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Abstract— Deep learning is a powerful tool for enhancing 
performance and increasing the functionalities of a system. 
However, it is challenging to use deep learning to enhance 
hardware-based photonic systems because a large dataset that 
covers the whole operation range of each device is needed for 
achieving an accurate model. However, not all devices in a 
system can be controlled automatically, making the data 
collection process challenging and time consuming. In this letter, 
we use an instantaneous microwave frequency measurement 
(IFM) system to demonstrate the use of generated adversarial 
network (GAN) in deep learning platform for data 
augmentation. With GAN, only 75 sets of experimental data are 
needed to collect manually from the IFM system. The GAN 
augments the 75 sets of experimental data into 5000 sets of data 
for training the model, effectively reduces the amount of 
experimental data needed by 98.75%, and reduces frequency 
estimation error by 10 times. 

 Keywords—Microwave Photonics, Instantaneous Frequency 
Measurement (IFM), Deep Learning, Deep Neural Network 
(DNN), Generated Adversarial Network (GAN), Multilayer 
Perceptron (MLP). 

I. INTRODUCTION 
In recent years, there has been rapid growth and 

development in the field of smart photonics, where machine-
learning algorithms are used to enhance various types of 
photonic systems in terms of functionalities and performance, 
including designing optical components [1], studying optical 
transmission [2], designing of microwave photonic filters [3], 
and measuring of instantaneous microwave frequency [4], to 
name a few. One major hurdle to utilizing machine learning in 
experiments related to photonics and microwave photonic 
systems is the need for a large training dataset. In photonic 
system experiments, those training datasets are usually related 
to a large number of variables that cannot be generated from 
simulation and the dataset have to be captured manually one 
by one through experiment. An insufficient number of training 
datasets would result in inaccurate training of the machine 
learning model [5]. Therefore, the need for a large number of 
training datasets hinders the practical use of machine learning 
in photonics and microwave photonic systems. 

Instantaneous frequency measurement (IFM) is an 
effective way to quickly detect the frequency of the signal of 
interest. Therefore, it is an essential component in air defense 
and military applications including electronic warfare [6], 
radar and satellite communications [7], deceptive intelligent 
systems, missile systems, and counterintelligence systems [8], 

to name a few. However, electronic-based IFM has several 
disadvantages such as being prone to electromagnetic 
interference, narrow bandwidth, and low frequency resolution 
[9]. Photonic-based IFM system has proven to surpass its 
electronic counterpart in the above aspects [10]. However, the 
photonics-based IFM systems may not have the accuracy that 
satisfies frequency-sensitive applications. Recently, machine 
learning has been used to improve the frequency measurement 
accuracy [4] and frequency error to the order of tens of MHz 
for operation range up to 20 GHz. Unfortunately, just like any 
machine learning-assisted microwave photonic system, a 
large amount of experimental dataset that covers a large range 
of parameters is needed to be captured experimentally for 
achieving an accurate machine learning model. This process 
is challenging and time-consuming because not all the 
parameters can be controlled and collected automatically. 
Consequently, significant degradation of the microwave 
photonic system performance would result if an insufficient 
number of datasets is used during the training of the machine 
learning model. 

In this paper, a generated adversarial network (GAN) [5] 
is proposed for use in microwave photonic systems to 
augment real experimental dataset. A photonic-based 
microwave instantaneous frequency measurement system is 
used as the platform to investigate the efficiency of GAN for 
overcoming the challenges of utilizing machine learning in 
photonics-based experiments. According to our study, the 
number of training datasets needed to be experimentally 
captured decreases from 6000 to 75 (98.75% decrease), 
because GAN is capable to augment the 75 experimentally 
captured datasets to 5000 for training, validation, and testing 
of the DNN model. Frequency prediction error of only 5% (5 
MHz over the range of 1 GHz to 16 GHz) and mean square 
error <588 kHz are resulted, essentially decreasing the 
frequency estimation error by 10 times compared with the 
non-GAN deep learning neural network [4].  

II. GENERATED ADVERSARIAL NETWORK AND DEEP 
LEARNING NEURAL NETWORK FOR DATA AUGMENTATION 

IN MICROWAVE FREQUENCY ESTIMATION 
We propose and design a GAN to assist deep neural network 
(DNN) for data augmentation in an experimental microwave 
photonic system, as shown in Fig. 1(a). The GAN consists of 
two sections (i) Generator - a recurrent neural network (RNN)  
based on long short-term memory (LSTM) and bidirectional 



long-short term memory (Bi-LSTM) (ii) Discriminator - a 2D 
convolutional neural network (CNN). The optimized 
hyperparameters that are used in the GAN and DNN are 
summarized in Table. 1 at the last part of the paper. Multi-
layer perceptron (MLP) is used for the DNN with 3 hidden 
layers and each layer has 50 neurons, as depicted in Fig. 1(b). 
With the GAN, 5000 datasets can be generated based on just 
75 experimental datasets. 

