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ABSTRACT

Asynchronous many-task runtimes look promising for the next
generation of high performance computing systems. But these run-
times are usually based on new programming models, requiring
extensive programmer effort to port existing applications to them.
An alternative approach is to reimagine the execution model of
widely used programming APIs, such as MPI, in order to execute
them more asynchronously. Virtualization is a powerful technique
that can be used to execute a bulk synchronous parallel program
in an asynchronous manner. Moreover, if the virtualized entities
can be migrated between address spaces, the runtime can optimize
execution with dynamic load balancing, fault tolerance, and other
adaptive techniques.

Previous work on automating process virtualization has explored
compiler approaches, source-to-source refactoring tools, and run-
time methods. These approaches achieve virtualization with differ-
ent tradeoffs in terms of portability (across different architectures,
operating systems, compilers, and linkers), programmer effort re-
quired, and the ability to handle all different kinds of global state
and programming languages. We implement support for three dif-
ferent related runtime methods, discuss shortcomings and their
applicability to user-level virtualized process migration, and com-
pare performance to existing approaches. Compared to existing
approaches, one of our new methods achieves what we consider
the best overall functionality in terms of portability, automation,
support for migration, and runtime performance.
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1 INTRODUCTION

As high performance computing systems continue to evolve into
exascale, application developers are being asked difficult questions.
Can their code scale up to exascale? Can it make use of heteroge-
neous compute nodes? What about different memory technologies
or network interconnects? Can it tolerate network latency given
the increased relative costs of data movement? Can it use multi-
scale or other dynamic methods to increase simulation resolution
only where needed, in areas of interest? At the same time, different
questions are being posed by another class of emergent computing
systems— the cloud. Is your application readily deployable in the
cloud? Can it optimize performance for the different cluster con-
figurations there? What happens if the price of compute resources
changes during a run- can the job be stopped and restarted from
that point later on? What if a hardware node fails during the run?

Concurrent with these hardware advances, asynchronous many-
task runtime systems are proving their ability to manage resources
dynamically in response to changing application and hardware
behaviors. Task-based programming systems such as Legion [3],
HPX [14], Charm++ [1], and Chapel [6] are able to monitor per-
formance during execution and introspectively adapt execution on
the fly. They do so in part by taking advantage of different pro-
gramming models that have been designed from the ground up
with asynchrony, heterogeneity, and fault resilience in mind. Their
unique programming models also dictate, however, that porting
any existing code to them requires significant programmer effort.
Serial portions of code that constitute the lowest level tasks can
usually be left as is, but the parallel control flow must be rewritten.
For legacy codes, this is often a non-starter due to code complexity
and the developer effort required. Consequently, effort has been put
into making MPI interoperation work with these tasking models,
though that still requires part of the application to be rewritten, and
then execution has to be handed off between MPI and the tasking
runtime’s scheduler which requires synchronization [13].

An alternative approach is to reimagine the execution model of
existing parallel programming models or libraries, such that the
existing code can be run on the tasking runtime system. MPC [18]
and Adaptive MPI [12] are examples of such an approach applied
to the MPI programming interface [10]. MPI is widely used in the
high performance computing domain and as of now lacks high-
level, easy to use support for some of the key features that tasking


https://doi.org/10.1145/3547276.3548522
https://doi.org/10.1145/3547276.3548522

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

runtimes offer such as efficient integration with shared memory
programming models, dynamic load balancing, and fault resilience.
In order to fulfill this promise, these runtimes rely on the technique
of process virtualization.

Process virtualization, as we define it, refers to the abstraction
of operating system processes such that code meant to run as a
process can instead be run on a thread. For example, a code that
uses a mutable global variable (such as in figure 2) can not be
virtualized as is, since the global variable itself will be shared among
multiple threads. We refer to the process of converting a code, either
manually or automatically, to a virtualizable code as privatization.
Process virtualization allows abstracting the notion of an MPI rank,
which typically in a library-based MPI implementation is equivalent
to a process, instead creating and running multiple MPI ranks as
user-level threads within each process. The runtime system then
manages the scheduling and communication between ranks, even
supporting dynamic migration of ranks across address spaces at
runtime. Process virtualization is, consequently, key to enabling
adaptive runtime features to work on a legacy MPI application, and
fully automatic privatization support is a common goal of runtimes
like AMPI or MPC.

Previous work has attempted to automate process virtualiza-
tion, with differing degrees of success. In this work, we summarize
the state of the art privatization methods, discuss advantages and
limitations of each, and then implement support for three novel
runtime privatization methods in AMPI, the last of which achieves a
new degree of applicability to legacy codes with greater portability
across compilers and linkers, high performance in multiple aspects,
and support for advanced features such as dynamic rank migration.
This work is important in making the advanced runtime features of
AMPI and others like it available to legacy applications that need
them.

