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Abstract. The anaerobic gut fungi (AGF) represent a coherent phylogenetic clade within the

Mycota. Twenty genera have been described so far. Currently, the phylogenetic and evolutionary
relationships between AGF genera remain poorly understood. Here, we utilized 53
transcriptomic datasets from 14 genera to resolve AGF inter-genus relationships using
phylogenomics, and to provide a quantitative estimate (amino acid identity) for intermediate rank
assignments. We identify four distinct supra-genus clades, encompassing genera producing
polyflagellated zoospores, bulbous rhizoids, the broadly circumscribed genus Piromyces, and the
Anaeromyces and affiliated genera. We also identify the genus Khoyollomyces as the earliest
evolving AGF genus. Concordance between phylogenomic outputs and RPB1 and D/D2 LSU,
but not RPB2, MCM7, or ITS1, phylogenies was observed. We combine phylogenomic analysis,
and AAI outputs with informative phenotypic traits to propose accommodating 13/20 AGF
genera into four families: Caecomycetaceae fam. nov. (encompassing genera Caecomyces and
Cyllamyces), Piromycetaceae fam. nov. (encompassing the genus Piromyces), emend the
description of fam. Neocallimastigaceae to only encompass genera Neocallimastix,
Orpinomyces, Pecramyces, Feramyces, Ghazallomyces, and Aestipascuomyces, as well as the
family Anaeromycetaceae to include the genera Qontomyces, Liebetanzomyces, and
Capellomyces in addition to Anaeromyces. We refrain from proposing families for the deeply
branching genus Khoyollomyces, and for genera with uncertain position (Buwchfawromyces,
Joblinomyces, Tahromyces, Agriosomyces, Aklioshbomyces, and Paucimyces) pending
availability of additional isolates and sequence data. Our results establish an evolutionary-
grounded Linnaean taxonomic framework for the AGF, provide quantitative estimates for rank
assignments, and demonstrate the utility of RPB1 as additional informative marker in

Neocallimastigomycota taxonomy.
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Introduction

Members of the anaerobic gut fungi (AGF) represent a phylogenetically, metabolically, and
ecologically coherent clade in the kingdom Mycota [1]. Twenty genera and thirty-six different
species have been described so far [2]. A recent review has provided detailed description of
current genera and resolved historical inaccuracies and synonymies within the
Neocallimastigomycota [2]. Further, criteria for the identification and characterization, as well as
guidelines for genus- and species-level rank assignment for novel AGF isolates have recently
been formulated [3]. In spite of such progress, the phylogenetic and evolutionary relationships
between various genera within the Neocallimastigomycota are currently unclear. Similarities in
specific microscopic traits (zoospore flagellation, thallus development, and rhizoidal growth
patterns) across genera have been identified; and the significance of using such traits for
proposing higher order relationship has been debated [4-6]. As well, phylogenetic analysis using
two ribosomal loci: the internal transcribed spacer region 1 (ITS1) and D1/D2 region of the large
ribosomal subunit (D1/D2 LSU) has yielded multiple statistically-supported supra-genus
groupings, although such topologies were often dependent on the locus examined, region
amplified, taxa included in the analysis, and tree-building algorithm employed [7-9].

Therefore, while phenotypic and phylogenetic analyses suggest the existence of supra-
genus relationships within the Neocallimastigomycota, the exact nature of such groupings is yet
unclear. Approaches that utilize whole genomic and/or transcriptomic (henceforth referred to as
—omics) datasets represent a promising tool towards resolving such relationships [10-14].
Comparative genomics approaches (e.g. calculation of shared Kmer (Kmer overlap) [15, 16],
average nucleotide identity (ANI) [17], identification of genomic syntenic blocks [18]) have

been increasingly utilized in taxonomic studies, aided by the development of lower cost high
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throughput sequencing technologies and the wider availability of bioinformatic analysis tools.
More importantly, the development and implementation of phylogenomic approaches have been
crucial in resolving high-rank [13], and intra-clade (e.g. [19]) phylogenies within fungi.
Phylogenomic analysis involves the identification of groups of single-copy orthologous genes in
the group of interest followed by individually multiple alignments of each orthologous
gene.aligning such genes. Analysis to determine a species tree can then be performed on either
the concatenated alignment of all genes to obtain a single phylogeny of the group in question, or
on the individual alignments via coalescence of individual gene trees. In addition, the inferred
gene trees canoutput from such approaches could also be compared to single gene phylogenies to
assess their value and potential utility for taxonomic assessment and ecological surveys.

Within a Linnaean taxonomic framework, taxonomic associations between genera are
accommodated in the intermediate ranks of families, orders, and classes. Currently, AGF genera
are recognized in a single family (Neocallimastigaceae), order (Neocallimastigales), and class
(Neocallimastigomycetes) in the phylum Neocallimastigomycota [20, 21]. It is interesting to note
that a nomenclature novelty entry in Index Fungorum database (IF550425) proposes an
additional family (4naeromycetacea) with the genus Anaeromyces as its sole member, although
no detailed justification for such a proposal was provided. Indeed, all current genera in the AGF,
including Anaeromyces, are assigned to the family Neocallimastigaceae in recent publications
[2, 3], reviews [4. 5.31-34 36], and databases (Mycobank, and Index Fungorum). Regardless, it is
clear that the current intermediate rank taxonomic outline of AGF genera has not been proposed
based on a detailed comparative phenotypic and phylogenetic analysis of relationships between
genera. Rather, it reflects the cumulative and progressive recognition of the phylogenetic and

phenotypic distinction of the Neocallimastigomycota when compared to all other fungal clades.
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89  The earliest studies on AGF taxonomy [22] proposed accommodating them into a family
90  (Neocallimastigaceae) within the chytrid order Spizellomycetales, a reflection of zoospore
91  ultrastructure similarity; and emended the description of Spizellomycetales order to include
92  zoopsores with multiple flagella. Ten years later, Li et al. [23] used cladistic analysis of 42
93  morphological and ultrastructural characters to demonstrate the distinction of the AGF when
94  compared to members of the Chytridiomycetes, hence elevating the anaerobic gut fungi from a
95  family to an order (Order Neocallimastigales). Molecular analysis using concatenated protein-
96  coding genes as well as rRNA genes [21, 24, 25], and several morphological and ultrastructural
97  differences from other Chytridiomycetes [26] necessitated their recognition as a phylum
98  (Neocallimastigomycota) with one class (Neocallimastigomycetes), a view that has recently been
99  corroborated via phylogenomic analysis [13]. Indeed, currently published taxonomic outlines,
100  e.g. [20], and databases (e.g. GenBank [27], and Mycocosm [28]) recognize the AGF at the rank
101  of phylum within the Mycota.
102 The last decade has witnessed a rapid expansion in the number of described genera within
103 the Neocallimastigomycota (2, 4, 5, 29-34]. Due to such expansion, as well as the continuous
104  recognition of the value of genome-based taxonomy in resolving relationships and
105  circumscribing ranks in fungal taxonomy [10, 13, 14]; we posit that a lineage-wide
106  phylogenomic assessment is warranted to resolve inter-genus relationships and explore the need
107  for intermediate ranks to establish a proper Linnaean-based outline for the phylum. Here, we
108  conducted transcriptomic sequencing on multiple additional AGF genera isolated and
109  characterized in our laboratory, and combined these datasets with previously available AGF
110  transcriptomes and genomes to resolve the inter-genus relationships within the

111 Neocallimastigomycota. Based on our results, we propose accommodating AGF described
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genera into four distinct families to reflect the observed inter-genus relationships. In addition, we
provide quantitative amino acid identity (AAI) for circumscribing such families, and test the

utility of multiple single genes/loci as additional markers for resolving AGF phylogeny.
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116  Materials and Methods

117  Cultures. Transcriptomes and genomes from fifty-two strains representing fourteen AGF genera
118  were analyzed (Table 1). Of these, transcriptomes of twenty strains, representing six genera for
119  which no prior sequence data were available were sequenced as part of this study. Many of the
120  analyzed strains have previously been described as novel genera or species by the authors [5, 30-
121 32, 34] (Table 1). Others possessed identical features to previously described type strains and
122 were designated as conferre (cf.) strains (Table 1). Few were identified to the genus level and
123 given an alphanumeric strain name designation (Table 1).

