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Abstract—This paper ' proposes a general framework to design
a sparse sensing matrix A € R™*", for a linear measurement
system y = AX" +w, where y € R™, x* € R", and w € R™
denote the measurements, the signal with certain structures,
and the measurement noise, respectively. By viewing the signal
reconstruction from the measurements as a message passing
algorithm over a graphical model, we leverage tools from coding
theory in the design of low density parity check codes, namely
the density evolution technique, and provide a framework for the
design of matrix A. Two design schemes for the sensing matrix,
namely, (i) a regular sensing and (i7) a preferential sensing,
are proposed and are incorporated into a single framework. As
illustrations, we consider the ¢, regularizer, ¢ regularizer, and
their linear combination, which corresponds to Lasso regression,
ridge regression, and elastic net regression. After proper distri-
bution approximations, we have shown that our framework can
reproduce the classical results on the minimum sensor number,
i.e., m. In the preferential sensing scenario, we consider the
case in which the whole signal is divided into two disjoint
parts, namely, high-priority part :cEi and low-priority part :L'F_
Then, by formulating the sensing system design as a bi-convex
optimization problem, we obtain sensing matrices which can
provide a preferential treatment for m,”_' Numerical experiments
with both synthetic data and real-world data are also provided
to verify the effectiveness of our design scheme.

I. INTRODUCTION

This paper considers a linear sensing relation as
y = Az’ +w, (1)

where y € R™ denotes the measurements, A € R™*"™ is the
sensing matrix, % € R” is the signal to be reconstructed,
and w € R™ is the measurement noise with iid Gaussian
distribution N(0,02). To reconstruct =% from y, one widely
used method is the regularized M-estimator

~ . 1
Z = argming ez 55|y -~ Azl + f(z), @

where f(-) is the regularizer used to enforce a desired structure
for . To ensure reliable recovery of af, sensing matrix
A needs to satisfy certain conditions, e.g., the incoherence
in [2], RIP in [3], [4], the neighborhood stability in [5],
irrespresentable condition in [6], etc. Notice that all the above
works treat each entry of x? equally. However, in certain
applications, entries of 2" may have unequal importance from
the recovery perspective. One practical application is the im-
age compression, i.e., JPEG compression, where coefficients
corresponding to the high-frequency part are more critical than
the rest of coefficients. 2

!Partial preliminary results appeared in 2021 IEEE Information Theory
Workshop [1].
2 An introduction can be found in https:/jpeg.org/jpeg/documentation.html.

In this work, we focus on the sparse sensing matrix A.
Leveraging tools from coding theory, namely, density evolution
(DE), we propose a heuristic but general design framework
of A to meet the requirements of the signal reconstruction
such as placing more importance on the accuracy of a certain
components of the signal. At the core of our work is the
application of DE in message passing (MP) algorithm, which
is also referred to as belief propagation, or sum-product,
or min-sum algorithm. These different names are due to its
broad spectrum of applications and its constant rediscovery
in different fields. In physics, this algorithm existed no later
than 1935, when Bethe used a free-energy functional to
approximate the partition function (cf. [7]). In the probabilistic
inference, Pearl developed it in 1988 for acyclic Bayesian
networks and showed it leads to the exact inference [8]. The
most interesting thing is its discovery in the coding theory.
In early 1960s, Gallager proposed sum-product algorithm to
decode low density parity check (LDPC) codes over graphs
[9]. However, Gallagher work was almost forgotten and was
rediscovered again in 90s [10], [11]. Later [12] equipped it
with DE and used it for the design of LDPC codes for capacity
achieving over certain channels.

When narrowing down to the compressed sensing (CS),

MP has been widely used for signal reconstruction [13]-[21]
and analyzing the performance under some specific sensing
matrices. The following briefly discusses the related work in
the sensing matrix.
Related work. In the context of the sparse sensing matrix, the
authors in [22] first proposed a so-called sudocode construc-
tion technique and later presented a decoding algorithm based
on the MP in [23]. In [24], the non-negative sparse signal "
is considered under the binary sensing matrix. The work in
[25] linked the channel encoding with the CS and presented
a deterministic way of constructing sensing matrix based on
a high-girth LDPC code. In [14], [16], [26], the authors
considered the verification-based decoding and analyzed its
performance with DE. In [15], the spatial coupling is first
introduced into CS and is evaluated with the decoding scheme
adapted from [26]. However, all the above mentioned works
focused on the noiseless setting, i.e., w = 0 in (1). In [17]-
[19], the noisy measurement is considered. A sparse sensing
matrix based on spatial coupling is analyzed in the large
system limit with replica method and DE. They proved its
recovery performance to be optimal when m increases at the
same rate of n, i.e., m = O(n).

Moreover, in the context of a dense sensing matrix, the
analytical tool switches from DE to state evolution (SE),



which is first proposed in [20], [21]. Together with SE comes

the approximate message passing (AMP) decoding scheme.

The empirical experiments suggest AMP has better scalability

when compared with ¢; construction scheme without much

scarifice in the performance. Additionally, an exact phase
transition formula can be obtained from SE, which predicts
the performance of AMP to a good extent. Later, [27] pro-
vided a rigorous proof for the phase transition property by

the conditioning technique from Erwin Bolthausen and [28]

extended AMP to general M-estimation.

Note that the above mentioned related works are not exhaus-
tive due to their large volume. For a better understanding of the
MP algorithm, the DE, and their application to the compressive
sensing, we refer the interested readers to [7], [19], [29]. In
addition to the work based on MP, there are other works based
on LDPC codes or graphical models. Since they are not closely
related to ours, we only mention their names without further
discussion [30]-[36].

Contributions. Compared to the previous works exploiting

MP [14]-[21], [26], our focus is on the sensing matrix design

rather than the decoding scheme, which is based on the M-

estimator with regularizer. Exploiting the DE, we propose a

universal framework which supports both the regular sensing

and the preferential sensing for recovering the signal. A

detailed description of our contributions comes as follows.

« Regular Sensing. We consider the sparse signal setting
and Gaussian signal setting. For the sparse signal setting,
we consider a k-sparse signal ' € R™ and associate it
with a prior distribution such that each entry is zero with
probability 1—Fk/n. For both the ¢; regularization and elastic
net regularization, we can reproduce the classical results in
CS, i.e., m > coklogn. For the Gaussian signal setting, we
consider the Gaussian prior and show the minimum sensor
number m should be the same order of the signal length n.

« Preferential Sensing. We revisit the sparse signal setting
and Gaussian signal setting; and design the sensing matrix
that would result in more accurate (or exact) recovery of
the high-priority sub-block of the signal relative to the
low-priority sub-block. Numerical experiments confirm the
effectiveness of our framework: the reconstruction error in
the high-priority sub-block can be reduced significantly.
In addition, we should emphasize that although we only

consider three types of regularizations, our framework can

easily be extended to other priors.

Organization. In Section II, we formally state our problem

and construct the graphical model. In Section III, we focus

on the regular sensing and propose the density evolution
framework. In Section IV, the framework is further extended
to the preferential sensing. Generalizations are presented in

Section V, simulation results are put in Section VI, and

conclusions are drawn in Section VII.

II. PROBLEM DESCRIPTION

We begin this section with a formal statement of our
problem. Consider the linear measurement system

y:Amh—i—w,

where y € R™, A € R™*", 2/ € R", and w € R™,
respectively, denote the observations, the sensing matrix, the
signal, and the additive sensing noise with its ¢th entry w; ES
N(0,02). We would like to recover = with the regularized
M-estimator, which is written as

1
®202
where f(-) is the regularizer used to enforce certain underlying
structure for signal Z.

Our goal is to design a sparse sensing matrix A which
provides preferential treatment for a sub-block of the signal
2% In other words, the objective is to have a sub-block of the
signal to be recovered with lower probability of error when
comparing with the rest of 2%. Before we proceed, we list our
two assumptions:

& = argmin, o — |y — Az|l; + f(2),

o Measurement system A is assumed to be sparse. Further,
A is assumed to have entries with EA;; = 0, and A;; €
{0,£A71/2}, where an entry A;; = A~Y2 (or —Al/?)
implies a positive (negative) relation between the ith sensor
and the jth signal component. Having zero as entry implies
no relation.

o The regularizer f(a) is assumed to be separable such that
f(x) =>"", fi(z;). If it is not mentioned specifically, we
assume all functions f;(-) are the same.

First we transform (1) to a factor graph [37]. Adopting
the viewpoint of Bayesian reasoning, we can reinterpret M-
estimator in (2) as the maximum a posteriori (MAP) estimator
and rewrite it as

2
|y — Azl
202

) x exp (—f(@)).

Z = argmax,, exp (

_ lly-A=|3
202

P(y|x) while the second term exp(—f(x)) is regarded as the
prior imposed on . Notice the term e~/(") may not necessarily
be the true prior on x.

As in [29], we associate (2) with a factor graph &4 = (¥, &),
where ¥ denotes the node set and & is the edge set. First
we discuss set ¥, which consists of two types of nodes:
variable nodes and check nodes. We represent each entry z;
as a variable node v; and each entry y, as a check node c,.
Additionally, we construct a check node corresponds to each
prior e=7(#i)_ Then we construct the edge set & by: (i) placing
an edge between the check node of the prior e~/(*1) and the
variable node v;, and (ii) introducing an edge between the
variable node v; and c; iff A;; is non-zero. Thus, the design
of A is transformed to the problem of graph connectivity in
& . Before to proceed, we list the notations used in this work.
Notations. We denote c, c/,co > (0 as some fixed positive
constants. For two arbitrary real numbers a, b, we denote a < b
when there exists some positive constant ¢y > 0 such that
a < cgb. Similarly, we define the notation a = b. If a < b and
a 2, bhold simultaneously, we denote as a < b. We have a « b
when a is proportional to b. For two distributions d; and da,
we denote dy = d, if they are equal up to some normalization.

The first term exp ( ) is viewed as the probability
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Fig. 1. Illustration of the message-passing algorithm, where the square icons
represent the check nodes while the circle icons represent the variable nodes.

Fig. 2. 3 + 2—“ and

p(a) = 5 + %-. The square icons represent the check nodes while the circle
icons represent the variable nodes.

