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Unconventional oil and gas development (UOGD) has become the most widespread form of energy production in
the United States. The booms and busts associated with UOGD are not unique to the industry, but the impacts to
local communities are. As the industry continues to dominate the nation's energy landscape, and marginalized
communities are disproportionately exposed to the extraction processes, it is important to understand the full
scope of the environmental and social impacts experienced by communities during booms and busts. We review
the literature on both the ecological and social boom-bust impacts of UOGD, noting the dearth of research on

bust-time impacts. We conclude by calling for greater research on the long-term impacts of busts, in particular,
and on understudied aspects of social impacts like those to public services, infrastructure, and social capital.

1. Introduction to unconventional oil and gas booms and busts

How do booms and busts impact natural resource-rich communities?
In the mid-2000s, introduction of drilling technologies like high-volume
hydraulic fracturing (often called fracking) created the phenomenon
termed unconventional oil and gas development (UOGD). UOGD encom-
passes a suite of approaches that made it economically viable to mine oil
and gas trapped in deep underground shales [1]. This innovation caused
oil and gas production to boom in the United States, but excess pro-
duction in 2015 caused prices to drop, sending oil and gas companies
into bankruptcy [2]. Despite a brief recovery from 2017 to 2019, the
COVID-19 pandemic caused another drop in prices and concomitant
industry losses [3].

The rapid growth of an extractive industry, or boom, can stimulate a
local economy but bring with it problems such as environmental
degradation and infrastructure damage. During a bust, when the
extracted resource is exhausted or demand for it falls, economic gains

tend to dissipate and affected communities are left the same or worse off
[4]. UOGD boom-bust cycles mirror those experienced throughout his-
tory by communities with coal, mineral, and conventionally accessed oil
and gas reserves (e.g., [5]). After constructing and developing a well site
for drilling, actual production typically involves a smaller labor force
employed over a longer period [6], meaning that many industry jobs are
limited to the initial development period [4,7].

When UOGD becomes uneconomical, operators idle or abandon
wells. Oil and gas workers leave for other opportunities, decreasing a
community's available labor force [8]. The service sector tends to shrink,
property values decline, and unemployment and poverty increase [4].
Government revenues and funds dwindle, and investment and business
opportunities disappear [4]. Residents, particularly those who moved in
during the boom, may relocate if they can afford to do so [9]. Boom-bust
communities often end up poorer and with slower economic growth
than comparable communities that did not experience a boom [4,5,10].

This paper examines the range of local consequences of UOGD booms

* Corresponding author at: 115 Green Hall, St. Paul, MN 55108, United States of America.

E-mail address: klasi004@umn.edu (M. Klasic).

https://doi.org/10.1016/j.erss.2022.102843

Received 8 December 2021; Received in revised form 17 September 2022; Accepted 7 October 2022

Available online 13 October 2022

2214-6296/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


mailto:klasi004@umn.edu
www.sciencedirect.com/science/journal/22146296
https://www.elsevier.com/locate/erss
https://doi.org/10.1016/j.erss.2022.102843
https://doi.org/10.1016/j.erss.2022.102843
https://doi.org/10.1016/j.erss.2022.102843
http://crossmark.crossref.org/dialog/?doi=10.1016/j.erss.2022.102843&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Klasic et al.

and busts in the United States. While several papers review community
impacts from UOGD, most have a rather narrow focus on a single type of
impact, like environmental [11-14] or economic [15]; few assess both
biophysical and socioeconomic consequences of UOGD. Moreover, this
scholarship almost universally focuses on booms [9,16,1 71"! To address
this knowledge gap, we summarize the research on community impacts
of both booms and busts in unconventional oil and gas development in
the United States, with a focus on biophysical and socioeconomic di-
mensions. We begin by explicating what is known about the conditions
communities experience during booms (moving through environmental,
economic, infrastructure, public health, public services, housing and
social capital impacts, in that order) and then busts (in the same format);
we then offer suggestions for future research, highlighting the need for
attention to human impacts and bust conditions.

To collect relevant articles, we queried Google Scholar and Web of
Science” for references containing a UOGD-related term (unconven-
tional oil and gas, hydraulic fracturing, and fracking) and an impact
term (boomtown, bust, economic, environmental, public health, public
service, infrastructure, housing, and social capital impacts). To account
for differences in algorithms that computerized bibliographic databases
may produce and to capture as many relevant articles as possible, the
searches were duplicated by four separate researchers. We collected
articles from the first three result pages of Google Scholar as those are
considered the most salient [20]. Eligible articles had to be peer-
reviewed, empirical investigations of the impacts of UOGD in the
United States. Given the importance of geographic and sociopolitical
dynamics for shaping boom-bust cycles [21], we decided to limit our
review to domestic boom-bust literature focused on UOGD so that we
could maximize the applicability of our findings to the U.S. context.

Our search yielded 192 unique publications included in this review.
Across the literature, we found an emphasis on UOGD boom-times, with
only 34 publications discussing one or more bust-related impacts
(Table 1). Topically, most studies examine environmental impacts (85
articles), followed by public health (43 articles). The least discussed
impacts include public services (18 articles) and social capital (21
articles).

