
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian Inverse

Junyi Li,1 Bin Gu,2 Heng Huang1*

1Electrical and Computer Engineering, University of Pittsburgh, PA, USA
2MBZUAI, United Arab Emirates

junyili.ai@gmail.com, jsgubin@gmail.com, heng.huang@pitt.edu

Abstract

In this paper, we propose a novel Hessian inverse free Fully
Single Loop Algorithm (FSLA) for bilevel optimization prob-
lems. Classic algorithms for bilevel optimization admit a dou-
ble loop structure which is computationally expensive. Re-
cently, several single loop algorithms have been proposed with
optimizing the inner and outer variable alternatively. How-
ever, these algorithms not yet achieve fully single loop. As
they overlook the loop needed to evaluate the hyper-gradient
for a given inner and outer state. In order to develop a fully
single loop algorithm, we first study the structure of the hyper-
gradient and identify a general approximation formulation of
hyper-gradient computation that encompasses several previous
common approaches, e.g. back-propagation through time, con-
jugate gradient, etc. Based on this formulation, we introduce
a new state variable to maintain the historical hyper-gradient
information. Combining our new formulation with the alterna-
tive update of the inner and outer variables, we propose an ef-
ficient fully single loop algorithm. We theoretically show that
the error generated by the new state can be bounded and our al-
gorithm converges with the rate of O(ε−2). Finally, we verify
the efficacy our algorithm empirically through multiple bilevel
optimization based machine learning tasks. A long version of
this paper can be found in: https://arxiv.org/abs/2112.04660.

Introduction
In this paper, we study the bilevel optimization problem,
which includes two levels of optimization: an outer problem
and an inner problem. The outer problem depends on the
solution of the inner problem. Many machine learning tasks
can be formulated as a bilevel optimization problem, such as
hyper-parameter optimization (Lorraine and Duvenaud 2018),
meta learning (Franceschi et al. 2018), Stackelberg game
model (Ghadimi and Wang 2018), equilibrium model (Grazzi
et al. 2020), etc. However, Bilevel optimization is challenging
to solve. The gradient-based algorithm (Ghadimi and Wang
2018) requires a double loop structure. For each inner loop,
the inner problem is solved with the given outer state. In the
outer loop, the hyper-gradient (the gradient w.r.t the outer
variable) is evaluated based on the solution of the inner loop
and the outer state is updated with a gradient-based optimizer

*This work was partially supported by NSF IIS 1845666,
1852606, 1838627, 1837956, 1956002, IIA 2040588.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(such as SGD). This simple double loop algorithm is guaran-
teed to converge under mild assumptions and works well for
small scale problems. But when the inner problem is in large
scale, the double loop algorithm is very slow and becomes
impractical.

In fact, hyper-gradient evaluation is the major bottleneck
of bilevel optimization. The solution of the inner problem is
usually implicitly defined over the outer state, and naturally
its gradient w.r.t the outer variable is also implicitly defined.
To evaluate hyper-gradient, we need to approximate this im-
plicit gradient via an iterative algorithm (the inner loop).
Various algorithms have been proposed for hyper-gradient
evaluation (Ferris and Mangasarian 1991; Ghadimi and Wang
2018; Grazzi et al. 2020; Lorraine and Duvenaud 2018; Liao
et al. 2018). These methods were designed from various per-
spectives and based on different techniques, thus they look
quite different on the first sight. However, we can use a gen-
eral formulation to incorporate all these methods under one
framework. Roughly, the hyper-gradient evaluation can be
expressed as a finite sum of terms defined over a sequence
of inner states and momentum coefficients, and these states
and coefficients are chosen differently in distinct algorithms.
Our general formulation provides a new perspective to help
understand the properties of these classic methods. In partic-
ular, we derive a sufficient condition such that the general
formulation converges to the exact hyper-gradient.

One benefit of our general formulation is to inspire new
algorithms for bilevel optimization. Based on our general
formulation, we propose a new fully single loop algorithm
named as ‘FSLA’. Compared to previous single loop algo-
rithms (Guo et al. 2021; Chen, Sun, and Yin 2021; Ji, Yang,
and Liang 2020; Khanduri et al. 2021; Huang and Huang
2021a), our FSLA does not require any inner loop. In lit-
erature (Ji, Yang, and Liang 2020; Khanduri et al. 2021),
the existing methods either reuse the last hyper-iteration’s
inner solution as a warm start of the current iteration, or
just alternatively update the inner and outer variables with
carefully designed learning rate schedule (Hong et al. 2020).
They also utilize the variance-reduction techniques to control
the variance (Khanduri et al. 2021). However, these methods
focus on solving the inner problem and pay little attention
to the hyper-gradient evaluation process which also requires
a loop. In our new algorithm, we introduce a new state vk
to keep track of the historical hyper-gradient information.