Illustratlon of the generating polynomials: A\(«) =

III. SENSING MATRIX FOR REGULAR SENSING

With the aforementioned graphical model, we can view
recovering « as an inference problem, which can be solved
via the message-passing algorithm [37]. Adopting the same
notations as in [29] as shown in Figure 1, we denote mﬁﬂa
as the message from the variable node v; to check node ¢, at
the #*" round of iteration. Likewise, we denote ﬁszll as the
message from the check node ¢, to variable node v;. Then

message-passing algorithm is written as

(1)

m 0 (@) 2 e 100 T gl () 3)
bedi\a
(UG*E;L:1 Aaj Ij)Q
~(t+1 t+1 \WaT2j=1"aj®j)
gl @) = [T miS @) e = day,
j€da\i
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where 0i and da denote the neighbors connecting with v; and
cq, respectively, and the symbol = refers to the equality up
to the normalization. At the tth iteration, we recover z; by
maximizing the posterior probability

0 () )

a~>7,

JH

a€cdi

= argmax, P(z;|y) ~ argmax, e”

In the design of matrix A, there are some general desirable
properties that we wish to hold (specific requirements will be
discussed later): (i) a correct signal reconstruction under the
noiseless setting; and (¢4) minimum number of measurements,
or equivalently minimum m. Before proceeding, we first
introduce the generating polynomials A(«) oAt
and p() >, pia’~, which correspond to the degree
distributions for variable nodes and check nodes, respectively.
We denote the coefficient \; as the fraction of variable nodes
with degree 7, and similarly we define p; for the check nodes.
An illustration of the generating polynomials A(«) and p(a)
is shown in Figure 2.

A. Density evolution

To design the matrix A, we study the reconstruction of a”
from y via the convergence analysis of the message-passing
over the factor graph. Due to the parsimonious setting of A,
we have & to be sparse and propose to borrow a tool known as
density evolution (DE) [37]-[39] that is already proven to be
very powerful in analyzing the convergence in sparse graphs
resulting from LDPC.

Basically, DE views mgla and mfl)m as RVs and tracks the
changes of their probability distribution. When the message-
passing algorithm converges, we would expect their distribu-
tions to become more concentrated. However, different from
discrete RVs, continuous RVs mg_)m and mgll in our case
require infinite bits for their precise representation in general,
leading to complex formulas for DE. To handle such an

t . .
issue, we approximate mgla and mgll as Gaussian RVs, i.e.,

Mi—a ~ N(,uz—nza Uz—)a) and m Maq—q ™~ N(Hu—)izi)\a—»i)a respec-
tively. Since the Gaussian distribution is uniquely determined
by its mean and variance, we will be able to reduce the DE
to finite dimensions as in [17], [18], [39].

In our work, the DE tracks two quantities E® and V®,
which denote the deviation from the mean and average of the
variance, respectively, and are defined as

2
E(t):m nZZ( Eza— h) ;

i=1 a=1

n m

1 ®)
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i=1 a=1
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Then we can show that the DE analysis yields

Ag?
E(H_l) = IEprlor(s)IE |:h»mcan (5 + sz ]Z“ *E(t) + ;T
0,3

Ac? +iV®
Zmﬁ—r——ﬁ%@

,J

Ao 2
V(t+1) = Eprior(s) EzAvar (S + ,01/\ z *EU) + —
prior(s) ZJ j

Ao’ + ‘V(”
meif—) ™

2%

V)

where prior(-) denotes the true prior on the entries of %, and
z is a standard normal RV N(0, 1). The functions Amean(-) and
hyar(+) are to approximate the mean p;_,, and variance v;_,q,
which are given by

(i —p)?
2v

o f (@) ,— dr.
P (5 0)= Timm. L 222 S @®)
YT e e day
2
2 =S (2) = L
. 'yfccie v dx; 9
har (115 0) = limy e = (Pmean (p150))" -
v fe—"/f(zi)e pre dz;

For detailed explanations and the proof, we refer interested
readers to the supplementary material.

B. Sensing matrix design

Once the values of polynomial coefficients {\;}, and {p;},
are determined, we can construct a random graph &4 = (¥, &),



or equivalently the sensing matrix A, by setting A;; as
P(A;; = A7Y?%) = P(A;; = —A7Y2) = 1 if there is an
edge (v;,c;) € &; otherwise we set A;; to zero. Hence the
sensing matrix construction reduces to obtaining the feasible
values of {\;}, and {p;}, while satisfying certain properties
for the signal reconstruction as discussed in the following.

Our first requirement is to have a perfect signal reconstruc-
tion under the noiseless scenario (62 = 0). 3 This implies
that

o the algorithm must converge, i.e., lim;_,o, V) = 0;
« the average error should shrink to zero, i.e., lim;_, E® =
0.

Second, we wish to minimize the number of measure-
ments. Using the fact that n (3 . i\;)) = m (3>, ip:) =
> W(vi,ej) € &), we formulate the above two design
criteria as the following optimization problem

o BN
min == 2272 ©)
A€AGax—15 T Zi>2 105
PEAdemax—1 -
st lim (EYD, vy = (0,0); (10)
— 00
A= p1 =0, (11)

where Ay 1 denotes the d-dimensional simplex, namely,
Ag 1 2 {z e R? | > ;% = 1,z; > 0}. The constraint in
(11) is to avoid one-way message passing as in [12], [39].

Generally speaking, we need to run DE numerically to
check the requirement (10) for every possible values of {);},
and {p;},. However, for certain choices of regularizers f(-),
we can reduce the requirement (10) to some closed-form
equations. For example, if we set the prior in (3) to be a
Laplacian distribution, i.e., e~ P2l then the regularizer f(-) in
(2) becomes f3||-||; and the M-estimator in (2) transforms to
Lasso [41]; if we set the prior to be Gaussian distribution, i.e.,
eA12* | the M-estimator in (2) transforms to ridge regression
[42]. More discussions come as follows.

C. Examples of regular sensing for various priors

This subsection considers some specific priors and illus-
trates our design schemes of the corresponding sensing ma-
trices. Roughly speaking, our design scheme is divided into 3
stages: (i) DE analysis; (i7) distribution approximation; and
(#i7) convergence criteria derivation. In the following context,
we will study the /1, /5, and elastic net regularization; and
show how to apply our proposed design scheme. For other
types of regularizations, we can follow a similar procedure
and simplify the requirement lim; .. (E®, V")) = (0,0) to
some closed-form expressions.

Example 1 (Regular sensing with ¢; regularizer). Assuming
the signal x' is k-sparse, i.e., |azh||0 < k, we would like to
recover ' with the regularizers f3||- 1» Which corresponds to
the Laplacian prior.

Stage I: DE analysis. Following the approaches in [20] in the
noiseless case, we can show that

3We consider the noiseless setting only for the purpose of deriving the
minimum sensor number m. This does not affect the application of our
designed sensing matrices under the noisy setting. Actually, this logic is also
used in the classical papers, i.e., [17], [20], [40].

2
R+ Eprior(s),2~N(0,1) [prox (s + alzm; Bazv“)) _ S] ;
V(t+1) = Eprior(s)Esz(O,l)

. [ﬁan“)prox/ (s +a1zVE®; /3a2V(t>)} ’

where ai is defined as Z” piAj\/W, and ay is defined
as >, ; piAj (i/]). Further, operator prox(a;b) is the soft-
thresholding estimator defined as sign(a) max(|a| — b, 0), and
operator prox/ (a; b) is the derivative w.r.t. the first argument.

Remark 1. Unlike SE that only tracks E® [20], our DE takes
into account both the average variance V®) and the deviation
from mean EW. Assuming V) x VE®, our DE equation
wrt. E® in (12) reduces to a similar form as SE.

(12)

Having discussed its relation with SE, we now show that our

DE can reproduce the classical results in compressive sensing,
namely, m > coklog(n/k) = O(klogn) (cf. [43]) under the
regular sensing matrix design, i.e., when all variable nodes
have the same degree dv and the check nodes have the same
degree dc.
Stage II: Distribution approximation. We approximate the
ground-truth distribution with the Laplacian prior. Assuming
that the entries of x° are iid and x® € R" is k-sparse, each
entry becomes zero with probability (1 — k/n). Hence we set
B such that the probability mass within the region [—cg, co
(wWhere cq is some small positive constant) with the Laplacian
prior is equal to 1 — k/n. That is

B efﬁla‘dazl—ﬁ,
2 n

|| <eo

which results in 8 = cglog(n/k).

Stage III: Convergence criteria derivation. Enforcing the
criteria lim;_,oo (E® , V®) = (0,0) under the noiseless
setting (i.e., 0 = 0), we conclude the following

Theorem 1. Let =% be a k-sparse signal and assume that
B is set to colog (n/k). Then, the necessary conditions for
limy_,o (E®,V®) = (0,0) associated with the DE equa-

tion in (12) are (i) >, pidj\/i/j < cy\/"/k and (i)
Do PN (i) <

positive constants.

(;277, ’ ’
Flog(n/k)’ where cy,cy > 0 are some

Remark 2. Consider the settings in Theorem 1 and assume
(@) D255 PiNiVi[] < ex/™k and (ii) 32, 5 piX; (i/j) <

m. Then, there exists positive constants € > 0 and

0 < < 1 such that {E® , V)} generated by (12) decrease
exponentially provided the initial point (E©)2 4 (V(0)2 < ¢,
e, E® <~AtE©) gnd V) < 4ty (),

When turning to the regular design, namely, all variable
nodes are with the degree dv and likewise all check nodes are
with degree dc, we can write a1 and ay as \/n/m and n/m,
respectively. Invoking Theorem 1 will then yield the classical
result of the lower bound on the number of measurements m >
cok log(n/k). The technical details are deferred to Section A.

Example 2 (Regular sensing with /5 regularizer). In addition



to the Laplacian prior, we also considered the Gaussian prior,
ie., e‘”«”’c\lﬁ, which makes the M-estimator in (2) the ridge
regression [44]. Assuming the ground-truth z? to be Gaussian
distributed with zero mean and unit variance, we would like
to recover the signal x* with the regularizer f(x) = H:cHg
Stage I: DE analysis. Following a similar procedure, we
obtain the following DE equation

B+ (V)

E(t+1) —
(1+ a2V ®)?
(t)
(t-‘rl) - GQV
M RO (4

. A
where ai,ao are defined the same as above, ie., a1 =

D piXj\/i/j and ay & >i PiNi(i/7).

Stage II: Distribution approximation. We can skip this stage
as the ground-truth prior of x, namely, N(0, 1), is used for
the regularization.