2 BACKGROUND

2.1 Adaptive MPI

Adaptive MPI is an implementation of the MPI standard developed
on top of Charm++ and its dynamic runtime system. Ranks are virtu-
alized as migratable user-level threads rather than processes, so that
users can run with more ranks than cores, i.e. overdecomposition,
as shown in Figure 1. Overdecomposition enable message-driven
cooperative scheduling of ranks on each core. This works by having
a rank suspend its user-level thread when encountering a blocking
communication call that it cannot immediately fulfill: instead of
busy-waiting on the network, the scheduler context switches to
another rank if one is ready to execute. User-level thread (ULT)
context switches are fast (~100 nanoseconds), significantly faster
than network communication latency.

Overdecomposition, combined with migratability of ranks, en-
ables dynamic load balancing. The runtime can monitor perfor-
mance metrics such as execution time per rank, idle time per PE,
the communication graph, and more in order to make rebalancing
decisions. The main benefit of this kind of rebalancing based on
dynamic rank migration is that the rebalancing logic is separate
from the application logic: rank’s do not have to be aware of their
placement at any given time since the Charm++ runtime performs
efficient distributed location management of ranks. There is also no

Evan Ramos, Sam White, Aditya Bhosale, and Laxmikant V. Kale

user serialization code needed to enable migration, since AMPI’s
Isomalloc memory allocator (inspired by [2]) completely automates
migrating the user-level thread stack and heap.

AMPI relies on rank or process virtualization for latency hiding,
dynamic load balancing, and dynamic job shrink/expand. Privatiza-
tion, then, is key to making AMPI usable by legacy codes. If a user
is writing an AMPI program from scratch, they can simply write an
MPI program that does not use mutable global state and it will be
virtualizable without any need for de facto privatization. However,
the majority of users either already have MPI applications or want
to use existing libraries in their application. Thus, automating code
privatization as much possible is highly desirable.

2.2 Privatization Issues

To make privatization more concrete, Figure 2 provides a small
code sample of an unsafe MPI program and a possible output of
executing it in a virtualized manner (with multiple ranks in the
same OS process). In the example output here, note that the zeroth
rank sets the global variable my_rank’s value to its rank number 0,
then blocks in the MPI_Barrier() call. Next, rank 1 will be scheduled
and set my_rank’s value to its rank number 1 before suspending
in the barrier. When both ranks are awakened from the barrier’s
completion in some ordering, they will both print the value of the
last rank’s number instead of their own, as shown in Figure 3. Any
MPI user would expect this program to output “rank: 0” and “rank: 1”
in some order, and this discrepancy would lead to correctness issues
in a more complex code. This is because the variable is global, and
global variables are defined in a per-process manner. Static variables
are similarly defined per-process and suffer from the same issues
in terms of virtualization.

Examples of unsafe variables are, in C/C++, non-const global
and static variables. In Fortran, implicit or explicit save variables
are static, and non-parameter module variables and common blocks
are examples of global variables. We note that global variables
whose value is written only once to the same value across all ranks
are actually safe, since their value can be shared across all ranks.
This is true of num_ranks in Figure 2. Thread unsafe virtualization
issues arise when ranks are writing different values to the same
variable, and that is why privatization is needed. And since legacy
MPI applications and libraries can contain hundreds or thousands
of such mutable global/static variables spread throughout the code
in a pervasive manner, automatic privatization is essential.

2.3 Existing Privatization Techniques

Here we survey the state of the art privatization techniques. They
vary in degrees of automation; applicability to different program-
ming languages and kinds of variables; portability across compilers,
linkers, operating systems, and architectures; performance in terms
of runtime and memory overhead; and in support for migratability
of data.

2.3.1 Manual code refactoring. is what we call the process
of rewriting a code so that it does not use mutable global state.
This usually requires encapsulating all global/static variables in an
application into one or more structures which can then be allocated
on the stack or heap and pointers to it passed around to all functions
that reference the state. It also involves avoiding the use of thread
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Figure 1: AMPI applications typically run with more virtual ranks than cores or PEs. Each virtual rank has its own user-
level thread stack and heap memory. Notice that all ranks here share the same set of global and static variables by default.
Privatization is necessary to provide each rank with their own separate copy of these variables. Also note that dynamic load
balancing can alter the mapping of ranks to cores during execution. Here rank 1 has migrated from core 0 to core 15 on node 0.
In practice, there are often multiple virtual ranks per core, and one OS process per socket or node. Ranks can even migrate

across nodes.

#include <mpi.h>
#include <stdio.h>

int my_rank;
int num_ranks;

int main(int argc, charxx argv)

{
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI_Comm_size (MPI_COMM_WORLD, &num_ranks);

MPI_Barrier (MPI_COMM_WORLD);
printf("rank: %d\n", rank_global);

MPI_Finalize();
return 0;

}

Figure 2: MPI hello world program in C with global variables.

$ ./hello_world +vp 2
rank: 1
rank: 1

Figure 3: Possible output from executing the MPI hello world
program (above) with 2 Virtual Processors (VPs) in 1 OS pro-
cess.

unsafe library calls, such as C/C++ strtok and getopt. If a code
only contains a few such variables that are rarely referenced, this
manual code refactoring process can be doable, since the changes
themselves are simple and mostly mechanical to make. However,
oftentimes in legacy codes the effort required is significant due to

the use of hundreds or thousands of global/static variables being
used throughout the code.