In the remainder of this paper, we first synthesize the literature on

Table 1

Summary of literature reviewed on U.S.-centric UOGD boom-bust impacts.
Because a publication may focus on booms, busts, or both across one or more
impact types, the total sum of the cells is greater than the 192 unique publica-
tions included in the review.

Impact type Boom-focused Bust-focused Total articles by
articles articles impact
Economic 21 12 33
Environmental 76 9 85
Housing 20 3 23
Infrastructure 26 2 28
Public health 40 3 43
Public services 16 2 18
Social capital 18 3 21
Total articles by boom 217 34
or bust

1 There is an international literature that has explored boom-bust life courses
(sometimes referred to as boomtown dynamics) with a focus on socioeconomic
impacts (see for example Ruddell and Ray 2018's analyses of resource-based
boom communities [18] or in the larger energy development space Perez-
Sindin 2021 [19]); we see this as a fruitful avenue for future analyses of U.S.
UOGD booms and busts.

2 We used a subset of the same search terms on ScienceDirect and JStor and
could find no additional articles so decided not to use any other search engines
or expand the search any further.
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environmental and social impacts of UOGD in the United States during
booms and busts. We then situate this review within a broader discus-
sion of opportunities for government intervention into UOGD boom-bust
cycles. Finally, we conclude our article with suggestions for future
research.

2. Boom-time community impacts
2.1. Environmental impacts

The total environmental impacts of unconventional oil and gas
development are estimated at $162,000 to $755,000 per well, owing
predominantly to methane leakages, habitat fragmentation, and diesel
use by trucks and pumps [22]. UOGD releases air pollution from ma-
chinery involved in extraction as well as from transportation, distribu-
tion, and use of hydrocarbons. The heavy truck traffic needed to equip a
well site releases particulate matter, nitrous oxide, dust, and other
compounds [23]. UOGD processes emit particulate matter [24], radio-
active particles [25], volatile organic compounds, and BTEX chemicals
[26], and increase the production of ground-level ozone [27]. Relative
to conventional wells, unconventional wells have more embodied car-
bon - they consume 90 % more energy throughout the supply chain,
though this is offset by increased productivity of unconventional wells
[28].

UOGD releases two major greenhouse gases, carbon dioxide and
methane [23,29]. In Colorado, for example, roughly 4 % of extracted gas
is lost to the atmosphere during drilling, transmission, and distribution
[30]. UOGD's methane emissions are particularly concerning given
methane's high global warming potential, though the actual amount of
methane emitted is subject to debate [31-35]. Early research showed
that between 0.05 % [36] and 8 % [31] of methane from UOGD escapes
over a well's lifetime. More recent work found that fugitive methane
emissions range from 2.8 % to 17.3 % [35]. Seven well pads in this re-
gion averaged 34 g of methane emissions per well, almost three times
the emissions expected by initial estimates [35].

UOGD impacts water resources during well pad development, water
acquisition, chemical mixing, hydrocarbon production, and wastewater
treatment and disposal [11,37]. Hydraulic fracturing involves injecting
a highly pressurized mixture of water, propants, and chemicals into
shales, propagating fractures through which oil and gas can flow. A
hydraulically fractured well requires between 1.7 and 8.7 million gal-
lons of water, averaging around 5.2 million [32], with substantial
regional variation [38]. The per-well rate of water use is accelerating
across nearly all U.S. shale plays, increasing by up to 770 % between
2011 and 2016 [39]. In some regions, like Dallas, Texas, water used for
UOGD accounts for 9 % of total water use [40]. Many areas where UOGD
occurs in the U.S. are water-stressed or would become water-stressed if
extraction were to occur, putting UOGD in competition with other water
demands [41].

Water is mixed in a proprietary blend with sand and other chemicals®
[42] (e.g., surfactants, volatile organic compounds) [43,44], then
injected into wellbores. Defective well casings or faulty equipment can
spill or leak this fluid into surface waters or groundwater [45-47]. In
four U.S. states heavily engaged in UOGD, 2-16 % of wells experienced
spills annually, with 50 % of spills related to fluid transportation and
storage [48,49]. Surface waters have been negatively impacted by well
pad development, with sediment runoff increasing nitrogen and phos-
phorous loads [37] and drilling itself increasing acidity of stream water
[50]. A growing body of literature finds adverse impacts to microbial
communities in streams and other headwaters, such as decreased species
diversity [50,51].

Groundwater aquifers can be exposed to chemicals and gases if

3 As of 2011, at least 632 different chemicals were used in these proprietary
solutions [42].
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fractures induced in shale formations connect to natural faults or other
existing pathways [52], and through surface spills of chemicals [53]. For
example, home drinking water wells in close proximity to drilling op-
erations (within 1 km of in Pennsylvania and 3 km in Texas) have
significantly higher methane levels [54-56] than more distant homes,
likely due to well integrity problems. Groundwater becomes contami-
nated with greater total organic carbon, and pH changes as UOGD in-
creases in an area, indicating the presence of contaminants [57]. This
groundwater contamination varies geographically [58] and topograph-
ically, generally greater in valleys and near wells [59]. Releases of
certain pollutants, such as methane, may lead to underground chemical
reactions (e.g., loss of oxygen and conversions of sulfates to sulfides)
that result in air and water pollution [54].