Stage I11: Convergence criteria derivation. Same as the above
example, we let lim,_, o (E® V")) = (0,0) when o = 0 and
obtain the following theorem

Theorem 2. Provided that 3, ; piXj\/i/j < 1, we have
the average error EY) and variance V9 in (13) decrease
exponentially after some iteration index T, that is, E® <
e t=T)E(T) gnd VO < e=a1&=DV(T) \whenever t > T.
Here cy,c1 > 0 are some fixed constants.

Its proof is referred to Section B. To verify Theorem 2, we
plot the trajectories of DE in (13), which is put in Figure 3.
Depending on whether Zl jPiA \/2/7 is less than one or not,
we find (E®,V®)) can converge to different fixed points.

With some standard algebraic manipulations, we can reduce
Theorem 2 to the criteria m > n. This criteria is consistent
with the previous finding: no savings can be achieved provided
that % resides within the whole linear space R™.

Fig. 3. Tllustration of DE in (13). Left panel: 3, . p;A;+/i/j < 1. Right

panel: 3, . p;\j+/i/j > 1. Notice that the left panel has a fix-point (0, 0)
while the right panel is with non-zero fix-point.

Example 3 (Regular sensing with elastic net regularizer). We
revisit the sparse signal setting where % is assumed to be k-
sparse. Instead of {1 regularization, we consider the elastic net
regularization for signal reconstruction, where f(x) is written
as Pz, + 52||w||§ (81,02 > 0). For the ease of analysis,
we pick 81 = P2 and write it as .

Stage I: DE analysis. Denote a1 and as as ), ; pidi\i]]

and ), . piAj(i/]), respectively, we can write the correspond-
ing DE equation as

E(t+1) = ]Eprior(s)EzNN(O,l)

2
rox [ ST @12 E®  §-aV® —sl|
PN 1128 V@' 1+ 28-a2V® :

(t)
t+1 ﬂ . azv
V= 08 gy o Benon
' s+ azVE® B-aV
prox ) : as
1428-a:V® 1428 a2V ®

Stage II: Distribution approximation. Following the same
procedure as in Example 1, we let

1

—Blal-Blal? gy _ 1 _ ¥
7 (& e n,

15)
lal<eo
where 7 is the normalization constant defined as 7 =
[ exp(—Bla| — Blaf?)de, and cq is some small positive
constant. Its physical meaning is that the two distributions
have the same probability mass around zero. A detailed
calculation suggests (15) is equivalent to
erfc(VB(1+20)/2) K (16)
erfc(VB/2)  n’
where erfc(-) is the complementary error function defined as
2
2/ x - f(D; e~* da. Due to the complicated nature of erfc(-),
generally speaking, we cannot express the solution of (16)
in a closed form. For the benefits of our analysis, we instead
consider its asymptotic behavior when k < n, or equivalently,
B > 1. Exploiting the relation erfc(a) = Z:/} (I—g++
(—1)"((227:2;1” + ) when o — oo (Page 584 in [45]), we
can rewrite (16) as

efc(chl)ﬁ k

1+2 n

which leads to B ~ cglogcin/k (Parameters cy,c1 > 0 are
some positive constants associated with c).

Stage III: Convergence criteria derivation. For the DE

equation in (14), we follow a similar procedure as in Ex-

ample 1 and obtain the following necessary condition for
lim; oo (E®, V®) = (0,0).

3

Theorem 3. Consider the sparse signal setting where "
is k-sparse and set 3 as co - logcin/k. Then the necessary
conditions for lim;_, assogiated with the DE equation in (14)
are Sz) Zi}j pMj\/W < C1\/7% and (ii) Zi,j piN;(i/j) <
m, where cll, 6,2, > 0 are some positive constants.

We notice that the necessary conditions in Theorem 3 are
almost the same as that in Theorem 1. The only differences
lies in the positive constants c;,c;/?clg, and 0/2/. In addition,
we can show that {E® VY generated by (14) decreases
exponentially given the conditions in Theorem 3 and the initial
point (E© V) is close to the origin point, ie., E® <
VE© and VO <4tV O 0 <y < 1.

Having studied the /¢; regression, ridge regression, and



elastic net regression, we have shown that the requirement
limy 0o (E®, V®) = (0,0) in our design framework can
reproduce the classical results.

IV. SENSING MATRIX FOR PREFERENTIAL SENSING

Having discussed the regular sensing scheme, this section
explains as to how we apply our DE framework to design
the sensing matrix A such that we can provide preferential
treatment for different entries of 2. For example, the high
priority components will be recovered more accurately than
the low priority parts of 2.

A. Density evolution

Dividing the entire «? into the high-priority part th e R"™
and low-priority part a:hl_ € R™, we separately introduce the
generating polynomials Ay(a) = > Ap;a’™! and M\ (o) =
> ALiai™! for the high-priority part CBE_i and the low-priority
part whl_, respectively. Note that A\y; (and likewise AL ;) de-
notes the fraction of variable nodes corresponding to high-
priority part (low-priority part) with degree :. Similarly, we
introduce the generating polynomials pp(a) = >, pua’™?
and p(a) = Y, pLia’"! for the edges of the check nodes
connecting to the high-priority part :BE, and to the low-priority
part a:hl_ respectively.

Generalizing the analysis of the regular sensing, we sepa-
rately track the average error and variance for :chH and :n,_ For
the high-priority part scH, we define By as )5 > oy (thisa—
ﬂmmmMMW%ZE%MHMmeMmW
denotes the length of the high-priority part a:H Analogously
we define E| and V| for the low-priority part whl_ We then
write the corresponding DE as

2
E(tJrl) IE4p|'10r(.<>')]EZNN(O 1) |:hmean (5 +z- b|(_|t1, b(t) ) - 5:| 3
V(tJrl) Epnor(s)Esz(O 1) |:hvar (3 +z- bp(—{t>17 b(t) ):| 5 (17

where b(t) and bl(_it)2 are defined as

Ac? + zEm +jE(t>
by = > Awepipu g\/ / ;

01,7

b(f)

Ac? + zV(t) +]V(t)
o= > AMepLipH :

4

,i,7

The definitions of hpean and hy, are as in (8). Switching the
index H with L yields the DE w.r.t. the pair (EEtH), V,_(Hl)).
Notice we can also put different regularizers fy(-) and f(-)
for :c,h_I and achL In this case, we need to modify the regularizers
f(-)in (8) to fu(-) and fi(-), respectively.

Remark 3.

B. Sensing matrix design

In addition to the constraints used in (9), the sensing matrix
for preferential sensing must satisfy the following constraint:
Consistency requirement w.r.t. edge number. Consider the
total number of edges incident with the high-priority part

mF_' > ien 1 ((vi,ca) € &). From the viewpoint of the vari-

able nodes, we can compute this number as ny (D, iAn ;).
Likewise, from the viewpoint of the check nodes, the total
number of edges is obtained as » ., 1 ((vi,ca) €E) =
m (>, ipH,i). Since the edge number should be the same with
either of the above two counting methods, we obtain

Z 1[(viscq) € &) = nn <Z i)\H7i> =m (Z ipH)i> .
i€H i i
Similarly, the consistency requirement for the edges
connecting to the low-priority part :chl_ would give
Yiet 1((visca) € &) =m(3ipLi) = nu (3o iAL)-

Moreover, we may have additional constraints depending on
the measurement noise:

« Preferential sensing for the noiseless measurement. In the
noiseless setting (o = 0), we require V4 and V| to diminish
to zero to ensure the convergence of the MP algorithm.
Besides, we requlre the average error E() in the high-
priority part a:H to be zero. Therefore, the requirements can
be summarized as

Requirement 1. In the noiseless setting, i.e., o = 0, we
require the quantities E,(f), Vét), and V,_(t) in (17) converge

to zero

; (t) 1/() () _
Jim (B, V7, L7) = (0,0,0), (18)
which implies the MP converges and the high-priority part
xy, can be perfectly reconstructed.

Notice that no constraint is placed on the average error EEt)

for the low-priority part mE, since it is given a lower priority
in reconstruction.

« Preferential sensing for the noisy measurement. Different
from the noiseless setting, the high-priority part :EE' cannot
be perfectly reconstructed in the presence of measurement

noise, i.e., > (. Instead we consider the

limy_, 00 B he
t
H

difference across iterations, namely, 6%?,4 = ESH) - F
and 6;?,_ EEtH) — Eft), which corresponds to the
convergence rate. To provide an extra protection for the
high-priority part a:F_', we would like 5& to decrease at a
faster rate. Hence, the following requirement:
Requirement 2. There exits a positive constant Ty such that
the average error E,E,t) converges faster than Eft) whenever
t Z To, i.e.,
Apart from the above constraints, we also require A\ ; =
AH,1 = pL,1 = pH,1 = 0 to avoid one-way message passing
[12], [37], [39]. Summarizing the above discussion, the design
of the sensing matrix A for minimum number of measure-
ments m reduces to the following optimization problem

m (D 9A) + e (D0 iAk)

min — = - ; 19
ALE€AG, —1, T Yot (pLi+ pHii) (1%
AHEAdy, 1,

PLE Adeyy—1,
PHGAch—l
L o
1, LDl Lilthi (20)
20 PR, D i ioL nL
Requirement (1) and (2); 2n



ALl = A1 = pL1 = pH1 =0, (22)

where A, _; denotes the d-dimensional simplex, and the
parameters dvy and dc_ denote the maximum degree w.r.t.
the variable nodes corresponding to the high-priority part x,h_'
and low-priority part mhl_ respectively. Similarly we define the
maximum degree dcy and dci w.r.t the check nodes.

The difficulties of the optimization problem in (19) come
from two-fold: (%) requirements from DE; and (#¢) non-convex
nature of (19).

C. Example of preferential sensing for various priors

We will revisit the previous examples and show how to
simplify the optimization problem in (19). Similar to the pro-
cedure in Subsection III-C, our relaxation procedure consists
of three stages. Here, we focus on Stage III as the first two
stages are exactly the same as that in Subsection III-C.

Example 4 (Preferential sensing with ¢; regularizer) Con-
sider a sparse signal x" whose high-priority part :BH € R™
and the low-priority part a:hl_ € R™ are ky-sparse and k-
sparse, respectively. In addition, we assume */ny > ki/n,
implying that the high-priority part whH contains more data. *

Ideally, we need to numerically run the DE update equation
in (17) to check whether the requirement in (21) holds or
not, which can be computationally prohibitive. In practice,
we would relax these conditions to arrive at some closed
forms. The following outlines our relaxation strategy with all
technical details being deferred to the supplementary material.
Relaxation of Requirement 1. First we re uzre the variance
to converge to zero, ie., limg_, o VH(t Vi . The
derivation of its necessary condition conszsts of two parts.
(i) we require the point (0, O) to be a fixed point of the DE

equation w.r.t. VHt nd Vl} ; and (ii) we require that the
average variance (V,? V(f ) to converge in the region where
the magnitudes of V| Y and V,_(t) are sufficiently small.

