prevents the user from training the network
for that task from scratch. Alternatively, there are situations
in which well trained networks exist and can be adapted
to perform more specific tasks. In any case, TL facilitates
accumulation of knowledge from related data-rich task(s), and
then using that information as a starting point in training the
network for the secondary task of interest.

In fact, the use of a pre-trained model is popular among
members of the deep learning community. Rather than de-
signing NN layers from scratch to learn useful features, use
of a pre-trained model is often considered a good starting
point. TL has proved to be a game-changer in numerous
computer vision and machine NLP tasks. Examples of pre-
trained models that have been trained on very large corpora
of text documents include OpenAI GPT series [15], BERT
[14] and variants, Embeddings from Language Model (ELMo)
[20], Google’s word2vec [26], and Stanford Global Vectors for
Word Representation (GloVe) [27] models.

In this research, we apply transfer learning to significantly
expedite the training process, which also improves the per-
formance of the resulting computational models. We apply
pre-trained network to a large benchmark dataset including
millions of text data items (books, web pages, paper docu-
ments, etc.) and re-purpose the extracted features for our NLP
applications. Typically, TL works best if the base network is
trained on general features rather than for specific applications.

2) Self-Attentional Neural Networks and Transformers:
A common trait of transformer-based architectures, such as
BERT [14] and variants RoBERTa [16], ALBERT [17], and
DistilBERT [18], is that they all have some form of built-in
self-attention mechanism. Before the advent of transformers
and self-attention mechanism, RNN-based networks struggled
to capture the context in many NLP applications. The root

Transfer Knowledge

Trained Neural NetworkGeneric 
Dataset

Specific 
Dataset 

Trained the pre-trained 
model on the specific 

dataset

Generic 
Task

Specific 
Task

Fig. 1. Transfer learning.

cause is that these models are sensitive to the length of sen-
tences. For long input sequence length more updates increase
the chances of losing earlier inputs and updates.

The attention mechanism was proposed in [19] to deal with
this loss problem originally intended for machine translation.
The attention mechanism allows the model to look at the entire
context and identify relationships between words that are far
apart. Attention-based models give particular “attention” to
some hidden states in RNN-based models, while decoding
each word during the translation.

The authors of [13] claimed that “self-attention” is all
encoding needs and no interfering with RNN variations. Self-
attention is the core idea behind transformer, such that each
token in the sequence attends to every other token in the same
sequence. Consequently, the relationships between words in
the sequence can be captured. Transformer is fundamentally a
sequence-to-sequence, length independent model that consists
of encoders and decoders. The encoding and decoding blocks
are a stack of encoders and decoders. For example, the paper
[13] stacks six encoders and decoders. These numbers are fun-
damentally the model’s hyperparameters. The encoder takes
the input sequence and flows them through a self-attention
layer, followed by a feed-forward NN. The output vector is
fed into the decoder (which includes an attention layer, too),
turning it into an output sequence. The output sequence can
be in another language as in the case of machine translation.
The output sequence can also be symbols, a copy of the input,
etc. The self-attention layer in the encoder helps the model to
pay attention to other words in the sequence while encoding
a specific word. The attention layer in the decoder focuses on
relevant parts of the encoder’s output.

To illustrate how attention makes a difference, consider a
scenario in which a person is reading some text. Normally,
the reader cannot remember the text word by word and simply
focuses on the important keywords of the text which represents
the key content. The attention mechanism works similarly to
our brain in that it takes a sequence of words at the same time
and decides which ones are important by attributing different
weights to inputs. Fig.2 [13] illustrates the architecture of a
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single transformer encoder-decoder pair.

Fig. 2. Single encoder-decoder transformer [13] .

In Fig.2, both encoder (left) and decoder (right) are an order
of modules stacked on top of one another (Nx is the number
of encoders/decoders). These modules are mostly Multi-Head
Attention and Feed Forward layers. Word embeddings of the
input and output (n-dimensional vectors) are passed to the first
encoder and decoder, respectively. The positional encoding
remembers the order of words in the sequence that are fed into
the model. Each encoder/decoder pair propagates its output to
the next encoder/decoder. The last encoder’s output is passed
to all decoders.

3) Bidirectional Encoder Representations from Transform-
ers (BERT): One of the improved results of transformer is
presented by BERT [14]. It achieved state-of-the-art results
in a range of machine NLP applications. These include the
Q&A task on Stanford Question Answering Dataset (SQuAD),
machine translation, understanding human linguistics, Natural
Language Inference (NLI), and time series prediction.

The key technical innovation behind BERT is its application
of bidirectional training of transformer to language modeling.
While a traditional language model reads text from left to
right and predicts a token conditioned on the previous tokens,
BERT is bidirectionally trained. This means BERT can predict

masked tokens conditioned on the rest of the tokens in the
sentence. Although BERT is a Transformer-based language
model, it does not need a decoder. So, only the encoder part
is necessary for BERT.

