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Abstract. Understanding the intrinsic patterns of human brain is im-
portant to make inferences about the mind and brain-behavior asso-
ciation. Electrophysiological methods (i.e. MEG/EEG) provide direct
measures of neural activity without the effect of vascular confounds.
The blood oxygenated level-dependent (BOLD) signal of functional MRI
(fMRI) reveals the spatial and temporal brain activity across different
brain regions. However, it is unclear how to associate the high tempo-
ral resolution Electrophysiological measures with high spatial resolution
fMRI signals. Here, we present a novel interpretable model for coupling
the structure and function activity of brain based on heterogeneous con-
trastive graph representation.The proposed method is able to link man-
ifest variables of the brain (i.e. MEG, MRI, fMRI and behavior perfor-
mance) and quantify the intrinsic coupling strength of different modal
signals. The proposed method learns the heterogeneous node and graph
representations by contrasting the structural and temporal views through
the mind to multimodal brain data. The first experiment with 1200 sub-
jects from Human connectome Project (HCP) shows that the proposed
method outperforms the existing approaches in predicting individual gen-
der and enabling the location of the importance of brain regions with sex
difference. The second experiment associates the structure and temporal
views between the low-level sensory regions and high-level cognitive ones.
The experimental results demonstrate that the dependence of structural
and temporal views varied spatially through different modal variants.
The proposed method enables the heterogeneous biomarkers explanation
for different brain measurements.

Keywords: Brain dynamics - Spatio-temporal graphs - Explanations on
graphs.
1 Introduction

The brain activity remains latent construct that could not be directly measured
with present technologies [18]. Non-invasive electrophysiology such as Magneto-
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and electo- phencephalography (M/EEG) shows insights into many healthy and
diseased brain activity at millisecond but lacks spatial resolution. Additional
modalities with higher spatial resolution at millimeter such as Magnetic reso-
nance imaging (MRI), functional MRI(fMRI) and positron emission tomography
(PET) have paved the way to human connectomics in clinical practice. However,
this kind of technique is sluggish to reveal neuronal activity. The challenge of
fusing non-invasive brain measurements is that different technique provides ei-
ther high spatial or temporal resolution but not both[3, 11, 21]. The development
of fMRI, MEG and MRI made it possible to obtain the system level of structural
connectomics and functional connectomics. Many methods have been proposed
to associate the connectomics from different modalities. Simple and direct cor-
relational approaches have been commonly used to link SC and FC [9, 10, 22].
With the prior of SC, dynamic casual model could explain the functional signals
in terms of excitatory and inhibitory interactions [17,5]. Graph models allow the
extraction of system level connectivity properties associated with brain changes
in the life cycle, such as attention and control networks related to late adoles-
cence and aging process, the strength and organization of function connectivity
related to neurological diseases and intrinsic brain activity of behavior perfor-
mance during resting and task state [1,2,4|. Recently, graph harmonic analysis
with Laplacian embedding and spectral clustering have been utilized for reveal-
ing brain organization [16]. Basically, the graph harmonic model use harmonic
components to summarize the spatial patterns with the nodes of the graph. With
the structurally informed components, the relationship among structural connec-
tivity, functional connectivity and behavior performance could be decomposed.

Literature on previous graph based methods that utilizes graph theoretical
metrics to summarize the function connectivity ignores the high-order interac-
tions between ROIs [19, 14, 12]. The existing methods are not very suitable for
the integration of structural connectivity, functional connectivity and behavior
performance for the following reasons:

Lack of individual and group-level explanation: existing methods es-
pecially for fMRI analysis assume that the nodes in the same brain graphs are
translation invariant. Ignoring the correspondence of nodes of different brain
ROIs limits the explanation in individual and group level.

Incomplete and missing data in clinical data collection: due to the
scanner availability and patient demands, it is impossible to do multimodal as-
sessment for all patients. Incomplete or missing data hinders the potential of
multimodal usage. There are very few databases that provides public access to
MEG, MRI and fMRI of the same subjects.