The main techmcal challenge lies in mvestlgatmg the con-
vergence of (V,_ﬁt)7 V ) Define the difference 6VH and (5

2 v\ — vl and o é

— V,_(t), respectively. Then, we obtain a linear equation

t+1 t
s | _po [0
5(t+1) 4 (S(t)
an an

via the Taylor-expansion. Imposing the convergence con-

across iterations as 5VH
(t+1) ’
4

straints on Vét) and Vl_(t), ie limy_y 00 58)H,6(t) = (0,0),
yields the condition inf, || |H op < L. That is
Bk = ie ). Bk = Ae )
() - (Rex)
2 2
|:<Z ipH,i> + <Z ipL,z'> :| <1 (23)

4The high-priority part a:,h_| may still receive extra protection even if

kn/ny < ki/n. . One numerical experiment is attached in the Appendix.

Then we turn to the behavior of ES). Assuming EEt) converges

to a fixed non-negative constant EEOO), we would like ES) to
converge to zero. Following the same strategy as above, we
obtain the following condition

kH AH Y - 2 i 2
" (Z ) {(Z\ﬂpm) + <Z\ﬁp|_,i) ] <1. (29
A formal statement is summarized as

Proposition 1. Consider the setting in Example 4, then the
necessary conditions for Requirement 1 are given by (23) and
(24).

The technical details are put in the supplementary material.

Relaxation of Requirement 2. First we define the difference
across iterations as 5%?,_' = E,(_fH) — E,(f) and 5S?L =
E(Hl) ( ) . Using the Requirement 2, we perform the Taylor
expansion wrt the difference s )H and 5 E.L» and obtain the

linear equation
5““ Lg 2 6g)H
6(t+1) L2 5(t)

To ensure the reduction of 5g)H at a faster rate than 5g)L,
we would require Lp 11 < Lgp21 and Lg 12 < Lg2o. This

results in
kn )\H Vi kL )\L ¢

which completes the relaxation.

Example 5 (Preferential sensing with /5 regularizer). We
revisit the Gaussian setting where x® € R™+m can be divided
into two disjoint parts: the high-priority part :I:H € R™ and
the low-priority part wh € R". Their priors are assumed to be
e=PllI3 and efﬁLH'Hg; and the corresponding regularizers are
picked as ﬁH||||:“; and Br||- ;, respectively. Then we conclude
Relaxation of Requirement 1. Imposing the convergence
constraints on Vét) and VL(t) yields

(27 ()
KZ:’)H’”) * (;Pui> ] <1

As for the necessary condition for lim;_, o E,(f) =0, we have

(55 (5)
[ ) ()]

The formal statement is summarized as

Lg
Lg o

(25)

(26)

Proposition 2. Consider the setting in Example 5, then the
necessary conditions in Requirement 1 are given by (26) and

Q7).



Relaxation of Requirement 2. We obtain the relaxed condition
reading as

AH, 0 AL
= < =, (28)
S
Since its derivation is almost the same at that of Example 4,
we omit the technical details for the conciseness of presenta-

tion.

Example 6 (Preferential sensing with elastic net regularizer).
We revisit the setting of sparse signal x° as in Example 4.
Instead of {1 regularizer, we adopt the elastic net regularizer
for the signal recovery. Following the same procedure as that
in Example 4 and Example 5, we obtain the relaxations of
Requirement 1 and 2, which are in the same form of (23), (24),
and (25). This is consistent with our findings in the regular
sensing setting.

Summarizing the above discussions, we has shown how
to transform the constraints in (21) to the closed-forms.
Afterwards, we can perform alternating minimization method
to solve (19). We can show that the alternating minimization
method can reach the local optimal. A formal statement is
given as

Proposition 3. Relaxing the constraints in (21) with the
above procedure as in Example 4, Example 5, and Exam-
ple 6, we fyerform alternating minimization in (19) and denote

(t) , P (t)7 Py } as the solution in the tth iteration. Then

we conclude that {A,(j))\,(_t), ,(_f),pl_)} yields a monotonic
non-increasing sequence such that (i) it satisfies

n (ZA) 4w (2 n)
SRy

n (32, i0) + i ()
S

and, (ii) has finite limit, i.e.,

n (i) +mn (0000
=i (10 )

The technical proof is referred to the Appendix for the
interested readers.

<

lim < 00.
t—o0

V. POTENTIAL GENERALIZATIONS

This section discusses two possible generalizations, i.e.,
non-exponential family priors and reconstruction via a min-
imum mean square error (MMSE) decoder. The design prin-
ciples of the sensing matrix are exactly the same as (9) and
(19) except that the DE equations need to be modified.

A. Non-exponential priors

Previous sections assume the prior to be e~/(®) which
belongs to the exponential family distributions. In this subsec-
tion, we generalize it to arbitrary distributions prlor( ). One

example of the non exponentlal distribution is sparse Gaussian,
ie., (k/n) e (== n?/20% 4 (1 — k/n) 6(x), which is used to
model k-sparse signals. With the generalized prior, the MP in
(3) is modified to

m{"TD (2;) = prior(x;) H g (:);

bedi\a
(y,lfzﬂzl Agiw -)2
Ay 2 (] mD e x o gy,
j€da\i

(29)
and the decoding step at each iteration becomes
55?) = argmax,, P(z;|y) ~ argmax, prlor H A((ZZZ i)

a€di
(30)

Moreover, the functions hmean( ;+) and hyg (+5+) in (6) are
modified to hmedn (+;+) and h\,dr( ;+) as

— 2 —u)2
=R . fxz R log prior(z;) . eiwd‘ibi
hmean(,u; U) = lim — (e-n) “) ;
Yoo fe'y log prior(z;) . o— 1 dxZ
_ )2
- [ eviesmate) - 205t g
hyar(p;v) = lim —
Yoo f e logprior(z;) . o— ‘Y(Il “) dl’z

- (ﬁmean(u; v))2 .

Afterwards, we can design the sensing matrix with the same
procedure as in (9) and (19).
B. MMSE decoder

Notice that both (5) and (30) reconstruct the signal by
minimizing the error probability P (Z # @), which can be
regarded as a MAP decoder. This subsection considers MMSE
decoder, which is to minimize the ¢y error, i.e., |£ — :c“||2.
The message-passing procedure stays the same as (29) while
the decoding procedure needs to be modified to

) dx;.

/ZE\E” :/xi]P(xi\y)dmi %/(mz prior(z;) - H
Moreover, the functions Amean(+; ) and Ay (+;-) in the DE in

a€oi
(6) are modified t0 Apeqn (+;-) and hyy (5 +) as

= (t)

a—)z

A _ (%7“)2
~ x; - prior(z;) e~ 2
hmean(ﬂ? U): f P ( )

—

dxi

—— (w;—1)2 ’

[ prior(z;) - e” =
f:z: prlor x;) e_(l ) dz; (~ (u ))2
( 1, “) mean /’L’ M
i prlor (x;) - e” dz;

Having discussed two potential directions of generalization,
next we will present the numerical experiments.

d.’ﬂi

Tryar (15 0)

VI.

This section presents the numerical experiments using both
synthetic data and real-world data. We consider the sparse
signal and compare the design of preferential sensing with that
of the regular sensing. For the simplicity of the code design

NUMERICAL EXPERIMENTS



and the construction of the corresponding sensing matrix,
we fix the degrees {pn,;} and {pL;} of the check nodes to
PHdey = 1 and p g, = 1, respectively. Therefore, each check
node has dcy edges connecting to the high-priority part wi'
and dc; edges connecting to the low-priority part mE

A. Sensing matrix construction

Sensing matrix design for sparse signal. First, we consider
the sparse signal setting. We construct the sensing matrix with
the algorithm being illustrated in Algorithm 1, which applies
to both ¢; regularizer and elastic net regularizer.

We evaluate two types of sensing matrices for the preferen-
tial sensing, namely, Aé’rzlfte)remial and A}(,?;ilrlmial, which corre-
spond to the distributions {Ay} and {A_} in the initialization
phase and at the final outcome of Algorithm 1. As the baseline,
we design the sensing matrix A eguler Via (9) which provides
regular sensing with an additional constraint which enforces
equal edge number with Aff;i?emia] for a fair comparison.
Sensing matrix design for Gaussian signal. In addition to
the sparse signal, we design the preferential sensing matrix for
Gaussian signals. The matrix design algorithm is in the same
spirit as Algorithm 1. The only difference is that we replace
(23), (24), and (25) with (26), (27), and (28), respectively. Its

presentation is omitted due to its similarities to Algorithm 1.

B. Experiments with synthetic data

We study the recovery performance with varying SNR =
l=[l3/o2. We separately evaluate the signal recovery perfor-
mance via the partial and full reconstruction error, which
corresponds to the error of the high-priority part |2y — wf_' Il2
and that of the whole signal Hﬁ —af ||2, respectively.

1) Experiments with sparse signal: We consider the case
where % is a (ky + ki )-sparse signal. We fix the check node
degrees dcy and dcp as 5 and let the maximum variable node
degree dvmax as 50. The magnitude of the non-zero entries is
set to 1.

a) Evaluation under different signal reconstruction meth-
ods: We fix the length ny of the high-priority part :chH and
n of the low-priority part mE as 100 and 400, respectively.
The corresponding sparsity number ky and k_ are picked as
10 and 10, respectively.

We consider 3 types of methods: (7) optimization methods,

e.g., {1 regularizer (|| - ||1) [2], [4] and elastic net regularizer
(-l + 1 - 13 [46]; (ii) greedy methods, e.g., orthogo-
nal matching pursuit (OMP) [47] and compressive sampling
matching pursuit (COSAMP) [48]; and (iii) thresholding-
based methods, e.g., iterative hard thresholding (IHT) [49]
and hard thresholding pursuit (HTP) [43]. A brief introduction
of these algorithms is referred to Chapter 3 in [50]. The
simulation results are shown in Figure 4.
Discussion. We show that our design scheme can reduce
reconstruction errors with various signal reconstruction
methods, despite that our design scheme is rooted in the
optimization methods. In addition, we find that different signal
reconstruction methods will lead to different errors. A detailed
discussion comes as follows.