 The datasets consist of variations of RF power, frequency 
of the signal of interest, as well as free spectral range (FSR), 
and extinction ratio (ER) of the optical filter pair. The 5000 
datasets generated from GAN are used for training (2500 
datasets), validation (1500 datasets), and testing (1000 
datasets) of the DNN model.  

 

III. PHOTONIC BASED INSTANTANEOUS MICROWAVE 
FREQUENCY MEASUREMENT 

The photonics-based  instantaneous microwave frequency 
measurement setup that we use for studying the GAN is a 
complementary optical power measurement approach, as 
shown in Fig. 2(a) [4]. The unknown microwave signal-of-
interest is modulated onto a single wavelength optical carrier 
(LD), Fig. 2(b)(i), via an electro-optic intensity modulator 
(EOM). The modulator is biased at the null point such that 
carrier suppressed double sideband (CS-DSB) modulation is 
resulted, as illustrated in Fig. 2(b)ii. The CS-DSB signal is 
then sent to an optical comb filter pair with complementary 
spectral responses, i.e. one with a negative slope response 
(constructive interference) and one with a positive slope 
response (destructive interference). As a result, the microwave 
frequency of the signal-of-interest can be determined by 
evaluating the filtered optical power at the filter pair using 
optical power meters [4], as illustrated in Fig. 2(b)iii-iv. The 
filter pair could have a sinusoidal or triangular filtering profile, 

but that triangular profile is used in this experiment to improve 
the linearity and dynamic range of the measurement system. 
An RF signal-of-interest that is sweeping from 1 to 16 GHz 
with a step of 200 MHz is used. 75 datasets are captured 
experimentally by setting the RF power at 0 dB, ER = 20 dB, 
and FSR = 50 GHz, as shown in Fig. 2(c). In a non-GAN-
based DNN system, 6000 datasets are needed for machine 
learning [4], while the proposed GAN-based DNN only needs 
75 experimentally captured dataset, resulting in a 98.75% 
decrease in experimental data needed.  

IV. IMPLEMENTING GAN AND DNN IN PHOTONIC BASED 
INSTANTANEOUS FREQUENCY MEASUREMENT EXPERIMENT 

The 75 datasets that are collected experimentally from the 
photonics-based frequency measurement system are launched 
to the GAN for data augmentation such that 5000 datasets are 
generated. The GAN-generated dataset has RF power between 
0 – 3 dBm with 1 dB step size, FSR between 40 – 60 GHz 
with 5 GHz step size, and ER between 15 – 30 dB with 5 dB 
step size as plotted in Fig. 2(d), as shown by the blue and green 
surfaces for positive slope and negative slope filter outputs, 
respectively. Training, testing, and validation are performed 
in PyTorch (Jupyter notebook Python 3.0) with 1000-50000 
epochs. The number of training, validation, and testing dataset 
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Fig. 2. (a) Schematic illustration of the photonics-based 
microwave frequency estimation system. (b) Illustration of 
optical spectra at a different stage of the frequency estimation 
system. (c) 75 datasets are obtained experimentally for use in 
GAN for data augmentation. (d) A portion of the 5000 
datasets (only datasets with ER = 15 dB, FSR = 40GHz is 
shown) generated from GAN based on the 75 experimental 
data in (c).  
 

Fig. 1. (a) GAN assisted DNN architecture for data augmentation 
in experimental microwave photonic systems. (b) DNN MLP 
architecture for estimating unknown RF frequency. 
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are 2500, 1500, and 1000, respectively. The GAN has a critic 
loss of 0.0497, minimax loss of 0.059, and generator loss of 
0.56. The training of the DNN is stable according to the loss 
vs epochs plot of subplot Fig 3(a). The comparison between 
the predicted and actual measured (orange circle) is on the                
y = a*x + c line, which means that the predicted values and 
the actual value are similar, i.e. an accurate DNN model is 
achieved.  

