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Abstract—This paper 1 proposes a general framework to design
a sparse sensing matrix A ∈ R

m×n, for a linear measurement
system y = Ax\ + w, where y ∈ R

m, x\ ∈ R
n, and w ∈ R

m

denote the measurements, the signal with certain structures,
and the measurement noise, respectively. By viewing the signal
reconstruction from the measurements as a message passing
algorithm over a graphical model, we leverage tools from coding
theory in the design of low density parity check codes, namely
the density evolution technique, and provide a framework for the
design of matrix A. Two design schemes for the sensing matrix,
namely, (i) a regular sensing and (ii) a preferential sensing,
are proposed and are incorporated into a single framework. As
illustrations, we consider the `1 regularizer, `2 regularizer, and
their linear combination, which corresponds to Lasso regression,
ridge regression, and elastic net regression. After proper distri-
bution approximations, we have shown that our framework can
reproduce the classical results on the minimum sensor number,
i.e., m. In the preferential sensing scenario, we consider the
case in which the whole signal is divided into two disjoint

parts, namely, high-priority part x
\
H and low-priority part x

\
L.

Then, by formulating the sensing system design as a bi-convex
optimization problem, we obtain sensing matrices which can

provide a preferential treatment for x
\
H. Numerical experiments

with both synthetic data and real-world data are also provided
to verify the effectiveness of our design scheme.

I. INTRODUCTION

This paper considers a linear sensing relation as

y = Ax\ +w, (1)

where y ∈ R
m denotes the measurements, A ∈ R

m×n is the

sensing matrix, x\ ∈ R
n is the signal to be reconstructed,

and w ∈ R
m is the measurement noise with iid Gaussian

distribution N(0, σ2). To reconstruct x\ from y, one widely

used method is the regularized M-estimator

x̂ = argminx∈Rn

1

2σ2
‖y −Ax‖22 + f(x), (2)

where f(·) is the regularizer used to enforce a desired structure

for x̂. To ensure reliable recovery of x\, sensing matrix

A needs to satisfy certain conditions, e.g., the incoherence

in [2], RIP in [3], [4], the neighborhood stability in [5],

irrespresentable condition in [6], etc. Notice that all the above

works treat each entry of x\ equally. However, in certain

applications, entries of x\ may have unequal importance from

the recovery perspective. One practical application is the im-

age compression, i.e., JPEG compression, where coefficients

corresponding to the high-frequency part are more critical than

the rest of coefficients. 2

1Partial preliminary results appeared in 2021 IEEE Information Theory
Workshop [1].

2An introduction can be found in https://jpeg.org/jpeg/documentation.html.

In this work, we focus on the sparse sensing matrix A.

Leveraging tools from coding theory, namely, density evolution

(DE), we propose a heuristic but general design framework

of A to meet the requirements of the signal reconstruction

such as placing more importance on the accuracy of a certain

components of the signal. At the core of our work is the

application of DE in message passing (MP) algorithm, which

is also referred to as belief propagation, or sum-product,

or min-sum algorithm. These different names are due to its

broad spectrum of applications and its constant rediscovery

in different fields. In physics, this algorithm existed no later

than 1935, when Bethe used a free-energy functional to

approximate the partition function (cf. [7]). In the probabilistic

inference, Pearl developed it in 1988 for acyclic Bayesian

networks and showed it leads to the exact inference [8]. The

most interesting thing is its discovery in the coding theory.

In early 1960s, Gallager proposed sum-product algorithm to

decode low density parity check (LDPC) codes over graphs

[9]. However, Gallagher work was almost forgotten and was

rediscovered again in 90s [10], [11]. Later [12] equipped it

with DE and used it for the design of LDPC codes for capacity

achieving over certain channels.

When narrowing down to the compressed sensing (CS),

MP has been widely used for signal reconstruction [13]–[21]

and analyzing the performance under some specific sensing

matrices. The following briefly discusses the related work in

the sensing matrix.

Related work. In the context of the sparse sensing matrix, the

authors in [22] first proposed a so-called sudocode construc-

tion technique and later presented a decoding algorithm based

on the MP in [23]. In [24], the non-negative sparse signal x\

is considered under the binary sensing matrix. The work in

[25] linked the channel encoding with the CS and presented

a deterministic way of constructing sensing matrix based on

a high-girth LDPC code. In [14], [16], [26], the authors

considered the verification-based decoding and analyzed its

performance with DE. In [15], the spatial coupling is first

introduced into CS and is evaluated with the decoding scheme

adapted from [26]. However, all the above mentioned works

focused on the noiseless setting, i.e., w = 0 in (1). In [17]–

[19], the noisy measurement is considered. A sparse sensing

matrix based on spatial coupling is analyzed in the large

system limit with replica method and DE. They proved its

recovery performance to be optimal when m increases at the

same rate of n, i.e., m = O(n).

Moreover, in the context of a dense sensing matrix, the

analytical tool switches from DE to state evolution (SE),
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which is first proposed in [20], [21]. Together with SE comes

the approximate message passing (AMP) decoding scheme.

The empirical experiments suggest AMP has better scalability

when compared with `1 construction scheme without much

scarifice in the performance. Additionally, an exact phase

transition formula can be obtained from SE, which predicts

the performance of AMP to a good extent. Later, [27] pro-

vided a rigorous proof for the phase transition property by

the conditioning technique from Erwin Bolthausen and [28]

extended AMP to general M-estimation.

Note that the above mentioned related works are not exhaus-

tive due to their large volume. For a better understanding of the

MP algorithm, the DE, and their application to the compressive

sensing, we refer the interested readers to [7], [19], [29]. In

addition to the work based on MP, there are other works based

on LDPC codes or graphical models. Since they are not closely

related to ours, we only mention their names without further

discussion [30]–[36].

Contributions. Compared to the previous works exploiting

MP [14]–[21], [26], our focus is on the sensing matrix design

rather than the decoding scheme, which is based on the M-

estimator with regularizer. Exploiting the DE, we propose a

universal framework which supports both the regular sensing

and the preferential sensing for recovering the signal. A

detailed description of our contributions comes as follows.

• Regular Sensing. We consider the sparse signal setting

and Gaussian signal setting. For the sparse signal setting,

we consider a k-sparse signal x\ ∈ R
n and associate it

with a prior distribution such that each entry is zero with

probability 1−k/n. For both the `1 regularization and elastic

net regularization, we can reproduce the classical results in

CS, i.e., m ≥ c0k log n. For the Gaussian signal setting, we

consider the Gaussian prior and show the minimum sensor

number m should be the same order of the signal length n.

• Preferential Sensing. We revisit the sparse signal setting

and Gaussian signal setting; and design the sensing matrix

that would result in more accurate (or exact) recovery of

the high-priority sub-block of the signal relative to the

low-priority sub-block. Numerical experiments confirm the

effectiveness of our framework: the reconstruction error in

the high-priority sub-block can be reduced significantly.

In addition, we should emphasize that although we only

consider three types of regularizations, our framework can

easily be extended to other priors.

Organization. In Section II, we formally state our problem

and construct the graphical model. In Section III, we focus

on the regular sensing and propose the density evolution

framework. In Section IV, the framework is further extended

to the preferential sensing. Generalizations are presented in

Section V, simulation results are put in Section VI, and

conclusions are drawn in Section VII.

II. PROBLEM DESCRIPTION

We begin this section with a formal statement of our

problem. Consider the linear measurement system

y = Ax\ +w,

where y ∈ R
m, A ∈ R

m×n, x\ ∈ R
n, and w ∈ R

m,

respectively, denote the observations, the sensing matrix, the

signal, and the additive sensing noise with its ith entry wi
i.i.d∼

N(0, σ2). We would like to recover x\ with the regularized

M-estimator, which is written as

x̂ = argminx
1

2σ2
‖y −Ax‖22 + f(x),

where f(·) is the regularizer used to enforce certain underlying

structure for signal x̂.

Our goal is to design a sparse sensing matrix A which

provides preferential treatment for a sub-block of the signal

x\. In other words, the objective is to have a sub-block of the

signal to be recovered with lower probability of error when

comparing with the rest of x\. Before we proceed, we list our

two assumptions:

• Measurement system A is assumed to be sparse. Further,

A is assumed to have entries with EAij = 0, and Aij ∈
{0,±A−1/2}, where an entry Aij = A−1/2 (or −A1/2)

implies a positive (negative) relation between the ith sensor

and the jth signal component. Having zero as entry implies

no relation.

• The regularizer f(x) is assumed to be separable such that

f(x) =
∑n

i=1 fi(xi). If it is not mentioned specifically, we

assume all functions fi(·) are the same.

First we transform (1) to a factor graph [37]. Adopting

the viewpoint of Bayesian reasoning, we can reinterpret M-

estimator in (2) as the maximum a posteriori (MAP) estimator

and rewrite it as

x̂ = argmaxx exp

(
−‖y −Ax‖22

2σ2

)
× exp (−f(x)) .

The first term exp
(
−‖y−Ax‖2

2

2σ2

)
is viewed as the probability

P(y|x) while the second term exp(−f(x)) is regarded as the

prior imposed on x. Notice the term e−f(·) may not necessarily

be the true prior on x\.

As in [29], we associate (2) with a factor graph G = (V ,E ),
where V denotes the node set and E is the edge set. First

we discuss set V , which consists of two types of nodes:

variable nodes and check nodes. We represent each entry xi

as a variable node vi and each entry ya as a check node ca.

Additionally, we construct a check node corresponds to each

prior e−f(xi). Then we construct the edge set E by: (i) placing

an edge between the check node of the prior e−f(xi) and the

variable node vi, and (ii) introducing an edge between the

variable node vi and cj iff Aij is non-zero. Thus, the design

of A is transformed to the problem of graph connectivity in

E . Before to proceed, we list the notations used in this work.

Notations. We denote c, c
′

, c0 > 0 as some fixed positive

constants. For two arbitrary real numbers a, b, we denote a . b
when there exists some positive constant c0 > 0 such that

a ≤ c0b. Similarly, we define the notation a & b. If a . b and

a & b hold simultaneously, we denote as a � b. We have a ∝ b
when a is proportional to b. For two distributions d1 and d2,

we denote d1 ∼= d2 if they are equal up to some normalization.
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Fig. 1. Illustration of the message-passing algorithm, where the square icons
represent the check nodes while the circle icons represent the variable nodes.

Fig. 2. Illustration of the generating polynomials: λ(α) = 1
3
+ 2α

3
and

ρ(α) = α
2
+ α2

2
. The square icons represent the check nodes while the circle

icons represent the variable nodes.

III. SENSING MATRIX FOR REGULAR SENSING

With the aforementioned graphical model, we can view

recovering x\ as an inference problem, which can be solved

via the message-passing algorithm [37]. Adopting the same

notations as in [29] as shown in Figure 1, we denote m
(t)
i→a

as the message from the variable node vi to check node ca at

the tth round of iteration. Likewise, we denote m̂
(t)
a→i as the

message from the check node ca to variable node vi. Then

message-passing algorithm is written as

m
(t+1)
i→a (xi) ∼= e−f(xi)

∏

b∈∂i\a
m̂

(t)
b→i(xi); (3)

m̂
(t+1)
a→i (xi) ∼=

∫ ∏

j∈∂a\i
m

(t+1)
j→a (xi) · e−

(ya−

∑n
j=1 Aajxj)

2

2σ2 dxj ,

(4)

where ∂i and ∂a denote the neighbors connecting with vi and

ca, respectively, and the symbol ∼= refers to the equality up

to the normalization. At the tth iteration, we recover xi by

maximizing the posterior probability

x̂
(t)
i = argmaxxi

P(xi|y) ≈ argmaxxi
e−f(xi)

∏

a∈∂i

m̂
(t)
a→i(xi). (5)

In the design of matrix A, there are some general desirable

properties that we wish to hold (specific requirements will be

discussed later): (i) a correct signal reconstruction under the

noiseless setting; and (ii) minimum number of measurements,

or equivalently minimum m. Before proceeding, we first

introduce the generating polynomials λ(α) =
∑

i λiα
i−1

and ρ(α) =
∑

i ρiα
i−1, which correspond to the degree

distributions for variable nodes and check nodes, respectively.

We denote the coefficient λi as the fraction of variable nodes

with degree i, and similarly we define ρi for the check nodes.

An illustration of the generating polynomials λ(α) and ρ(α)
is shown in Figure 2.