Algorithm 1 Design of Sensing Matrix for Preferential Sens-
ing.
¢ Input: maximum variable node degree dvpa.x, check
node degree dcy and dcp, signal lengths ny and ny,
sparsity numbers ky and k|, and iteration number 7.
 Initialization: set Sy = log (Z—’L*) 0L < log (ZTL)
Then we initialize {An;} and {A_;} as

min E 1 H,i,
AHEAdvmax—15 <
ALEAdyax—1

s.t. nydcL <ZZ>\H7> = nydcy (Z i>\L,z‘> ;

2 2
Brkn AH,¢ BLkL ALe
( b Dk il Rl G D
¢ ¢
1 .
(dCH)2 + (dC|_)27
Z)\H,e < V/1H )
7 Ve = VEknydey +dc’
A1 = A1 =0,

K2

which is equivalent to (19) without the Requirement 2.

* Iterative Update: denote /\,(f) (or )\l(_t)) as the updated
version of Ay (or Ap) at the tth iteration.

* For time ¢ = 1 to T": update )\,(j ) and )\l(_t) by alternating
minimization of (19) with Requirement 1 and Requirement
2 being replaced by (23), (24), and (25).

1) Update )\I(_f) with A_ being fixed to be A,

2) Update A" with Ay being fixed to be Alfj).

* Output: degree distribution A,(f) and )\l(_t).

« Optimization methods. In the low-SNR regime, we observe
that elastic net regularizer has a better performance than ¢
regularizer. However, elastic net regularizer’s performance
falls behind ¢, regularizer when entering the high-SNR
regime. One intuitive explanation is that the extra || -||3 term
in the elastic net regularizer promotes reconstructed signal
with lower energy, i.e., ||Z|3.

o Greedy methods. We observe that OMP has a slightly better
performance than COSAMP. However, their performance
are relatively worse than the optimization methods.

o Thresholding-based methods. We observe that IHT has the
best performance in the low-SNR regime among all signal
reconstruction methods. However, its performance is rather
steady with varying SNR and is surpassed by other methods
when SNR increases. As for HTP, we find that it has a
similar performance of ¢; regularizer.

In summary, we conclude that our designed sensing matrices,
(init) (final) .

both A trentiar @0 A crerenias have improved performance

under all signal reconstruction methods. For the ease of con-

ducting experiments, we will stick to the ¢; regularizer in the

following context as it has the best overall performance. The

obtained conclusion should remain valid for other methods.
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Fig. 4.

Comparison of preferential sensing vs regular sensing under different signal reconstruction methods. The length ny of the high-priority part x|

i

is set as 100 while the length n| of the low-priority part :chl_ is set as 400. (Top) We evaluate the reconstruction performance w.r.t. the high-priority part
2w — :cH ||2/H$H |l2. (Bottom) We evaluate the reconstruction performance w.r.t. the whole signal || — 2% ||2/| 2! ]|2.

b) Impact of sparsity number: We fix the length ny of the
high-priority part a:,h_i as 100 and the length n; of the low-
priority part wE as 400. The simulation results are plotted in
Figure 5.

Discussion. First, we 1nvest1gate the recovery performance
w.r.t. the high priority part (L’H Using the sensing matrix
A coutar (regular sensmg) as the baseline, we conclude that
our sensing matrix Apreferemlal (preferential sensing) achieves
better performance when the signal is more sparse. Consider
the case when SNR = 100. When k4 = k. = 10, the
ratio || @y — @, [|2/ |5 |2 for A}(f:fir)emlal is approximately 0.35
while that of the Ay is 0.86. When the sparsity number
ky and ki increase to 15, the improvement is approximately
(0.85 — 0.4)/0.85 ~ 53%. When the sparsity number ky
and % increase to 20, the corresponding improvement further
decreases to (0.95 — 0.55)/0.95 ~ 42%.

When turning to the reconstruction error || — (|5 /||%||2
w.r.t. the whole signal, we notice a similar phenomenon, i.e., a
sparser signal contributes to better performance. Additionally,

(final) . S
we notice the sensing matrix A achieves signifi-

preferenual

cant improvements in comparison to its initialized version
lgil;lfte)rential .

c) Impact of signal length: We also studied various settings

in which the length ny of the high-priority part mf_i is set

to {150,200, 250,300} and the corresponding length n of
the low-priority part a:E is set to {600, 800, 1000, 1200}. The

simulation results are plotted in Figure 6.

Discussion. Compared to regular sensing, our sensing matrix
(final) . . .. b
preferential €N reduce the error in the high-priority part xy,

51gn1ﬁcantly For example, when SNR = 100, the ratio ||z —

wHH2/||a:H||2 reduces between 40% ~ 60% with the sensing
matrix A}(f:f‘:r)emml Meanwhile, w.r.t. the whole signal ", the

ratio ||Z — x%||2/||z||2 decreases with a smaller magnitude.

d) Miscellaneous numerical experiments I: In addition, we
evaluate our designed sensing matrices when the condition
kn/ny > Fi/n is violated, or equivalently, we let kn/ny < Fi/n,.
We set the pair (ny, kn) as (400, 10) and (n, kL) as (100, 10),
respectively. The numerical experiment is put in Figure 7.
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Fig. 5. Comparison of preferential sensing vs regular sensing. The length ny
of the high-priority part a:,u4 is set as 100; while the length n of the low-
priority part x| is set as 400. (Left panel) We evaludte the reconstruction

performance w.r.t. the high-priority part ||Zy — mH ll2/ HmH ||2. (Right panel)
We evaluate the reconstruction performance w.r.t. the whole signal ||Z —
xtl2/ |22

Discussion. We conclude that our designed scheme may
still bring performance improvement even if the requirement
k/ny > ku/n, is violated. However, we observe a performance
degradation of Aéf;fi]r)emial when compared with AI(Jlrl::lfte)rential'
This suggests that Requirement 2 may backfire in protecting
the high-priority part :BEl if *r/ny < Fufng.

e) Miscellaneous numerical experiments II: In addition to
our proposed scheme, another method for preferential sensing
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Fig. 6. Comparison of preferential sensing vs regular sensing. Both the

sparsity number ky and ki are set as 15. (Left panel) We evaluate the
reconstruction performance w.r.t. the high-priority part |2y — mE{ |2/ leh_' 2.
(Right panel) We evaluate the reconstruction performance w.r.t. the whole
signal || — @ |2/| 2" 2.

is the decouple sensing matrix design (i.e., we separately
design the sensing matrices Ay and A, for the high-priority
part w?_' and low-priority part a:h,_; and then stack them to-
gether). Then, we compare our designed scheme and the
decoupled design scheme, which is denoted as Agecoupte- For
a fair comparison, we enforce the sensor number m and
corresponding edge numbers connecting :c,h_l and a:hl_ to be
same. However, there is no inference between the high-priority
part :B,h_, and low-priority part azh,_, or equivalently, no check
node connecting to ar:E| and x; simultaneously. The simulation
result is put in Figure 8, from which we conclude that our
proposed scheme yields a better reconstructed signal.

2) Experiments with Gaussian signal: We consider the
Gaussian signal such that the high-priority part :chH and low-
priority part & follow Gaussian priors e~##()* and e=#:()*,

respectively. The simulation results are in Figure 9.

. . . (final)
Discussion. We conclude that our design scheme A g ia

can greatly reduce the reconstruction error in the high-priority
part wE' while the total reconstruction error ||Z — x|, stays
almost the same, which verifies the effectiveness of our design
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Fig. 7. Comparison of preferential sensing vs regular sensing (kH/ny <
ki/ni ). The length ny of the high-priority part mﬂ is set as 400 and ky is set
as 10; while the length n| of the low-priority part a:hl_ is set as 100 and ki
is set as 10. (Left panel) We evaluate the reconstruction performance w.r.t.
the high-priority part ||Zy — :BF_| l2/ ||acf'_| l2. (Right panel) We evaluate the
reconstruction performance w.r.t. the whole signal ||& — a%||2 /|| ||2.
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Fig. 8. Comparison of our proposed scheme vs decoupled design scheme

for preferential sensing. The length ny of the high-priority part @/, is set as

400 and ky is set as 10; while the length n| of the low-priority part zF_ is

set as 100 and ki is set as 10. (Left panel) We evaluate the reconstruction

f e ~ b b .
performance w.r.t. the high-priority part ||Zy — x/,||2/||},[|2. (Right panel)
We evaluate the reconstruction performance w.r.t. the whole signal ||Z —
&|2/]|2" 2.

scheme in giving preferential protection of a:hH
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Fig. 9. Comparison of preferential sensing vs regular sensing. The length ny
of the high-priority part a:,u4 is set as 100; while the length n| of the low-
priority part wE is set as 400. The prior for a:E{ is oc e==7/20

for zE is oc e==7/2, (Left panel) We evaluate the reconstruction performance
w.r.t. the high-priority part ||Zy — nz,h_| Hg/”mf'_' ||2. (Right panel) We evaluate

the reconstruction performance w.r.t. the whole signal ||Z — at||2/||x!]|2.

while the prior

C. Experiments with real-world data

This subsection evaluates our designed sensing matrices
with the real-world data. We compare the performance of
sensing matrices for images using (i) MNIST dataset [51],
which consists of 10000 images in the testing set and 60000
images in the training set; and (i7) Lena image. Here we
formulate the image representations as sparse signals.



To obtain a sparse representation for each image, we per-
form a 2D Haar transform .5#(-), which generates four sub-
matrices being called as the approximation coefficients (at the
coarsest level), horizontal detail coefficients, vertical detail co-
efficients, and diagonal detail coefficients. The approximation
coefficients are at the coarsest level and are treated as the
high-priority part acf_'; while the horizontal detail coefficients,
vertical detail coefficients, and diagonal detail coefficients are
regarded as the low-priority part a:hL Hence we can write the
sensing relation in (1) as

y = A (Image) + w, 31)

where Image denotes the input image, 5#(-) denotes the
vectorized version of the coefficients and is viewed as the
sparse ground-truth signal, and w denotes the sensing noise.
The sensing matrix A is designed such that the approximation
coefficients of .7 (Image) can be better reconstructed.

1) Experiments with MNIST: We set the images from
MNIST as the input, which consists of 10000 images in the
testing set and 60000 images in the training set with each
image being of dimension 28 x 28.