Violation of the brain dynamics information: the existing joint model
uses the linearity assumption among latent variables from different modal mea-
surements. The effective usage includes subject specific integration (structural
connectivity), modal specific association (i.e. fMRI and MEG). However, the
brain is highly dynamic and the linearity assumption is not applicable in many
cases.
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In the paper, we build a novel heterogeneous contrast subgraphs representa-
tion learning based method to exploit the coupling of structural and functional
connectivity from different brain modality. The proposed method has the follow-
ing advantages: 1) The proposed heterogeneous graph representation learning
method utilizes the contrastive learning to explore the coupling information of
different modality. The proposed method with the semantic attention model en-
ables the complex and dynamics link between structural and functional connec-
tivity within each modal measures. The proposed method is capable of modeling
heterogeneous spatio-temporal dynamics and learn the contrast graph structures
simultaneously.

2) The proposed method uses a causal explanation model to improve the
individual and group-level interpretability. The explanation approach helps to
locate the significant brain region with sex difference and neurodevelopment. The
experimental results for gender classification with 1200 subjects from HCP have
shown the performance of the proposed method with incomplete multimodal
data (fMRI and MEG).

3) The proposed method utilizes graph convolution theory to link the brain
structure and function. The experimental results with meta-analysis reveal the
strength of structural-functional coupling patterns among functional connectiv-
ity, structural connectivity and behavior performance.

2 Problem Formulation

To associate heterogeneous multimodal brain measurements, a heterogeneous
graph representation learning with semantic attention is introduced based on
fMRI and filtered MEG data. Next we introduce dynamical neural graph en-
coder framework to associate the spatial and temporal patterns from structural
and functional connectivity of multimodal brain measurements. Then, we give
the details of the multi-view contrastive graph representation learning. The con-
trastive graph learning method makes sure the maximization of mutual infor-
mation of the node representation from one view and the graph representation
from another view. Finally, we discuss the interpretable causal explanations for
the proposed method on graph. The overall framework is illustrated in Fig. 1.
Heterogeneous graph representation learning. We use a graph G, =
(V,&;) to represent the heterogeneous graph representation, with the node type
V = [nlt=1,..,T;i=1,..,N] with N brain ROIs and T time points. The
edge mapping € represents the connection of different brain ROIs in spatial and
temporal domain. The aim of contrastive graph representation is to explore the
spatial and temporal pattern of the fMRI and MEG data. Given two multi-
modal graph G4 and Gg with different time points T4 and T and their corre-
spondence multivariate value X 4 = [x;‘}, x;‘;, ey xf}q} and Xp = [:1:?1 , zi, ey :L"FB]
To integrate manifest variables of the brain with different spatial and temporal
resolution, a dynamical neural graph encoder is proposed to explore the spatio-
temporal dynamics. The data augmentation mechanism introduces a @ifil of P
set of multiview heterogeneous graph for each modality, where P represents the
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Fig. 1: Schematic illustration of the explainable contrastive graph representation
with heterogeneous brain measurements. Top: training process, bottom: expla-
nation process.

total view of the brain measurement after data augmentation (i.e. the number of
filter bands for MEG). We could define its corresponding adjacency matrices as
[Ag,]7 ;. The node representation within each view is defined as Zg‘i and Zgi.
Then we use the heterogeneous latent attention module to aggregate the graph
representation for each modal measurement H4 = fw(Latt(Zg‘l , Z;g‘z J ey Zg‘P)).

2.1 Dynamical Neural Graph Encoder

We define the brain dynamical state with N neurons as 2(t) = f(z,l,t), where
2(t) = [z1(), 22(t), ..., 25 (t)]T represents the internal states of N neuron nodes
at time ¢. f(-) denotes the nonlinear dynamical function of each node. And
1(t) = [11(t),12(t), ..., 1s(t)]T represents the external stimuli for S neurons.

Within each single modality, we define a continuous neural-graph differential
equation as follows,

Z(t):fGtk(t)Ztvot) and  Z; :Eétk(ztht) (1)

where fq, Ejé are graph encoder networks. Z;" is introduced to represent the
value after discrete operation. Z;" could represent the state ’jump’ for brain
measurements such as task fMRI.

Heterogeneous graph output with semantic attention Within each
brain modal measurement, we could obtain the a set of heterogeneous repre-
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sentation [Zg,] ;. Then, we use a semantic level attention layer to associate
the cross view heterogeneous graph representation L, with the learned weights
/8¢1 ) 6452, ey /8¢'p = Latt(Zéla Z@gv ey Zép)

We define the importance of each view graph representation as,

Z tanh(§" - Waem - Zn.o, + ) and Be, = softmaz(es,), (2)

where W, denotes the linear transformation and ¢ is learnable. The heteroge-
neous node representation could be denoted by H = f,(3>-"_, 8+, Zs,).