A. Density evolution

To design the matrix A, we study the reconstruction of x\

from y via the convergence analysis of the message-passing

over the factor graph. Due to the parsimonious setting of A,

we have E to be sparse and propose to borrow a tool known as

density evolution (DE) [37]–[39] that is already proven to be

very powerful in analyzing the convergence in sparse graphs

resulting from LDPC.

Basically, DE views m
(t)
i→a and m̂

(t)
a→i as RVs and tracks the

changes of their probability distribution. When the message-

passing algorithm converges, we would expect their distribu-

tions to become more concentrated. However, different from

discrete RVs, continuous RVs m
(t)
i→a and m̂

(t)
a→i in our case

require infinite bits for their precise representation in general,

leading to complex formulas for DE. To handle such an

issue, we approximate m
(t)
i→a and m̂

(t)
a→i as Gaussian RVs, i.e.,

mi→a ∼ N(µi→a, vi→a) and m̂a→i ∼ N(µ̂a→i, v̂a→i), respec-

tively. Since the Gaussian distribution is uniquely determined

by its mean and variance, we will be able to reduce the DE

to finite dimensions as in [17], [18], [39].

In our work, the DE tracks two quantities E(t) and V (t),

which denote the deviation from the mean and average of the

variance, respectively, and are defined as

E(t) =
1

m · n

n∑

i=1

m∑

a=1

(
µ
(t)
i→a − x\

i

)2
;

V (t) =
1

m · n

n∑

i=1

m∑

a=1

v
(t)
i→a.

Then we can show that the DE analysis yields

E(t+1) = Eprior(s)Ez

[
hmean

(
s+

∑

i,j

ρiλjz

√
i

j
E(t) +

Aσ2

j
;

∑

i,j

ρiλj
Aσ2 + iV (t)

j

)
− s]2; (6)

V (t+1) = Eprior(s)Ezhvar

(
s+

∑

i,j

ρiλjz

√
i

j
E(t) +

Aσ2

j
;

∑

i,j

ρiλj
Aσ2 + iV (t)

j

)
, (7)

where prior(·) denotes the true prior on the entries of x\, and

z is a standard normal RV N(0, 1). The functions hmean(·) and

hvar(·) are to approximate the mean µi→a and variance vi→a,

which are given by

hmean(µ; v)= lim
γ→∞

∫
xie

−γf(xi)e−
γ(xi−µ)2

2v dxi

∫
e−γf(xi)e−

γ(xi−µ)2

2v dxi

; (8)

hvar(µ; v)= lim
γ→∞

γ
∫
x2
i e

−γf(xi)e−
γ(xi−µ)2

2v dxi

∫
e−γf(xi)e−

γ(xi−µ)2

2v dxi

− (hmean(µ; v))
2 .

For detailed explanations and the proof, we refer interested

readers to the supplementary material.

B. Sensing matrix design

Once the values of polynomial coefficients {λi}i and {ρi}i
are determined, we can construct a random graph G = (V ,E ),
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or equivalently the sensing matrix A, by setting Aij as

P(Aij = A−1/2) = P(Aij = −A−1/2) = 1
2 , if there is an

edge (vi, cj) ∈ E ; otherwise we set Aij to zero. Hence the

sensing matrix construction reduces to obtaining the feasible

values of {λi}i and {ρi}i while satisfying certain properties

for the signal reconstruction as discussed in the following.

Our first requirement is to have a perfect signal reconstruc-

tion under the noiseless scenario (σ2 = 0). 3 This implies

that

• the algorithm must converge, i.e., limt→∞ V (t) = 0;

• the average error should shrink to zero, i.e., limt→∞ E(t) =
0.

Second, we wish to minimize the number of measure-

ments. Using the fact that n (
∑

i iλi) = m (
∑

i iρi) =∑
i,j 1((vi, cj) ∈ E ), we formulate the above two design

criteria as the following optimization problem

min
λ∈∆dvmax−1;
ρ∈∆dcmax−1

m

n
=

∑
i≥2 iλi∑
i≥2 iρi

, (9)

s.t. lim
t→∞

(E(t), V (t)) = (0, 0); (10)

λ1 = ρ1 = 0, (11)

where ∆d−1 denotes the d-dimensional simplex, namely,

∆d−1 , {z ∈ R
d |

∑
i zi = 1, zi ≥ 0}. The constraint in

(11) is to avoid one-way message passing as in [12], [39].

Generally speaking, we need to run DE numerically to

check the requirement (10) for every possible values of {λi}i
and {ρi}i. However, for certain choices of regularizers f(·),
we can reduce the requirement (10) to some closed-form

equations. For example, if we set the prior in (3) to be a

Laplacian distribution, i.e., e−β|x|, then the regularizer f(·) in

(2) becomes β‖·‖1 and the M-estimator in (2) transforms to

Lasso [41]; if we set the prior to be Gaussian distribution, i.e.,

eβ|x|
2

, the M-estimator in (2) transforms to ridge regression

[42]. More discussions come as follows.

C. Examples of regular sensing for various priors

This subsection considers some specific priors and illus-

trates our design schemes of the corresponding sensing ma-

trices. Roughly speaking, our design scheme is divided into 3
stages: (i) DE analysis; (ii) distribution approximation; and

(iii) convergence criteria derivation. In the following context,

we will study the `1, `2, and elastic net regularization; and

show how to apply our proposed design scheme. For other

types of regularizations, we can follow a similar procedure

and simplify the requirement limt→∞(E(t), V (t)) = (0, 0) to

some closed-form expressions.

Example 1 (Regular sensing with `1 regularizer). Assuming

the signal x\ is k-sparse, i.e.,
∥∥x\

∥∥
0
≤ k, we would like to

recover x\ with the regularizers β‖·‖1, which corresponds to

the Laplacian prior.

Stage I: DE analysis. Following the approaches in [20] in the

noiseless case, we can show that

3We consider the noiseless setting only for the purpose of deriving the
minimum sensor number m. This does not affect the application of our
designed sensing matrices under the noisy setting. Actually, this logic is also
used in the classical papers, i.e., [17], [20], [40].

E(t+1) = Eprior(s),z∼N(0,1)

[
prox

(
s+ a1z

√
E(t);βa2V

(t)
)
− s
]2

;

V (t+1) = Eprior(s)Ez∼N(0,1)

·
[
βa2V

(t)
prox

′
(
s+ a1z

√
E(t);βa2V

(t)
)]

, (12)

where a1 is defined as
∑

i,j ρiλj

√
i/j, and a2 is defined

as
∑

i,j ρiλj (i/j). Further, operator prox(a; b) is the soft-

thresholding estimator defined as sign(a)max(|a|− b, 0), and

operator prox
′

(a; b) is the derivative w.r.t. the first argument.

Remark 1. Unlike SE that only tracks E(t) [20], our DE takes

into account both the average variance V (t) and the deviation

from mean E(t). Assuming V (t) ∝
√
E(t), our DE equation

w.r.t. E(t) in (12) reduces to a similar form as SE.

Having discussed its relation with SE, we now show that our

DE can reproduce the classical results in compressive sensing,

namely, m ≥ c0k log(n/k) = O(k log n) (cf. [43]) under the

regular sensing matrix design, i.e., when all variable nodes

have the same degree dv and the check nodes have the same

degree dc.

Stage II: Distribution approximation. We approximate the

ground-truth distribution with the Laplacian prior. Assuming

that the entries of x\ are iid and x\ ∈ R
n is k-sparse, each

entry becomes zero with probability (1− k/n). Hence we set

β such that the probability mass within the region [−c0, c0]
(where c0 is some small positive constant) with the Laplacian

prior is equal to 1− k/n. That is

β

2

∫

|α|≤c0

e−β|α|dα = 1− k

n
,

which results in β = c0 log(n/k).

Stage III: Convergence criteria derivation. Enforcing the

criteria limt→∞(E(t), V (t)) = (0, 0) under the noiseless

setting (i.e., σ = 0), we conclude the following

Theorem 1. Let x\ be a k-sparse signal and assume that

β is set to c0 log (n/k). Then, the necessary conditions for

limt→∞
(
E(t), V (t)

)
= (0, 0) associated with the DE equa-

tion in (12) are (i)
∑

i,j ρiλj

√
i/j ≤ c

′

1

√
n/k and (ii)

∑
i,j ρiλj (i/j) ≤ c

′

2n
k log(n/k) , where c

′

1, c
′

2 > 0 are some

positive constants.

Remark 2. Consider the settings in Theorem 1 and assume

(i)
∑

i,j ρiλj

√
i/j ≤ c

′

1

√
n/k and (ii)

∑
i,j ρiλj (i/j) ≤

c
′

2n
k log(n/k) . Then, there exists positive constants ε > 0 and

0 < γ < 1 such that {E(t), V (t)} generated by (12) decrease

exponentially provided the initial point (E(0))2+(V (0))2 ≤ ε,

i.e., E(t) ≤ γtE(0) and V (t) ≤ γtV (0).

When turning to the regular design, namely, all variable

nodes are with the degree dv and likewise all check nodes are

with degree dc, we can write a1 and a2 as
√

n/m and n/m,

respectively. Invoking Theorem 1 will then yield the classical

result of the lower bound on the number of measurements m ≥
c0k log(n/k). The technical details are deferred to Section A.

Example 2 (Regular sensing with `2 regularizer). In addition



5

to the Laplacian prior, we also considered the Gaussian prior,

i.e., e−‖x‖2
2 , which makes the M-estimator in (2) the ridge

regression [44]. Assuming the ground-truth x\ to be Gaussian

distributed with zero mean and unit variance, we would like

to recover the signal x\ with the regularizer f(x) = ‖x‖22.

Stage I: DE analysis. Following a similar procedure, we

obtain the following DE equation

E(t+1) =
a21E

(t) + a22(V
(t))2

(
1 + a2V (t)

)2 ;

V (t+1) =
a2V

(t)

1 + a2V (t)
, (13)

where a1, a2 are defined the same as above, i.e., a1 ,∑
i,j ρiλj

√
i/j and a2 ,

∑
i,j ρiλj(i/j).

Stage II: Distribution approximation. We can skip this stage

as the ground-truth prior of x\, namely, N(0, 1), is used for

the regularization.

Stage III: Convergence criteria derivation. Same as the above

example, we let limt→∞(E(t), V (t)) = (0, 0) when σ = 0 and

obtain the following theorem

Theorem 2. Provided that
∑

i,j ρiλj

√
i/j < 1, we have

the average error E(t) and variance V (t) in (13) decrease

exponentially after some iteration index T , that is, E(t) ≤
e−c0(t−T )E(T ) and V (t) ≤ e−c1(t−T )V (T ) whenever t ≥ T .

Here c0, c1 > 0 are some fixed constants.

Its proof is referred to Section B. To verify Theorem 2, we

plot the trajectories of DE in (13), which is put in Figure 3.

Depending on whether
∑

i,j ρiλj

√
i/j is less than one or not,

we find (E(t), V (t)) can converge to different fixed points.

With some standard algebraic manipulations, we can reduce

Theorem 2 to the criteria m ≥ n. This criteria is consistent

with the previous finding: no savings can be achieved provided

that x\ resides within the whole linear space R
n.

1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

Fig. 3. Illustration of DE in (13). Left panel:
∑

i,j ρiλj

√
i/j < 1. Right

panel:
∑

i,j ρiλj

√
i/j > 1. Notice that the left panel has a fix-point (0, 0)

while the right panel is with non-zero fix-point.

Example 3 (Regular sensing with elastic net regularizer). We

revisit the sparse signal setting where x\ is assumed to be k-

sparse. Instead of `1 regularization, we consider the elastic net

regularization for signal reconstruction, where f(x) is written

as β1‖x‖1 + β2‖x‖22 (β1, β2 > 0). For the ease of analysis,

we pick β1 = β2 and write it as β.