The whole datasets can be divided into 10 categories with
each category representing a digit from zero to nine. For each
digit, we design one unique sensing matrix. The lengths ny
and ni are set to (28/2)2 = 196 and 3 x (28/2)% = 588,
respectively. The sparsity coefficients ky and k| varied among
different digits.

Discussion. To evaluate the performance, we define ratios
TH,(-) and TW,() as

120 — |2

lI>

TH,()

)

BB
o & -2,

WO A

which correspond to the ¢ error in the high-priority part acf_'
and the entire signal !, respectively. We use the sensing
matrix Apeguiar @S the benchmark. In addition, we omit the
results of A" (final)

preferential ® preferential
better performance.

The results are listed in Table I. A subset of the recon-

structed images are shown in Figure 10. From Table I and
Figure 10, we conclude that our sensing matrix Aéf;‘;lr)emial for
the preferential sensing can better preserve the images when
comparing with the sensing matrix Ajegua for the regular
sensing.
2) Experiments with Lena Image: We evaluate the benefits of
using A;‘:;ilr)emial for the Lena image with dimension 512x512.
Notice that the sensing matrix would have been prohibitively
large if we used the whole image as the input. To put more
specifically, we would need a matrix with the width 5122 =
262144. To handle such issue, we divide the whole images
into a set of sub-blocks with dimensions 32 x 32 and design
one sensing matrix with the width 322 = 1024. For each sub-
block, we first obtain a sparse representation with a 2D Haar
transform and then reconstruct the signal in (31).

Discussion. The comparison of results is plotted in Figure 11,

since the sensing matrix A has

from which we conclude that the sensing matrix Af)?:filr)emial

has much better performance in image reconstruction in com-
parison with the sensing matrix A cguiar. The ratios r ,(p) and
T, (r) are computed as 0.0446 and 0.3029, respectively; while
the ratio 7y, () and ryy,(,-) are computed as 0.0709 and 0.3144,
respectively.

Remark 4. The degree distributions An(-) and AL(-) of the
variable nodes for the sensing matrix Aé?:filr)emial are obtained
as

An(@)

= 0.0057856 + 0.025915a2 + 0.363940> + 0.35183a*
+0.10333a° + 0.041340° + 0.021619a” + 0.013508a°
+0.00943740° + 0.00709060'° 4 0.0056a
+0.0045851a'2 + 0.0038574a® + 0.0033145014

+ 0.0028963a'° + .0025659a1% + 0.00229920*7
+0.0020801a'® 4 0.0018973a? + 0.0017428x*°
+0.001610902 + 0.001497a2% + 0.001398a.*
+0.00131112* 4 0.001234402° + 0.00116620%°
+0.0011053027 + 0.0010506*® 4 0.00100130.2°
+0.000956502° 4 0.000915763! + 0.000878520.32
+0.000844360>% + 0.000812920* + 0.000783880,3°
+0.00075697a>¢ + 0.00073197a37 + 0.00070867a>8
+0.00068691a>° + 0.00066652a:*° + 0.00064738a*
+0.00062937a*% + 0.00061238** + 0.00059633**
+0.00058114a*® + 0.00056673a*¢ + 0.00055304a47
+ 0.00054001a*® 4 0.000527604%;

AL(a) = a.

The check node degrees dcy and dc. are both set as 4.
Meanwhile, the sensing matrix Arcouiar designed in (9) is a
regular sensing matrix whose variable node and check node
degree distributions are given by \(a) = o2 and p(a) = a”,
respectively.

VII. CONCLUSIONS

This paper presented a general framework of the sensing
matrix design for a linear measurement system. Focusing
on a sparse sensing matrix A, we associated it with a
graphical model ¥4 = (7,&) and transformed the design
of A to the connectivity problem in ¢. With the density
evolution technique, we proposed two design strategies, i.e.,
regular sensing and preferential sensing. In the regular sensing
scenario, all entries of the signal are recovered with equal
accuracy; while in the preferential sensing scenario, the entries
in the high-priority sub-block are recovered more accurately
(or exactly) relative to the entries in the low-priority sub-
block. We then analyzed the impact of the connectivity of the
graph on the recovery performance. For the regular sensing,
our framework can reproduce the classical results for both
the sparse signals and Gaussian signals. For the preferential
sensing, our framework can lead to a significant reduction of
the reconstruction error in the high-priority part. Numerical
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Training Set

Testing Set

Digit 7h4) TEH@E)  TwWe) W) TH,(p) TH(r) W)  TW(r)
0 028315 0.5154 044818 0.60131 030292  0.45749 0.46283 0.56486
1 0.16746 0.33751 0.29332  0.41599 0.1511 045264 0.2659 0.51864
2 0.26303 0.50365 0.42984 0.59959 0.24896  0.4233 042216 0.52556
3 0.24613 0.43677 042514 0.53163 0.26446  0.46766 0.43534  0.56189
4 028331 0.44377 0.44623 0.53791 030092  0.4445 0.45804 0.53749
5 028405 0.53511 045727 0.6198 0.27258 0.47044 0.44382 0.56622
6 028801 0.39436 0.45053 0.51701 0.27084 0.5086 0.44134 0.59534
7 025503 0.41621 0.41809 0.52896 0.27266 0.51329 0.41693  0.5783
8 031263 0.51918 047618 0.61492 0.32731 0.48163 0.48699  0.5837
9 030171 0.54394 0.45241 0.61799 0.27385 0.55313 043116 0.62785

TABLE 1

(final)
preferentia

THE INDEX ¢ = p CORRESPONDS TO THE SENSING MATRIX A

| FOR THE PREFERENTIAL SENSING; WHILE THE INDEX % = 7 CORRESPONDS TO

THE SENSING MATRIX Ar%um FOR THE REGULAR SENSING. WE DEFINE THE RATIO g, ;y (i = {p,}) AS THE ERROR W.R.T. THE HIGH PRIORITY PART,
NAMELY, ||Zy — :I:HHQ/”:'CHHQ SIMILARLY WE DEFINE THE RATIO ryy, (;) (4 = {p,7}) AS THE RATIO W.R.T. THE WHOLE SIGNAL, NAMELY,

lz — x8|2/ ]|z 2.

experiments with both synthetic data and real-world data are
presented to corroborate our claims.

APPENDIX A
PROOF OF THEOREM 1

Proof. We begin the proof by restating the DE equation w.r.t.
E#+1) and VD as

B+ — Eprior(s),z~N(0,1) [prox (s + alz\/%; ,Bagv(t)) — s] 2;
Ly (BEM;V®)
VD = Bpiors),2oN(0,1) [502V(0pf0x, <S +a12VE®); ﬁan(t))} .
2uy (EM;V1)
The derivation of the necessary conditions for

limy o (E®,V®) = (0,0) consists of two parts:

o Part I. We verify that (0,0) is a fixed-point of the DE
equation;

« Part II. We consider the necessary condition such that DE
equation converges within the proximity of the origin points,
ie., E® and V(® are close to zero.

Since Part I can be easily verified, we put our major focus

on Part II. Define the difference across iterations as 555) =

MOREOVER, WE PUT THE RESULTS CORRESPONDING TO THE SENSING MATRIX A(hnal)

preferential IN THE BOLD FONT.

V®  we would like to
(0,0). With Taylor expansion, we

EG@+Y) _ B and 5‘(;’) = Y+ _
show limtﬁm(ég), 59) =
obtain

SUD — g (E(t+1)’v(t+1)) . (E(”,V(t)>

v
g
- ( ) }E:E(f),vzv(f)> o)

OV (B,V
OE
OV (B,V
+ %}E:vazvu))ﬂg)
o[ewy]+oey].

Consider the region where 51(33) and (5‘(/t)

(32)

are sufficiently
small, we require 5g) and 53) to converge to zero. Notice
the quadratic terms in (32) can be safely omitted in this
t)
region. Denote the gradients (%)

OVp(E,V) | ovy (E,V) |
V% E=E® V=V, 9E E=E® V=V,

OV (E,V) 0w (E )\ (ownEv))®
S p=po vove as () L (T )

(t) (t)
(%) , and (%) , respectively. We obtain

the linear equation

|E:E<t>,v:v<t> ,

and



Fig. 11.
sensing matrix A cgylyr for regular sensing.

(*) (1)
OV (E,V OV (E,V
5(t+1) ( EB(E’ )) ( Ea(v )) 5g)
5“*1) (awwE,V))(” (awv(E,m)(t) st
oF ov
AL®

and would require the lower bound of the operator norm of
the matrix L) to be no greater than 1, i.e., inf; [LO|op < 1,

and 4y, ) will keep increasing.
= 0, we conclude

since otherwise the values of 5
Exploiting the fact w

|||L(t) |||OP = max

(%)m | (wy)

The proof is then concluded by computing the lower bounds

of the gradients or EB(E V) and ‘NV(E V) as
OV (E,V)
— 5 |E7E(t) Vev®
(®) _ ®)
o () o ()
VE® VE®

© aik T, (——CO +a2V(t) + O ( 0 a2v<f>

n asVE® VE®

2 k agv@

T

ka? ) k aV® \ @ k
1 _r _ S M1
B0 n>¢( ¢aE@)— n
Oy (B,V)
oV
s+ axV® s —aV®
= Eprior(s) || ———F— S| ——
Bas P ()[ < o VED + o VED
@ ,BGQk |:<I> (_Co + CLQV(t)> Lo <Co — CLQV(t))]
n al E® a1l E@®)
k aV®
o 1) ()
kBas k axV® \ ©® kBas
-z - >
9 K092, 98, (1 n) o ( alE@))
where ®(-) = (27)~ /2 fiio e~%/2dz is the CDF of the stan-
dard normal RV z, namely, z ~ N(0,1). In @ and @ we use
the prior distribution prior(s) = k/n - 1(co) + (1 — k/n)1(0).
Further, in @ and & we use the fact

|E:E(t),V:v(t)

(33)

= )
n

(Left) Ground-truth image. (Middle) Reconstructed image via sensing matrix Al

nal)
preferential

for preferential sensing. (Right) Reconstructed image via

® _ ()
fim o 0tV ) gV )
E® 0 \/m \/m
since ¢y # 0. Finally, in @ and ® we omit the non-negative
terms ®(-).

|
APPENDIX B
PROOF OF THEOREM 2

We begin the proof by restating that the functions
E.hmean(+;+) and E,hy, (mean; var) are written as