124  RNA extraction, Sequencing, quality control, and transcripts assembly. [solates were grown
125  in rumen fluid medium with cellobiose as the sole carbon source [35] to late log/early stationary-
126  phase (approximately 48 to 60 h post inoculation). Cultures were vacuum filtered to obtain

127  fungal biomass then grounded with a pestle under liquid nitrogen. Total RNA was extracted

128  using Epicentre MasterPure yeast RNA purification kit (Epicentre, Madison, WI) according to
129  manufacturer’s instructions and stored in RNase-free Tris-EDTA buffer. Transcriptomic

130  sequencing using Illumina HiSeq2500 platform and 211150 bp paired-end library was

131  conducted using the services of a commercial provider (Novogene Corporation, Beijing, China),
132 or at the Oklahoma State University Genomics and Proteomics center. The RNA-seq data were
133 quality trimmed and de novo assembled with Trinity (v2.6.6) using default parameters. For each
134  data set, redundant transcripts were clustered using CD-HIT [36] with identity parameter of 95%
135 (¢ 0.95). The obtained nonredundant transcripts were subsequently used for peptide and coding
136  sequence prediction using the TransDecoder (v5.0.2)

137  (https://github.com/TransDecoder/TransDecoder) with a minimum peptide length of 100 amino

138  acids. Assessment of transcriptome completeness per strain was conducted using BUSCO [37]
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139  with the fungi odb10 dataset modified to remove 155 mitochondrial protein families as

140  previously suggested [38].

141  Phylogenomic analysis. The phylogenomic analysis includes 20 newly sequenced and 32

142 existing AGF genomic and transcriptome sequences (Table 1) [38-43]. Five Chytridiomycota
143 genomes were also included as the outgroup (Chytriomyces sp. strain MP 71, Entophlyctis

144 helioformis JEL80S, Gaertneriomyces semiglobifer Barr 43, Gonapodya prolifera JELAT8, and
145  Rhizoclosmatium globosum JEL800 [44, 45]). The “fungi odb10” dataset including 758

146  phylogenomic markers for Kingdom Fungi was retrieved from BUSCO v4.0 package, and used
147  in our analysis. Profile hidden-Markov-models of these markers were created and used to

148  identify homologues in all included fifty-eight fungal proteomes using hmmer3 (v3.1b2)

149  employed in the PHYling pipeline (https://doi.org/10.5281/zenodo.1257002). A total of 670 out
150  of'the 758 “fungi_odb10” markers were identified with conserved homologs in the 57 AGF and
151  Chytrids genomes, which were then aligned and concatenated for the subsequent phylogenomic
152  analyses. The final input data include 491,301 sites with 421,690 distinct patterns. The IQ-TREE
153  v1.7 package was used to find the best-fit substitution model and reconstruct the phylogenetic
154  tree with the maximume-likelihood approach.

155 Average amino acid identity. We calculated Average Amino acid Identity (AAI) values for all
156  possible pairs in the dataset using the predicted peptides output from TransDecoder.LongOrfs.
157  AAl values were generated using the aai.rb script available as part of the enveomics collection
158  [46]. Through reciprocal all versus all protein Blast, AAI values represent indices of pairwise
159  genomic relatedness [47]. Since its introduction in 2005 [47] as a means for standardizing

160  taxonomy at ranks higher than species, AAI has been extensively used in bacterial and archaeal

161  genome-based taxonomic studies [48-50]. However, AAI has been utilized only sparsely in the
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162  fungal world (e.g. [51, 52], with genome-based quantitative comparisons (e.g. Jaccard index of
163  genomic distance (the fraction of shared k-mers), identification of syntenic blocks, and Average
164  Nucleotide Identity (ANI) [15, 18]) being more heavily utilized and often for delineating lower
165 taxonomic level (e.g. species) boundaries. AAI however, has the advantage of being readily

166  conducted on the predicted peptides from transcriptomic datasets, as it uses amino acid

167  sequences. The ease of obtaining transcriptomic rather than genomic sequences for AGF (mostly
168  due to the extremely high AT content in intergenic regions and the extensive proliferation of
169  microsatellite repeats, often necessitating employing multiple sequencing technologies for

170  successful genomic assembly) makes the use of AAI for delineation of taxonomic boundaries
171  more appealing.

172 Single gene phylogenetic analysis. Two ribosomal loci (D1/D2 LSU, and ITS1) and four

173  protein-coding gene trees (RNA polymerase II large subunit (RPB1), RNA polymerase Il second
174 largest subunit (RPB2), Minichromosome maintenance complex component 7 (MCM?7), and
175  Elongation factor 1-alpha (EF1a)) were evaluated. Sequences for ITS1 and D1/D2 LSU were
176  either obtained from prior studies [5, 9, 30-32, 34, 53] or were bioinformatically extracted from
177  genomic assemblies [54]. Amino acids sequences of RPB1, RPB2, MCM?7 and EF1a were

178  obtained from the Anaeromyces robustus genome (GenBank assembly accession number:

179  GCA 002104895.1), and used as bait for Blastp searches against all predicted proteomes in all
180  transcriptomic datasets. Sequences for each protein, as well as for the rRNA loci were aligned
181  using MAFFT with default parameters. The alignments were used as inputs to [Q-TREEtree [55,
182  56] first to predict the best substitution model (using the lowest BIC criteria) and to generate

183  maximum likelihood trees under the predicted best model. The “~alrt 1000 option for

184  performing the Shimodaira-Hasegawa approximate-likelihood ratio test (SH-aLRT), “-abayes”
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185  option for performing approximate Bayes test, and the “~bb 1000 option for ultrafast bootstrap
186  (UFB) were added to the IQ-TREE command line, which resulted in the generation of

187  phylogenetic trees with three support values (SH-aLRT, aBayes, and UFB) on each branch.

188  Nucleotide sequencing accession number. Raw [llumina RNA-seq read sequences are

189  deposited in GenBank under the BioProject accession number PRINA847081 and BioSample
190  accessions numbers SAMN28920465- SAMN28920484. Individual SRA accessions are

191  provided in Table 1.

192

10
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193 Results

194  Sequencing. Transcriptomic sequencing yielded 15.6 to 23.8 (average 19.82) million reads that
195  were assembled into 22,649 to 106,687 total transcripts, 20,599 to 103,405 distinct transcripts
196  (clustering at 95%; average 40,099), and 13,858 to 28,405 predicted peptides (average 19,667)
197  (Table S2). Assessment of transcriptome completion using BUSCO yielded high values (73.63 to
198  99.5%) for all assemblies (Table S1).