Next, we apply the readout function to the aggregated heterogeneous rep-
resentation of each view with the shared projection head fs(.) € R%. In the
experiment, we use an MLP with two hidden layers as the projection head. We
get the projected representations fz;“ and ﬁf. For each view, the node represen-

- L —
tation are concatenated as hy = o( || [Yr; ALJW).

2.2 Mutual Information Based Training Process

In the training process, we maximize the mutual information between the node
representation of one modal and the graph representation of another modal, i.e.
the node representation of fMRI and the graph representaion of MEG and vice
versa. The objective is defined with contrastive learning as follows,

9¢>w|G| Z

where 60, ¢, 19 represent the parameters of heterogeneous dynamical neural graph
encoder and projection head. |G| denotes the total numbers of graph. |g| is the

number of nodes. MI is denoted as the dot production MI(E;“, i_iff) = f_i;“ . (ﬁgB)T.

lgl
Pl Z [MI(h#,hB) + MI(RA 1P, (3)

2.3 Explainable Causal Representation on Graphs

To highlight the importance of the brain ROIs, we introduce the explainable
causal representation to encourage the reasonable node selection process. We
train an explanation model to explain the multmodal graph representation ap-
proach based on granger causality. The explanation process are divided into two
steps, the distillation process and explainer training process.

In distillation process, we use a subgraph G, to represent the main cause of
the target prediction y. The explainable causal representation does not require
the re-training of the dynamical graph encoder which could lower the computa-
tion complexity. We use g\, to represent the prediction error exclude the edge
e;. The model error is defined as Ase; = dg\e; — da-

With the ground truth label y, we define the model error as the loss difference
£(y? :&G) :

oc = E(yv Jc) and 6G\ej = L‘(yv Z)G\q)v (4)
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Given the causal contributions of each edge, we could sort the top-K most
relevant edges for model explanation. After the model distillation process, we
will train a new explainer model based on graph convolutional layer.

Z=GCN(A,Z) and A=o(227), (5)

where each value in A represent the contribution of specific edge to prediction.
The explanation model generate A as an explanation mask. We show more details
of the explainable causal model in Supplementary material.

3 Experiments

In the experiments, we use the public available s1200 dataset from Human Con-
nectome Project (HCP), which contains 1096 young adults. Additionally, about
95 subjects have resting-state and /or task MEG (tMEG) data. The resting-state
fMRI is pre-processed following the minimal preprocessing pipeline [8]. Then the
pre-processed data is registered into a standard cortical surface using MSMAII
[8]. The cortical surface was parcellated into N=22 major ROIs[7]. In addition,
the averaged time course of each ROI is normalized using z-score. The resting-
state MEG has been pre-processed using ICA to remove out artefacts related to
head and eye movement. Sensor-space data were down-sampled to 300Hz using
anti-aliasing filter. Next the MEG data were source-reconstructed with a scalar
beamformer and registered into the standard space of the Montreal Neuroimag-
ing Institute (MNI). Data were then filtered into 1-30Hz and beamformed onto
6 mm grid. The parcellation atlas and z-score normalization method of MEG
are similar to resting-state fMRI.

3.1 Sex Classification

We first test the performance of the proposed method with sex classification
task using HCP data. We adopt 5-fold cross validation on the 1091 subjects.
We compare the proposed method with several state-of-the-art methods such as
Long-Short-Term Memory (LSTM) [13], graph convolution LSTM (GC-LSTM)
[20] and spatio-temporal graph convolution network (ST-GCN) [6]. The hidden
state of LSTM was set to 256. A simple Multi-Layer Perception (MLP) with 2
hidden layers and ReLU activation is also included as the baseline method. For
the proposed method, we report two kinds of sex classification accuracy. The
first single model uses only the fMRI to explore the dynamics within the brain
ROIs. The multimodal based method integrates both fMRI and MEG to exploit
the spatio-temporal dynamics and achieves better sex classification performance.