To evaluate the performance of the trained model, a 
histogram of the absolute frequency error between the 
predicted and actual RF frequency during testing is plotted in 
Fig. 3(b) and (c). Fig. 3(b) represents the histogram without 
GAN, 6000 experimental datasets are needed to achieve an 
MSE loss of 50 MHz and absolute error of 1 MHz [4]. While 
Fig. 3(c) represents the histogram of the DNN model trained 
by the GAN augmented datasets, which shows an absolute 
error of less than 5MHz, and a mean square error < 588 kHz, 
i.e. 10 times improvement in MSE loss is achieved with the 
use of GAN. The majority of instances of error are mainly 
within the -0.1 to 0.1 kHz range as shown in Fig. 3(c). The use 
of GAN not only improves the accuracy of frequency 
estimation but also reduces the need for intensive manual 
capturing of a large amount of experimental data for training 

the DNN model. Also, both processes show a stable error with 
normal distribution in terms of the statistical perspective of the 
data. The GAN technique could be applied to various photonic 
and microwave photonic experiments for practical use of 
machine learning to enhance performance and increase 
functionality. 

Finally, to test the GAN-based frequency estimation 
process, a series of random unknown incoming RF signals 
with different power is taken from the experiment and is 
applied as a series of new real-time testing dataset that the 
DNN model has not seen before. The estimated frequency and 
comparison with the actual frequency are shown in Fig. 4(a). 
The unknown incoming RF signal has a frequency range from 
0 to 16 GHz, and RF power range between 0 to 3 dBm as 
shown in Fig. 4(b). The resultant measured optical power at 
the optical filter pair is between -5 dBm to -30 dBm, as shown 
in Fig. 4(c). The testing dataset not only has different RF 
frequencies, but each dataset also has different RF power. The 
corresponding power of the RF signal series is shown in Fig. 
4(b). The purple data points in Fig. 4(a) correspond to the 
estimated frequency, which matches very well with the actual 
frequency in green crosses. The results in Fig. 4 prove that the 
proposed GAN-based machine learning assisted frequency 
estimation system works well for real-time frequency 
estimation even when the frequency and RF power are 
changing rapidly over time. 

Fig. 3. (a) MLP regression-based comparison between 
estimated RF frequency and actual RF frequency. Insert: MSE 
loss vs epoch for training, validation, and testing. (b) 
Histogram of the absolute frequency error of testing dataset 
without GAN using DNN MLP. (c) Histogram of the absolute 
frequency error of testing dataset with GAN using DNN MLP. 
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Fig. 4. Performance evaluation with RF signal-of-interest 
with different frequency and RF power. (a) Estimated 
frequency and actual frequency. (b) RF power for the 
incoming unknown frequency. (c) Corresponding optical 
power measured at the positive and negative slopes. 
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V. CONCLUSION 
 Although machine learning has shown promising results 

in enhancing the performance of various photonics and 
microwave photonic systems, the need for a large amount of 
training data to obtain an accurate neural network model 
hinders the full exploration of machine learning in the field of 
photonics. In this paper, generated adversarial network (GAN) 
is introduced for augmenting real experimental data to reduce 
the need for intensive manual capturing of data in photonic 
systems as well as to improve frequency estimation accuracy 
in a photonics-based microwave frequency measurement 
system. The amount of experimental datasets needed to be 
captured significantly decreases from 6000 to 75, and the 
GAN is capable of augmenting the 75 datasets into 5000 

datasets for the neural network. Frequency measurement error 
is significantly improved by 10 times with error <5MHz over 
the 1 GHz to 16 GHz frequency range.  
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TABLE I. ARCHITECTURAL DETAILS OF THE DEEP 
LEARNING MODELS 

The optimized hyperparameters for the GAN and DNN 
Parameter Data Augmentation Prediction 

Data algorithm GAN  
Generator (G): RNN Bi-LSTM 

Discriminator (D): CNN 2D 
Conv 3x3 

MLP 

Hidden layers G: 3, D: 3 3 
Neurons in hidden 

layers 
G: 50 

D: 64, 128, 256 
50 

Batch size 200 48 
Dropout rate G: 20%, D: 10% 10% 

Activation function G: Tanh() 
D: ReLU() 

ReLU() 

Optimizer SDG(), RMSprop(), Adam() Adam() 
Input normalization GAN (G-FFT) - 
Layer normalization G: L1, L2 

D: Batch 
MLP 

Loss function Absolute Error, MSE, Critic, 
and Minmax 

MSE 

Learning rate 0.001 0.0001 
Number of epoch 5 (10000 steps/epoch) 1 - 50000 

Number of 
generated Feature 

100 4 

Input noise 
(Gaussian) 

G: 20% - 

# of units in a cell G: 100, D: 100 - 
# of features in a 

cell 
G: 100, D: 100 - 