199  Resolving inter-genus relationships in the Neocallimastigomycota. Multiple supra-genus
200  relationships were well supported in all phylogenomic outputs. Four distinct clades were

201  observed (Figure 1 and Table 2). Clade one constituted members of the genera Pecoramyces,
202 Orpinomyces, Neocallimastix, Feramyces and Aestipascuomyces. Within this large clade, a

203 strong support for Pecoramyces and Orpinomyces association, as well as for Neocallimastix,
204  Aestipascuomyces, and Feramyces association was observed (Figure 1). Phenotypically, this
205  clade encompasses all the AGF genera producing polyflagellated zoospores; and all members of
206  the clade, with the exception the genus Pecoramyces produce polyflagellated zoospores. Clade
207  two constituted members of the genera Cyllamyces and Caecomyces. Phenotypically, this clade
208  encompasses the two genera exhibiting a bulbous rhizoidal growth pattern in the

209  Neocallimastigomycota. Clade three constituted members of the genus Piromyces. Compared to
210  all other AGF genera, the genus Piromyces currently exhibits high intra-genus sequence

211  divergence based on ITS1 and LSU analysis [3]. The genus was first defined to encompass all
212 phenotypes with monocentric thalli, filamentous rhizoidal system, and monoflagellated

213 zoospores [57]. However, subsequent isolation efforts clearly demonstrated that such phenotype
214  is prevalent in a wide range of phylogenetically disparate genera across the

215  Neocallimastigomycota [4, 5, 29]. Currently, Piromyces encompasses all taxa phylogenetically
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216  affiliated with the first described monocentric, monoflagellated, and filamentous isolate

217  (Piromyces communis [57]). Clade four constituted members of the genera Anaeromyces,

218  Liebetanzomyces, and Capellomyces. The clade encompasses genera with filamentous rhizoidal
219  system, and monoflagellated zoospores. The genus Anaeromyces produces polycentric thalli,
220  while the genera Liebetanzomyces, and Capellomyces produce monocentric thalli.

221 Few genera clustered outside these four clades described above. The genera Paucimyces
222 and Aklioshbomyces formed distinct branches at the base of clades 1 and 2, respectively (Figure
223 1). Finally, the position of the genus Khoyollomyces was unique and solitary, being consistently
224  located at the base of the tree, suggesting its deep-branching and relatively ancient origin.

225  Estimating AAI identities. AAI values were estimated using the entire dataset of predicted
226  peptides (Figure 2). Intra-genus AAI values ranged between 72.58-99.6% (Average 92.16
227  8.55). However, the low intra-genus divergence estimates were only confined to the broadly
228  circumscribed genus Piromyces. Indeed, excluding Piromyces from this analysis, intra-genus
229  AAIl values ranged between 87.78-99.6%, (Average 95.67 *+ 3.41). Pairwise AAI values for

230  members of different genera within the same clade (intra-clade inter-genus AAI values) ranged
231  between 75.44-85.48% (Average 79.58 + 2.47). Maximum intra-clade inter-genus divergence
232 was observed between members of the genera Neocallimastix and Pecoramyces (Average 77.5 +
233 0.91) and the genera Neocallimastix and Orpinomyces (Average 77.4 = 0.59) in clade 1, while
234  minimal intra-clade inter-genus divergence were observed between Caecomyces and Cyllamyces
235 inclade 2 (83.7% % 0.4); as well as the genera Anaeromyces and Capellomyces (Average 84.5 +
236 0.57), the genera Anaeromyces and Liebetanzomyces (Average 83.9 £ 0.3), and the genera

237  Capellomyces and Liebetanzomyces (Average 85.1 £ 0.18) in clade 4. Inter-clade AAI values

238 averaged 73.15 = 1.57, and ranged between 65.27% (between members of the genera Piromyces

12
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239  and Neocallimastix) and 76.64 % (between members of the genera Capellomyces and

240  Pecoramyces).

241  Single gene phylogenetic analysis for resolving AGF inter-genus relationships. We tested
242  whether supra-genus clades topology as well as within clades inter-genus relationships observed
243 in phylogenomic analysis were retained in single gene phylogenies (Figure 3-8). One ribosomal
244 locus (D1/D2 LSU) and one protein-coding gene (RPB1) retained the monophylly of all four
245  clades described above (Figure 3, 5, Table S2). As well, both D1/D2 LSU and RPB1 phylogenies
246  resolved all inter-genus relationships within all clades in the Neocallimastigomycota (Figure 3,
247 5). On the other hand, ITS1, RPB2, MCM?7, and EFla phylogenies each recovered three out of
248  the four supra-genus clades delineated above. The monophylly of clade 1 was not retained in
249  ITSI1 and RPB2 phylogenies (Figure 4, 6, Table S2), the monophylly of clade 4 was not retained
250  in MCMT7 phylogeny (Figure 7), and the monophylly of clade 3 was not retained in EFla

251  phylogeny (Figure 8). Further, within the clades that were supported, few inter-genus

252 relationships were compromised in ITS1 (genus Anaeromyces), and EF1a (genera

253 Neocallimastix, Orpinomyces, and Pecoramyces) phylogenies.

254

13
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255 Discussion

256  Identifying and circumscribing supra-genus relationships within the

257  Neocallimastigomycota. Our phylogenomic analysis identified four distinct statistically

258  supported supra-genus clades in the Neocallimastigomycota (Table 2, Figure 1). Clades’

259  boundaries were based on phylogenomic tree topologies, while taking taxonomically informative
260  morphological characteristics into account. For example, phylogenomic analyses placed the

261  genus Paucimyces at the base of clade 1, and the genus Aklioshbomyces at the base of clade 2.
262  Exclusion of Paucimyces from clade 1 was based on its production of monoflagellated zoospores
263  [32], as opposed to the polyflagellated zoospores produced by all members of clade 1 (with the
264  exception of Pecoramyces). Similarly, exclusion of Aklioshbomyces from clade 2 was based on
265 its filamentous rhizoidal growth pattern; which contrasts the bulbous growth pattern exclusive to
266  both genera (Caecomyces and Cyllamyces) constituting clade 2.

267 AAI values were further examined to quantitatively circumscribe these clades. A clear
268  delineation of the clade boundary was evident using AAI values (Figure 2). Within genus, AAI
269  values ranged between 87.78-99.6% (or 72.58-99.6% if including values for the broadly

270  circumscribed genus Piromyces). Inter-genus/ Intra-clade AAI estimates ranged between 75.44-
271  85.48%, while inter-clade values ranged between 65.27-76.64% (Figure 2). These values are
272 similar to AAI values estimated for delineating the Ascomycetes family Hypoxylaceae [51], but
273  are higher than the arbitrary cutoffs used for delineating taxa in the prokaryotic world (~45-65%
274  for family, ~65-95% for genus [48]). Therefore, we suggest using 85.0%, and 75.0% AAI cutoff
275  wvalues as a guide for circumscribing genera, and families, respectively, in the

276  Neocallimstigomycota. Currently, the genus Piromyces represents the sole genus in clade 3. AAI

277  estimates using the currently available Piromyces species —omics datasets suggest broader inter-
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278  genus AAl range when compared to other genera (Figure 2). This is a reflection of the fact that
279  the genus was originally circumscribed based on phenotypic, rather than a combination of

280  phenotypic and molecular data. Future availability of additional —omics data coupled to a

281  detailed comparative morphotypic analysis of its described species could possibly lead to

282  splitting this genus (the sole member of clade 3 here) into several clades.