Stage I: DE analysis. Denote a1 and a2 as
∑

i,j ρiλj

√
i/j

and
∑

i,j ρiλj(i/j), respectively, we can write the correspond-

ing DE equation as

E(t+1) = Eprior(s)Ez∼N(0,1)[
prox

(
s+ a1z

√
E(t)

1 + 2β · a2V (t)
;

β · a2V
(t)

1 + 2β · a2V (t)

)
− s

]2
;

V (t+1) =
β · a2V

(t)

1 + 2β · a2V (t)
· Eprior(s)Ez∼N(0,1)

prox
′

(
s+ a1z

√
E(t)

1 + 2β · a2V (t)
;

β · a2V
(t)

1 + 2β · a2V (t)

)
. (14)

Stage II: Distribution approximation. Following the same

procedure as in Example 1, we let

1

Z

∫

|α|≤c0

e−β|α|−β|α|2dα = 1− k

n
, (15)

where Z is the normalization constant defined as Z ,∫∞
−∞ exp(−β|α| − β|α|2)dα, and c0 is some small positive

constant. Its physical meaning is that the two distributions

have the same probability mass around zero. A detailed

calculation suggests (15) is equivalent to

erfc(
√
β(1+2c)/2)

erfc(
√
β/2)

=
k

n
, (16)

where erfc(·) is the complementary error function defined as
2/

√
π ·
∫∞
(·) e

−α2

dα. Due to the complicated nature of erfc(·),
generally speaking, we cannot express the solution of (16)

in a closed form. For the benefits of our analysis, we instead

consider its asymptotic behavior when k � n, or equivalently,

β � 1. Exploiting the relation erfc(α) ≈ e−α2

α
√
π
(1− 1

2α2 +· · ·+
(−1)n (2n−1)!!

(2α2)n + · · · ) when α → ∞ (Page 584 in [45]), we

can rewrite (16) as

e−c(c+1)β

1 + 2c
≈ k

n
,

which leads to β ≈ c0 log c1n/k (Parameters c0, c1 > 0 are

some positive constants associated with c).

Stage III: Convergence criteria derivation. For the DE

equation in (14), we follow a similar procedure as in Ex-

ample 1 and obtain the following necessary condition for

limt→∞(E(t), V (t)) = (0, 0).

Theorem 3. Consider the sparse signal setting where x\

is k-sparse and set β as c0 · log c1n/k. Then the necessary

conditions for limt→∞ associated with the DE equation in (14)

are (i)
∑

i,j ρiλj

√
i/j ≤ c

′

1

√
n/k and (ii)

∑
i,j ρiλj(i/j) ≤

c
′′

2 n
k log(n/k) , where c

′

1, c
′′

2 > 0 are some positive constants.

We notice that the necessary conditions in Theorem 3 are

almost the same as that in Theorem 1. The only differences

lies in the positive constants c
′

1, c
′′

1 , c
′

2, and c
′′

2 . In addition,

we can show that {E(t), V (t)} generated by (14) decreases

exponentially given the conditions in Theorem 3 and the initial

point (E(0), V (0)) is close to the origin point, i.e., E(t) ≤
γtE(0) and V (t) ≤ γtV (0), 0 < γ < 1.

Having studied the `1 regression, ridge regression, and
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elastic net regression, we have shown that the requirement

limt→∞(E(t), V (t)) = (0, 0) in our design framework can

reproduce the classical results.

IV. SENSING MATRIX FOR PREFERENTIAL SENSING

Having discussed the regular sensing scheme, this section

explains as to how we apply our DE framework to design

the sensing matrix A such that we can provide preferential

treatment for different entries of x\. For example, the high

priority components will be recovered more accurately than

the low priority parts of x\.

A. Density evolution

Dividing the entire x\ into the high-priority part x
\
H ∈ R

nH

and low-priority part x
\
L ∈ R

nL , we separately introduce the

generating polynomials λH(α) =
∑

λH,iα
i−1 and λL(α) =∑

λL,iα
i−1 for the high-priority part x

\
H and the low-priority

part x
\
L, respectively. Note that λH,i (and likewise λL,i) de-

notes the fraction of variable nodes corresponding to high-

priority part (low-priority part) with degree i. Similarly, we

introduce the generating polynomials ρH(α) =
∑

i ρH,iα
i−1

and ρL(α) =
∑

i ρL,iα
i−1 for the edges of the check nodes

connecting to the high-priority part x
\
H and to the low-priority

part x
\
L, respectively.

Generalizing the analysis of the regular sensing, we sepa-

rately track the average error and variance for x
\
H and x

\
L. For

the high-priority part x
\
H, we define EH as

∑
m

∑
i∈H(µi→a−

x\
i)

2/(m ·nH) and VH as
∑

m

∑
i∈H vi→a/(m ·nH), where nH

denotes the length of the high-priority part x
\
H. Analogously

we define EL and VL for the low-priority part x
\
L. We then

write the corresponding DE as

E
(t+1)
H = Eprior(s)Ez∼N(0,1)

[
hmean

(
s+ z · b(t)H,1; b

(t)
H,2

)
− s

]2
;

V
(t+1)
H = Eprior(s)Ez∼N(0,1)

[
hvar

(
s+ z · b(t)H,1; b

(t)
H,2

)]
, (17)

where b
(t)
H,1 and b

(t)
H,2 are defined as

b
(t)
H,1 =

∑

`,i,j

λH,`ρL,iρH,j

√
Aσ2 + iE

(t)
L + jE

(t)
H

`
;

b
(t)
H,2 =

∑

`,i,j

λH,`ρL,iρH,j
Aσ2 + iV

(t)
L + jV

(t)
H

`
.

The definitions of hmean and hvar are as in (8). Switching the

index H with L yields the DE w.r.t. the pair (E
(t+1)
L , V

(t+1)
L ).

Notice we can also put different regularizers fH(·) and fL(·)
for x

\
H and x

\
L. In this case, we need to modify the regularizers

f(·) in (8) to fH(·) and fL(·), respectively.

Remark 3.

B. Sensing matrix design

In addition to the constraints used in (9), the sensing matrix

for preferential sensing must satisfy the following constraint:

Consistency requirement w.r.t. edge number. Consider the

total number of edges incident with the high-priority part

x
\
H,
∑

i∈H 1 ((vi, ca) ∈ E ). From the viewpoint of the vari-

able nodes, we can compute this number as nH (
∑

i iλH,i).
Likewise, from the viewpoint of the check nodes, the total

number of edges is obtained as
∑

i∈H 1 ((vi, ca) ∈ E ) =
m (
∑

i iρH,i). Since the edge number should be the same with

either of the above two counting methods, we obtain

∑

i∈H

1 [(vi, ca) ∈ E ] = nH

(∑

i

iλH,i

)
= m

(∑

i

iρH,i

)
.

Similarly, the consistency requirement for the edges

connecting to the low-priority part x
\
L would give∑

i∈L 1 ((vi, ca) ∈ E ) = m(
∑

i iρL,i) = nL(
∑

i iλL,i).

Moreover, we may have additional constraints depending on

the measurement noise:

• Preferential sensing for the noiseless measurement. In the

noiseless setting (σ = 0), we require VH and VL to diminish

to zero to ensure the convergence of the MP algorithm.

Besides, we require the average error E
(t)
H in the high-

priority part x
\
H to be zero. Therefore, the requirements can

be summarized as

Requirement 1. In the noiseless setting, i.e., σ = 0, we

require the quantities E
(t)
H , V

(t)
H , and V

(t)
L in (17) converge

to zero

lim
t→∞

(
E

(t)
H , V

(t)
H , V

(t)
L

)
= (0, 0, 0) , (18)

which implies the MP converges and the high-priority part

x
\
H can be perfectly reconstructed.

Notice that no constraint is placed on the average error E
(t)
L

for the low-priority part x
\
L, since it is given a lower priority

in reconstruction.

• Preferential sensing for the noisy measurement. Different

from the noiseless setting, the high-priority part x
\
H cannot

be perfectly reconstructed in the presence of measurement

noise, i.e., limt→∞ E
(t)
H > 0. Instead we consider the

difference across iterations, namely, δ
(t)
E,H = E

(t+1)
H − E

(t)
H

and δ
(t)
E,L = E

(t+1)
L − E

(t)
L , which corresponds to the

convergence rate. To provide an extra protection for the

high-priority part x
\
H, we would like δ

(t)
H to decrease at a

faster rate. Hence, the following requirement:

Requirement 2. There exits a positive constant T0 such that

the average error E
(t)
H converges faster than E

(t)
L whenever

t ≥ T0, i.e., |δ(t)E,H| ≤ |δ(t)E,L|.
Apart from the above constraints, we also require λL,1 =
λH,1 = ρL,1 = ρH,1 = 0 to avoid one-way message passing

[12], [37], [39]. Summarizing the above discussion, the design

of the sensing matrix A for minimum number of measure-

ments m reduces to the following optimization problem

min
λL∈∆dvL−1,
λH∈∆dvH−1,
ρL∈∆dcH−1,
ρH∈∆dcL−1

m

n
=

nL (
∑

i iλL,i) + nH (
∑

i iλH,i)∑
i i (ρL,i + ρH,i)

; (19)

s.t.

∑
i iλL,i∑
i iλH,i

×
∑

i iρH,i∑
i iρL,i

=
nH

nL

; (20)

Requirement (1) and (2); (21)
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λL,1 = λH,1 = ρL,1 = ρH,1 = 0, (22)

where ∆d−1 denotes the d-dimensional simplex, and the

parameters dvH and dcL denote the maximum degree w.r.t.

the variable nodes corresponding to the high-priority part x
\
H

and low-priority part x
\
L, respectively. Similarly we define the

maximum degree dcH and dcL w.r.t the check nodes.

The difficulties of the optimization problem in (19) come

from two-fold: (i) requirements from DE; and (ii) non-convex

nature of (19).

C. Example of preferential sensing for various priors

We will revisit the previous examples and show how to

simplify the optimization problem in (19). Similar to the pro-

cedure in Subsection III-C, our relaxation procedure consists

of three stages. Here, we focus on Stage III as the first two

stages are exactly the same as that in Subsection III-C.

Example 4 (Preferential sensing with `1 regularizer). Con-

sider a sparse signal x\ whose high-priority part x
\
H ∈ R

nH

and the low-priority part x
\
L ∈ R

nL are kH-sparse and kL-

sparse, respectively. In addition, we assume kH/nH � kL/nL,

implying that the high-priority part x
\
H contains more data. 4

Ideally, we need to numerically run the DE update equation

in (17) to check whether the requirement in (21) holds or

not, which can be computationally prohibitive. In practice,

we would relax these conditions to arrive at some closed

forms. The following outlines our relaxation strategy with all

technical details being deferred to the supplementary material.

Relaxation of Requirement 1. First we require the variance

to converge to zero, i.e., limt→∞(V
(t)
H , V

(t)
L ) = (0, 0). The

derivation of its necessary condition consists of two parts:

(i) we require the point (0, 0) to be a fixed point of the DE

equation w.r.t. V
(t)
H and V

(t)
L ; and (ii) we require that the

average variance (V
(t)
H , V

(t)
L ) to converge in the region where

the magnitudes of V
(t)
H and V

(t)
L are sufficiently small.

The main technical challenge lies in investigating the con-

vergence of (V
(t)
H , V

(t)
L ). Define the difference δ

(t)
V,H and δ

(t)
V,L

across iterations as δ
(t)
V,H , V

(t+1)
H − V

(t)
H and δ

(t)
V,L ,

V
(t+1)
L −V

(t)
L , respectively. Then, we obtain a linear equation

[
δ
(t+1)
V,H

δ
(t+1)
V,L

]
= L

(t)
V

[
δ
(t)
V,H

δ
(t)
V,L

]

via the Taylor-expansion. Imposing the convergence con-

straints on V
(t)
H and V

(t)
L , i.e., limt→∞

(
δ
(t)
V,H, δ

(t)
V,L

)
= (0, 0),

yields the condition inft |||L(t)
V |||

OP
≤ 1. That is

[(
βHkH
nH

∑

`

λH,`

`

)2

+

(
βLkL
nL

∑

`

λL,`

`

)2]

×
[(∑

i

iρH,i

)2

+

(∑

i

iρL,i

)2]
≤ 1. (23)

4The high-priority part x
\
H

may still receive extra protection even if
kH/nH ≤ kL/nL. One numerical experiment is attached in the Appendix.

Then we turn to the behavior of E
(t)
H . Assuming E

(t)
L converges

to a fixed non-negative constant E
(∞)
L , we would like E

(t)
H to

converge to zero. Following the same strategy as above, we

obtain the following condition

kH
nH

(∑

`

λH,`√
`

)2 [(∑

i

√
iρH,i

)2

+

(∑

i

√
iρL,i

)2]
≤ 1. (24)

A formal statement is summarized as

Proposition 1. Consider the setting in Example 4, then the

necessary conditions for Requirement 1 are given by (23) and

(24).