Some proportion of the injected fluid returns to the surface as
wastewater, or produced water. Between 2005 and 2014, U.S. UOGD
produced more than 250 billion gallons of wastewater [60]; from 2011
to 2016, wastewater from U.S. wells in their first year of production
increased up to 550 % [39]. Total wastewater from the Marcellus Shale
region increased 570 % from 2004 to 2013 as a result of UOGD in the
area [61]. This wastewater often contains salts, heavy metals, and
radioactive materials that can contaminate soil and water [62,63]. At
the start of the U.S. UOGD boom, wastewater was often transported to
local treatment facilities ill-equipped to manage it. Insufficiently treated
wastewater, in turn, was linked to increased electric conductance in
streams and negative impacts to aquatic organisms [64], prompting
development of federal pretreatment standards [65].

Currently, UOGD wastewater is treated onsite and reused, stored and
transferred to off-site locations, or injected into deep wells [65,66]. Deep
well injection is often more economical than other disposal methods
[67], but can threaten surface and groundwater quality [44,68-70] and
trigger seismicity [67,71,72]. Since the early 2010's there has been a
significant increase in seismicity in Eastern states, with roughly 10-33 %
of hydraulically fractured wells producing detectable seismicity [73].
While both drilling and wastewater disposal can trigger seismicity,
wastewater disposal is linked to higher maximum seismic magnitude
[73].

Noise, odor, and light pollution arise directly from UOGD activities
(e.g., flares and burn-offs) [74-77] and indirectly via increased truck
traffic [78,79]. While truck traffic abates somewhat after initial con-
struction of wells and infrastructure, in the longer term, pervasive but
more subdued noise is generated by well pumping and compressor sta-
tions [80]. Light pollution from well pads and well flaring can negatively
impact nearby residents. Pennsylvanians living near UOGD wells report
needing to adjust living patterns (e.g., closing the windows and blinds)
to sleep because of nighttime light from UOGD [81], and UOGD-
associated increases in light pollution appear connected to inadequate
sleep and degraded health [76,82]. In a survey of a homeowners living
near UOGD facilities in Pennsylvania [83], more than 80 % of re-
spondents reported experiencing UOGD-related odors sometimes or
constantly [83]. Thirty-four percent of Louisiana residents interviewed
about impacts from Haynesville Shale development reported concern
about odor, noise, dust, and light [84].

UOGD booms can also negatively impact wildlife and ecosystem
services. Increased human activity in and around well sites, as well
increased truck traffic and infrastructure development, can disrupt
wildlife migration [85], expand the wildland-urban interfaces, increase
risk to threatened and endemic species [86,87], introduce invasive and
disturbance-adapted species [80], and fragment existing habitat
[88,89]. Construction of access roads and other UOGD infrastructure
may damage root systems, resulting in loss of topsoil and siltation into
local water systems [90]. Ecosystem services such as water provisioning,
timber production, food production, and biodiversity conservation have
been negatively impacted by UOGD habitat fragmentation and land
conversion [91].
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2.2. Economic impacts

As oil and gas operators moved into shale-rich areas in the U.S. in the
mid-2000s, they were accompanied by an influx of workers. For every
10 % increase in earnings in a U.S. county during the boom, its popu-
lation averaged a 1.1 % increase in population growth [8]. Sale and
property tax revenues increased for state and local governments with
shale resources [92]. These increases in workers and revenue, combined
with investments from oil and gas companies, helped expand local ser-
vice sectors, infrastructure, and economies [4,93].

UOGD creates job opportunities in the oil and gas industry and
supporting sectors, increasing employment, income, and local wages
[94-98]. Direct jobs result from exploration, drilling, and production;
and indirect jobs result from increased demand for inputs like concrete,
electricity, vehicles, and fuel [99], as well as hospitality, recreation,
administration, and retail [10]. In Pennsylvania alone, UOGD brought
46,000 jobs from 2004 to 2013 [98]. Wages in U.S. counties experi-
encing UOGD booms (2000—2010) increased up to 10 %, while certain
industries, like food and accommodations, saw a 17 % increase [6].
Early in the U.S. boom, the number of completed wells was positively
associated with an increase in per-capita income [100]; and counties
with high-intensity UOGD saw wage increases of 5-22 % [8].

Workers in oil and gas or adjacent sectors, and landowners receiving
royalties and lease-signing bonuses, often boost local sales tax revenues
by spending earnings locally [99]. During the recent boom, each one
million dollars in new oil and gas production in a U.S. county yielded
roughly $80,000 additional wage income and $132,000 additional
business and royalty income [101]. The UOGD industry also produces
revenue for local governments from oil and gas property taxes [92] and
(potentially) portions of state-collected production taxes or impact fees
[102]; localities also might directly earn income by leasing their public
lands for drilling.