2.3.2 Source-to-source code refactoring tools. can automate
the tedious refactoring process described above. Photran [16] [17]
was developed for Fortran codes as an Eclipse plug-in that worked
on Abstract Syntax Trees of the code. It encapsulated all glob-
al/static variable references into a single Fortran derived type (equiv-
alent to a C structure), and passed that structure to all functions that
referenced the global/static variables. These methods have much
promise, since altering the source code remains the most portable
method of privatization, so long as the solution can work on vari-
ous programming languages and ideally incorporate programmer
input on grouping variables into multiple structures rather than
a single large structure for the entire codebase. We also note that
this method can be combined with other methods which are semi-
automatic, such as TLSglobals (described below).

2.3.3 Swapglobals. relies on details of the ELF object format to
automatically privatize global variables [23]. ELF maintains a Global
Offset Table of all global variables, and the table can be swapped
out when context switching ranks at runtime. This method does
not require any changes to the source code and works with Fortran
and C/C++ code. However, it does not handle static variables, since
they are not stored in the global offset table. It only works on x86
architectures that fully support ELF, and it requires either a version
of the 1d linker 2.23 or older or a patched version of 1d 2.24 or
newer in order to avoid the linker optimizing out the GOT pointer
reference at each global variable access. Additionally, it does not
work in AMPI’s SMP mode (illustrated in figure 1), since there
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can only be 1 GOT actively in use per OS process at a given time,
whereas SMP mode has multiple user-level schedulers running
concurrently on each core within an OS process. The non-SMP
mode restricts AMPI to having one process per core, rendering
some of its optimizations for shared address space communication
ineffective [22]. This, combined with its limited portability and
applicability to static variables, led to Swapglobals being deprecated.

2.3.4 TLSglobals. depends on the user tagging their mutable
global/static variable declarations with the thread_local attribute
[23]. The runtime then switches out the TLS segment pointer at
each user-level thread context switch. This method works on C/C++
and Fortran (using the __thread attribute in C, thread_local in C++,
and OpenMP’s threadprivate directive in Fortran), and on static
and global variables alike. So far, it only works on Linux and Mac
operating systems and on x86 architectures, though it could work
on others. It also requires GCC or a recent version of the Clang
compiler (v10.0+), because it requires support for their -mno-tls-
direct-seg-refs option which forces the compiler to access TLS vari-
ables through the segment pointer always. As such, it introduces
an indirection to each privatized variable access, which can re-
sult in performance degradation. We have extended TLSglobals to
work with shared object linking and to work on ARM and Power
architectures as well.

2.3.5 Compiler automated TLS variable tagging. has been
developed for MPC with support in the Intel compiler and with
patched version of GCC available [4]. The user specifies a compiler
option (-fmpc-privatize) which tells the compiler to automatically
treat all global/static variables as if they were declared as a thread-
local variables. It removes the need for users to identify and tag all
unsafe variable declarations, and otherwise performs at runtime
like TLSglobals. The runtime performance in turns depends on TLS
variable access being as fast as access to unprivatized variables,
which is architecture specific. This method also requires access
to all dependent libraries in source code format so they can be
recompiled with the special compiler support. MPC also includes
support for hierarchical local storage, with additional attributes
defined for data that needs to be privatized to varying levels of the
node, core, ULT, or task hierarchy in order to minimize memory
overhead [21].

2.3.6 Process-in-Process (PIP). is a user-level library developed
by Hori et al that can be used to create a shared address space
between processes [11]. It has been used primarily to share mem-
ory at the user-level between multiple MPI processes resident on
the same node for fast intranode communication. To the best of
our knowledge it has not been used for MPI rank virtualization
or overdecomposition in which multiple ranks are co-scheduled
on each PE and can dynamically migrate between nodes, but we
recognized its applicability to this execution model. It relies on
compiling all code into a Position Independent Executable (PIE).
Position independent executables define their contents (including
global and static variables) as offsets from the instruction pointer,
so that the executable can be loaded into an arbitrary location
in virtual memory. This is the default on most modern operating
systems for security reasons. PIP then relies on the glibc-specific,
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non-standard function dlmopen which can be called on the PIE bi-
nary with a unique namespace index to duplicate all code segments,
including the global variables. This method has no compiler require-
ments (except for support for PIE, which is ubiquitous) and does
not require any programmer effort, however, it does require glibc
and a patched version of glibc at that in order to create more than
12 namespace indices (virtualized entities) per OS process. This is a
seemingly arbitrary limit inside glibc’s implementation and so PiP
distributes patched versions of glibc along with its source code to
get around this limitation.