The technical details are put in the supplementary material.

Relaxation of Requirement 2. First we define the difference

across iterations as δ
(t)
E,H = E

(t+1)
H − E

(t)
H and δ

(t)
E,L =

E
(t+1)
L −E

(t)
L . Using the Requirement 2, we perform the Taylor

expansion w.r.t. the difference δ
(t)
E,H and δ

(t)
E,L, and obtain the

linear equation

[
δ
(t+1)
E,H

δ
(t+1)
E,L

]
=

[
LE,11 LE,12

LE,21 LE,22

] [
δ
(t)
E,H

δ
(t)
E,L

]
.

To ensure the reduction of δ
(t)
E,H at a faster rate than δ

(t)
E,L,

we would require LE,11 ≤ LE,21 and LE,12 ≤ LE,22. This

results in

kH
nH

(∑

`

λH,`√
`

)2

≤ kL
nL

(∑

`

λL,`√
`

)2

, (25)

which completes the relaxation.

Example 5 (Preferential sensing with `2 regularizer). We

revisit the Gaussian setting where x\ ∈ R
nH+nL can be divided

into two disjoint parts: the high-priority part x
\
H ∈ R

nH and

the low-priority part x
\
L ∈ R

nL . Their priors are assumed to be

e−βH‖·‖2
2 and e−βL‖·‖2

2 ; and the corresponding regularizers are

picked as βH‖·‖22 and βL‖·‖22, respectively. Then we conclude

Relaxation of Requirement 1. Imposing the convergence

constraints on V
(t)
H and V

(t)
L yields

[(∑

`

λH,`

`

)2

+

(∑

`

λL,`

`

)2]

×
[(∑

i

ρH,ii

)2

+

(∑

i

ρL,ii

)2]
≤ 1. (26)

As for the necessary condition for limt→∞ E
(t)
H = 0, we have

(∑

`

λH,`√
`

)4(∑

i

ρL,i
√
i

)2

×
[(∑

i

ρH,ii

)2(∑

j

ρL,j√
j

)2

+

(∑

j

ρL,j
√

j

)2]
≤ 1. (27)

The formal statement is summarized as

Proposition 2. Consider the setting in Example 5, then the

necessary conditions in Requirement 1 are given by (26) and

(27).
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Relaxation of Requirement 2. We obtain the relaxed condition

reading as

∑

`

λH,`√
`

≤
∑

`

λL,`√
`
. (28)

Since its derivation is almost the same at that of Example 4,

we omit the technical details for the conciseness of presenta-

tion.

Example 6 (Preferential sensing with elastic net regularizer).

We revisit the setting of sparse signal x\ as in Example 4.

Instead of `1 regularizer, we adopt the elastic net regularizer

for the signal recovery. Following the same procedure as that

in Example 4 and Example 5, we obtain the relaxations of

Requirement 1 and 2, which are in the same form of (23), (24),

and (25). This is consistent with our findings in the regular

sensing setting.

Summarizing the above discussions, we has shown how

to transform the constraints in (21) to the closed-forms.

Afterwards, we can perform alternating minimization method

to solve (19). We can show that the alternating minimization

method can reach the local optimal. A formal statement is

given as

Proposition 3. Relaxing the constraints in (21) with the

above procedure as in Example 4, Example 5, and Exam-

ple 6, we perform alternating minimization in (19) and denote

{λ(t)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L } as the solution in the tth iteration. Then

we conclude that {λ(t)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L } yields a monotonic

non-increasing sequence such that (i) it satisfies

nL

(∑
i iλ

(t+1)
L,i

)
+ nH

(∑
i iλ

(t+1)
H,i

)

∑
i i
(
ρ
(t+1)
L,i + ρ

(t+1)
H,i

)

≤
nL

(∑
i iλ

(t)
L,i

)
+ nH

(∑
i iλ

(t)
H,i

)

∑
i i
(
ρ
(t)
L,i + ρ

(t)
H,i

) ;

and, (ii) has finite limit, i.e.,

lim
t→∞

nL

(∑
i iλ

(t)
L,i

)
+ nH

(∑
i iλ

(t)
H,i

)

∑
i i
(
ρ
(t)
L,i + ρ

(t)
H,i

) < ∞.

The technical proof is referred to the Appendix for the

interested readers.

V. POTENTIAL GENERALIZATIONS

This section discusses two possible generalizations, i.e.,

non-exponential family priors and reconstruction via a min-

imum mean square error (MMSE) decoder. The design prin-

ciples of the sensing matrix are exactly the same as (9) and

(19) except that the DE equations need to be modified.

A. Non-exponential priors

Previous sections assume the prior to be e−f(x), which

belongs to the exponential family distributions. In this subsec-

tion, we generalize it to arbitrary distributions p̂rior(x). One

example of the non-exponential distribution is sparse Gaussian,

i.e., (k/n) · e−(x−µ)2/2σ2

+ (1− k/n) δ(x), which is used to

model k-sparse signals. With the generalized prior, the MP in

(3) is modified to

m
(t+1)
i→a (xi) ∼= p̂rior(xi)

∏

b∈∂i\a
m̂

(t)
b→i(xi);

m̂
(t+1)
a→i (xi) ∼=

∫ ∏

j∈∂a\i
m

(t+1)
j→a (xi)× e−

(ya−

∑n
j=1 Aajxj)

2

2σ2 dxj ,

(29)

and the decoding step at each iteration becomes

x̂
(t)
i = argmaxxi

P(xi|y) ≈ argmaxxi
p̂rior(xi) ·

∏

a∈∂i

m̂
(t)
a→i(xi).

(30)

Moreover, the functions hmean (·; ·) and hvar (·; ·) in (6) are

modified to ĥmean (·; ·) and ĥvar (·; ·) as

ĥmean(µ; v) = lim
γ→∞

∫
xi · eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

∫
eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

;

ĥvar(µ; v) = lim
γ→∞

γ
∫
x2
i · eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

∫
eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

−
(
ĥmean(µ; v)

)2
.

Afterwards, we can design the sensing matrix with the same

procedure as in (9) and (19).

B. MMSE decoder

Notice that both (5) and (30) reconstruct the signal by

minimizing the error probability P
(
x̂ 6= x\

)
, which can be

regarded as a MAP decoder. This subsection considers MMSE

decoder, which is to minimize the `2 error, i.e.,
∥∥x̂− x\

∥∥
2
.

The message-passing procedure stays the same as (29) while

the decoding procedure needs to be modified to

x̂
(t)
i =

∫
xiP(xi|y)dxi ≈

∫ (
xi · p̂rior(xi) ·

∏

a∈∂i

m̂
(t)
a→i(xi)

)
dxi.

Moreover, the functions hmean(·; ·) and hvar (·; ·) in the DE in

(6) are modified to h̃mean (·; ·) and h̃var (·; ·) as

h̃mean(µ; v)=

∫
xi · p̂rior(xi) · e−

(xi−µ)2

2v dxi

∫
p̂rior(xi) · e−

(xi−µ)2

2v dxi

;

h̃var(µ; v)=

∫
x2
i · p̂rior(xi) · e−

(xi−µ)2

2v dxi

∫
p̂rior(xi) · e−

(xi−µ)2

2v dxi

−
(
h̃mean(µ; v)

)2
.

Having discussed two potential directions of generalization,

next we will present the numerical experiments.

VI. NUMERICAL EXPERIMENTS

This section presents the numerical experiments using both

synthetic data and real-world data. We consider the sparse

signal and compare the design of preferential sensing with that

of the regular sensing. For the simplicity of the code design
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and the construction of the corresponding sensing matrix,

we fix the degrees {ρH,i} and {ρL,i} of the check nodes to

ρH,dcH = 1 and ρL,dcL = 1, respectively. Therefore, each check

node has dcH edges connecting to the high-priority part x
\
H

and dcL edges connecting to the low-priority part x
\
L.

A. Sensing matrix construction

Sensing matrix design for sparse signal. First, we consider

the sparse signal setting. We construct the sensing matrix with

the algorithm being illustrated in Algorithm 1, which applies

to both `1 regularizer and elastic net regularizer.

We evaluate two types of sensing matrices for the preferen-

tial sensing, namely, A
(init)
preferential and A

(final)
preferential, which corre-

spond to the distributions {λH} and {λL} in the initialization

phase and at the final outcome of Algorithm 1. As the baseline,

we design the sensing matrix Aregular via (9) which provides

regular sensing with an additional constraint which enforces

equal edge number with A
(final)
preferential for a fair comparison.

Sensing matrix design for Gaussian signal. In addition to

the sparse signal, we design the preferential sensing matrix for

Gaussian signals. The matrix design algorithm is in the same

spirit as Algorithm 1. The only difference is that we replace

(23), (24), and (25) with (26), (27), and (28), respectively. Its

presentation is omitted due to its similarities to Algorithm 1.

B. Experiments with synthetic data

We study the recovery performance with varying SNR =
‖x\‖2

2/σ2. We separately evaluate the signal recovery perfor-

mance via the partial and full reconstruction error, which

corresponds to the error of the high-priority part ‖x̂H −x
\
H‖2

and that of the whole signal
∥∥x̂− x\

∥∥
2
, respectively.

1) Experiments with sparse signal: We consider the case

where x\ is a (kH + kL)-sparse signal. We fix the check node

degrees dcH and dcL as 5 and let the maximum variable node

degree dvmax as 50. The magnitude of the non-zero entries is

set to 1.

a) Evaluation under different signal reconstruction meth-

ods: We fix the length nH of the high-priority part x
\
H and

nL of the low-priority part x
\
L as 100 and 400, respectively.

The corresponding sparsity number kH and kL are picked as

10 and 10, respectively.

We consider 3 types of methods: (i) optimization methods,

e.g., `1 regularizer (‖ · ‖1) [2], [4] and elastic net regularizer

(‖ · ‖1 + ‖ · ‖22) [46]; (ii) greedy methods, e.g., orthogo-

nal matching pursuit (OMP) [47] and compressive sampling

matching pursuit (COSAMP) [48]; and (iii) thresholding-

based methods, e.g., iterative hard thresholding (IHT) [49]

and hard thresholding pursuit (HTP) [43]. A brief introduction

of these algorithms is referred to Chapter 3 in [50]. The

simulation results are shown in Figure 4.

Discussion. We show that our design scheme can reduce

reconstruction errors with various signal reconstruction

methods, despite that our design scheme is rooted in the

optimization methods. In addition, we find that different signal

reconstruction methods will lead to different errors. A detailed

discussion comes as follows.

Algorithm 1 Design of Sensing Matrix for Preferential Sens-

ing.

• Input: maximum variable node degree dvmax, check

node degree dcH and dcL, signal lengths nH and nL,

sparsity numbers kH and kL, and iteration number T .

• Initialization: set βH � log
(

nH

kL

)
, βL � log

(
nL

kL

)
.

Then we initialize {λH,i} and {λL,i} as

min
λH∈∆dvmax−1,
λL∈∆dvmax−1

∑

i

iλH,i,

s.t. nHdcL

(∑

i

iλH,i

)
= nLdcH

(∑

i

iλL,i

)
;

(
βHkH
nH

∑

`

λH,`

`

)2

+

(
βLkL
nL

∑

`

λL,`

`

)2

≤ 1

(dcH)2 + (dcL)2
;

∑

`

λH,`√
`

≤
√
nH√

kH
√
dcH + dcL

;

λL,1 = λH,1 = 0,

which is equivalent to (19) without the Requirement 2.

• Iterative Update: denote λ
(t)
H (or λ

(t)
L ) as the updated

version of λH (or λL) at the tth iteration.

• For time t = 1 to T : update λ
(t)
H and λ

(t)
L by alternating

minimization of (19) with Requirement 1 and Requirement

2 being replaced by (23), (24), and (25).

1) Update λ
(t)
H with λL being fixed to be λ

(t−1)
L ;

2) Update λ
(t)
L with λH being fixed to be λ

(t)
H .

• Output: degree distribution λ
(t)
H and λ

(t)
L .

• Optimization methods. In the low-SNR regime, we observe

that elastic net regularizer has a better performance than `1
regularizer. However, elastic net regularizer’s performance

falls behind `1 regularizer when entering the high-SNR

regime. One intuitive explanation is that the extra ‖·‖22 term

in the elastic net regularizer promotes reconstructed signal

with lower energy, i.e., ‖x̂‖22.