These economic benefits are often temporary, however, due to
market volatility, the finite nature of the resource, and reduced oil and
gas employment needs following the initial development “pulse”
[4,101]. Booms disproportionately benefit shareholders and those in oil
and gas industry management rather than on-the-ground production
workers [96]. Many UOGD jobs go to out-of-state workers with more
relevant training than locals [4,8,103]; jobs in UOGD-associated in-
dustries (e.g., trucking) tend to be part-time, short-term, and low wage
[10]; and positive employment effects do not always spill over into non-
mining sectors [93,99,104-106]. Non-oil and gas businesses may be
driven out by elevated rents and inability to match oil and gas wages,
while other local industries, such as tourism, may decline due to de-
creases in outdoor recreation visitors [107]. Economies can easily
become over-adapted to extractive industries, making it harder to
diversify [108], particularly if extractive industries have caused envi-
ronmental harm which hinders amenity-based economic development.

2.3. Infrastructure impacts

Booms stress and increase demand for infrastructure. Communities
that can afford to invest in infrastructure can benefit from boom-time
expansion in businesses and entertainment options, hotels and apart-
ments, and amenities like parks.

Booms involve dramatic upticks in heavy truck traffic to and from
extraction sites [109-111]. Relative to conventional drilling, UOGD
requires construction of significantly more new roads [112]; maintain-
ing these roadways costs an estimated $13,000 to $23,000 per well
[113]. Construction of new wastewater treatment centers [92] and on-
site wastewater recycling infrastructure [114] may be required. Addi-
tional gas storage facilities and landfills may be needed to contain
drilling products and by-products [10], and pipelines and compressor
stations may be required for transport [115].

Many rural, low-volume roads and bridges are aging [116], were not
designed to accommodate the intensity of use associated with UOGD,
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and deteriorate in consequence [15,92,110,111,116,117]. For example,
drilling a single UOGD well in the Marcellus Shale region can require up
to 2000 truck trips [118]; Traffic increases an area’s population ex-
pands, increasing congestion, local air quality impairment, and traffic
accidents and fatalities [119,120]. Localities may collect more fines and
fees from traffic violations, but these monies are typically exceeded by
increased infrastructure costs [92]. Residents living near UOGD sites
complain about damages to transportation infrastructure from UOGD-
linked trucking [110] and identify road damage, congestion, and
transportation issues as substantially, adversely impacting quality of life
[121]. Attitudes toward UOGD often influence resident perceptions;
those who oppose UOGD are less likely to perceive infrastructure ben-
efits and more likely to perceive infrastructure harms [122].

A boom’s population influx increases demand on community infra-
structure [123]; that is, features of the built environment that provide
public services or amenities, such as water and sewer systems, hospitals
and health clinics, schools, and recreational facilities [10,95,124-126].
Local governments may feel pressured to provide or expand such
infrastructure, yet lack necessary personnel, expertise, or funds
[4,10,127]. They may hesitate, alongside private investors with similar
concerns, aware that the cyclical nature of booms and busts means that
facilities may end up abandoned or underutilized while investors
struggle to service debt [5,109,128]. Investors may be deterred by
symptoms of social disintegration typical in booms, such as crime, or
perceptions of government incapacity [125]. If private investment is not
deterred, local officials may perceive it too politically risky to deny
approvals for expanding housing or other infrastructure to meet short-
term demand, even if they understand that such development will
likely be unsustainable long-term [4].

2.4. Public health impacts

While UOGD does not appear to impact rural mortality rates posi-
tively or negatively [129], UOGD booms yield a variety of public health
impacts associated with drilling itself and with interactions between oil
and gas workers and the community [130]. Residents proximate to
UOGD have reported symptoms such as rashes, fatigue, vomiting,
dizziness, nose bleeds, and upper respiratory infections [131-133].
Prevalence of UOGD wells is also positively associated with increases in
asthma exacerbations [134]. However, it is usually difficult to link
adverse health outcomes specifically and directly to UOGD [135-137].

In general, living in a community with UOGD is associated with
lower self-rated health [138]. Hospitalization rates for cardiology,
dermatology, neurology, oncology, and urology are positively associ-
ated with well density [139]. Colorado residents living less than ' mile
from UOGD wells appear at greater risk for health problems than those
living further away, largely due to the former’s higher benzene exposure
[140]. Health impacts diminish for families that move away from dril-
ling or where drilling decreases over time but remain unchanged for
families consistently living near high-intensity drilling [141].