IV. AN EFFECTIVE AND REUSABLE NLP TOOLKIT

A. Toolkit Overview

Innate human knowledge helps us to differentiate between
simple false and true statements or answer questions that
people sometimes encounter, such as “can a horse fly to
Jupiter?” quickly. However, using computational intelligence
to mimic this kind of human response has proven difficult
for machines [21]. Recent advances in ML emphasize the
importance of NLP as a critical aspect of CI. In much of the
first fifty-year history of CI research, progress was at times
slow [22] in NLP-related problems. However, when transfer
learning [23], and then transformers were introduced to the
NLP research community [13], significant breakthroughs have
occurred at an accelerated pace [24]. These advances form
the basis of an effective toolkit for addressing multiple related
issues in computational NLP.

An effective CI NLP toolkit begins with language modeling
(LM). Fundamentally, LM is about assigning a probability
distribution over sequences of words or tokens. LM is followed
by transfer learning (TL) to reuse a pre-trained model on
different data distribution and feature space. This serves as
the starting point of any particular machine NLP application.
Using TL significantly improves the learning process in terms
of both time and computational effort through the transfer
of knowledge from a related application that has already
been well learned to the new one under consideration [25].
Specifically, TL involving transformers, such as BERT [14],
have been found effective for a range of machine NLP
applications, e.g., multilingual Q&A systems [28], tweet act
classifier (speech act for Twitter) [29], and text-based emotion
recognition [30]. Other potentially useful NLP tools include
(AWD-LSTM) [12], Transformer T5 [31], Transformer XL
[32], and Generative Pre-trained GPT [15]. A comparative
study [31] found that GPT-2 outperformed Transformer XL
in terms of model stability and human-like performance in
some NLP applications. However, further study is needed to
establish the efficacy of these techniques in a broad sense
across NLP tasks. This remains an open research question.

B. BERT-MLM

Although BERT [14]and its variants show promise for
NLP, further development has been undertaken for optimized
performance. The original BERT is a language model used
to predict masked tokens and next sentence, which has a
range of possible applications. Consequently, we need to
modify BERT specifically for the machine NLP problems
under consideration. Many machine NLP problems can be
formulated as classification and Q&A problems. Therefore,
we can begin by adding a classification layer on top of
the transformer output. After that, we can feed embedded
vectors of question and answers into the model separated by
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special tokens. Notable variants of BERT that have shown
promise include RoBERTa [16] and ALBERT [17]. These are
useful for both NLP sentence validation and validity reasoning.
RoBERTa is trained longer on more long length sequences of
data; comparable ALBERT has fewer parameters.

A specific extension of BERT for the machine NLP prob-
lems under consideration involves a training strategy known
as Masked Language Model (MLM). MLM involves masking
out some of the words in a presented input, which is then
followed by conditioning each word bidirectionally to predict
the masked words.

Particularly, a random sample of tokens in the input se-
quence is selected to be replaced with the special token
‘[MASK]’. Under this arrangement, the objective is a cross-
entropy loss on predicting the masked tokens [14]. BERT
uniformly selects 15% of the input tokens for possible re-
placement. Of the selected tokens, 80% are replaced with
‘[MASK]’, 10% are replaced by some randomly selected token
drawn from the same vocabulary, and the remaining 10% of
the tokens are left unaltered. The following is an algorithm
that we have developed to enhance the performance of MLM
for use in the present context.

1) Insert two special tokens into each sentence. One of the
two special tokens is inserted at the beginning of the
sentence while the other is inserted at the end.

2) Replace each token from left to right with the special
‘[MASK]’ token one token at a time. This will result in
multiple sentences.

3) Feed these resultant sentences to MLM for predicting
the probabilities of the original masked tokens.

4) Normalize the predicted probabilities using softmax ac-
tivation function in the output layer.

5) Multiply the predicted probabilities of masked tokens for
each pair of sentences. This means prediction is made
for identifying the sentence with the highest probability
of occurrence.

Algorithm 1. Enhanced MLM

As an example to illustrate how Steps 1 and 2 in Algorithm
1 work, consider the following.

1) Insert special tokens into the sentence at the beginning
and end: [‘[CLS]’, ‘She’, ‘eats’, ‘water’, ‘[SEP]’]

2) Replace each token from left to right with ‘[MASK]’:
[‘[MASK]’, ‘She’, ‘eats’, ‘water’, ‘[SEP]’],
[‘[CLS]’, ‘[MASK]’, ‘eats’, ‘water’, ‘[SEP]’],
[‘[CLS]’, ‘She’, ‘[MASK]’, ‘water’, ‘[SEP]’],
[‘[CLS]’, ‘She’, ‘eats’, ‘[MASK]’, ‘[SEP]’],
[‘[CLS]’, ‘She’, ‘eats’, ‘water’, ‘[MASK]’]

C. Problem Reformulation

Our idea of improving the performance of the reusable
toolkit is to reformulate the input of sentence validation as
a binary classification problem to the input of another down-
stream task, i.e., multiple choice questions. The difference

between these two models is the amount of attention paid to
the sentences. In the self-attention layer, the encoder looks at
other words in the input sentence as it encodes a specific word.
For classification models using BERT, RoBERTa, and Albert,
we concatenate the two sentences. Then, the self-attention
layer attends to each position in the input sequence, including
both sentences. Fig. 3 shows a RoBERTa classifier for sentence
validation.