• Greedy methods. We observe that OMP has a slightly better

performance than COSAMP. However, their performance

are relatively worse than the optimization methods.

• Thresholding-based methods. We observe that IHT has the

best performance in the low-SNR regime among all signal

reconstruction methods. However, its performance is rather

steady with varying SNR and is surpassed by other methods

when SNR increases. As for HTP, we find that it has a

similar performance of `1 regularizer.

In summary, we conclude that our designed sensing matrices,

both A
(init)
preferential and A

(final)
preferential, have improved performance

under all signal reconstruction methods. For the ease of con-

ducting experiments, we will stick to the `1 regularizer in the

following context as it has the best overall performance. The

obtained conclusion should remain valid for other methods.
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Fig. 4. Comparison of preferential sensing vs regular sensing under different signal reconstruction methods. The length nH of the high-priority part x
\
H

is set as 100; while the length nL of the low-priority part x
\
L

is set as 400. (Top) We evaluate the reconstruction performance w.r.t. the high-priority part

‖x̂H − x
\
H
‖2/‖x\

H
‖2. (Bottom) We evaluate the reconstruction performance w.r.t. the whole signal ‖x̂− x

\‖2/‖x\‖2.

b) Impact of sparsity number: We fix the length nH of the

high-priority part x
\
H as 100 and the length nL of the low-

priority part x
\
L as 400. The simulation results are plotted in

Figure 5.

Discussion. First, we investigate the recovery performance

w.r.t. the high priority part x
\
H. Using the sensing matrix

Aregular (regular sensing) as the baseline, we conclude that

our sensing matrix A
(final)
preferential (preferential sensing) achieves

better performance when the signal is more sparse. Consider

the case when SNR = 100. When kH = kL = 10, the

ratio ‖x̂H−x
\
H‖2/‖x

\
H‖2 for A

(final)
preferential is approximately 0.35

while that of the Aregular is 0.86. When the sparsity number

kH and kL increase to 15, the improvement is approximately

(0.85 − 0.4)/0.85 ≈ 53%. When the sparsity number kH
and kL increase to 20, the corresponding improvement further

decreases to (0.95− 0.55)/0.95 ≈ 42%.

When turning to the reconstruction error ‖x̂−x\‖2/‖x\‖2
w.r.t. the whole signal, we notice a similar phenomenon, i.e., a

sparser signal contributes to better performance. Additionally,

we notice the sensing matrix A
(final)
preferential achieves signifi-

cant improvements in comparison to its initialized version

A
(init)
preferential.

c) Impact of signal length: We also studied various settings

in which the length nH of the high-priority part x
\
H is set

to {150, 200, 250, 300} and the corresponding length nL of

the low-priority part x
\
L is set to {600, 800, 1000, 1200}. The

simulation results are plotted in Figure 6.

Discussion. Compared to regular sensing, our sensing matrix

A
(final)
preferential can reduce the error in the high-priority part x

\
H

significantly. For example, when SNR = 100, the ratio ‖x̂H−
x
\
H‖2/‖x

\
H‖2 reduces between 40% ∼ 60% with the sensing

matrix A
(final)
preferential. Meanwhile, w.r.t. the whole signal x\, the

ratio ‖x̂− x\‖2/‖x\‖2 decreases with a smaller magnitude.

d) Miscellaneous numerical experiments I: In addition, we

evaluate our designed sensing matrices when the condition
kH/nH ≥ kL/nL is violated, or equivalently, we let kH/nH ≤ kL/nL.

We set the pair (nH, kH) as (400, 10) and (nL, kL) as (100, 10),
respectively. The numerical experiment is put in Figure 7.
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Fig. 5. Comparison of preferential sensing vs regular sensing. The length nH

of the high-priority part x
\
H

is set as 100; while the length nL of the low-

priority part x
\
L

is set as 400. (Left panel) We evaluate the reconstruction

performance w.r.t. the high-priority part ‖x̂H−x
\
H
‖2/‖x\

H
‖2. (Right panel)

We evaluate the reconstruction performance w.r.t. the whole signal ‖x̂ −
x
\‖2/‖x\‖2.

Discussion. We conclude that our designed scheme may

still bring performance improvement even if the requirement
kH/nH � kL/nL is violated. However, we observe a performance

degradation of A
(final)
preferential when compared with A

(init)
preferential.

This suggests that Requirement 2 may backfire in protecting

the high-priority part x
\
H if kH/nH ≤ kL/nL.

e) Miscellaneous numerical experiments II: In addition to

our proposed scheme, another method for preferential sensing
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Fig. 6. Comparison of preferential sensing vs regular sensing. Both the
sparsity number kH and kL are set as 15. (Left panel) We evaluate the

reconstruction performance w.r.t. the high-priority part ‖x̂H−x
\
H
‖2/‖x\

H
‖2.

(Right panel) We evaluate the reconstruction performance w.r.t. the whole
signal ‖x̂− x

\‖2/‖x\‖2.

is the decouple sensing matrix design (i.e., we separately

design the sensing matrices AH and AL for the high-priority

part x
\
H and low-priority part x

\
L; and then stack them to-

gether). Then, we compare our designed scheme and the

decoupled design scheme, which is denoted as Adecouple. For

a fair comparison, we enforce the sensor number m and

corresponding edge numbers connecting x
\
H and x

\
L to be

same. However, there is no inference between the high-priority

part x
\
H and low-priority part x

\
L, or equivalently, no check

node connecting to x
\
H and x

\
L simultaneously. The simulation

result is put in Figure 8, from which we conclude that our

proposed scheme yields a better reconstructed signal.

2) Experiments with Gaussian signal: We consider the

Gaussian signal such that the high-priority part x
\
H and low-

priority part x
\
L follow Gaussian priors e−βH(·)2 and e−βL(·)2 ,

respectively. The simulation results are in Figure 9.

Discussion. We conclude that our design scheme A
(final)
preferential

can greatly reduce the reconstruction error in the high-priority

part x
\
H while the total reconstruction error ‖x̂ − x\‖2 stays

almost the same, which verifies the effectiveness of our design
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1.85

H
H

H

10 25 40 55 70 85 100

SNR

0.85
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1.25

1.45

1.65

1.85

Fig. 7. Comparison of preferential sensing vs regular sensing (kH/nH ≤
kL/nL). The length nH of the high-priority part x

\
H

is set as 400 and kH is set

as 10; while the length nL of the low-priority part x
\
L

is set as 100 and kL
is set as 10. (Left panel) We evaluate the reconstruction performance w.r.t.

the high-priority part ‖x̂H − x
\
H
‖2/‖x\

H
‖2. (Right panel) We evaluate the

reconstruction performance w.r.t. the whole signal ‖x̂− x
\‖2/‖x\‖2.

100 200 300 400 500

SNR

0.15

0.26

0.37

0.48

0.59

0.7

H
H

H

100 200 300 400 500

SNR

0.35

0.45

0.55

0.65

0.75

Fig. 8. Comparison of our proposed scheme vs decoupled design scheme

for preferential sensing. The length nH of the high-priority part x
\
H

is set as

400 and kH is set as 10; while the length nL of the low-priority part x
\
L

is
set as 100 and kL is set as 10. (Left panel) We evaluate the reconstruction

performance w.r.t. the high-priority part ‖x̂H−x
\
H
‖2/‖x\

H
‖2. (Right panel)

We evaluate the reconstruction performance w.r.t. the whole signal ‖x̂ −
x
\‖2/‖x\‖2.

scheme in giving preferential protection of x
\
H.
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Fig. 9. Comparison of preferential sensing vs regular sensing. The length nH

of the high-priority part x
\
H

is set as 100; while the length nL of the low-

priority part x
\
L

is set as 400. The prior for x
\
H

is ∝ e−x2/20 while the prior

for x
\
L

is ∝ e−x2/2. (Left panel) We evaluate the reconstruction performance

w.r.t. the high-priority part ‖x̂H −x
\
H
‖2/‖x\

H
‖2. (Right panel) We evaluate

the reconstruction performance w.r.t. the whole signal ‖x̂− x
\‖2/‖x\‖2.

C. Experiments with real-world data

This subsection evaluates our designed sensing matrices

with the real-world data. We compare the performance of

sensing matrices for images using (i) MNIST dataset [51],

which consists of 10000 images in the testing set and 60000
images in the training set; and (ii) Lena image. Here we

formulate the image representations as sparse signals.
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To obtain a sparse representation for each image, we per-

form a 2D Haar transform H (·), which generates four sub-

matrices being called as the approximation coefficients (at the

coarsest level), horizontal detail coefficients, vertical detail co-

efficients, and diagonal detail coefficients. The approximation

coefficients are at the coarsest level and are treated as the

high-priority part x
\
H; while the horizontal detail coefficients,

vertical detail coefficients, and diagonal detail coefficients are

regarded as the low-priority part x
\
L. Hence we can write the

sensing relation in (1) as

y = AH (Image) +w, (31)

where Image denotes the input image, H (·) denotes the

vectorized version of the coefficients and is viewed as the

sparse ground-truth signal, and w denotes the sensing noise.

The sensing matrix A is designed such that the approximation

coefficients of H (Image) can be better reconstructed.

1) Experiments with MNIST: We set the images from

MNIST as the input, which consists of 10000 images in the

testing set and 60000 images in the training set with each

image being of dimension 28× 28.

The whole datasets can be divided into 10 categories with

each category representing a digit from zero to nine. For each

digit, we design one unique sensing matrix. The lengths nH

and nL are set to (28/2)2 = 196 and 3 × (28/2)2 = 588,

respectively. The sparsity coefficients kH and kL varied among

different digits.

Discussion. To evaluate the performance, we define ratios

rH,(·) and rW,(·) as

rH,(·) ,
‖x̂H − x

\
H‖2

‖x\
H‖2

;

rW,(·) ,
‖x̂− x\‖2
‖x\‖2

,

which correspond to the `2 error in the high-priority part x
\
H

and the entire signal x\, respectively. We use the sensing

matrix Aregular as the benchmark. In addition, we omit the

results of A
(init)
preferential, since the sensing matrix A

(final)
preferential has

better performance.

The results are listed in Table I. A subset of the recon-

structed images are shown in Figure 10. From Table I and

Figure 10, we conclude that our sensing matrix A
(final)
preferential for

the preferential sensing can better preserve the images when

comparing with the sensing matrix Aregular for the regular

sensing.

2) Experiments with Lena Image: We evaluate the benefits of

using A
(final)
preferential for the Lena image with dimension 512×512.

Notice that the sensing matrix would have been prohibitively

large if we used the whole image as the input. To put more

specifically, we would need a matrix with the width 5122 =
262144. To handle such issue, we divide the whole images

into a set of sub-blocks with dimensions 32 × 32 and design

one sensing matrix with the width 322 = 1024. For each sub-

block, we first obtain a sparse representation with a 2D Haar

transform and then reconstruct the signal in (31).

Discussion. The comparison of results is plotted in Figure 11,

from which we conclude that the sensing matrix A
(final)
preferential

has much better performance in image reconstruction in com-

parison with the sensing matrix Aregular. The ratios rH,(p) and

rH,(r) are computed as 0.0446 and 0.3029, respectively; while

the ratio rW,(p) and rW,(r) are computed as 0.0709 and 0.3144,

respectively.

Remark 4. The degree distributions λH(·) and λL(·) of the

variable nodes for the sensing matrix A
(final)
preferential are obtained

as

λH(α)

= 0.0057856α+ 0.025915α2 + 0.36394α3 + 0.35183α4

+ 0.10333α5 + 0.04134α6 + 0.021619α7 + 0.013508α8

+ 0.0094374α9 + 0.0070906α10 + 0.0056α11

+ 0.0045851α12 + 0.0038574α13 + 0.0033145α14

+ 0.0028963α15 + .0025659α16 + 0.0022992α17

+ 0.0020801α18 + 0.0018973α19 + 0.0017428α20

+ 0.0016109α21 + 0.001497α22 + 0.001398α23

+ 0.0013111α24 + 0.0012344α25 + 0.0011662α26

+ 0.0011053α27 + 0.0010506α28 + 0.0010013α29

+ 0.0009565α30 + 0.00091576α31 + 0.00087852α32

+ 0.00084436α33 + 0.00081292α34 + 0.00078388α35

+ 0.00075697α36 + 0.00073197α37 + 0.00070867α38

+ 0.00068691α39 + 0.00066652α40 + 0.00064738α41

+ 0.00062937α42 + 0.00061238α43 + 0.00059633α44

+ 0.00058114α45 + 0.00056673α46 + 0.00055304α47

+ 0.00054001α48 + 0.0005276α49;

λL(α) = α.