2.4 Shortcomings of Existing Approaches

Existing approaches fall broadly under source code modification
tools, compiler-based approaches, or runtime methods, with some
combining elements of both. We can categorize and evaluate the
existing privatization methods based on several criteria. One being
the degree of automation or amount of application programmer
effort required; another being portability across compilers, linkers,
and operating systems; third being support for many scheduler
threads per OS process, each with their own virtualized entities;
and finally, support for runtime migratability of virtualized entities
between address spaces.

Table 1 summarizes our review of existing privatization meth-
ods by rating each in terms of these criteria. Which criteria are
important to a particular user will vary by their requirements.

3 AUTOMATIC RUNTIME PRIVATIZATION

Based on our desire to avoid portability restrictions such as re-
quiring specific compilers while fully automating privatization, we
found the runtime techniques at the heart of the Process-in-Process
library appealing. This led to us developing support in Adaptive MPI
for three new privatization methods. All three compile the applica-
tion as a Position Independent Executable and duplicate the code
segments for each virtual rank in a process. They differ primarily in
how they duplicate the code, and this has significant consequences
for portability, performance, and the ability to dynamically migrate
ranks.

3.1 PIPglobals

We initially looked into integrating the Process-in-Process library
into AMPI for the purpose of automatic global/static variable priva-
tization. After discussion with its developers, we found that AMPI
did not need to use the PIP library directly, and instead we have
applied concepts from PIP and implemented the parts that we need
from it for our purposes inside AMPI. Doing so also allowed us to
target more architectures than PIP did at the time and to streamline
the startup process by tailoring PIP’s internals to AMPI’s specific
needs. We call this method PIPglobals.

This allowed us to construct a prototype that works for AMPI
privatization. It works by compiling the user program as a Position
Independent Executable and linking it against a special shim of
function pointers. We can not simply compile the application as a
PIE and then call dlmopen, because that would lead to the AMPI
runtime system being privatized along with the application code.
Instead, we need to privatize only the application while running
multiple copies of its code on a single copy of the runtime per OS
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Table 1: Summary of existing privatization methods and their features.

Method H Automation [ Portability [ SMP Mode Support [ Migration Support

Manual refactoring || Poor Good Yes Yes

Photran Fortran-specific | Good Yes Yes

Swapglobals No static vars Linker-specific No Yes

TLSglobals Mediocre Compiler-specific Yes Yes

-fmpe-privatize Good Compiler/linker-specific Yes Not implemented, but possible
Process-in-Process || Good Requires GNU libc extension | Limited w/o patched glibc | Unknown

process. To do so, we refactored AMPI’s headers into a function
pointer shim library that the application links against. At startup, a
small loader utility then calls the glibc-specific function dlmopen
on the user’s PIE binary with a unique namespace index for each
virtual rank. The loader uses disym to locate a special function
linked with the user’s binary, passes it a structure with pointers to
the entire AMPI API in order to populate the PIE binary’s function
pointers. Then it locates and calls the entry point. This dimopen and
dlsym process repeats for each rank. As soon as execution jumps
into the PIE binary, any global variables referenced within it ap-
pear privatized. This is because PIE binaries locate the global data
segment immediately after the code segment so that PIE global vari-
ables are accessed relative to the instruction pointer, and because
dlmopen creates a separate view of these segments in memory for
each unique namespace index. This also means that there is no work
to be done at user-level thread context switch time, and the cost
of accessing global data should be the same as in the unprivatized
code. We anticipated the startup overheads being insignificant for
practical degrees of virtualization (typically in the range of tens of
cores per OS process and roughly ten virtual ranks per core).

We did encounter two limitations. First, we can not support high
degrees of virtualization without using the patched version of glibc
provided with the PIP library. This particularly limits the utility
of the method in SMP mode. Second, we have not been able to
implement support for runtime rank migration, which means an
AMPI program virtualized via PIPglobals can not perform dynamic
load balancing, checkpoint/restart-based fault tolerance, etc. This
is because we cannot intercept the mmap calls that happen from
inside Ild-linux.so in order to allocate them via Isomalloc, AMPI’s
migratable memory allocator. Also we are restricted to GNU/Linux
systems due to the reliance on non-POSIX-standard dlmopen.

3.2 FSglobals

FSglobals takes the same idea of PIPglobals but instead of relocating
the code in memory we copy it onto a shared file system. This has
two main benefits, and one drawback. It makes this method portable
beyond GNU/Linux systems and removes the limit of creating 12
virtual ranks per OS process. At the same time, it does require a
shared file system and space on that file system for each virtualized
rank’s copy of the binary. This can cause FSglobals to be slow during
startup as well, with all the I/O involved. In particular, we did not
expect it to scale well to large runs with many virtual ranks. Overall,
it works similarly to PIPglobals but instead of calling dlmopen with
namespaces we create copies of the PIE binary on the file system
and call the POSIX-standard dlopen.