E. Amean (8 +a1zVE®:; a2V(t)) _
E. hyar (8 +a1zVv E(t); QQV(t)) —

which can be easily verified. Then we prove that V(®) de-
creases exponentially since ag > 0 and hence for an arbitrary
time index 77 the relation

v <[22
“\l+as

B3EW 4 a3 (V) 52
(1+aV®)* 7
asV®
1T+aV®

t—T
> VT _ et T ()

holds for ¢t > T4, where ¢; is defined as log(1 + a;l) > 0.
Afterwards, we study the behavior of E® . Denote Vs as
Eprior(s) (s%), we have

as VsV ®
2

GQVS a9 ¢ V(O)
14 a9 ’

where in (D we use the relation VO < (ay/(14 a)) VO,
Define a new sequence E() = E() /a2, we can transform

(1 “2)”

+ CLQVSV(O) ( ag )t
2a3 (1+az)ai) ’

after rearranging the terms. Due to the time-invariance, we
also have the relation

EMD < 20 4

@
< a?EW 4

< > (34)

E+1D) E®
00 =

as VeV (©)

A1) _
2a3

— B




E(t) S E(t_l) + GQVSV(O) ( as

t—1
(1+ az)a%) '
Iterating over all such inequalities, we obtain the equation

as 1— ( as )t
CLQVSV(O) (1+a2)a% (1+a2)a%

2
2a7

B < O 4

2&2 a ’
! 1= ((1+a22)a§)
which leads to

t

2t ag
(0) ay —
(t41) 2t (1) , a2VsV a2 (1+a2>
E Sar BN+ = e o= (35)
1 (1+a2)a%
9

Since a1 < 1 and as/(1 + a2) < 1, we have the second term
¥ in (35) to be negligible as ¢ goes to infinity. Hence we can
choose a sufficiently large 7" such that for ¢ > T, we have
E#+1) is approximately equal to a?*E™) and conclude the
exponential decay of E(*).

APPENDIX C
PROOF OF THEOREM 3

To begin with, we briefly discuss how to derive the
DE equation for the elastic net regularization, to put
more specifically, how to compute the corresponding func-
tions Amean(-;+) and hya(v;-). Recalling their definitions
in (8), our goal is to study the probability distribu-
tion exp [— (B\x| + B2? + (==1)?/20)]. Denote fi and ¥ as
114280 and respectively, we can show that the above

(T ” ’yﬁ|x|) which
is of the similar form associated with the {1 regularizer. Fol-
lowing the same procedure then yields the corresponding DE
equation. For the notation simplicity, we denote the DE equa-
tion as (EHD, VD) = (w5 (E®; V1) Wy (E®; V®)),

Then, we study the necessary conditions of lim; o
(E® V(") = (0,0). Following the same procedure as in
Section A, we define matrix L") as

1+2Bv’
distribution is equivalent to exp (

(w)(“ (w)(“
L® & oF ov

(8\I/V(E,V) ) ®) ({NIV(E,V) ) ®)
oE oV

and require inf; [L® |, < 1. With some standard calcula-
tions, we have

I gp = max

v (E, V)>(t)

oV (B, V)Y /o
OF ’ oV

(36)

We conclude the proof by computing the lower bounds of
OWp(EV) and B\P"a(‘;E V) around (0,0), which proceeds as
follows. Followmg the same procedure as in Section A, we

have

ows (5,V) M L -
OE E=E® v=v® — (1+2Q2BV(“)2
ap - Vs

+ :
(1 + 2428V 0)V2r E®

where 19; and 4 are defined as

s —agBV(®) s+a2BV(t)
'ﬁl = E rior(s (b - = + @
prior(s) |: < a1 / (i a1 BN (t
19 s E s+a2/3V(t) aQBV(t)fs 2
2 = Lprior(s)S * | €xXp N BD /2 —€xXp |— aVED /2| ),

respectively. Plugging prior(s) =
into ¥; and 95 then yields

Kfn - Lco) + (1 = K/n)1(0)

U (FE
lim 76 (B, V . (37)
(E®,V($))=(0,0) OF
As for 9¥v/av, we have
vy | _ B - ax¥y
v |B=EOv=v® (1525 aQV(”)Q’
which yields
ovy (E,V kBa
vy (E,V) ’E:E(t),vzv(t) > 5 2 (38)

1m
(EW® Vv (5)-5(0,0) oV

Thus, we complete the proof by combing (36), (37), and (38);
and letting inf; |L®|op < 1.

APPENDIX D
PROOF OF PROPOSITION 3

Wlthout loss of %enerality, we assume the updating order is
{)\ L ,pH , p,_ }. For the notation simplicity, we denote
the solutlon of (19) as OPT()\(t) )\l(_t),pg),pl(_)). Easily, we
can verify (19) is a convex optimization problem w.r.t. Ay
with fixed A, py, and p; . This results in

oPT(AY, A, ot pl”) = OPT(AGTY AL, o, p(1).

Iterating the above procedure w.r.t. A, py, and p;, we obtain

OPTOAG T A it o) 2 0T A ol (")
>. >OPT()\(t+1) )\(t-s-l) (t+1)7p(Lt+1))

)

which completes the proof such that {/\St ,)\Et),pH),p(t)}

constitutes a monotonic non-increasing sequence. Comb-
ing with the fact such that (19) is non-negative, we can

t t t t

how that (A A0 0 0

nL (Z . i)\l(_tz) +ny (E /\l(-it,i
> (pftfﬂ)(”)

has a finite limit, i.e.,

limt_wo < 00.
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E DISCUSSION OF THE DE FOR BOTH REGULAR AND
IRREGULAR DESIGNS

First, we explain the physical meaning of the quantities
E® and V® which track the average error and the average
variance at the tth iteration, respectively. Since the physical
meaning of V() can be easily obtained, we focus on the
explanation of E(*), For the convenience of the analysis, we
rewrite the MAP estimator as

vly—Awl> exp (<1 f(@))

Z = argmax,, exp <— 557

where v > 0 is a redundant positive constant. Then we restate
the message-passing algorithm, which is used to solve the
MAP estimator, as

'y(ya—ZT-;l Aqj ‘)2
A2 [ T[ m e < s,
j€da\i
t+1 ~ v f( ~ (t+1
mi S () 2= e T gD ()
bedi\a

The MAP estimator of Z; is hence written as

7; = argmax,, P (z;|y) ~ argmax,_ e —vf (@) H Afflm(wi).

a€0i

Notice that Z; can be rewritten as the mean w.r.t. the proba-

bility measure e~/ (%) [L.cos ﬁlgii, namely,
T; z/ zie (@) H Affl}l (z;)dxz;,
Ti a€oi

by letting v — oco. Since the mean p;_,, is computed as

/«LHa=/me o T

bedi\a

=~ (t)
my 2, () dx;,

which is close to Z;, we obtain the approximation
m=ES (i — xE)Q as (T; — xE)Q. We then conclude

- R 7. _ o f
 mn ZZOLZ_W xl) an<xl mi) ’
i=1 a=1 i=1
which is approximately the average of error at the ¢th iteration.
Having discussed the physical meaning of the quantities F(*)

and V), we turn to the derivation of the DE equation.

A. Supporting Lemmas

We begin the derivation with the following lemma, which is
stated as

Lemma 1. Consider the message flow m m from the check
node a to the variable node i and approxlmate it as a Gaussian

RV with mean ugtil) and variance v(till), .e., Agjg) ~
N Aff:?, ﬁét:zl )). Then, we can obtain the following update

equation at the (t + 1)th iteration

A =2+ A Y Auda (903 - Mgt_)m) + Adaiwa;
j€da\i

oY = A0” 4 19a|V D,

a—1

where |0a| denotes the degree of the check node a.

Proof. Consider the message flow ﬁ%ff:i ) from check-node to

variable node at the (¢ + 1)th iteration

) = o [T mate)
a‘” j€da\i
2
¥ (ya —2im Aaj%‘)

X exp | — 39)

252 dl‘j,

(t+1)

j—a as a Gaussian RV with

Approximate the message flow m
(t+1) (t+1)

mean f;_,, and variance v;_, ,°. Plugging into (39) yields
2
()
—u
o (1) ( ]—’“)
a—i = Zt / H Xp 9ot D)
a—i j€da\i ]—)a
2
gl (ya =i Aaﬂj)
X exp 952 dx;. 40)
g

The direct calculation of the above integral involves the cross

terms such as Agj Aqj, 25,75, (J1 # Jj2), which can be

cumbersome. To handle this issue, we adopt the trick in [1],

[18], whose basic idea is to introduce a redundant variable w
and exploit the relation

t2

e 202

]. / 774’» 1tw
- # o,
V2mo?

where ¢ is an arbitrary number. As such, we can transform

(40) to
7( O )2
~ (t+1 ~ J—a
El—”‘> /dw H dm CEeXp |~ 2 (t+1)
jE€da\i vj—>
Zw’y (yﬂ - Z]’:l Aajxj) fyw2
X exp |— cexp | ——= |,
o2 202

which diminishes the cross term z;, x;, (j1 # j2). Rearranging
the terms for each x;, we can iteratively perform the integral
such that

/dxj~exp 7’)’(

O )2 ,
j—a +7,U..)’7Aajfl]j

a~>z A2 .

t 2
i, g
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¥ 205", 2y
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With some algebraic manipulations, we can compute its mean
ﬁgtill) and its variance vffiz ) as
; — @)
ey _ A (3~ Tycon Austla)
a—1 AQV ’
2 2 (1)
S _ o+ Zjeaa\i A2iVi 5



The following analysis focuses on how to approximate these
two values. We begin by the discussion w.r.t. the variance

v(tH) Note we have

a—1
t+1)®A 2, Z O

j—a’
j€da\i
where in @ we use A2, ~ E(A2,|Aq, #0) = A™! for

i € Oa. As for the sum ) we can view it to

t
jeda\i Vja
be randomly sampled from the set of variances {v(-t) } and

]—>a
approximate it as

D o

j€da\i

(|0a] — 1) V® ~ |9a|VP®.
Notice that the variance is closely related with the check node

degree |da|. Having obtained the variance v((lill ), we turn to

the mean ijjj), which is computed as
) @
(1) Aai (ya - Zjeaa\i Aﬂjﬂjﬁa)
a—i A2-
)
~ AAui | Aaizi + Z Agj ( T; — Mgt_)m) + wq
j€da\i
@ ®
~ T +A Z AaiAaj l’] - I”Lj%a +AAai7-Ua,

jE€da\i
where in @ and @ we use the approximation A%, ~ A~! for
i € Oa.
O

B. Derivation of DE

(t+ )

We study the message flow m,_,,’” from the variable node

1 to the check node a
()

At+1
@) T e 0D

bedi\a

(t+1)
i—a

To begin with, we study the product Hbe@i\a exp( —

e

A(t+1))

Hy—i 1) . .
240% . Its variance vf:a) is approximately com-
Ub—i
puted as

v 8
D T Z ~(t+1)°

i—a bedi\a Ub—i

which yields

S(4+1) _ 9i| — 1 ! Ao’ + |9V
1a Ao? + |0alV®) |04
~(t+1)

Further, the mean f; is calculated as
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where in @O we invoke Lemma 1. We then approximate the

)
term 3 ;e op s AbiAb (’IJ - Ngab + Dbeoia Aviwy as a

Gaussian RV with its mean being calculated as

E Z Z AbiAbj (Ij ugt_))[)) + Z Apiwy =0,

bEDi\a jEAb\i bedi\a

and its variance as

2
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In @ we assume the term (xj -

S

210a|EY + AilaQ) .