The check node degrees dcH and dcL are both set as 4.

Meanwhile, the sensing matrix Aregular designed in (9) is a

regular sensing matrix whose variable node and check node

degree distributions are given by λ(α) = α2 and ρ(α) = α7,

respectively.

VII. CONCLUSIONS

This paper presented a general framework of the sensing

matrix design for a linear measurement system. Focusing

on a sparse sensing matrix A, we associated it with a

graphical model G = (V ,E ) and transformed the design

of A to the connectivity problem in G . With the density

evolution technique, we proposed two design strategies, i.e.,

regular sensing and preferential sensing. In the regular sensing

scenario, all entries of the signal are recovered with equal

accuracy; while in the preferential sensing scenario, the entries

in the high-priority sub-block are recovered more accurately

(or exactly) relative to the entries in the low-priority sub-

block. We then analyzed the impact of the connectivity of the

graph on the recovery performance. For the regular sensing,

our framework can reproduce the classical results for both

the sparse signals and Gaussian signals. For the preferential

sensing, our framework can lead to a significant reduction of

the reconstruction error in the high-priority part. Numerical



13

Fig. 10. The performance comparison between the sensing matrix for preferential sensing A
(final)
preferential

and sensing matrix for regular sensing Aregular. (Top)

The ground-truth images. (Middle) The reconstructed images with the sensing matrix A
(final)
preferential

. (Bottom) The reconstructed images with the sensing matrix

Aregular.

Training Set Testing Set

Digit rH,(p) rH,(r) rW,(p) rW,(r) rH,(p) rH,(r) rW,(p) rW,(r)

0 0.28315 0.5154 0.44818 0.60131 0.30292 0.45749 0.46283 0.56486
1 0.16746 0.33751 0.29332 0.41599 0.1511 0.45264 0.2659 0.51864
2 0.26303 0.50365 0.42984 0.59959 0.24896 0.4233 0.42216 0.52556
3 0.24613 0.43677 0.42514 0.53163 0.26446 0.46766 0.43534 0.56189
4 0.28331 0.44377 0.44623 0.53791 0.30092 0.4445 0.45804 0.53749
5 0.28405 0.53511 0.45727 0.6198 0.27258 0.47044 0.44382 0.56622
6 0.28801 0.39436 0.45053 0.51701 0.27084 0.5086 0.44134 0.59534
7 0.25503 0.41621 0.41809 0.52896 0.27266 0.51329 0.41693 0.5783
8 0.31263 0.51918 0.47618 0.61492 0.32731 0.48163 0.48699 0.5837
9 0.30171 0.54394 0.45241 0.61799 0.27385 0.55313 0.43116 0.62785

TABLE I
THE INDEX i = p CORRESPONDS TO THE SENSING MATRIX A

(final)
preferential

FOR THE PREFERENTIAL SENSING; WHILE THE INDEX i = r CORRESPONDS TO

THE SENSING MATRIX Aregular FOR THE REGULAR SENSING. WE DEFINE THE RATIO rH,(i) (i = {p, r}) AS THE ERROR W.R.T. THE HIGH PRIORITY PART,

NAMELY, ‖x̂H − x
\
H
‖2/‖x\

H
‖2 . SIMILARLY WE DEFINE THE RATIO rW,(i) (i = {p, r}) AS THE RATIO W.R.T. THE WHOLE SIGNAL, NAMELY,

‖x̂− x
\‖2/‖x\‖2 . MOREOVER, WE PUT THE RESULTS CORRESPONDING TO THE SENSING MATRIX A

(final)
preferential

IN THE BOLD FONT.

experiments with both synthetic data and real-world data are

presented to corroborate our claims.

APPENDIX A

PROOF OF THEOREM 1

Proof. We begin the proof by restating the DE equation w.r.t.

E(t+1) and V (t+1) as

E(t+1) = Eprior(s),z∼N(0,1)

[
prox

(
s+ a1z

√
E(t);βa2V

(t)
)
− s
]2

︸ ︷︷ ︸
,ΨE(E(t);V (t))

;

V (t+1) = Eprior(s),z∼N(0,1)

[
βa2V

(t)prox
′
(
s+ a1z

√
E(t);βa2V

(t)
)]

︸ ︷︷ ︸
,ΨV (E(t);V (t))

.

The derivation of the necessary conditions for

limt→∞
(
E(t), V (t)

)
= (0, 0) consists of two parts:

• Part I. We verify that (0, 0) is a fixed-point of the DE

equation;

• Part II. We consider the necessary condition such that DE

equation converges within the proximity of the origin points,

i.e., E(t) and V (t) are close to zero.

Since Part I can be easily verified, we put our major focus

on Part II. Define the difference across iterations as δ
(t)
E =

E(t+1) − E(t) and δ
(t)
V = V (t+1) − V (t), we would like to

show limt→∞(δ
(t)
E , δ

(t)
V ) = (0, 0). With Taylor expansion, we

obtain

δ
(t+1)
E = ΨE

(
E(t+1), V (t+1)

)
−ΨE

(
E(t), V (t)

)

=

(
∂ΨE (E, V )

∂E

∣∣
E=E(t),V =V (t)

)
· δ(t)E

+

(
∂ΨE (E, V )

∂V

∣∣
E=E(t),V =V (t)

)
· δ(t)V

+ O
[
(δ

(t)
E )2

]
+O

[
(δ

(t)
V )2

]
. (32)

Consider the region where δ
(t)
E and δ

(t)
V are sufficiently

small, we require δ
(t)
E and δ

(t)
V to converge to zero. Notice

the quadratic terms in (32) can be safely omitted in this

region. Denote the gradients
(

∂ΨE(E,V )
∂E

)(t) ∣∣
E=E(t),V=V (t) ,

∂ΨE(E,V )
∂V

∣∣
E=E(t),V=V (t) ,

∂ΨV (E,V )
∂E

∣∣
E=E(t),V=V (t) , and

∂ΨV (E,V )
∂V

∣∣
E=E(t),V=V (t) as

(
∂ΨE(E,V )

∂E

)(t)
,
(

∂ΨE(E,V )
∂V

)(t)
,

(
∂ΨV (E,V )

∂E

)(t)
, and

(
∂ΨV (E,V )

∂V

)(t)
, respectively. We obtain

the linear equation
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Ẽ(t) ≤ Ẽ(t−1) +
a2VSV

(0)

2a21

(
a2

(1 + a2)a21

)t−1

.

Iterating over all such inequalities, we obtain the equation

Ẽ(t+1) ≤ Ẽ(1) +
a2VSV

(0)

2a2
1

a2

(1+a2)a
2
1

(
1−

(
a2

(1+a2)a
2
1

)t)

1−
(

a2

(1+a2)a
2
1

) ,

which leads to

E(t+1) ≤ a2t
1 E(1) +

a2VSV
(0)

2a2
1

· a2

1 + a2

a2t
1 −

(
a2

1+a2

)t

1− a2

(1+a2)a
2
1︸ ︷︷ ︸

ϑ

. (35)

Since a1 < 1 and a2/(1 + a2) < 1, we have the second term

ϑ in (35) to be negligible as t goes to infinity. Hence we can

choose a sufficiently large T such that for t ≥ T , we have

E(t+1) is approximately equal to a2t1 E(1) and conclude the

exponential decay of E(t).

APPENDIX C

PROOF OF THEOREM 3

To begin with, we briefly discuss how to derive the

DE equation for the elastic net regularization, to put

more specifically, how to compute the corresponding func-

tions hmean(·; ·) and hvar(·; ·). Recalling their definitions

in (8), our goal is to study the probability distribu-

tion exp
[
−γ
(
β|x|+ βx2 + (x−µ)2/2v

)]
. Denote µ̃ and ṽ as

µ/1+2βv and v
1+2βv , respectively, we can show that the above

distribution is equivalent to exp
(
−γ(x−µ̃)2

2ṽ − γβ|x|
)

, which

is of the similar form associated with the `1 regularizer. Fol-

lowing the same procedure then yields the corresponding DE

equation. For the notation simplicity, we denote the DE equa-

tion as (E(t+1), V (t+1)) = (ΨE(E
(t);V (t)),ΨV (E

(t);V (t))).

Then, we study the necessary conditions of limt→∞
(E(t), V (t)) = (0, 0). Following the same procedure as in

Section A, we define matrix L
(t) as

L
(t) ,




(
∂ΨE(E,V )

∂E

)(t) (
∂ΨE(E,V )

∂V

)(t)
(

∂ΨV (E,V )
∂E

)(t) (
∂ΨV (E,V )

∂V

)(t)


 ,

and require inft |||L(t)|||OP ≤ 1. With some standard calcula-

tions, we have

|||L(t)|||OP = max

[(
∂ΨE (E, V )

∂E

)(t)

,

(
∂ΨV (E, V )

∂V

)(t)
]
.

(36)

We conclude the proof by computing the lower bounds of
∂ΨE(E,V )

∂E and
∂ΨV (E,V )

∂V around (0, 0), which proceeds as

follows. Following the same procedure as in Section A, we

have

∂ΨE (E, V )

∂E

∣∣
E=E(t),V=V (t) =

a21 · ϑ1

(1 + 2a2βV (t))2

+
a1 · ϑ2

(1 + 2a2βV (t))
√
2πE(t)

,

where ϑ1 and ϑ2 are defined as

ϑ1 , Eprior(s)

[

Φ

(
s− a2βV (t)

a1
√
E(t)

)

+Φ

(

− s+ a2βV (t)

a1
√
E(t)

)]

;

ϑ2 , Eprior(s)s ·
(
exp

[
−
(

s+a2βV (t)

a1

√
E(t)

)2

/2

]
− exp

[
−
(

a2βV (t)
−s

a1

√
E(t)

)2

/2

])
,

respectively. Plugging prior(s) = k/n · 1(c0) + (1 − k/n)1(0)
into ϑ1 and ϑ2 then yields

lim
(E(t),V (t))→(0,0)

∂ΨE (E, V )

∂E

∣∣
E=E(t),V=V (t) ≥ k · a21

n
. (37)

As for ∂ΨV/∂V , we have

∂ΨV

∂V

∣∣
E=E(t),V=V (t) =

β · a2ϑ1(
1 + 2β · a2V (t)

)2 ,

which yields

lim
(E(t),V (t))→(0,0)

∂ΨV (E, V )

∂V

∣∣
E=E(t),V=V (t) ≥ kβa2

n
. (38)

Thus, we complete the proof by combing (36), (37), and (38);

and letting inft |||L(t)|||OP ≤ 1.

APPENDIX D

PROOF OF PROPOSITION 3

Without loss of generality, we assume the updating order is

{λ(t)
H ,λ

(t)
L , ρ

(t)
H , ρ

(t)
L }. For the notation simplicity, we denote

the solution of (19) as OPT(λ
(t)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L ). Easily, we

can verify (19) is a convex optimization problem w.r.t. λH

with fixed λL,ρH, and ρL. This results in

OPT(λ
(t)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L ) ≥ OPT(λ

(t+1)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L ).

Iterating the above procedure w.r.t. λL,ρH, and ρL, we obtain

OPT(λ
(t+1)
H ,λ

(t)
L ,ρ

(t)
H ,ρ

(t)
L ) ≥ OPT(λ

(t+1)
H ,λ

(t+1)
L ,ρ

(t)
H ,ρ

(t)
L )

≥ · · · ≥ OPT(λ
(t+1)
H ,λ

(t+1)
L ,ρ

(t+1)
H ,ρ

(t+1)
L ),

which completes the proof such that
{
λ
(t)
H ,λ

(t)
L , ρ

(t)
H , ρ

(t)
L

}

constitutes a monotonic non-increasing sequence. Comb-

ing with the fact such that (19) is non-negative, we can

show that
{
λ
(t)
H ,λ

(t)
L , ρ

(t)
H , ρ

(t)
L

}
has a finite limit, i.e.,

limt→∞
nL

(∑
i iλ

(t)
L,i

)
+nH

(∑
i iλ

(t)
H,i

)

∑
i i
(
ρ
(t)
L,i

+ρ
(t)
H,i

) < ∞.
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“Statistical-physics-based reconstruction in compressed sensing,” Phys-

ical Review X, vol. 2, no. 2, p. 021005, 2012.