Impacts appear more acute for vulnerable populations, including
pregnant women, children, and those with underlying health conditions.
In a study of more than 9000 patients with preexisting heart failure,
those living near UOGD sites were more likely to be hospitalized than
those living further away [142]. Pregnant women living near UOGD
experience higher frequency of depression and anxiety prior to giving
birth [143] and are more likely to have underweight infants [144-147],
preterm birth [148]; their infants experience poorer health metrics
[144,146] and higher rates of mortality [149]. Researchers speculate
that these effects are linked to exposure to water and air pollution.
Roughly 75 % of the more than 630 chemicals used in UOGD-related
processes in the United States are associated with skin, eye, and respi-
ratory irritation; 40 % with brain, immune, and cardiovascular prob-
lems; and 37 % with endocrine disruption [150].

The workforce that UOGD brings to communities is typically domi-
nated by young, unmarried men with relatively low education [8,151].

Energy Research & Social Science 93 (2022) 102843

Adverse public health impacts often result from increased interactions
between these workers and the community, including increased hospi-
talizations for genital and urinary conditions [152]; increased incidence
of chlamydia [153] and gonorrhea [154,155]; increased prostitution
[154], heavy drinking [151], traffic accidents [23]; property crime [156
though see opposite results in 157] and violent crime [77,156,157], the
latter potentially driven by upticks in aggravated and sexual assaults
[157,158]; increased domestic violence and child protection cases
[159]; and disproportionate in-migration of sex offenders [156].

These impacts can cause psychological stress [76,78,133]. A study of
Pennsylvania residents found greater incidence of depression among
those living near UOGD relative to similar populations living elsewhere
[160]. Activities which could normally help ease depression can be
hindered by UOGD: noise, light, and vibrations from active operations
can disrupt sleep [117,118,161,162], and increased traffic can
discourage residents from walking, hiking, or engaging in other outdoor
physical activity [23,163].

2.5. Public service impacts

Public service impacts during a boom are direct, such as increased
need for emergency response to well blowouts and spills, environmental
monitoring, and leasing-related public records requests; and indirect,
such as increased need for health services, schooling, and policing due to
the influx of people and traffic [5,10]. UOGD often occurs in rural re-
gions with small local governments that struggle to meet increased
public service demands [92,164]. Local governments may be hindered
by budget shortfalls, particularly early in a boom-bust cycle, since there
can be a 3-8 year lag between peak local government expenditures
related to UOGD and peak revenues [95]. Tax revenues may be insuf-
ficient for addressing local UOGD-related impacts [103,165], especially
since industry profits often flow to out-of-state oil and gas companies
rather than local outfits [5]. Local policy actors hold diverse perceptions
of UOGD's impacts on public services; some communities report nega-
tive impacts, some neutral, and others positive [166].

Increases in traffic can cause public safety hazards [120]. Police may
experience more calls for response to traffic accidents, drug overdoses,
and incidents of domestic violence and crime [15,78,103]. For example,
one North Dakota community heavily engaged in UOGD saw a 5 % in-
crease in population and a 40 % increase in domestic violence calls [93].
In some areas of North Dakota, police service calls have quadrupled
since 2008, including long-term residents calling in “suspicious” people
they don’t recognize [167]. Social isolation, lack of housing, an under-
resourced justice system, and the hyper-masculine work culture of the
UOGD industry drives the increase in domestic violence [159]. How-
ever, there is some evidence to suggest that crime rates are highly
localized such that crime may increase in some counties, while still
decreasing overall in the state (e.g., an 8 % reduction in overall crime in
North Dakota during the boom); and that increases in crime rates may
not be attributable to UOGD even if they correspond with the onset of
the boom [168,169].

The boom’s population influx increases demand for health care
professionals, clinics, and hospital beds, often in areas already under-
served by health providers [15,78,103]. Although workers who come to
booming areas to work on oil and gas rigs are likely to be young, un-
married men [8], the expanding service sector is likely to be staffed by
people with families whose children need schooling. Increased intimate
partner violence may exacerbate housing precarity and increase the
unhoused [170]. Facilities that support vulnerable populations,
including homeless shelters and transition housing, may rapidly fill
[171]. Social service workers in North Dakota report that the UOGD
boom there led to significant increases in child protection and foster care
cases [93].
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2.6. Housing impacts

UOGD booms tend to decrease affordable housing and impact
property values [165,172]. Increases in population spur demand,
pushing up rents and home prices and making affordable housing scarce,
particularly in rural, housing-limited areas [10,99,125,165,173].
Homelessness, overcrowded housing, housing shortages, and forced
relocation can result, disproportionately affecting marginalized groups
[10,174,175]. Housing shortages sometimes result in oil and gas
workers living in temporary camps or hotels and motels [174]. Lack of
affordable housing can have cascading effects, posing a challenge for
attracting workers across a range of sectors [125].

There is mixed evidence on how UOGD impacts property values.
Some research suggests proximity to UOGD devalues real estate, like an
analysis finding an average drop in home values of 9 % in U.S. counties
experiencing UOGD between 2000 and 2010 [6]. In Colorado, every
extra oil and gas worker caused a $65 decrease in home prices [176] and
properties lacking mineral rights and within 1 mile of UOGD experi-
enced a 35 % drop in property values [177]. In the Dallas-Fort Worth
area, homes within 3500 ft of UOGD experienced value declines of
1.5-3 % between 2005 and 2011 [178], and in Pennsylvania, well
water-reliant households within 0.75 miles of a site permitted for UOGD
averaged nearly 22 % decline in home values [179].