// In ampi_functions.h:
AMPI_FUNC (int, MPI_Send, const void *msg, int count,
MPI_Datatype type, int dest, int tag, MPI_Comm comm)

// In mpi.h:
#ifdef AMPI_USE_FUNCPTR

#define AMPI_FUNC(return_type, func_name, ...) \
extern return_type (* func_name)(__VA_ARGS__);
#else

#define AMPI_FUNC(return_type, func_name, ...) \
extern return_type func_name(__VA_ARGS__);
#endif

#include "ampi_functions.h"

// In ampi_funcptr.h:

struct AMPI_FuncPtr_Transport {

#define AMPI_FUNC(return_type, func_name, ...) \
return_type (* func_name)(__VA_ARGS__);
#include "ampi_functions.h"

};

// In ampi_funcptr_loader.C (linked with AMPI runtime):
void AMPI_FuncPtr_Pack (struct AMPI_FuncPtr_Transport xx)

{
#define AMPI_FUNC(return_type, func_name, ...) \
x->func_name = func_name;
#include "ampi_functions.h"

}

// In ampi_funcptr_shim.C (linked with MPI user program):

void AMPI_FuncPtr_Unpack (struct AMPI_FuncPtr_Transport =*
x) {

#define AMPI_FUNC(return_type, func_name, ...) \

func_name = x->func_name;

#include "ampi_functions.h"

}

Figure 4: AMPI’s headers had to be refactored as a function
pointer shim library to avoid privatizing its runtime along
with the user application code.

We also note that shared objects are currently not supported
by FSglobals due to the extra overhead of iterating through all
dependencies and copying each one per virtual rank while avoiding
system components, plus the complexity of ensuring each rank’s
program binary sees the proper set of objects.

FSglobals unfortunately suffers from the same issue as PIPglob-
als of not being able to intercept the code segment copies during
initialization. This means that FSglobals does not support dynamic
rank migration either.

3.3 PlEglobals

We developed a third related privatization method in order to sup-
port migration with privatization, which we call PIEglobals. We
consider it the most fully automated method we have so far. As with
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PIPglobals, this method builds the user’s MPI program as a shared
object in Position Independent Executable mode. After initialization
of the AMPI runtime, execution is handed off to a loader utility
that performs PIEglobals setup. It first opens the PIE shared object
using the system’s dynamic linking capabilities, and then calls the
glibc extension dl_iterate_phdr before and after the dlopen call in
order to determine the location of the PIE binary’s code and data
segments in memory. This is useful because PIE binaries access
global variables relative to the instruction pointer, and they locate
the data segment immediately after the code segment. Our PIEglob-
als loader makes a copy of the program’s code and data segments
for each AMPI rank in the job via the Isomalloc allocator, thereby
privatizing their global state while also ensuring that memory can
be migrated across address nodes. It then constructs a synthetic
function pointer for each rank at its new locations and calls it.

No further effort is required of the user to achieve global vari-
able privatization beyond building their program through AMPT’s
toolchain wrappers with the -pieglobals compiler option. Migration
(for load balancing or fault tolerance) works because the code and
data segments have already been allocated via Isomalloc. Any li-
braries and shared objects compiled as PIE will also be privatized.
The technique is broadly portable to GNU/Linux systems, since all
necessary glibc extensions have existed in stable releases of it since
2005. We have validated it on x86, ARM, and POWER architectures.

This method did present a series of development challenges. For
one, shared objects maintain tables of function addresses (the Global
Offset Table) used by the machine code for indirect lookups to other
code, no matter where in memory the code is located, and they
must be updated when PIEglobals moves it to a different location.
Currently this is done by scanning memory inside the data segment
boundaries identified by glibc for contents that look like pointers to
the code’s original location, which we intend to replace with a more
robust method unaffected by false positives. Similarly, C++ codes
can contain global variables that are initialized at startup using
class constructor methods, which sometimes make heap allocations.
With PIEglobals, this takes place at the time dlopen is called on
the user’s binary, before any interception and privatization can
take place. These allocations must be logged, replicated for each
privatized rank created, their contents copied. It is possible for any
arbitrary data written by these constructors to contain pointers to
other globals or heap allocated data, as well as function pointers
(particularly in classes with virtual functions), which must also
be updated. We also found that it is important to open the shared
objects only once per OS process, rather than once per virtual rank,
in SMP mode to avoid crashes in glibc due to interactions between
dlopen and pthreads. Finally, we had to ensure that TLS variables
inside applications and system libraries are privatized correctly
with PIEglobals to each virtual rank by combining the method with
TLSglobals.

Another challenge arose inside AMPI when using PIEglobals:
anywhere that AMPI previously relied on a function pointer being
the same across ranks would break now that each rank had its
own unique copy of the code. AMPI implemented user-defined cus-
tom reduction operators by simply calling the same user function
pointer on whichever core it may need to. With PIEglobals, we had
to modify AMPI to subtract the base address from the user function
address during MPI_Op creation, to store that offset in the op, and
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to then apply that offset to some rank’s base address whenever
applying the reduction operator. Since virtual ranks can migrate
around the system arbitrarily, however, it is possible for a core to
have no virtual ranks assigned to it at a given time. It is possible
then that the runtime would be processing a user-defined reduction
and a core that has no virtual ranks resident on it would like to
combine reduction messages. While we could modify AMPI’s reduc-
tion algorithms to be aware of empty cores and avoid processing
reduction contributions on them, instead forwarding the messages,
since it is rare in practice to have an empty core, we instead require
that all cores have at least virtual rank assigned to them during
reduction processing with PIEglobals enabled and otherwise throw
a runtime error when the reduction can’t be processed.