283 Up to this point, only ITS1 and D1/D2 LSU loci have been evaluated for assessment of
284  phylogenetic positions of genera within the Neocallimastigomycota, as well as for ecological
285  culture-independent surveys [7, 9]. To test the utility of other phylomarkers commonly utilized
286  in fungal taxonomy, we assessed additional four protein-coding genes, and examined

287  concordance between each of the six loci (ribosomal ITS1 and D1/D2 LSU, and RPB1, RPB2,
288  MCM7, and EF-1a) and phylogenomic trees topologies. Our results demonstrate that D1/D2
289  LSU, currently regarded as the phylomarker of choice for genus-level delineation [9, 58] and
290  utilized as a marker in culture-independent diversity surveys [9], is equally useful in resolving
291  supra-genus clades delineated by phylogenomics (Figures 3, S1). As well, our results add the
292  protein-coding gene RPBI to the list of phylomarkers that could be used for inter-genus, and
293  supra-clade delineation (Figures 5, S2). As such, values of 8.5%, and 2.1% for LSU, and RPB1,
294 respectively (these values correspond to the 75-percentile value for intra-clade inter-genus

295  divergence based on the distance matrix from the alignments used to generate the maximum
296 likelihood trees in Figures 3, 5) seem to circumscribe these clades. The high sequence similarity
297  in the protein-coding gene RPBI1 is quite surprising since, typically, higher levels of divergence
298  are usually observed in protein coding genes when compared to the non-protein-coding

299  ribosomal genes [59]. Other phylomarkers tested here were only successful in resolving three of

300 the four clades, and some also compromised intra- and inter-genus relationships (Figures 4, 6-7).
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301  Such failure to resolve genus-level relationships appears to be a function of high sequence

302  similarities in these genes. For example, the inter-genus divergence values between Orpinomyces
303  and Pecoramyces RPB2 sequences ranged between 0-1.8%, which are comparable to the values
304  within the genus Orpinomyces. This has resulted in failure of RPB2 to resolve the Orpinomyces-
305  Pecoramyces relationship. The unreliability of the ITS1 locus for clade delineation has been

306  described before, and is mainly due to length variability between genera and high within-strain
307  sequence divergence [7, 9].

308  Phylogenetic position of taxa currently lacking genome or transcriptome sequences. The
309 fifty-three transcriptomic datasets examined cover fourteen out of the twenty currently described
310  AGF genera. The remaining six genera (Qontomyces, Buwchfawromyces, Agriosomyces,

311 Ghazallomyces, Tahromyces, and Joblinomyces) are all currently represented by a single species.
312  Further, most of these genera appear to exhibit extremely limited geographic and animal host
313  distribution patterns [4, 5, 9, 29]. The phylogenetic position of these six genera could hence be
314  only evaluated using available D1/D2 LSU (and to some extent ITS1) sequence data from taxa
315  description publications. D1/D2 LSU and ITS1 phylogenies strongly support placement of the
316  genus Ghazallomyces as a member of clade 1 (Figure 3, 4) [5]. Further, the genus produces

317  polyflagellated zoospores (an exclusive trait for clade 1), filamentous rhizoid (similar to all taxa
318 inclade 1), and monocentric thalli (similar to all genera in clade 1, except Orpinomyces), further
319  supporting its recognition as member of clade 1[5]. Similarly, phylogenetic analysis using D1/D2
320 LSU and ITS1 supports the placement of genus Oontomyces as a member of clade 4 (Figure 3,
321  4). Members of the genus Oontomyces exhibit similar phenotypes (monocentric thalli,

322  monoflagellated zoospores, and filamentous rhizoidal growth patterns) to the genera

323 Liebetanzomyces and Capellomyces in the clade [29].
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324 Interestingly, phylogenetic analysis using the D1/D2 region of LSU rRNA genes places
325  three of the genera for which no —omics data is available (Buwchfawromyces, Tahromyces, and
326  Joblinomyces) in a single distinct monophyletic clade (Figure 4). Future availability of —omics
327  datais needed to confirm such topology. Finally, while the genus Agriosomyces has a distinct
328  position in both ITS1 and LSU phylogenies (Figure 4, ITS), no clear association to any of the
329  clades was apparent. As such, -omics data is hence needed to resolve the position of this genus.
330  Rank assignment for supra-genus clades in the Neocallimastigomycota. Our analysis

331 identifies and circumscribes four distinct clades in the Neocallimastigomycota. What taxonomic
332 rank should be assigned to accommodate these clades? The Linnaean classification system places
333 groups of genera into families. A recently proposed definition identifies fungal families as “a
334  compilation of genera with at least one inherent morphological feature that they commonly share
335  or which makes them distinct” [60]. The clades described in this study agree with such a

336  definition, being a compilation of genera forming a distinct and monophyletic lineage with

337  strong statistical support, and most of which share a common distinctive morphological feature
338 (Table 2).

339 We propose retaining all currently described AGF genera in a single order

340  (Neocallimastigales), and a single class (Neocallimastigomycetes) in the phylum

341  Neocallimastigomycota. Such proposition is based on the lack of fundamental differences in their
342 cellular structures, metabolic capabilities, ecological distribution, and life cycle phases in all

343  currently described genera, coupled to the observed AAI values, when compared to the few

344  studies utilizing this approach in fungi [51].

345 Beyond the four clades described above, we refrain from proposing an additional family

346  for the D1/D2 LSU-defined and well-supported clade encompassing the genera
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347  Buwchfawromyces, Tahromyces, and Joblinomyces pending the availability of confirmatory

348  phylogenomic data. As well, we refrain from proposing new families for the genera

349  Khyollomyces, Aklioshbomyces, Paucimyces, and Agriosomyces, due to their current solitary

350  positions in phylogenomic trees (Figure 1), although such proposition would be justified by the
351  isolation of characterization of additional novel taxa and the availability of —omics data from
352  such taxa. Such genera should be regarded as orphan taxa for the present time. The proposed

353  novel families would be named after the first described genus within the clade: Clade 1 =

354  Neocallimastigaceae comprising the genera Neocallimastix (Braune 1913 [61], Vavra and Joyon
355 1966 [62], Heath et al. 1983, [22]), Ghazallomyces (Hanafy et al. 2021) [5], Orpinomyces

356  (Breton et al. 1989 [63], Barr et al. 1989 [64]), Pecoramyces (Hanafy et al. 2017) [30],

357  Feramyces (Hanfay et al. 2018 [31]), and Aestipascuomyces (Stabel et al. 2020, [34]), Clade 2 =
358  Caecomycetaceae fam. nov., comprising the genera Caecomyces (Gold et al. 1988) [57] and

359  Cyllmayces (Ozkose et al. 2001) [33], clade 3 = Piromycetaceae fam. nov., comprising the genus
360  Piromyces (Gold et al. 1988) [57], and clade 4 = Anaeromycetaceae, comprising the genera

361  Anaeromyces (Breton et al. 1990) [65], Capellomyces (Hanafy et al. 2021) [5], Liebetanzomyces
362  (Joshi et al. 2018) [66], and Oontomyces (Dagar et al. 2015) [29]. Such arrangement would

363  necessitate amending the description of the family Neocallimastigaceae, currently encompassing
364  all twenty genera, to include only the six genera stated above, rather than all twenty currently
365  described AGF genera, as well as assigning the genera Anaeromyces (Breton et al. 1990),

366  Capellomyces (5], Liebetanzomyces (Joshi et al. 2018) [66], and Oontomyces (Dagar et al. 2015)

367  to the previously proposed (IF550425) nomenclature novelty family Anaeromycetaceae.