Property value declines may be linked to risk of groundwater
contamination and difficulty obtaining property insurance [15]. Risk-
wary mortgage lenders and insurance providers may avoid servicing
areas proximate to UOGD [180]. Additionally, there is some indication
that housing values decrease as the count of fracking wells within a half-
mile of that house increases [181]. While these effects may be relatively
short-lived and associated with early stages of well development,
negative impacts associated with UOGD-linked traffic increases may be
more persistent [179].

By contrast, an analysis in Oklahoma found that housing prices
increased nearly 7 % on average in counties experiencing UOGD be-
tween 2000 and 2015 [182], while a study in northeastern Pennsylvania
failed to find a relationship between UOGD proximity and property
values [183]. In New York, properties overlaying shale but prevented
from experiencing UOGD by that state's moratorium experienced a 23 %
loss in property value relative to properties in neighboring Pennsylva-
nia, where UOGD occurred; researchers argue this result points to
meaningful economic value from UOGD [183]. A recent nuanced anal-
ysis found that while UOGD appears to increase property values by
nearly 5 % when the economic impact of drilling alone is considered,
when adverse health effects linked to UOGD are economically valued,
the net impact of UOGD on housing prices is a loss of roughly 6-22 % in
value [184].

Low-income individuals are disproportionately impacted when
financing dries up for existing homes or developers are no longer
incentivized to build in an area [185].

2.7. Social capital impacts

Booms often bring a sense of loss of community, community disin-
tegration, social disruption and social disaffection [123,186]. Social
impacts vary across regions based on the stage and intensity of the boom
[187], the extent of the community's economic dependence on oil and
gas, and contentiousness around UOGD [76,173,188]. Social impacts
are driven by rapid economic growth and population influxes disturbing
existing social networks, and increases in crime, traffic, gender-based
violence, and drug use [78,103].

Residents are often concerned about newcomers stressing public
services and community infrastructure, not understanding or valuing
local culture, and not being invested in community's wellbeing
[78,103]. Newcomers may experience hostility or resentment from long-
time residents [78]. Researchers observe that, as newcomers engage
with longtime residents, measurable decreases in community trust
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result, expressed by increased incidence of safety measures (e.g., locking
doors) and decreased overtures of friendship (e.g., shaking hands)
[189]. Moreover, researchers find a significant decrease in volun-
teerism, even among longtime residents, because of greater in-migration
and social capital erosion [189]. In some places, residents felt that their
identities were threatened by the influx of people, who were noticeably
different from the more homogenous long-term community [190].

Residents who sought rural areas for aesthetics and peaceful quality
of life, such as retirees, may leave as the community becomes more
industrialized and experiences more pollution [76,95,191]. For those
who remain, changes in the landscape and culture can prompt stress,
anxiety, anger, loss of sense of place, and loss of trust in government and
industry [76,78,133,162,192]. An analysis in the Dallas-Fort Worth re-
gion found that nearby UOGD is significantly associated with adverse
mental health impacts and, for women, reduced life satisfaction [193]; a
study in two Ohio counties affected by UOGD found that residents
experienced multiple industry-linked psychological stressors [76].

UOGD can further fray social capital by increasing economic
inequality between the “haves,” largely holders of mineral rights, en-
trepreneurs, and business owners, and “have nots,” including who do
not own mineral rights or have low or fixed incomes but must now pay
higher prices for housing, food, and necessities [77,103,194]. Yet even
those who benefit from UOGD in may feel powerlessness, frustration,
and a sense of manipulation or exploitation as they engage with the
industry and experience its impacts [76,78].

The literature is not unanimous, however, in arguing that booms
damage social cohesion. While work specific to UOGD is quite limited,
oil and gas booms can offer avenues for community members to improve
their social standing (via gaining wealth) and reduce reliance on food
stamps, welfare, and social safety net programs whose users are some-
times stigmatized [188]. Some communities may rally together to
overcome problems caused by both booms and busts, forging a new
collective identity out of shared trauma [189]. And when residents
interact with the newcomers, they do not experience feelings of social
disintegration, expressing that they feel safe and supported in their
communities [195].

3. Bust-time community impacts

We now turn to a synthesis of impacts from UOGD activity during
busts. Overall, we found a dearth of literature on bust-time impacts in
the United States, particularly on the topics of infrastructure and public
services.

3.1. Environmental impacts

Research on UOGD environmental impacts during busts tends to
focus on abandoned or idled oil and gas wells. During busts, operators
frequently idle (leave unused) and/or abandon (idle for an extended,
indefinite period, without proper sealing or closing) wells and other
UOGD infrastructure [196]. There are an estimated 6,037,587 oil and
gas wells in the United States; of these, approximately 1,159,689 are
abandoned” [197]. In Pennsylvania alone, more than 6 % of the 8030 oil
and gas wells drilled in Marcellus Shale between 2005 and 2013 expe-
rienced integrity failures [45]. Poor well integrity, broken casings,
aging, and/or other infrastructure failures can leak liquids, gases, and
hydrocarbon-rich fluids into groundwater, surface waters, and nearby
soils [38,47,55,198,199]. Abandoned well pads and access roads can
also create additional long-term environmental impacts like habitat
fragmentation [90].

