

Microbial roles in the terrestrial carbon dynamics during 1901-2016 as simulated by the CLM-Microbe model

Abstract

We applied a microbial-explicit model – the CLM-Microbe – to investigate the dynamics of C in vegetation, litter, soil, and microbes during 1901-2016. The CLM-Microbe model was able to reproduce global averages and latitudinal trends of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR) and soil (SR) respiration, biomass C in fungi (FBC) and bacteria (BBC) in the top 30 cm and 1 m, dissolved (DOC) and soil organic C (SOC) in the top 30 cm and 1 m. In addition, the CLM-Microbe model captured the grid-level variation in GPP ($R^2=0.78$), NPP ($R^2=0.63$), SR ($R^2=0.26$), HR ($R^2=0.23$), DOC in 0-30 cm ($R^2=0.2$) and 0-1 m ($R^2=0.22$), SOC in 0-30 cm ($R^2=0.36$) and 0-1 m ($R^2=0.26$), FBC ($R^2=0.22$) and BBC ($R^2=0.32$) in 0-30 cm, and MBC in 0-1 m ($R^2=0.21$). From the 1900s to 2007-2016, simulated C variables increased by approximately 30 PgC yr^{-1} for GPP, 15 PgC yr^{-1} for NPP, 12 PgC yr^{-1} for HR, 25 PgC yr^{-1} for SR, 1.0 PgC for FBC and 0.4 PgC for BBC in 0-30 cm, 1.5 PgC for FBC, 0.8 PgC for BBC, 2.5 PgC for DOC, 40 PgC for SOC, and 5 PgC for litter C in 0-1 m, and 40 PgC for vegetation C. The relative increases in C fluxes and pools varied across the globe. Increases in vegetation C were closely related to warming and increased precipitation, while C accumulation in microbes and soils was jointly governed by vegetation C input and soil temperature and moisture.

First Author

Liyuan He

San Diego State University

Authors

Jorge L. Mazza Rodrigues

University of California Davis

Melanie A Mayes

ORNL

Chun-Ta Lai

San Diego State University

David Lipson

San Diego State University

Xiaofeng Xu

San Diego State University

View Related