368  Typification

369 Emended description of fam. Neocallimastigaceae.
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370  Obligate anaerobic fungi with monocentric or polycentric thalli and filamentous rhizoidal

371  system. Zoospores are polyflagellated in all described genera, with the exception of the

372  monoflagellated genus Pecoramyces. The clade is defined by phylogenomic, phylogenetic and
373  morphological characteristics. Currently accommodates the genera Neocallimastix (Braune 1913
374  [61], Vavra and Joyon 1966 [62], Heath et al. 1983, [22]), Ghazallomyces (Hanafy et al. 2021)
375  [5], Orpinomyces (Breton et al. 1989 [63], Barr et al. 1989 [64]), Pecoramyces (Hanafy et al.
376  2017)[30], Feramyces (Hanfay et al. 2018 [31]), and Aestipascuomyces (Stabel et al. 2020,

377 [34)).

378  The emended description of the family Neocallimastigaceae is generally similar to that provided
379  for the family Neocallimastigaceae [22], and order Neocallimsatigales [23], with amendments to
380  exclude bulbous rhizoidal growth, and to circumscribe its boundaries to encompass a

381  monophyletic clade of six genera. The clade is circumscribed by phylogenomic analysis, AAI
382  values, and confirmed by LSU and RPB1 phylogenetic analyses, as well as morphological

383  characteristics. The emended family encompasses the genera Neocallimastix (Braune 1913 [61],
384  Vavra and Joyon 1966 [62], Heath et al. 1983) [22], Orpinomyces (Breton et al. 1989, Barr et al.
385 1989)[70, 71], Pecramyces (Hanafy et al 2017) [32], Feramyces (Hanafy et al 2018) [33],

386  Ghazallomyces (Hanafy et al 2020) [5], and Aestipascuomyces (Stabel et al 2020) [8].

387  Type genus: Neocallimastix Braune 1913 [61], Vavra and Joyon 1966 [62], Heath et al. 1983,
388  [22].

389  Mycobank ID: MB25486.

390 Description of Caecomycetaceae fam. nov. Obligate anaerobic fungi that produce

391  monoflagellated zoospores, monocentric or polycentric thalli that are either uni- or

392  multisporangiate, and a bulbous rhizoidal system with spherical holdfasts. The clade is
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393  circumscribed by phylogenomic analysis, AAI values, and confirmed by LSU and RPBI1

394  phylogenetic analyses, as well as morphological characteristics. Currently accommodates the
395  genera Caecomyces (Gold et al. 1988) [57] and Cyllmayces (Ozkose et al. 2001) [33].

396  Type genus: Caecomyces (Gold et al 1988) [57].

397  Mycobank ID: MB844401

398 Description of Piromycetaceae fam. nov. Obligate anaerobic fungi that produce

399  monoflagellated zoospores, monocentric thalli, and filamentous rhizoidal system. The clade is
400  circumscribed by phylogenomic analysis, AAI values, and confirmed by LSU and RPB1

401  phylogenetic analyses, as well as morphological characteristics. Currently accommodates the
402  genus Piromyces (Gold et al. 1988) [57].

403  Type genus: Piromyces (Gold et al. 1988) [57].

404  Mycobank ID: MB844402

405 Emended description of Anaeromycetaceae fam. nov. Obligate anaerobic fungi that produce
406  monoflagellated zoospores, monocentric or polycentric thalli, and filamentous rhizoidal system.
407  The clade is circumscribed by phylogenomic analysis, AAI values, and confirmed by LSU and
408 RPBI phylogenetic analyses, as well as morphological characteristics. Currently accommodates
409  the genera Anaeromyces (Breton et al. 1990) [65], Capellomyces (Hanafy et al. 2021) [5],

410  Liebetanzomyces (Joshi et al. 2018) [66], and Oontomyces (Dagar et al. 2015) [29].

411  Type genus: Anaeromyces, Breton et al. 1990 [65].

412 Mycobank ID: MB550425.
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Tables.

Table 1. List of strains used in this study.

Genus species Strain Genome Transcriptome SRA accession Assembled Reference

BioProject BioProject number transcriptome TSA

accession accession accession number

number number
Aestapascuomyces | dupliciliberans R1 PRINA847081 | SRR19612713 This study
Aklioshbomyces papillarum WTSI1 PRINA847081 | SRR19612712 This study
Anaeromyces contortus ABS23 PRINA847081 | SRR19612701 This study
Anaeromyces contortus C3G PRINA489922 GGWR00000000.1 | [67, 68]
Anaeromyces contortus C3J PRINA489922 GGWO00000000.1 | [67, 68]
Anaeromyces contortus G3G PRINA489922 GGWP00000000.1 | [67, 68]
Anaeromyces contortus Na PRINA489922 GGWNO00000000.1 | [67, 68]
Anaeromyces contortus 02 PRINA489922 GGWQ00000000.1 | [67, 68]
Anaeromyces mucronatus YES05 PRINA437872 [38]
Anaeromyces robustus S4 PRINA330692 | PRINA250973 [69]
Caecomyces communis churrovis | PRINA347164 | PRINA393353 [39, 41]
Caecomyces communis FD27 PRINA847081 | SRR19612700 This study
Caecomyces communis TB33 PRINA847081 | SRR19612699 This study
Caecomyces communis Iso3 PRINA489922 GGXE00000000.1 [67, 68]
Caecomyces communis Brit4 PRINA489922 GGWS00000000.1 | [67, 68]
Capellomyces forminis Cap2a PRINA847081 | SRR19612698 This study
Cyllamyces aberensis TSB2 PRINA847081 | SRR19612697 This study
Feramyces austinii WSF2 PRINA489922 GGWTO00000000.1 | [67, 68]
Feramyces austinii WSEF3 PRINA489922 GGWU00000000.1 | [67, 68]
Khyollomyces ramosus 7044 PRINA847081 | SRR19612696 This study
Liebetanzomyces | polymoprphus Orc37 PRINA847081 | SRR19612695 This study
Neocallimastix frontalis EC30 PRINA847081 | SRR19612694 This study
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Neocallimastix frontalis Hef5 PRINA489922 GGXJ00000000.1 [67, 68]
Neocallimastix frontalis 27 PRINA437872 [38]
Neocallimastix cameroonii Gl PRINA262392 | PRINA251043 [69]
Neocallimastix cameroonii lanati PRINA658393 | PRINA677809 [43]
Neocallimastix cameroonii G3 PRINA489922 GGXC00000000.1 | [67, 68]
Orpinomyces Jjoyonii AB6 PRINA847081 | SRR19612711 This study
Orpinomyces Jjoyonii AB3 PRINA847081 | SRR19612710 This study
Orpinomyces joyonii ABC-24 PRINA847081 | SRR19612709 This study
Orpinomyces joyonii D3A PRINA489922 GGWV00000000.1 | [67, 68]
Orpinomyces joyonii D3B PRINA489922 GGWWO00000000.1 | [67, 68]
Orpinomyces joyonii D4C PRINA489922 GGWX00000000.1 | [67, 68]
Orpinomyces joyonii SG4 PRINA437872 [38]
Paucimyces polynucleatus BB3 PRINA847081 | SRR19612708 This study
Pecoramyces ruminantium Cl1A PRINA200719 | PRINA284193 [67,70]
Pecoramyces ruminantium S4B PRINA489922 GGWY00000000.1 | [67, 68]
Pecoramyces ruminantium FS3C PRINA489922 GGXF00000000.1 [67, 68]
Pecoramyces ruminantium FX4B PRINA489922 GGWZ00000000.1 | [67, 68]
Pecoramyces ruminantium YC3 PRINA489922 GGXA00000000.1 | [67, 68]
Pecoramyces ruminantium Orc32 PRINA847081 | SRR19612707 This study
Pecoramyces ruminantium AS31 PRINA847081 | SRR19612706 This study
Pecoramyces ruminantium AS32 PRINA847081 | SRR19612705 This study
Pecoramyces ruminantium F1 PRINAS517297 | PRINAS17315 [71]
Piromyces finnis finn PRINA330696 | PRINA268530 [69]
Piromyces finnis DonBl11 PRINA847081 | SRR19612704 This study
Piromyces cryptodigmaticus | Axs23 PRINA847081 | SRR19612703 This study
Piromyces cryptodigmaticus | Al PRINA489922 GGXB00000000.1 | [67, 68]
Piromyces potentiae B4 PRINA489922 GGXH00000000.1 | [67, 68]
Piromyces sp. NZB19 Ors32 PRINA847081 | SRR19612702 This study
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420