4 There is some discrepancy over the total numbers of wells. The values used
here reflect scaling up from state and federal database records and aero-
magnetic surveys.
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3.2. Economic impacts

As the boom wanes and bust begins, local governments face financial
hardship as revenues dissipate [92]. Infrastructure built or expanded
during the boom creates long-term budgetary concerns, as facilities
require maintenance whether or not they are consistently used [95].
Communities see rising unemployment [124], upticks in poverty, losses
in per capita income, and increases in welfare receipt [8,96,124]. If local
businesses raised wages to compete with the oil and gas industry for
workers, these businesses may now have to cut worker pay or staff
[200]. In some cases, oil and gas industry employees find themselves
working in minimum-wage jobs in other sectors while they await the
industry's return [200]. Layoffs increase local unemployment. Out-
migration can be significant [4,8], reducing the tax base and local ex-
penditures on goods and services.

In the United States, many Marcellus and Utica shale-overlaying
communities lost population and jobs between the onset of the re-
gion's UOGD boom in 2008 and the decline by 2019 [201]. In turn, out-
migration may cause investors to avoid the region because of fears about
lack of product demand and/or labor. In the agricultural sector, farmers
reported having to abandon their farm practices even after production
ceased and reclamation was completed because the land was no longer
suitable for farming; the loss of their farms increased their dependence
on oil and gas revenue, which exacerbated their financial plight after the
bust [202]. However, not all UOGD busts are negatively viewed by
communities, with some residents expressing “relief” when the scale of
development decreases [203].

3.3. Infrastructure impacts

Communities are sometimes able to convert new or expanded
infrastructure into multipurpose facilities that support ongoing use
through UOGD bust-times. Localities may be able to sell off or loan out
equipment that is no longer in use. However, some infrastructure may
not be designed or suited for flexibility or may not be in demand else-
where. Decommissioned, vacant, or otherwise unused infrastructure
may saddle localities with debt and ongoing maintenance needs
[10,109].

3.4. Public health impacts

While the literature on public health dynamics in busts is scant,
scholarship suggests that addiction and gender-based violence can
persist or increase during these downturns [193]. Residents may turn to
drugs and alcohol to cope with economic hardship, while unhealthy
stress and family disruption can result when men previously earning
income outside the home remain in the home while out of work. Rates of
anxiety, depression, and mental health problems can increase, driven by
job loss and economic insecurity, as well as the sense of social disinte-
gration and disruption [78]. During a bust’s tight fiscal conditions,
governments may cut or restrict services that could otherwise help
residents cope with these dynamics [164].

3.5. Public service impacts

During a bust, some public services may experience less demand, and
local governments may no longer need, nor be able to financially justify
or support, staff hired to service boom-related needs. However, demand
for some public services, such as emergency response to contamination
from aging or damaged wells, may actually increase during a bust. In
these cases, existing public funds and staffing may be insufficient.
Additional long-term needs such as ongoing environmental monitoring
which is key to identifying and mitigating post-drilling hazards [204]
may be impossible in budget-constrained communities. This has the
potential to exacerbate public service impacts during UOGD bust-times.
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3.6. Housing impacts

Bust-times also drive decreases in housing demand, particularly if
the community failed to establish more sustainable, longer-term sources
of income [180]. Those who were previously employed in the industry
now find themselves suddenly without company-provided housing,
facing exorbitant rents, and without a steady source of income; and
many company-provided lodgings are left abandoned [123]. While
systematic research on the housing price impacts of UOGD busts are
minimal, there is research that suggests a connection between oil prices
and housing market fluctuations, such that housing booms are shorter
during periods of high oil prices and housing busts are longer during
periods of low oil prices [205].

3.7. Social capital impacts

In tandem with declined housing demand, job losses occurring dur-
ing busts can cause mental health issues like distress and depression.
Contracting of municipal revenues and public services can reduce resi-
dents' access to coping resources. Although workers without college
degrees can often secure good-paying jobs locally during a boom, and
thus may not pursue higher education, they may find their lack of a
degree an obstacle to employment during busts, potentially increasing
poverty [95]. A study of Montana, West Virginia, and North Dakota, for
example, shows that shale energy booms are linked with lower levels of
education attainment [206]. The boom-time erosion of social norms and
community culture may continue during a bust [78].

4. Discussion

Booms and busts are dynamic processes often following a relatively
well-established life course (see for example [18,19]). The boomtown
life course literature shows long-enduring impacts common in energy
development, particularly with regard to social integration. As our re-
view demonstrates, these impacts affect many sectors, although there
are some commonalities and consistency across diverse communities.