[18] ——, “Probabilistic reconstruction in compressed sensing: algorithms,
phase diagrams, and threshold achieving matrices,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2012, no. 08, p. P08009, 2012.
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E DISCUSSION OF THE DE FOR BOTH REGULAR AND

IRREGULAR DESIGNS

First, we explain the physical meaning of the quantities

E(t) and V (t), which track the average error and the average

variance at the tth iteration, respectively. Since the physical

meaning of V (t) can be easily obtained, we focus on the

explanation of E(t). For the convenience of the analysis, we

rewrite the MAP estimator as

x̂ = argmaxx exp

(
−γ‖y −Ax‖22

2σ2

)
· exp (−γf(x)) ,

where γ > 0 is a redundant positive constant. Then we restate

the message-passing algorithm, which is used to solve the

MAP estimator, as

m̂
(t+1)
a→i (xi) ∼=

∫ ∏

j∈∂a\i
m

(t)
j→a(xi)× e−

γ(ya−

∑n
j=1 Aajxj)

2

2σ2 dxj

m
(t+1)
i→a (xi) ∼= e−γf(xi)

∏

b∈∂i\a
m̂

(t+1)
b→i (xi).

The MAP estimator of x̂i is hence written as

x̂i = argmaxxi
P (xi|y) ≈ argmaxxi

e−γf(xi)
∏

a∈∂i

m̂
(t)
a→i(xi).

Notice that x̂i can be rewritten as the mean w.r.t. the proba-

bility measure e−γf(xi)
∏

a∈∂i m̂
(t)
a→i, namely,

x̂i ≈
∫

xi

xie
−γf(xi)

∏

a∈∂i

m̂
(t)
a→i(xi)dxi,

by letting γ → ∞. Since the mean µi→a is computed as

µi→a =

∫

xi

xie
−γf(xi)

∏

b∈∂i\a
m̂

(t)
b→i(xi)dxi,

which is close to x̂i, we obtain the approximation

m−1
∑m

a=1(µi→a − x\
i)

2 as (x̂i − x\
i)

2. We then conclude

E(t) =
1

mn

n∑

i=1

m∑

a=1

(
µi→a − x\

i

)2
≈ 1

n

n∑

i=1

(
x̂i − x\

i

)2
,

which is approximately the average of error at the tth iteration.

Having discussed the physical meaning of the quantities E(t)

and V (t), we turn to the derivation of the DE equation.

A. Supporting Lemmas

We begin the derivation with the following lemma, which is

stated as

Lemma 1. Consider the message flow m̂
(t+1)
a→i from the check

node a to the variable node i and approximate it as a Gaussian

RV with mean µ̂
(t+1)
a→i and variance v̂

(t+1)
a→i , i.e., m̂

(t+1)
a→i ∼

N
(
µ̂
(t+1)
a→i , v̂

(t+1)
a→i

)
. Then, we can obtain the following update

equation at the (t+ 1)th iteration

µ̂
(t+1)
a→i = xi +A

∑

j∈∂a\i

AaiAaj

(
xj − µ

(t)
j→a

)
+AAaiwa;

v̂
(t+1)
a→i = Aσ2 + |∂a|V (t),

where |∂a| denotes the degree of the check node a.

Proof. Consider the message flow m̂
(t+1)
a→i from check-node to

variable node at the (t+ 1)th iteration

m̂
(t+1)
a→i =

1

Zt
a→i

∫ ∏

j∈∂a\i

m
(t)
j→a(xj)

× exp


−

γ
(
ya −∑j=1 Aajxj

)2

2σ2


 dxj . (39)

Approximate the message flow m
(t+1)
j→a as a Gaussian RV with

mean µ
(t+1)
j→a and variance v

(t+1)
j→a . Plugging into (39) yields

m̂
(t+1)
a→i =

1

Zt
a→i

∫ ∏

j∈∂a\i

exp


−

γ
(
xj − µ

(t)
j→a

)2

2v
(t+1)
j→a




× exp


−

γ
(
ya −∑j=1 Aajxj

)2

2σ2


 dxj . (40)

The direct calculation of the above integral involves the cross

terms such as Aaj1Aaj2xj1xj2 (j1 6= j2), which can be

cumbersome. To handle this issue, we adopt the trick in [1],

[18], whose basic idea is to introduce a redundant variable ω
and exploit the relation

e−
t2

2σ2 =
1√
2πσ2

∫
e−

ω2

2σ2 + itω

σ2 dω,

where t is an arbitrary number. As such, we can transform

(40) to

m̂
(t+1)
a→i

∼=
∫

dω
∏

j∈∂a\i

dxj · exp


−

γ
(
xj − µ

(t)
j→a

)2

2v
(t+1)
j→a




× exp


−

iωγ
(
ya −

∑
j=1 Aajxj

)

σ2


 · exp

[
−γω2

2σ2

]
,

which diminishes the cross term xj1xj2 (j1 6= j2). Rearranging

the terms for each xj , we can iteratively perform the integral

such that

∫
dxj · exp


−

γ
(
xj − µ

(t)
j→a

)2

2v
(t)
j→a

+
iωγAajxj

σ2




=

√
2πv

(t)
j→a

γ
· exp


−

γ(µ̂
(t)
j→a)

2

2v̂
(t)
j→a

+

v
(t)
j→a

(
γµ

(t)
j→a

v
(t)
j→a

+
iγωAaj

σ2

)2

2γ




=

√
2πv

(t)
j→a

γ
· exp

(
−
γω2A2

ajv
(t)
j→a

2σ4
+

iγωAajµ
(t)
j→a

σ2

)
.

With some algebraic manipulations, we can compute its mean

µ̂
(t+1)
a→i and its variance v̂

(t+1)
a→i as

µ̂
(t+1)
a→i =

Aai

(
ya −

∑
j∈∂a\i Aajµ

(t)
j→a

)

A2
ai

;

v̂
(t+1)
a→i =

σ2 +
∑

j∈∂a\i A
2
ajv

(t)
j→a

A2
ai

.
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The following analysis focuses on how to approximate these

two values. We begin by the discussion w.r.t. the variance

v̂
(t+1)
a→i . Note we have

v̂
(t+1)
a→i

1©≈ Aσ2 +
∑

j∈∂a\i
v
(t)
j→a,

where in 1© we use A2
ai ≈ E

(
A2

ai|Aai 6= 0
)

= A−1 for

i ∈ ∂a. As for the sum
∑

j∈∂a\i v
(t)
j→a, we can view it to

be randomly sampled from the set of variances
{
v
(t)
j→a

}
and

approximate it as

∑

j∈∂a\i
v
(t)
j→a ≈ (|∂a| − 1)V (t) ≈ |∂a|V (t).

Notice that the variance is closely related with the check node

degree |∂a|. Having obtained the variance v̂
(t+1)
a→i , we turn to

the mean µ̂
(t+1)
a→i , which is computed as

µ̂
(t+1)
a→i =

Aai

(
ya −

∑
j∈∂a\i Aajµ

(t)
j→a

)

A2
ai

2©≈ AAai


Aaixi +

∑

j∈∂a\i

Aaj

(
xj − µ

(t)
j→a

)
+ wa




3©≈ xi +A
∑

j∈∂a\i

AaiAaj

(
xj − µ

(t)
j→a

)
+AAaiwa,

where in 2© and 3© we use the approximation A2
ai ≈ A−1 for

i ∈ ∂a.

B. Derivation of DE

We study the message flow m
(t+1)
i→a from the variable node

i to the check node a

m
(t+1)
i→a

∼= e−γf(xi)
∏

b∈∂i\a
e
−

γ(xi−µ̂
(t+1)
b→i )

2

2v̂
(t+1)
b→i .

To begin with, we study the product
∏

b∈∂i\a exp

(
−

γ
(
xi−µ̂

(t+1)
b→i

)2

2v̂
(t)
b→i

)
. Its variance ṽ

(t+1)
i→a is approximately com-

puted as

γ

ṽ
(t+1)
i→a

≈
∑

b∈∂i\a

γ

v̂
(t+1)
b→i

,

which yields

ṽ
(t+1)
i→a =

( |∂i| − 1

Aσ2 + |∂a|V (t)

)−1

≈ Aσ2 + |∂a|V (t)

|∂i| .

Further, the mean µ̃
(t+1)
i→a is calculated as

µ̃
(t+1)
i→a =


 ∑

b∈∂i\a

µ̂
(t+1)
b→i

v̂
(t+1)
b→i


 /


 ∑

b∈∂i\a

1

v̂
(t+1)
b→i




−1

1©
=

Aσ2 + |∂a|V (t)

|∂i|

×


 ∑

b∈∂i\a

xi +A
∑

j∈∂b\i AbiAbj

(
xj − µ

(t)
j→b

)
+AAbiwb

Aσ2 + |∂a|V (t)




≈ xi +
A

|∂i|


 ∑

j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)
+
∑

b∈∂i\a

Abiwb


 ,

where in 1© we invoke Lemma 1. We then approximate the

term
∑

j∈∂b\i AbiAbj

(
xj − µ

(t)
j→b

)
+
∑

b∈∂i\a Abiwb as a

Gaussian RV with its mean being calculated as

E


 ∑

b∈∂i\a

∑

j∈∂b\i
AbiAbj

(
xj − µ

(t)
j→b

)
+
∑

b∈∂i\a
Abiwb


 = 0,

and its variance as

E


 ∑

b∈∂i\a

∑

j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)
+
∑

b∈∂i\a

Abiwb




2

= E


 ∑

b∈∂i\a

∑

j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)



2

+ E


 ∑

b∈∂i\a

Abiwb




2

≈ A−2|∂i|
∑

j∈∂a\i

(
xj − µ

(t)
j→b

)2
+A−1σ2|∂i|

2©≈ |∂i|
(
A−2|∂a|E(t) +A−1σ2

)
.

In 2© we assume the term
(
xj − µ

(t)
j→b

)2
is randomly sampled

among all possible pairs (i, a). Hence for the fixed degree |∂i|
and |∂a|, we can approximate the mean µ̃

(t+1)
i→a as a Gaussian

RV with mean xi + z
√(

Aσ2 + |∂a|E(t)
)
/|∂i| and variance(

Aσ2 + |∂a|V (t)
)
/|∂i|, namely,

x ∼ N

(
xi + z

√
Aσ2 + |∂a|E(t)

|∂i| ,
Aσ2 + |∂a|V (t)

|∂i|

)
,

where z is a standard normal RV. Recalling that the dis-

tribution of the degrees of the variable node i and check

node a satisfies P(|∂i| = α) = λα and P (|∂a| = β) =
ρβ , we can approximate the distribution of the product
∏

b∈∂i\a exp

[
− γ

(
xi − µ̂

(t)
b→i

)2
/(2v̂

(t)
b→i)

]
as the mixture

Gaussian
∑

i,j ρiλjN
(
z
√

iE(t)+Aσ2

j , Aσ2+iV (t)

j

)
5 and fur-

ther approximate it as a single Gaussian RV with mean xi +∑
i,j ρiλjz

√
iE(t)+Aσ2

j and variance
∑

i,j ρiλj
Aσ2+iV (t)

j . In-

voking the definitions of hmean(·; ·) and hvar (·; ·) as in (8), we

then approximate the mean µ
(t+1)
i→a and the variance v

(t+1)
i→a as

µ
(t+1)
i→a ≈ hmean

(
xi+z

∑

i,j

ρiλj

√
iE(t) +Aσ2

j
;

∑

i,j

ρiλj
Aσ2 + iV (t)

j

)
;

5One hidden assumption is that there is no-local loops in the graphical
model we constructed, which is widely used in the previous work [7].
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v
(t+1)
i→a ≈ hvar

(
xi+z

∑

i,j

ρiλj

√
iE(t) +Aσ2

j
;

∑

i,j

ρiλj
Aσ2 + iV (t)

j

)
.