Debugging code privatized with PIEglobals can also be difficult
because debuggers such as GDB and LLDB do not know what debug
symbols correspond to the manually copied code segments, leaving
backtraces mostly mysterious. For this reason we provide a faculty
to assist in debugging with virtualization, called pieglobalsfind. This
can be called at runtime from within a debugger to translate a
privatized address back to its original location as allocated by the
system’s runtime linker, thereby associating it with any debug
symbols included in the binary.

Performance-wise, we had three initial concerns when develop-
ing PIEglobals. First, we theorized that copies of the code segment
might cause instruction cache misses due to redundant copies of
code being used separately by each rank. Second, we were con-
cerned that startup costs would be significant due to the need for
copying all code segments and then scanning for function pointers
in any heap allocated static objects and updating them to point to
the privatized code segment. Third, we knew that for large codes
the migration overhead would be increased since the code seg-
ments must be migrated along with all the rank’s heap-allocated
memory and its user-level thread stack. In turn, this could make
load balancing more costly. We discuss these aspects further in the
performance evaluation and future work sections.

4 RESULTS

We looked at the runtime performance of our three methods and
compared them against other existing methods. We note that run-
time performance is but one criteria— among portability, developer
effort, suitability to dynamic migration, and maintainability of code-
to consider when evaluating privatization methods for an applica-
tion, but since our three new methods are all runtime-based, the
overheads must be kept reasonably low in order for them to be
effective.

We break down performance into multiple different aspects:
startup or initialization time, context switch overhead, privatized
variable access overhead, and migration overhead. Startup or initial-
ization time is a one-time cost for each program execution, while
privatized variable access and context switch times are expected
to be paid many times per program execution. Migration is typi-
cally infrequent—- done in reaction to dynamic load imbalance or
hard faults- so its price is expected to be paid less often than, say,
privatized variable access.

We used the Bridges-2 supercomputer at the Pittsburgh Su-
percomputing Center for all of our performance measurements.
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Bridges-2 is comprised of three different node type partitions: regu-
lar memory, extreme memory, and GPU. We use the “regular mem-
ory” nodes, each node having 2 AMD EPYC 7742 CPUs with 64
cores and 256 GB of memory. We used GCC v10.2.0 and Charm++’s
MPI networking layer (OpenMPI v4.0.5) on the Mellanox Infiniband
network interconnect. We compare the performance of AMPT’s
existing method TLSglobals against our three new ones: PIPglob-
als, FSglobals, and PIEglobals. We were unable to get Swapglobals
working on this system for comparison.

4.1 Startup overhead

We first measure the time spent in AMPI initialization. For the
various privatization methods, we generally expected the runtime-
based ones to incur higher overhead here. In particular, our three
new methods duplicate the code segments of the application binary
once per virtual rank in each OS process at startup. Compared
to TLSglobals, which only has to copy the TLS segment once per
virtual rank per process, we expected our new methods to perform
worse. That being said, since the initialization or startup overhead
is only paid once per job, some overhead can be tolerated as long
as it does not scale up with the node count.

Startup Overhead
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Figure 5: Startup or initialization overhead for different pri-
vatization methods with 8x virtualization (lower is better).

Figure 5 shows the startup time performance for each privatiza-
tion method for 8 virtual ranks per process. The worst of our new
methods performs 9% worse than the baseline without privatization.
We note that with the exception of FSglobals, which relies on a
shared file system, the cost is constant per-process and does not
increase with node counts.

4.2 Context switch overhead

We next measured the time spent per user-level thread context
switch. This is important because AMPI and runtimes like it use
overdecomposition to hide latency via message-driven scheduling-
increases in scheduling overhead can harm strong scaling perfor-
mance and limit the degree of profitable overdecomposition. Higher
degrees of overdecomposition are desirable for performing efficient
dynamic load balancing.

We wrote a microbenchmark that context switches between two
different user-level threads with each different privatization tech-
nique. Figure 6 shows the results averaged over 100,000 context
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Figure 6: User-level thread context switch time in nanosec-
onds for each privatization method (lower is better).

switches. They demonstrate that TLSglobals and PIEglobals per-
form worst, but we note that all methods measured are within 12
nanoseconds of the baseline (without any privatization technique).
This overhead is very small and does not increase based on the
number of global variables or code size for any of the methods.
Note that the time includes scheduling costs as well, since each
time a ULT vyields, control returns to the scheduler which then
context switches to the next ULT that is ready to execute. TLS-
globals requires updating the TLS segment pointer at each context
switch, while the rest of the privatization techniques do not rely
on any additional work at context switch time, since their global
variables are defined relative to the instruction pointer. We do note
that PIEglobals implies use of TLSglobals where supported, so it
includes the overhead of updating the TLS segment pointer. Hence,
it is not surprising that TLSglobals and PIEglobals perform worst
here, but we deem their minor overhead acceptably low.