Table 2. Clades circumscribed in this study.

AAI
Clades Genera Average intra-genus Average inter-genus Average inter-clade Phenotype
(range) intra-clade (range) (range)
Pecoramyces, Orpinomyces, Polyflagellated
Clade 1 Neocallimastix, 96.89 (87.78-99.49) 82.95 (75.44-78.99) 73.21 (65.27-76.64) zoospores except for
Aestipascuomyces, Feramyces Pecoramyces
Bulbous rhizoidal
Clade 2 Cyllamyces, Caecomyces 94.01 (88.02-98.37) 84.05 (83.08-83.67) 72.8 (67.39-74.91) growth pattern
Monocentric thalli,
Clade3 | Piromyces 79.35(72.58-99.06) | 79.35 (72.58-99.06) 7261 (65.27-75.61) | monoflagellated
zoospores, filamentous
rhizoidal growth pattern
Filamentous rhizoidal
growth pattern,
Clade 4 | Anacromyces, Liebetanzomyces, | o6 5593 07.99.6) 84.41(83.58-8548) | 73.75(67.25-76.64) | monoflagellated

Capellomyces

zoospore, all
monocentric thallus

except Anaeromyces
Aklioshbomyces NA NA 73.54 (69.1-75.42)
Paucimyces NA NA 74.26 (68.14-76.98)
Khyollomyces NA NA 71.88 (66.47-73.41)
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421  Figure legends.

422 Figure 1. Phylogenomic tree of Neocallimastigomycota based on 670 genome-wide markers
423  highlighting the family-level relationships within the phylum. The tree was reconstructed using
424  the maximum likelihood approach implemented in the IQ-TREE package. Number on each

425  branch represents the ultrafast bootstrap value suggesting the robustness of the taxa joining. The
426  scale bar at the bottom indicates the number of substitutions per site in the analysis. Isolate

427  names at tree tips are color coded by clade (clade 1, purple; clade 2, lavender; clade 3, orange;
428  clade 4, light blue).

429  Figure 2. Upper triangle matrix (A) and box and whisker plots (B) for the AAI values obtained
430  for all possible pairwise comparisons of the datasets analyzed in this study. (A) Isolate names in
431  rows and columns are color coded by clade (clade 1, purple; clade 2, lavender; clade 3, orange;
432  clade 4, light blue). The AAI values for each clade are shown within a thick border. Intra-genus
433  values are shown in red text with pink highlight, intra-clade/ inter-genus values are shown in
434 Dlue text with light blue highlight, while inter-clade values are shown in green text with light
435  green highlight. Values for the three genera unaffiliated with the 4 clades are highlighted in grey.
436  (B) Box and whisker plots constructed using the values in (A). Intra-genus values (red) are

437  shown both including and excluding the genus Piromyces. Intra-clade/ inter-genus values are
438  shown in blue. Inter-clade values are shown in green. Each box plot spans the region between the
439  25-percentile to 75-percentile, while the whiskers limit the minimum and maximum scores

440  excluding the outliers. The thick line inside the box marks the median, while the ‘x” corresponds
441  to the average value.

442  Figure 3. Maximum likelihood phylogenetic tree constructed using the D1/D2 region of the LSU

443  rRNA genes of all cultured and described Neocallimastigomycota genera. Sequences were either
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444  obtained from prior studies [5, 9, 30-32, 34, 53] or were bioinformatically extracted from

445  genomic assemblies [54], and GenBank accession numbers are shown for each branch label.
446  Sequences were aligned using MAFFT with default parameters. 1Q-tree [55, 56] was used to
447  choose the best substitution model (TN+F+G4 was chosen using the lowest BIC criteria) and to
448  generate the maximum likelihood tree. Support values at each node correspond to SH-aLRT,
449  aBayes, and ultrafast bootstrap. Clades are coded using the same color code in Figure 2 (clade 1,
450  purple; clade 2, lavender; clade 3, orange; clade 4, light blue), and boxes with the same colors
451  are used to delimit each clade. The support values at the nodes corresponding to each clade are
452  shown in bold red text, and the node itself is shown as a red dot. The tree was rooted (root not
453  shown) using the D1/D2 region of the LSU rRNA gene from Chytriomyces sp. WB235A

454  (GenBank accession number DQ536493.1).

455  Figure 4. Maximum likelihood phylogenetic tree constructed using the ITS1 region of all

456  cultured and described Neocallimastigomycota genera. Sequences were either obtained from
457  prior studies [5, 9, 30-32, 34, 53] or were bioinformatically extracted from genomic assemblies
458  [54], and GenBank accession numbers are shown for each branch label. Sequences were aligned
459  using MAFFT with default parameters. 1Q-tree [55, 56] was used to choose the best substitution
460  model (TN+F+G4 was chosen using the lowest BIC criteria) and to generate the maximum

461  likelihood tree. Support values at each node correspond to SH-aLRT, aBayes, and ultrafast

462  bootstrap. Branch labels are color coded using the same color code in Figure 2 (clade 1, purple;
463 clade 2, lavender; clade 3, orange; clade 4, light blue), and boxes with the same colors are used
464  to delimit each clade. The support values at the nodes corresponding to each clade are shown in

465  bold red text, and the node itself is shown as a red dot. The tree was rooted (root not shown)
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466  using the ITS1 region from Chytriomyces sp. JEL176 (GenBank accession number

467  AY349118.1).

468  Figure 5. Maximum likelihood phylogenetic tree constructed using the protein sequences of the
469 largest subunit of DNA-dependent RNA polymerase II (RPB1). Amino acids sequence of RPB1
470  was obtained from the Anaeromyces robustus genome (GenBank assembly accession number:
471  GCA 002104895.1), and used as bait for Blastp searches against all predicted proteomes in all
472  transcriptomic datasets. Sequences were aligned using MAFFT with default parameters. 1Q-tree
473 [55, 56] was used to choose the best substitution model (LG+R2 was chosen using the lowest
474  BIC criteria) and to generate the maximum likelihood tree. Support values at each node

475  correspond to SH-aLRT, aBayes, and ultrafast bootstrap. Branch labels are color coded using the
476  same color code in Figure 2 (clade 1, purple; clade 2, lavender; clade 3, orange; clade 4, light
477  blue), and boxes with the same colors are used to delimit each clade. The support values at the
478  nodes corresponding to each clade are shown in bold red text, and the node itself is shown as a
479  red dot. The tree was rooted (root not shown) using the RPB1 sequence from Batrachochytrium
480  dendrobatidis JAMS81 (GenBank accession number EGF82086.1).