The accuracy of sex classification is shown in Table 1. Comparing with the
baseline method, the proposed method could learn the dynamic contrast graph
representation between fMRI and MEG. The proposed method could take ad-
vantage of the high spatial resolution of fMRI and high temporal resolution of
MEG to achieve the highest sex classification performance of 85.2%. The impor-
tance of the brain regions that contributes to the sex classification is show in Fig.
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2. The causal explanation module provides us a new way to find individual-level
and group-level biomarkers for sex difference.

Table 1: Sex classification accuracy with different baseline models

Proposed method with only fMRI 0.827(0.061
Proposed method with multimodal 0.852(0.046

Method Accuracy
LSTM 0.808(0.033)
GC-LSTM 0.811(0.075)
MLP 0.770(0.051)
ST-GCN 0.839(0.044)
)
)

Fig.2: Top K important brain regions for sex classification

3.2 Brain Activity Decomposed with Functional and Structural
Connectivity

In the second experiment, we use the structural-decoupling index which reveals
the function and structure relationship to measure the energies of high pass de-
coupled activity versus low pass coupled activity per brain ROIs. The average
structural-decoupling index for surrogate (with or without SC) and function sig-
nals is shown in Fig. 3. Without the SC prior knowledge, the surrogate shows sig-
nificant decoupling patterns. While the knowledge of SC increases the coupling
pattern in functional signals. Compared with the functional time courses, the
high-level cognition network detaches from the SC. We also use the NeuroSynth
meta-analysis on the same topic in [15] to assess the structural-decoupling index.
As shown in Fig. 4, the structural-decoupling index associates the behaviorally
relevant gradient based on FC data. We could find a macroscale gradient of re-
gions related to low to high level cognition with the learned graph representation.
Due to the fact that the functional connectivity comes from MEG data in the
second experiment, we compare the gradient learned from the graph representa-
tion with the original MEG data. For example, the terms related to acting and
perceiving such as “visual perception”, “multisensory processing”, “reading” and
“motor/eye movement” are grouped into the top end. The terms related to com-

b1

plex cognition such as “autobiographical memory”, “emotion” and “reward-based
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decision making” are characterized into the other end. Similar organization phe-
nomenon could be found in the previous research [15, 16]. However, the gradient
learned by original MEG data lacks the pattern of system organization.

figure/coupling-eps-converted-to.pdf

Fig. 3: Structural decoupling index shows brain activity between function and
structure. Left: Surrogate brain activity without structural connectome. Middle:
surrogate brain activity with structural connectome. Right: brain activity with
decoupling difference to the surrogate

visual perception visual perception il
multisensory processing [l multisensory pmcessing.. a
reading visuospatial
motor [N W visual attention[ Il
eye movements [ eye movements|
auditory processing Il | numerical cognition
action Il I | | n inhibition ||
visuospatial | | | | cued attention | |
visual attention I visual semantics! Il
pain [l H B workingmemory | [HIINHEENE B N
cued attention cognitive conlro\.. = | - -
numerical cognition action|
working memory HE B | [ ] language I | [ ]
language | H EE reading
cognitive control | ] motor H BN BE BE B
visual semantics declarative memory [l HEE N [ ]
inhibition auditory processing
verbal semantics | | | | pain
declarative memory [ | [ | N N verbal semantics ||
face/affective processing || autobiographical memory | |
social cognition | ] social cognition
autobiographical memory EENE face/affective processing
emotion | | reward-based decision making
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Fig. 4: Behaviorally relevant gradient shows brain organization with Structural
decoupling index. Left: the learned graph representation. Right: original MEG
data

4 Conclusions

Brain activity is shaped by the anatomical structure. In the paper, we propose
an explainable contrastive graph representation learning based model to asso-
ciate heterogeneous brain measurements such as MRI, functional MRI, MEG
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and behavior performance. The framework allows key advantages to concentrate
brain, mind and behavior in cognitive neuroscience. The proposed method out-
performs the state-of-the-art methods in gender classification using fMRI and
MEG data. Moreover, the framework could localize the important brain region
with sex difference through a causal explanation model. The second experiment
with meta analysis demonstrates that the structure-function coupling pattern
with the learned contrast graph representation. Future work that links the func-
tion connectivity with other modal data (i.e. gene expression and microstructure
properties) could be easily adapted to our framework.
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