4.3 Privatized variable access overhead

Another important characteristic of a privatization method is that
the time spent accessing a privatized variable should not ideally
increase when the variable is privatized. Per-access overheads can
cause significant overheads if those variables are referenced in the
innermost loops of computation. In order to validate that none of
our methods exhibit this overhead, we ran a three dimensional
Jacobi solver where all of the variables in the innermost computa-
tional loops are privatized. Figure 7 shows that indeed there are
no hidden costs to accessing privatized variables compared to un-
privatized variables. We have seen privatized variable access incur
overheads with TLSglobals in the past, but we were not able to
replicate it here. We hypothesize that any overhead can be opti-
mized away by compilers when compiling with optimizations as
we have.

4.4 Migration overhead

One of the main benefits of AMPI compared to traditional MPI
libraries is its runtime support for dynamic load balancing, without
the need for intrusive application code changes. The efficiency of
dynamic load balancing depends in part on the cost of migrating
ranks in AMPI Since PIPglobals and FSglobals do not support
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Jacobi3D Execution Time
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Figure 7: Execution time of Jacobi-3D where all variables
accessed in the innermost loop are privatized global variables
(lower is better).

migration at all, they are not shown here. Ideally privatization
would only increase the migration time proportionally to the cost of
communicating the size of the privatized variables. With PIEglobals,
however, we must communicate not only the globals themselves
but the entire code segments as well. Of course the cost of migration
then depends on the code size. Figure 8 shows results for ADCIRC,
a production simulation code of approximately 50,000 source lines
of code (described below), which has code size of approximately 14
MB that must be additionally migrated under PIEglobals but not
TLSglobals. For reference, our Jacobi-3D standalone benchmark is
around 100 lines of code and has a PIEglobals code segment size of
3 MB. Accordingly, as the (heap) memory per rank increases from 1
MB to 100 MB the proportional impact of PIEglobals on migration
time decreases since the code segment consumes less of the rank’s
memory proportionally. This migration cost could potentially limit
performance for fine-grained applications or when strong scaling
with dynamic load balancing, but since dynamic rank migration is,
in practice, relatively infrequent in applications using dynamic load
balancing, we consider this cost high but acceptable. Furthermore,
we discuss ideas for minimizing the migration cost in our future
work section.

4.5 Instruction cache misses

Another concern we had when implementing our three new meth-
ods was that the code duplication would result in unnecessary
instruction cache misses. This could potentially affect the perfor-
mance of all code, not just privatized variables, and slow down
the entire application’s execution. We used the PAPI performance
monitoring library [5] to track instruction cache misses, but found
the results surprising: on Bridges2 PIEglobals had 22% fewer L1
instruction cache misses than TLSglobals on our a Jacobi-3D bench-
mark. This was unexpected, so we ran the same benchmark on
TACC’s Stampede2 supercomputer, using its Intel Xeon Ice Lake
nodes, and there TLSglobals had 15% fewer L1 instruction cache
misses. Consequently, we are unable to draw a strong conclusion
from PAPI counters on the instruction cache behavior of PIEglobals
at this time— more investigation is needed, although application
results suggest there is no significant overhead here.
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Figure 8: Migration time of virtual ranks with different sizes
of memory allocated, comparing TLSglobals to PIEglobals
(lower is better).

Table 2: ADCIRC speedup of best performing virtualization
ratio over the baseline (without virtualization or load balanc-

ing).

Cores 1 2 4 8 16 | 32 | 64
Speedup % || 13 | 59 | 79 | 70 | 43 | 24 | 17

4.6 Application demonstration: ADCIRC

Lastly, we looked at overall execution time of a production ap-
plication on PIEglobals. Demonstrating PIEglobals on a full-scale
application code is important because the size of the code segments
can increase the memory footprint and migration times as we have
seen. In order to validate the technique, it must be applicable to large
legacy codebases. Of our three novel methods, we only consider
PIEglobals production-worthy because of its support for dynamic
rank migration.

ADCIRC is a Fortran90 MPI code used to simulate storm surge
flooding in real-time. It is used by the US Army Corp of Engineers,
the Federal Emergency Management Agency, and the National
Oceanic and Atmospheric Administration to predict the surge of
rising ocean waters over floodplains, through low-lying marshes,
and into communities during natural disasters such as hurricanes
[19].

The ADCIRC code base originally contained hundred of mutable
global variables across nearly 50,000 source lines of code. Privatizing
all global state manually would be cumbersome, and the code is
used on many different systems by users of varying degrees of HPC
expertise, meaning requiring modifications to compilers or other
system components would be burdensome to maintain and package.
PIEglobals addresses these concerns with its portability and ease of
use.