481  Figure 6. Maximum likelihood phylogenetic tree constructed using the protein sequences of the
482  second largest subunit of DNA-dependent RNA polymerase II (RPB2). Amino acids sequence of
483  RPB2 was obtained from the Anaeromyces robustus genome (GenBank assembly accession

484  number: GCA 002104895.1), and used as bait for Blastp searches against all predicted

485  proteomes in all transcriptomic datasets. Sequences were aligned using MAFFT with default
486  parameters. [Q-tree [55, 56] was used to choose the best substitution model (LG+R3 was chosen
487  using the lowest BIC criteria) and to generate the maximum likelihood tree. Support values at

488  each node correspond to SH-aLLRT, aBayes, and ultrafast bootstrap. Branch labels are color
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489  coded using the same color code in Figure 2 (clade 1, purple; clade 2, lavender; clade 3, orange;
490 clade 4, light blue), and boxes with the same colors are used to delimit each clade if the clade is
491  supported. The support values at the nodes corresponding to each clade are shown in bold red
492  text, and the node itself is shown as a red dot. The tree was rooted (root not shown) using the
493  RPB2 sequence from Batrachochytrium dendrobatidis JELA423 (GenBank accession number

494  OAJ42635.1).

495  Figure 7. Maximum likelihood phylogenetic tree constructed using the protein sequences of the
496  DNA replication licensing factor MCM?7. Amino acids sequence of MCM?7 was obtained from
497  the Anaeromyces robustus genome (GenBank assembly accession number: GCA 002104895.1),
498  and used as bait for Blastp searches against all predicted proteomes in all transcriptomic datasets.
499  Sequences were aligned using MAFFT with default parameters. 1Q-tree [55, 56] was used to

500  choose the best substitution model (LG+R3 was chosen using the lowest BIC criteria) and to

501  generate the maximum likelihood tree. Support values at each node correspond to SH-aLLRT,

502  aBayes, and ultrafast bootstrap. Branch labels are color coded using the same color code in

503  Figure 2 (clade 1, purple; clade 2, lavender; clade 3, orange; clade 4, light blue), and boxes with
504  the same colors are used to delimit each clade if the clade is supported. The support values at the
505 nodes corresponding to each clade are shown in bold red text, and the node itself is shown as a
506  red dot. The tree was rooted (root not shown) using the MCM7 sequence from Batrachochytrium
507  dendrobatidis JAMS81 (GenBank accession number XP_006677581.1).

508  Figure 8. Maximum likelihood phylogenetic tree constructed using the protein sequences of the
509  elongation factor 1-alpha (EF-1A). Amino acids sequence of EF-1A was obtained from the

510  Anaeromyces robustus genome (GenBank assembly accession number: GCA 002104895.1), and

511  used as bait for Blastp searches against all predicted proteomes in all transcriptomic datasets.
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512 Sequences were aligned using MAFFT with default parameters. 1Q-tree [55, 56] was used to
513  choose the best substitution model (LG+R2 was chosen using the lowest BIC criteria) and to
514  generate the maximum likelihood tree. Support values at each node correspond to SH-aLRT,
515  aBayes, and ultrafast bootstrap. Branch labels are color coded using the same color code in

516  Figure 2 (clade 1, purple; clade 2, lavender; clade 3, orange; clade 4, light blue), and boxes with
517  the same colors are used to delimit each clade if the clade is supported. The support values at the
518  nodes corresponding to each clade are shown in bold red text, and the node itself is shown as a
519  red dot. The tree was rooted (root not shown) using the EF-1A sequence from Batrachochytrium
520  dendrobatidis JELA23 (GenBank accession number OAJ38128.1).

521
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/1001 MW694897.1 Paucimyces polynucleatus strain BB3
L— MTO085710 Khyollomyces ramosus strain ZS33

MTO085737 Aklioshbomyces papillarum strain WT2
MTO085738 Aklioshbomyces papillarum strain WT2
MTO085739 Aklioshbomyces papillarum strain WT2
MTO085740 Aklioshbomyces papillarum strain WT2
MTO085741 Aklioshbomyces papillarum strain WT2

NR 132000.1 Buwchfawromyces eastonii ABS GE09
NR 132002.1 Buwchfawromyces eastonii ABS GE09
NR_132001.1 Buwchfawromyces eastonii ABS GE09
NR_131999.1 Buwchfawromyces eastonii ABS GE09
MTO085678 Tahromyces munnarensis isolate TDFKJa1927
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Anaeromyces mucronatus ABS23

88.8/1/84
Anaeromyces mucronatus YE505

Anaeromyces contortus C3G
Anaeromyces contortus C3] Clade 4

Anaeromyces contortus O2
99.9/100/83

Anaeromyces contortus NA

Capellomyces sp. Anaspl

Piromyces sp. Axs23
74.3/68.1/82
Piromyces sp. B4

68.9/67.1/56
[ Piromyces sp. BS

77.7/84.8747
Piromyces rhizinflatus YM600 Clade 3

Piromyces communis Ors32
77.7/98.6/61

Piromyces sp. E2

99.9{100/97

Piromyces finnis DonB11

4|100/100/100

Piromyces finnis sp. finn

93 7/100 5 Caecomyces communis strain Brit4

Caecomyces sp. churrovis
100/100/9Pp Clade 2

Caecomyces communis strain Iso3

L Caecomyces communis strain TB33

98.7/100/97

L Aklioshbomyces papillarum strain WTS1
64.7/72.9/50

Neocallimastix lanati

Neocallimastix frontalis sp. 27

74.5/100/99

Neocallimastix californiae
Neocallimastix frontalis strain EC30
Neocallimastix cameroonii strain G3
Aestipascuomyces dupliciliberans strain R1
Pecoramyces ruminantium AS32

Pecoramyces ruminantium FS3C

84.2/96.8/50 | Pecoramyces ruminantium F1

Pecoramyces ruminantium FX4B
1 93.2/100/66 . )
Pecoramyces ruminantium AS31

Pecoramyces ruminantium C1A Clade 1

99/100/58 |L_l| Pecoramyces ruminantium Orc32
Pecoramyces ruminantium S4B

Orpinomyces joyonii strain AB6

92.3/100/84 | Orpinomyces joyonii strain SG4
Orpinomyces joyonii strain D4C
Orpinomyces joyonii strain D3A
Orpinomyces joyonii strain D3B
Orpinomyces joyonii strain ABC-24

Orpinomyces joyonii strain AB3

Orpinomyces joyonii strain SG4

0.07
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Orpinomyces joyonii strain AB6
Orpinomyces joyonii strain SG4
Orpinomyces joyonii strain AB3
Pecoramyces ruminantium AS31
Pecoramyces ruminantium C1A
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium C1A
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium Y C3
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium S4B
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FS3C
L Pecoramyces ruminantium YC3
Pecoramyces ruminantium FX4B
q Pecoramyces ruminantium FX4B
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium FS3C
H Pecoramyces ruminantium AS31
Pecoramyces ruminantium Orc32
Pecoramyces ruminantium F1
Pecoramyces ruminantium C1A
94.7/100/98 Orpinomyces joyonii strain D4C
Orpinomyces joyonii strain D3B
Orpinomyces joyonii strain AB6
Orpinomyces joyonii strain ABC-24
Orpinomyces joyonii strain ABC-24
—— Orpinomyces joyonii strain ABC-24
Pecoramyces ruminantium AS31
— Paucimyces polynucleatus strain BB3
87.5/100/84 Alklioshbomyces papillarum strain WTS1
B Aklioshbomyces papillarum strain WTS1
Aklioshbomyces papillarum strain WTS1
Khyollomyces ramosus Z0O44
Caecomyces communis strain Brit4
Caecomyces communis strain Iso3