Then, the DE w.r.t. the average error E(t+1) is derived as

E(t+1) =
1

mn

m∑

a=1

n∑

i=1

(
µ
(t+1)
i→a − x\

i

)2

≈ Eprior(s)Ez

[
hmean

(
x\
i + z

∑

i,j

ρiλj

√
iE(t) +Aσ2

j
;

∑

i,j

ρiλj
Aσ2 + iV (t)

j

)
− x\

i

]2
.

Following a similar method, we obtain the DE w.r.t. the

average variance V (t+1) as stated in (6). This completes the

proof.

C. Derivation of DE for Irregular Design

Different from the regular design, we separately track the

average error and average variance w.r.t. the high-priority part

and low-priority part. Then we define four quantities, namely,

E
(t)
L , E

(t)
H , V

(t)
L , and V

(t)
H , which are written as

E
(t)
L =

1

mnL

m∑

a=1

∑

i∈L

(
µ
(t)
i→a − x\

i

)2
;

E
(t)
H =

1

mnH

m∑

a=1

∑

i∈H

(
µ
(t)
i→a − x\

i

)2
;

V
(t)
L =

1

mnL

m∑

a=1

∑

i∈L

v
(t)
i→a;

V
(t)
H =

1

mnH

m∑

a=1

∑

i∈H

v
(t)
i→a,

where nH and nL denote the length of the high-priority

part x
\
H and low-priority part x

\
L, respectively. Following the

same procedure as above then yields the proof of (17). The

derivation details are omitted for the clarify of presentation.

F DISCUSSION OF SUBSECTION IV-C

We start the discussion by outlining the DE equation w.r.t.

E
(t)
H , E

(t)
L , V

(t)
H , and V

(t)
L

E
(t+1)
H = Eprior(s)Ez∼N(0,1)

[
prox

(
s+ z · b(t)H,1;βHb

(t)
H,2

)
− s
]2

︸ ︷︷ ︸
,ΨE,H

(
E

(t)
H

,E
(t)
L

,V
(t)
H

,V
(t)
L

)

;

E
(t+1)
L = Eprior(s)Ez∼N(0,1)

[
prox

(
s+ z · b(t)L,1;βLb

(t)
L,2

)
− s
]2

︸ ︷︷ ︸
,ΨE,L

(
E

(t)
H

,E
(t)
L

,V
(t)
H

,V
(t)
L

)

;

V
(t+1)
H = Eprior(s)Ez∼N(0,1)

[
βHbH,2 · prox

′
(
s+ z · b(t)H,1;βHb

(t)
H,2

)]

︸ ︷︷ ︸
,ΨV,H

(
E

(t)
H

,E
(t)
L

,V
(t)
H

,V
(t)
L

)

;

V
(t+1)
L = Eprior(s)Ez∼N(0,1)

[
βLbL,2 · prox

′
(
s+ z · b(t)L,1;βLb

(t)
L,2

)]

︸ ︷︷ ︸
,ΨV,L

(
E

(t)
H

,E
(t)
L

,V
(t)
H

,V
(t)
L

)

,

where notation prox(a; b) is the soft-thresholding estimator

defined as sign(a)max(|a| − b, 0), notation prox
′

(a; b) is

the derivative w.r.t. the first argument, and the notations

b
(t)
H,1, b

(t)
H,2, b

(t)
L,1, and b

(t)
L,2 are defined as

b
(t)
H,1 =

∑

`,i,j

λH,`ρH,iρL,j

√
Aσ2 + iE

(t)
H + jE

(t)
L

`
;

b
(t)
H,2 =

∑

`,i,j

λH,`ρH,iρL,j
Aσ2 + iV

(t)
H + jV

(t)
L

`
;

b
(t)
L,1 =

∑

`,i,j

λL,`ρL,iρH,j

√
Aσ2 + iE

(t)
L + jE

(t)
H

`
;

b
(t)
L,2 =

∑

`,i,j

λL,`ρL,iρH,j
Aσ2 + iV

(t)
L + jV

(t)
H

`
.

Similar to the proof in Section A, we define the differences

across iterations as

δ
(t)
E,H , E

(t+1)
H − E

(t)
H ; δ

(t)
E,L , E

(t+1)
L − E

(t)
L ;

δ
(t)
V,H , V

(t+1)
H − V

(t)
H ; δ

(t)
V,L , V

(t+1)
H − V

(t)
H .

A. Discussion of (23)

This subsection follows the same logic as in Section A. We

first relax the Requirement 1 w.r.t. the average variance V
(t)
H

and V
(t)
L . Performing the Taylor-expansion, we obtain

δ
(t+1)
V,H

= ΨV,H

(
V

(t+1)
H , V

(t+1)
L , E

(t+1)
H , E

(t+1)
L

)

− ΨV,H

(
V

(t)
H , V

(t)
L , E

(t)
H , E

(t)
L

)

=

(
∂ΨV,H (·)

∂EH

∣∣∣
EH=E

(t)
H

,EL=E
(t)
L

,VH=V
(t)
H

,VL=V
(t)
L

)
δ
(t)
E,H

+

(
∂ΨV,H (·)

∂EL

∣∣∣
EH=E

(t)
H

,EL=E
(t)
L

,VH=V
(t)
H

,VL=V
(t)
L

)
δ
(t)
E,L

+

(
∂ΨV,H (·)

∂VH

∣∣∣
EH=E

(t)
H

,EL=E
(t)
L

,VH=V
(t)
H

,VL=V
(t)
L

)
δ
(t)
V,H

+

(
∂ΨV,H (·)

∂EH

∣∣∣
EH=E

(t)
H

,EL=E
(t)
L

,VH=V
(t)
H

,VL=V
(t)
L

)
δ
(t)
V,L

+ O
[
(δ

(t)
V,H)

2
]
+O

[
(δ

(t)
V,L)

2
]
. (41)

Following the same logic in Section A, our derivation consists

of two parts:

• Part I. We verify that (0, 0) is a fixed point of the DE

equation w.r.t. V
(t)
H and V

(t)
L ;

• Part II. We show the DE equation w.r.t. V
(t)
H and V

(t)
L

converges within the proximity of the origin points.

Our following derivation focuses on showing that DE con-

verges, or equivalently, limt→∞
(
δ
(t)
V,H, δ

(t)
V,L

)
= (0, 0), as the

second part can be easily verified. We consider the region

where V
(t)
H , V

(t)
L , δ

(t)
V,H, and δ

(t)
V,L are sufficiently small and

hence can safely omit the quadratic terms in (41). Exploiting

the fact that ∂ΨV,H/∂EH = 0 and ∂ΨV,H/∂EL = 0, we obtain

the linear relation
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[
δ
(t+1)
V,H

δ
(t+1)
V,L

]
=




(
∂ΨV,H(·)

∂VH

)(t) (
∂ΨV,H(·)

∂VL

)(t)
(

∂ΨV,L(·)
∂VH

)(t) (
∂ΨV,L(·)

∂VL

)(t)




︸ ︷︷ ︸
L

(t)
V

[
δ
(t)
V,H

δ
(t)
V,L

]
,

where the notation
(

∂ΨV,H(·)
∂VH

)(t)
is an abbreviation for the

gradient
(
∂ΨV,H (·)

∂VH

)(t)

=
∂ΨV,H (·)

∂VH

∣∣∣
EH=E

(t)
H

,EL=E
(t)
L

,VH=V
(t)
H

,VL=V
(t)
L

.

Similarly we define the notations (∂ΨV,H (·)/∂VL)
(t)

,

(∂ΨV,L (·)/∂VH)
(t)

, and (∂ΨV,L (·)/∂VL)
(t)

. Then we require

inft |||L(t)
V |||

OP
≤ 1. Otherwise, the values of δ

(t)
V,H and δ

(t)
V,L will

keep increasing and stay away from zero. We then lower bound

the gradients (∂ΨV,H(·)/∂VH)
(t)

and (∂ΨV,H(·)/∂VL)
(t)

as

(
∂ΨV,H(·)

∂VH

)(t)
1©
= βH

(∑

`

λH,`

`

)
·
(∑

i

iρH,i

)

×
[
2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+

kH
nH

]

2©
≥ kHβH

nH

(∑

`

λH,`

`

)
·
(∑

i

iρH,i

)
;

(
∂ΨV,H(·)

∂VL

)(t)
3©
= βH

(∑

`

λH,`

`

)
·
(∑

i

iρL,i

)

×
[
2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+

kH
nH

]

4©
≥ kHβH

nH

(∑

`

λH,`

`

)
·
(∑

i

iρL,i

)
,

where Φ(·) = (2π)−1/2
∫ (·)
−∞ e−z2/2dz is the CDF of the stan-

dard normal RV z, i.e., z ∼ N(0, 1). In 1© and 3©, we follow

the same computation procedure as in (33), and in 2© and

4© we drop the non-negative terms Φ(·). Following a similar

procedure, we lower bound the gradients (∂ΨV,L(·)/∂VH)
(t)

and (∂ΨV,L(·)/∂VL)
(t)

as

(
∂ΨV,L(·)
∂VH

)(t)

≥ kLβL

nL

(∑

`

λL,`

`

)
·
(∑

i

iρH,i

)
;

(
∂ΨV,L(·)

∂VL

)(t)

≥ kLβL

nL

(∑

`

λL,`

`

)
·
(∑

i

iρL,i

)
,

and conclude the discussion.

B. Discussion of (24)

This subsection relaxes the requirement limt→∞ E
(t)
H = 0,

which consists of two parts:

• Part I. we consider the necessary conditions such that DE

equation w.r.t. E
(t)
H converges;

• Part II. We verify that 0 is a fixed point of DE w.r.t. E
(t)
H

given that limt→∞
(
V

(t)
H , V

(t)
L

)
= (0, 0).

Since the second part can be easily verified, we focus on the

first part. We consider the region where E
(t)
H and δ

(t)
E,H are all

sufficiently small and require δ
(t)
E,H to converge to zero. Via

the Taylor expansion, we obtain the following linear equation

δ
(t+1)
E,H ≈

(
ΨE,H(·)
∂EH

)(t)

δ
(t)
E,H +

(
ΨE,H(·)
∂EL

)(t)

δ
(t)
E,L, (42)

where
(

ΨE,H(·)
∂EH

)(t)
denotes the gradient

ΨE,H(·)
∂EH

at the point(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
. Enforcing the variable δ

(t)
E,H to con-

verge to zero, we require

inf
t

[(
ΨE,H(·)
∂EH

)(t)
]2

+

[(
ΨE,H(·)
∂EL

)(t)
]2

≤ 1.

Then our goal becomes lower-bounding the gradients, which

are written as

(
ΨE,H(·)
∂EH

)(t)

≥
kHb

(t)
H,1

nH

(∑

`

λH,`√
`

)
∑

i,j

iρH,iρL,j√
iE

(t)
H + jE

(t)
L


 ;

(43)

(
ΨE,H(·)
∂EL

)(t)

≥
kHb

(t)
H,1

nH

(∑

`

λH,`√
`

)
∑

i,j

jρH,iρL,j√
iE

(t)
H + jE

(t)
L


 .

(44)

Taking the limit E
(t)
H → 0, we can conclude the relaxation by

simplifying (43) and (44) as

(
ΨE,H(·)
∂EH

)(t)

≥ kH
nH

(∑

`

λH,`√
`

)2(∑

i

√
iρH,i

)2

;

(
ΨE,H(·)
∂EL

)(t)

≥ kH
nH

(∑

`

λH,`√
`

)2(∑

i

√
iρL,i

)2

.

C. Discussion of (25)

The basic idea is to linearize the DE update equation with

Taylor expansion and enforce the difference δ
(t)
V,H to decrease

at a faster rate than δ
(t)
V,L:

(
ΨE,H(·)
∂EH

)(t)

≤
(
ΨE,L(·)
∂EH

)(t)

;

(
ΨE,H(·)
∂EL

)(t)

≤
(
ΨE,L(·)
∂EL

)(t)

. (45)

Following the same logic as (43) and (44), we can lower-bound

the gradients
(

ΨE,L(·)
∂EH

)(t)
and

(
ΨE,L(·)
∂EL

)(t)
as

(
ΨE,L(·)
∂EH

)(t)

≥ kL
nL

(∑

`

λL,`√
`

)2(∑

i

√
iρH,i

)2

;

(
ΨE,L(·)
∂EL

)(t)

≥ kL
nL

(∑

`

λL,`√
`

)2(∑

i

√
iρL,i

)2

.

Combining with (45) will then yield the Requirement 2.
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