Reformulating RoBERTa for multiple choice questions, we
feed each sentence to the network individually. Consequently,
the attention layer attends to the sequence of words for
each individual sentence for gathering useful information. The
purpose of this is that it can lead to better encoding for each
word. Fig.4 shows a RoBERTa question answering schematic
for sentence validity reasoning.

Pre-trained 
RoBERTa

He drinks nuts. He drinks water.

input

Classifier 
(Feed-forward neural network + softmax)

15% 85%

The probability of  
“He drinks nuts.”

The probability of 
 “He drinks water.”

Concatenation

Fig. 3. RoBERTa Classifier Model.
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Fig. 4. RoBERTa Question Answering Model.

2022 IEEE SSCI — Symposium on Computational Intelligence for Human-like Intelligence 433



V. EXPERIMENTS

Experiments have been conducted to quantify the perfor-
mance of a range of tools for both sentence validation and
validity reasoning. We used a large benchmark dataset [33]
prepared by [34]. The dataset comprises 10,000 and 2,021
human-labeled pairs of sentences (M=2) for training and
validation models, respectively. After releasing the dev set,
we combined the two datasets for training and used the dev
set to test our models.

Table I summarizes the results for sentence validation.
With accuracy scores of 95% and 96.1%, RoBerta performed
the best. The result was especially high when the task was
reformulated as multiple choice. However, BERT-MLM did
not perform as well as expected. Further analysis revealed
that it was not suited to the nature of this particular dataset,
which typically consists of short sentences of only a few
words. Intuitively, the nature of BERT-MLM is such that it
should work much better on longer sentences than the short
ones in the benchmark dataset. Further research is necessary
to validate this intuition once datasets with suitably longer
sentences become available.

TABLE I
SENTENCE VALIDATION RESULTS

Model Accuracy (%)
BERT-MLM 74.3

BERT classification 88
Albert classification 92

RoBerta classification 95
RoBerta multiple choice 96.1

As the most promising approach, RoBerta was then further
developed for sentence validity reasoning. It achieved an
accuracy of 93.7% for reasoning with the number of candidate
sentences N = 3. These scores achievable by machines rep-
resent near-human levels of performance at 99.1% and 97.8%
for sentence validation and validity reasoning, respectively.
The fact that the human scores are less than perfect indicates
that some humans find these tasks occasionally difficult. This
observation underscores the challenge in getting machines to
do likewise.

VI. CONCLUSION

This paper has presented an overview of some of the
recent advances in learning techniques that are applicable to
computational natural language processing (NLP). Following
a thorough review of the relevant literature, we identified
that most promising approaches and assembled a reusable
machine NLP toolkit from among those promising techniques.
We further demonstrated an application of some of those
tools toward solving two machine NLP problems: sentence
validation and validity reasoning. Experimental results using
benchmark data confirmed the usefulness of the tools by
achieving near-human performance in solving the two specific
machine NLP problems.

The reusable toolkit is not without limitations. In its present
form, limitations of the reusable machine NLP toolkit include

the following. First, the toolkit has not been tested on beyond
the two categories of machine NLP problems described in this
paper, namely validating sentences and reasoning about the
validity of a given sentence. Second, and while staying with
the two categories of NLP problems, the available choices
are currently somewhat restricted. Third, the innovative BERT-
MLM technique has not been applied to very long sentences
due to a current lack of suitable dataset. There is an expecta-
tion that BERT-MLM will demonstrate its effectiveness when
applied to sentences that are significantly longer than those in
the benchmark dataset used in the experiments.

Future research directions include evaluating the reusable
machine NLP toolkit for more variety of test data. For ex-
ample, an interesting research direction is to test the BERT-
MLM technique on texts that are made up of long sentences.
Another direction is to expand on parameters like M and N
by using data augmentation, resampling, or similar techniques.
For example, instead of setting M = 2 in sentence validation,
we can allow the machine to choose one logical sentence from
among several options, where M−1 sentences are illogical or
invalid. This could be formulated as a multiple choice problem
and/or classification. Alternatively, the choice can be one
invalid sentence out of several plausible sentences. Likewise,
the number of alternative explanations can be increased to a
number more than N = 3 to test the toolkit for generalizability.

Other possible future work will involve further development
of novel machine learning / deep learning models specifically
optimized for computational NLP applications, as well as
factorization and streamlining of repetitive steps in a complete
machine NLP pipeline or workflow. Finally, another possible
future research direction is to adapt and apply the tools and
findings reported in this paper to languages other than English.
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