To validate PIEglobal’s performance, we ran ADCIRC on Bridges2
with varying degrees of virtualization and with load balancing. Dy-
namic load balancing is particularly effective for ADCIRC since the
computationally intensive parts of the domain follow the flow of
water as it spreads over and around obstacles in its path. For dry
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Table 3: Summary of privatization methods and their features, including our three novel runtime methods.

l Method H Automation [ Portability [ SMP Mode Support [ Migration Support ]
Manual refactoring || Poor Good Yes Yes
Photran Fortran-specific | Good Yes Yes
Swapglobals No static vars Linker-specific No Yes
TLSglobals Mediocre Compiler-specific Yes Yes
-fmpe-privatize Good Compiler-specific Yes Not implemented, but possible
PIPglobals Good Requires GNU libc extension Limited w/o patched glibc | No
FSglobals Good Shared file system needed Yes No
PIEglobals Good Implemented w/ GNU libc extension | Yes Yes
Other MPI runtimes that have been developed based on threads
ADCIRC Execution Time rather than processes include TMPI [20], FG-MPI [15], and Habanero-
C MPI [7]. The MPI endpoints proposal [8] seeks to achieve a similar
2048 oo Ix virt == 4x virt w/ LB ——dr—

2x virt w/ LB =% 8x virt w/ LB == ..

Cores

Figure 9: Strong scaling execution time for ADCIRC with
varying degrees of virtualization and with dynamic load bal-
ancing (lower is better).

areas, there is little to no computational work. We use the built-in
GreedyRefineLB load rebalancing strategy.

We note that PIEglobals successfully privatizes this large code
base with hundreds of global variables, and it does so efficiently and
portably while supporting dynamic rank migration. The overall
result is that ADCIRC is able to perform between 79% and 13%
better than the baseline without virtualization and load balancing
thanks to PIEglobals. Even at the limits of strong scaling where
communication tends to dominate performance we see a 17% im-
provement, and we expect more tuning of load balancing frequency
and strategy can yield greater speedups as well.

5 RELATED WORK

We discussed the most directly related prior work at length in
Section 2. To summarize, existing methods have taken varied ap-
proaches such as source-to-source refactoring tools [16], compiler
extensions [4], runtime TLS segment switching [23], hierarchi-
cal extensions to TLS [21], and runtime ELF Global Offset Table
switching [23]. We took particular inspiration from the Process-
in-Process library and its runtime techniques for shared address
space programming [11]. Our PIEglobals method improves on PIP’s
portability and support for virtual rank migrartion, while avoiding
the need to patch glibc for SMP mode support or high virtualization
ratios.

communication model as these except in a standardized approach
that gives users the ability to choose the number of endpoints
without requiring full-on process virtualization. Instead the user
must manage memory more carefully, since the change in execu-
tion model is not transparent to legacy codes. Similar to the MPI
endpoints proposal, OpenSHMEM contexts have been proposed
to enable increased communication concurrency and overlap [9].
Process virtualization could potentially be applied to OpenSHMEM
and other parallel programming models as well.

6 CONCLUSION

With the emergence of exascale class systems and cloud comput-
ing platforms, HPC application developers are facing a variety of
challenges in evolving their codes forward to new levels of perfor-
mance and simulation capabilities, all while ensuring correctness
and maintainability. At the same time, task-based programming
models are growing in appeal with their automated scheduling
capabilities, asynchronous data movement support, and dynamic
resource management features. However, since the investment in
production software is large— often sustained over decades— the
prospect of rewriting it for a new programming model can be daunt-
ing. Virtualization of existing codes is one approach to facilitate
this transition, with fully automatic privatization being the ideal
method of accomplishing it.

In this work we summarized the current state of the art ap-
proaches to code privatization and discussed the advantages and
limitations of each, before detailing our three new runtime meth-
ods and evaluating them for performance. We believe that one of
our new methods, PIEglobals, is the best privatization method de-
veloped yet in terms of portability across different architectures
and compilers, applicability to both C/C++ and Fortran codes, run-
time performance, and support for runtime migration of virtualized
entities. It enables running legacy applications that we could not
practically virtualize before on top of AMPI for its dynamic run-
time support. Of course, for a particular runtime, application, and
execution environment the importance of these criteria will be
weighed differently. We place particular importance on the degree
of automation, the amount of developer effort and expertise needed
to apply it, support for migratability, portability across popular
systems, and performance, especially minimizing context switch
overhead and privatized variable access costs.
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For future work, we plan on continuing to validate and test
PIEglobals against production application codebases. We plan on
exploring the use of dynamic binary instrumentation tools for scan-
ning heap allocated static objects at startup for pointers that need
updating to the privatized code segment. We also plan on adding
support for Mac OS and on investigating memory optimizations.
In particular, we are looking into reducing the code bloat issue of
memory usage in PIEglobals by mapping the code segments into
virtual memory from a single file descriptor using mmap. Further,
we could potentially reduce its migration memory overhead by
changing Isomalloc to only migrate segments of code that differ
across different ranks. Having a way to detect read-only global
variables and not duplicate them could reduce memory footprint
per-rank as well.
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