(®
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among all possible pairs (%, a). Hence for the fixed degree |0

1 .
and |Jal|, we can approximate the mean ug 1 as a Gaussian

(A02 + |3a|E(t)) /|0i| and variance

namely,

2
is randomly sampled

RV with mean z; + z\/

(Ao? + |0a|V®) /|01,

Ao? +|0a|E®  Ac? 4 |0a|V®
z~N|x;+2 - , - )
|0i] |01

where z is a standard normal RV. Recalling that the dis-
tribution of the degrees of the variable node ¢ and check
node a satisfies P(|0i| = a) = A, and P(|0a| =) =
p3, we can approximate the distribution of the product

[Tycona exp [ e - 2 /(2@&)}

. iEM+Ac? Ac?+iV )\ 5
Gaussian _, 5 pi\;N (z,/l oo Lo b

ther approximate it as a single Gaussian RV with mean z; +
iE(t) + Ag? . Ac?+iV (1)

>ij PiNjzy/ 5% and variance ), ; piA; =7—5"—. In-

voking the definitions of hmean(+; ) and Ay, (5 +) as in (8), we

then approximate the mean ufjj ) and the variance vl(t:al ) as

[iE®) + Ac?
/‘Et_tll) ~ Rmean <‘/EZ+Z § pi)\j ﬁ;
i.J

Ac? + iV
Z pirj——— |;

¥ J

as the mixture

and fur-

50ne hidden assumption is that there is no-local loops in the graphical
model we constructed, which is widely used in the previous work [7].
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ij

Ac? + iV
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Then, the DE w.r.t. the average error E(**1) is derived as

m n 2
=— Lyy (nth) = f)

a=11i=1

[iE®) + Ag?
~ ]Eprior(s)Ez |:hmean <l’5 +z Z pz)\] fa

Zp AO'

1,7 j

E(t+1

Following a similar method, we obtain the DE w.r.t. the
average variance V(!*1) as stated in (6). This completes the
proof.

C. Derivation of DE for Irregular Design

Different from the regular design, we separately track the
average error and average variance w.r.t. the high-priority part
and low—g)riority part. Then we define four quantities, namely,

Eft), E,(f s VL(t), and V(t), which are written as
t t
B0 = LSS (0, )
a=1 i€l
(t) _ (t) A
EH _mn ZZ(Z—)a_x)’
H a=1 i€H
1 m
v _ O
L mnyL CLZI ~ i—a
(t) _ ()
o= LSS,
H a=1 i€H

where nH and n_ denote the length of the high-priority
part scH and low-priority part :L'F_, respectively. Following the
same procedure as above then yields the proof of (17). The
derivation details are omitted for the clarify of presentation.

F DISCUSSION OF SUBSECTION IV-C

We start the discussion by outlining the DE equation w.r.t.
EY ED VY and vV

2
E(tJrl EprlOT(S)EZNN(O,l) [P"OX (3 +z- b|(—1t)13 5Hb}<-|ty)2) - 3] 5
2upn (B ED WO WD)
2
EEt+1) = Eprior(S)Esz(O,l) [proX (S tz bl(_fivﬂLbl(_t,%) B S:| )

Ly, (E(t)AE(” V(t) V(t))

V(t+1) EPFIOI(S>EZNN(O 1) |:/BHbH 2 * prox (5 +z- b}(-f)lv BHb(t) )]

2wy (B O MO D)

V(H_l) Eprmr(S)Esz(O 1 [ﬁLbL 2 - prox (S Tt bl(j)l’ IBLb(t)Z)],

2wy, (BB VD V)

where notation prox(a;b) is the soft-thresholding estimator
defined as sign(a) max(Ja|] — b,0), notation prox (a;b) is
the derivative w.r.t. the first argument, and the notations

b,(f?l, bﬁ’)z, bEt,)p and bl(_t)2 are defined as

Ao? +iE] + jEY
b =D Awepnint, ;\/ i I
£,i,j
Ao? + iV 4 1
b,(fé = Z)\H,ZPH,iPL,j '} I ;
i
AO’2 + ZE(t) _|_ E(t)
b<t) - Z ALep, zPH,]\/ 7 / ;
£,1,j

Ao® + iV + VY
B =Y Auepiipn; LE o

£,4,3

Similar to the proof in Section A, we define the differences
across iterations as

5;;)H A E&tﬂ) (t)’ 5(Et) 2 E(t+1) B EEt);
50, 2 VI _ v, 5 L 30,

A. Discussion of (23)

This subsection follows the same logic as in Section A. We
first relax the Requirement 1 w.r.t. the average variance V,_Et)
and V,_(t). Performing the Taylor-expansion, we obtain

t+1
s
= Uyn (VFEHI), VL““),ES“),EEHU)

— Uy (v“) v, E@,EE”)

a\pVH ®
- 8EH Ey= E(t) EL E(t) Viy V(t) Vi V(t) 5E,H
(2% 5“)
8EL Bu=E® B = w=vP v =y® | °BL
aVH EH:E(f)vEL_EEt)va_V(t) vi=v® | %vH
aEH EHfE(f) EL—E(f),VH—V(') \3 V(f) V,L

+0 [(5“’ ] +ofe’]. @)

Following the same logic in Section A, our derivation consists
of two parts:

o Part I. We verify that (0,0) is a fixed point of the DE
equation w.r.t. V,_ﬁt) and V,_(t);

o Part II. We show the DE equation w.r.t. V,_Et) and V,_(t)
converges within the proximity of the origin points.

Our following derivation focuses on showing that DE con-

verges, or equivalently, lim;_, (637),_'76‘(;7{) = (0,0), as the

second part can be easily verified. We consider the region

where Vét) V(t) 5‘(/)H, and 6&; . are sufficiently small and

hence can safely omit the quadratlc terms in (41). Exploiting

the fact that OWy /0En = 0 and 0¥y 1/0EL = 0, we obtain

the linear relation



r(tﬂ)]: (axpav‘}:(.))(t) <a@g&:(.)>itj légﬂ
( )] bl

s IO AN L 0 s
Vi oL ’
L{Y
. owyu()\® . -
where the notation (W) is an abbreviation for the
gradient
v O\ vk ()
o ) T o lmesd mes ey -

Similarly we define the notations (OWy y(-)/ 8VL)(t),
(G\I'VL( )/6VH)(0 and (0%y (- )/aVL)( ) Then we require
inf; |||L |||OP < 1. Otherwise, the values of (5VH and 6VL will

keep increasing and stay away from zero. We then lower bound
the gradients (0¥y 4 (-)/8VH)(t) and (OPy H (~)/8VL)(t) as

(52)" O (52) (o)
o) () -2

() (s
("5) 2w (2%) (5]
k[ L

X

(o (). o
@w (=)

where ®(-) = (27)~ /2 ) ¢=#"/2(z is the CDF of the stan-
dard normal RV z, i.e., z ~ N(O 1). In @ and @), we follow
the same computation procedure as in (33), and in @ and
@ we drop the non-negative terms ®(-). Following a similar
procedure, we lower bound the gradients (0T, (-)/ BVH)(t)

and (0, (-)/0VL)" as
Oy ()\" kLBL AL,
2 (5) ()
Oy ()\ " kLBl AL,
("5) "> B (%) (5.

and conclude the discussion.

@
2

B. Discussion of (24)
This subsection relaxes the requirement lim;_, ., E,(f) =0,

which consists of two parts:

o Part I. we consider the necessary conditions such that DE
equation w.r.t. Eﬁf) converges;

o Part II. We verify that 0 is a fixed point of DE w.r.t. ES)
given that lim;_, o, (V,_Et), VL(t)) = (0,0).

Since the second part can be easily verified, we focus on the

first part. We consider the region where Eﬁf) and 6g?H are all

sufficiently small and require §g)H to converge to zero. Via
the Taylor expansion, we obtain the following linear equation

20

t
05

Ve (- Ve (-
= () s ()"
Yen()

Rom denotes the gradient Y£:4()

9By
(E,(f),EEt), VI_Et), V,_(t)). Enforcing the variable 6g)H to con-
verge to zero, we require

2 2
Wpn()) " wpn()\" <1
OFEH O0EL -
Then our goal becomes lower-bounding the gradients, which
are written as

(42)

where ( at the point

inf +
t

(‘I/E,H('))(t) kHbH 1 <Z AH, z) Z ipH,ipLj .
OEw i3 \JiESY + jEW

43)

(\I’E,H(')>(t> kHbH 1 <Z AH, z> Z JPH,iPL,j )
OE. > /iEl(—|t) N jEIEt)

(44)

Taking the limit Eﬁf) — 0, we can conclude the relaxation by
simplifying (43) and (44) as

() 2 2
UeuO\Y _ & AN : :
( aEH'L( )> 2 n| (Z 7 Z> (EZ :\/;PLJ>

C. Discussion of (25)

The basic idea is to linearize the DE update equation with
Taylor expansion and enforce the difference cS‘(/t)FI to decrease

T

I |T

at a faster rate than 5‘(f)|_
W)\ _ (e
OFNq - OFHy ’
W)\ _ ()"
OFEL - OFEL ’
Following the same logic as (43) and (44), we can lower-bound
he grad; wpi () wpi())®
the gradients (TEH) and (W) as

()= (2] (Svm)
()" & (%) (zvim)

Combining with (45) will then yield the Requirement 2.

(45)
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