Based on our research, there are several opportunities for govern-
ment intervention and engagement in UOGD boom-bust cycles. To begin
with, there is a high degree of consensus on the environmental impacts
communities experience during booms. Local governments should pay
greater attention to minimizing the risks of wastewater contamination
and noise, odor, and light pollution. Given that local governments have
jurisdiction over permitting processes for UOGD [196], they have
considerable leverage in requesting accommodations such as sound
barriers, lights-off hours, and specific (i.e., closed) wastewater disposal
systems. In addition, there is widespread agreement in the literature that
infrastructure is strained, and public services are stretched thin during
UOGD booms. Local governments can enter into MOUs (memoranda of
understanding) with UOGD companies to require compensation for
infrastructure upkeep and improvements and can assess permitting fees
to cover the costs of enhanced public services.

Beyond the environment, infrastructure, and public services, there
are few areas where there is a clear path for government intervention.
Many public health studies show correlations between UOGD preva-
lence and adverse health indicators, but ascribing causality to UOGD is
difficult. Though there is little local governments can do to prove or
prevent health consequences, they could require full disclosure of the
chemicals utilized in the process to enhance transparency and
accountability in the industry. With more robust data, scholars and
medical practitioners can better assess the degree to which the inputs
into the UOGD process may be causing the reported health effects.

Similarly, the research fairly consistently demonstrates negative
impacts to social capital and social cohesion during UOGD booms, but
the nature of the problem makes it difficult to pinpoint a role for gov-
ernment. Paradoxically, because scholars seem to disagree most on
economic and housing impacts, it is particularly challenging to identify
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government intervention points. Several studies find UOGD booms
produce significant positive economic impacts overall, while a growing
contingent find that the negative economic consequences of the bust
outweigh the positive impacts of the boom. Similarly, studies present
mixed findings on whether housing prices increase or decrease because
of UOGD.

Local governments should focus their efforts on proactively
addressing potential boom-time impacts, as those loom large in the
literature. However, there are a few areas during UOGD busts in which
government has a clear role to play. First, the literature is quite unani-
mous on the potential ramifications of abandoned and idled wells.
Governments should, therefore, develop rules about the length of time
wells may sit idle or abandoned before being properly plugged and
sealed, and the area reclaimed. Further, local governments should seek
expert consultation on formulating long-term plans including financial
management strategies to minimize the economic impacts of the bust,
including decreased need for public services, infrastructure, and hous-
ing. For a more extensive discussion of how local governments can
respond to UOGD booms and busts, see Arnold et al. 2022 [215].

5. Conclusions & future directions

Research on community impacts of UOGD emphasizes boom-time
impacts, particularly to the environment and public health, while
there is relatively less attention to bust-time impacts and other social
impacts like housing and social capital. Booms change local environ-
ments, communities, and economies and often lead to government
public infrastructure investments. These fundamental changes continue
to impact communities beyond initial boom-times, yet there is a
persistent dearth of research on UOGD impacts during busts, and we
have little understanding of these long-term dynamics in the United
States.

Moving forward, scholars should continue to explore the community
impacts of busts, particularly on underrepresented topics like public
services and social capital, via long-term and comparative studies. One
pathway may be to follow the boom-bust life approach of Ruddell and
Ray [18]. There are many case studies of the social dimensions of
community boom impacts, and case-based studies of how local gov-
ernments respond with new regulatory, incentive-based, or public
finance measures. However, there is a lack of comparative research,
research on bust dynamics, and longitudinal studies that examine
community dynamics throughout booms and busts. Our work in this
vein is instrumental because we need to know more about how to
effectively address and mitigate impacts to UOGD-affected commu-
nities, many of which are already vulnerable and marginalized.

Scholars should also pay attention to geographic variability, as
recent work suggests that social impacts of UOGD are determined by the
interrelationship between localized contextual variables such as geol-
ogy, technology, and economics [21]. This should include looking
locally across municipalities as well as cross-nationally at boom-bust
cycles in other governance regimes outside the United States. Though
the contexts vary along several dimensions, there is evidence to suggest
that similar patterns are at play in international contexts, particularly in
economically parallel countries like Canada [207,208], Australia
[209,210], and the UK [211,212]. A larger-scale, international study
could thus yield additional insights into coping with booms and busts in
the US.

Furthermore, future studies should utilize a broad array of literature
search techniques, such as alternative search engines or citation tracing
to capture additional relevant scholarship. Though our search was
methodical, it may be limited by the search engines or terms we selected;
it is one of several approaches to literature searching that may be useful
in this research. Because of this limitation, it is possible, that we missed
relevant articles that did not appear in our searches for one reason or
another.

Finally, we chose to use a qualitative synthesis approach to examine
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the impacts of boom-bust cycles to elucidate findings in the literature, as
previous scholars have done (see for example [213]). Someone inter-
ested in broad thematic changes in scholarship may consider a more
quantitative bibliometric review or a review from a more statistical
vantage point (see, for example: [214]). This would allow scholars to
quantify research trends (i.e., what is being published, where it is being
published) over time.
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