90.1/100/85 Caecomyces communis strain Iso3
Caecomyces communis strain FD27
Caecomyces communis strain Iso3 Clade 2
74.7/72.2/84] Caecomyces communis strain TB33

gaecamyces communis stra_ianB333
aecomyces communis strain Iso
100/100/97 Caecom%ces sp. churrovis
Cvllamyces aberensis strain TSB2
r Piromyces rhizinflatus YM600
Piromyces sp. B4
Piromyces sp. B4
Piromyces sp. B4

Piromyces sp. B5
Piromyces finnis DonB11 Clade 3
Piromyces finnis sp. finn

Piromyces sp. Axs23

L‘Pi!'o/m'z’e.\' communis Ors3

Piromyces communis Qrs

Piromyces communis Ors3
76.8/72.9/92 Piromyces sp. Al

{Pirumi'u’.v sp. E2

Anaeromyces mucronatus ABS23
Anaeromyces mucronatus YES505
Anaeromyces contortus C3G
Anaeromyces contortus C3G
Anaeromyces contortus C3G
U Anaeromyces contortus C3J
--/9314/54 Anaeromyces contortus C3G
Anaeromyces contortus C3G
Anaeromyces contortus C3J
Anaeromyces contortus Q2
Anaeroniyces contortus C3G
Anaeromyces contortus 02 Clade 4
Anaeromyces contortus O2
Anaeromyces contortus O2
Anaeromyces contortus G3G
[ Anaeromyces contortus NA

86.1/99.9/86 IiAnaermnyces contortus NA
7

95.96/100/8§

naeromyces contortus O2
Anaeromyces contortus 02
Liebetanzomyces polymorphus Orc37
99.6/100/94 1 Capellomyces sp. Anaspl
Capellomyces /grminis strain Cap2a
L Aestipascuomyces dupliciliberans strain K1

I: eocallimastix frontalis strain EC30

Neocallimastix cameroonii strain G3

Neocallimastix lanati

Neocallimastix californiae
Neocallimastix frontalis strain EC30
Neocallimastix frontalis sp. 27
Neocallimastix frontalis sp. 27
87.6/98.1/98 Neocallimastix frontalis sp. Hef5
Neocallimastix frontalis sp. Het5
Neocallimastix frontalis sp. Hef5

‘re— Neocallimastix frontalis sp. Hef5

Neocallimastix frontalis sp. 27

Neoila.llimast%gron alis 5%727

Neocallimastix ntalis sp.
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Piromyces sp. Al

Piromyces rhizinflatus YM600
89.5/99.6/53| = Piromyces sp. B5

Piromyces finnis DonB11
Piromyces finnis sp. finn

68.3/--/4- Clade 3

Piromyces communis Ors32
Piromyces sp. E2
L Piromyces sp. B4

95.1/100/95

Piromyces sp. Axs23

Orpinomyces joyonii strain AB3
Orpinomyces joyonii strain SG4
Orpinomyces joyonii strain AB6
Orpinomyces joyonii strain ABC-24
95.7Y100/98 | Orpinomyces joyonii strain D3A
Orpinomyces joyonii strain D3B
Orpinomyces joyonii strain D4C
Pecoramyces ruminantium AS31
72.6/99.9/56 Pecoramyces ruminantium FS3C
B Pecoramyces ruminantium YC3
Pecoramyces ruminantium YC3
97.8/100/97] | Pecoramyces ruminantium Orc32
Pecoramyces ruminantium YC3
Pecoramyces rum{nantt‘um FX4B Clade 1 plus Khyollomyces
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium FS3C
Pecoramyces ruminantium AS32
Pecoramyces ruminantium F1
| Pecoramyces ruminantium S4B

L Pecoramyces ruminantium C1A
50.1/97)51

99.8/100/74

Neocallimastix frontalis strain EC30
Neocallimastix frontalis sp. 27

95 5l1100/97 | Neocallimastix frontalis sp. HefS
Neocallimastix cameroonii strain G3
81.6/8§(9/66 Neocallimastix californiae
Neocallimastix lanati

--/6[1.7
Khyollomyces ramosus Z0O44

Feramyces austinii strain WSF2

88/99/p3 Feramyces austinii strain WSF3

92.6/100/70 Aestipascuomyces dupliciliberans strain R1

Caecomyces sp. churrovis
Caecomyces communis strain Iso3
Caecomyces communis strain FD27 Clade 2

P3.8/100/98 Caecomyces communis strain TB33

98.8/100/71 | T_
821.3/99/62

Cyllamyces aberensis strain TSB2

Aklioshbomyces papillarum strain WTS1
L Liebetanzomyces polymorphus Orc37

Anaeromyces mucronatus ABS23
Anaeromyces contortus C3G
Anaeromyces contortus C3]

86.1/99.4/91]
Anaeromyces contortus G3G

Anaeromyces contortus NA
Anaeromyces contortus O2
Anaeromyces mucronatus YES505

Capellomyces forminis strain Cap2a
Capellomyces sp. Anaspl

0.1
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95/100/99 | Ziromyces finnis DonB11
Piromyces finnis sp. finn

Piromyces sp. Al
Piromyces sp. E2
61.4/94/50 _l— Piromyces sp. Axs23
Piromyces rhizinflatus YM600
79.2/67/54] Caecomyces sp. churrovis
Caecomyces communis strain Iso3
78.2/10/901 | Caecomyces communis strain FD27 Clade 2
84.1/98.1/85 Caecomyces communis strain TB33
86.7/97.2/82| __/90(8/57 Cyllamyces aberensis strain TSB2
75.2/8B7/80 Alklioshbomyces papillarum strain WTS1
Piromyces communis Ors32
Piromyces sp. B4
Piromyces sp. B5
Orpinomyces joyonii strain AB3
Orpinomyces joyonii strain D4C
Orpinomyces joyonii strain D3B
Orpinomyces joyonii strain D3A
Orpinomyces joyonii strain ABC-24
65.3/57.1/57 88.3/96.7 32 Orpinomyces joyonii strain AB6
—l_ Neocallimastix frontalis strain EC30
Orpinomyces joyonii strain SG4
_| Neocallimastix frontalis sp. 27 Clade 1
89.7/98.2/78 Aestipascuomyces dupliciliberans strain R1
Pecoramyces ruminantium AS31
Pecoramyces ruminantium AS31
78.7/81.7{67| | Pecoramyces ruminantium F1
95.2/100/84 Pecoramyces ruminantium C1A

72.8/689/76

_l— Neocallimastix lanati
Neocallimastix californiae

Paucimyces polynucleatus strain BB3

— Anaeromyces mucronatus ABS23

83.9/99.8/90 Anaeromyces contortus C3G

Anaeromyces contortus NA

89.3/100/90
Anaeromyces contortus G3G
Anaeromyces mucronatus YE505 Clade 4
Liebetanzomyces polymorphus Orc37
79.1/95.3/87 Capellomyces forminis strain Cap2a

77.7/91.4/95 Capellomyces sp. Anaspl

0.03
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