During each iteration, we perform one step update. We study
the bias caused by vk and theoretically show that the conver-
gence of our new algorithm is with rate O(ε−2). The main
contributions of this paper can be summarized as follows:
1. We propose a general formulation to unify different ex-

isting hyper-gradient approximation methods under the
same framework, and identify the sufficient condition on
which it converges to the exact hyper-gradient;

2. We propose a new fully single loop algorithm for bilevel
optimization. The new algorithm avoids the need of time-
consuming Hessian inverse by introducing a new state to
track the historical hyper-gradient information;

3. We prove that our new algorithm has fast O(ε−2) conver-
gence rate for the nonconvex-strongly-convex case, and
we validate effectiveness of our algorithm over different
bilevel optimization based machine learning tasks.

Organization: The rest of this paper is organized as follows:
in Section 2, we briefly review the recent development of
Bilevel optimization; in Section 3, we introduce the general
formulation of hyper-gradient approximation and the suffi-
cient condition of convergence; in Section 4, we formally
propose our new fully single loop algorithm, FSLA; in Sec-
tion 5, we present the convergence result of our algorithm; in
Section 6, we perform experiments to validate our proposed
methods; in Section 7, we conclude and summarize the paper.
Notations: We use ∇x to denote the full gradient w.r.t. the
variable x, where the subscript is omitted if clear from the
context, and ∂x denotes the partial derivative. Higher order
derivatives follow similar rules. || · || represents `2-norm for
vectors and spectral norm for matrices. [K] represents the
sequence from 0 to K. Πn

i=mAi = Am × . . . An if m ≤ n,
and Πn

i=mAi = I if m > n.

Related Works
Bilevel optimization dates back to the 1960s when
Willoughby (1979) proposed a regularization method, and
then followed by many research works (Ferris and Mangasar-
ian 1991; Solodov 2007; Yamada, Yukawa, and Yamagishi
2011; Sabach and Shtern 2017). In machine learning com-
munity, similar ideas in the name of implicit differentiation
were also used in Hyper-parameter Optimization for a long
time (Larsen et al. 1996; Chen and Hagan 1999; Bengio 2000;
Do, Foo, and Ng 2007). However, implicit differentiation
needs to compute an accurate inner problem solution in each
update of the outer variable, which leads to high computa-
tional cost for large-scale problems. Thus, researchers turned
to solve the inner problem with a fix number of steps, and
computed the gradient w.r.t the outer variables with the ‘back-
propagation through time’ technique (Domke 2012; Maclau-
rin, Duvenaud, and Adams 2015; Franceschi et al. 2017; Pe-
dregosa 2016; Shaban et al. 2018). Domke (2012) considered
the case when the inner optimizer is gradient-descent, heavy
ball, and LBFGS method, and derived their reversing dynam-
ics with the energy models as example; Maclaurin, Duve-
naud, and Adams (2015) considered momentum-based SGD
method, furthermore, Franceschi et al. (2017) discussed two
modes, a forward mode and a backward mode, and compared
the trade-off of these two modes in terms of memory-usage

and computation efficiency; Pedregosa (2016) studied the in-
fluence of inner solution errors to the convergence of bilevel
optimization; Shaban et al. (2018) proposed to truncate the
back propagation path to save computation.

The back-propagation based methods work well in prac-
tice, but the number of inner steps usually relies on trial and
error, furthermore, it is still expensive to perform multiple in-
ner steps for modern machine learning models with hundreds
of millions of parameters. Recently, it witnessed a surge of
interest in using implicit differentiation to derive single loop
algorithms. Ghadimi and Wang (2018) introduced BSA, an
accelerated approximate implicit differentiation method with
Neumann Series. Hong et al. (2020) proposed TTSA, a single
loop algorithm with a two-timescale learning rate schedule.
Ji, Yang, and Liang (2020) and Ji and Liang (2021) pre-
sented warm start strategy to reduce the number of inner steps
needed at each iteration. Khanduri et al. (2021) designed SUS-
TAIN which applied variance reduction technique (Cutkosky
and Orabona 2019; Huang, Li, and Huang 2021) over both
the inner and the outer variable. Chen, Sun, and Yin (2021)
proposed STABLE, a single loop algorithm accumulating
the Hessian matrix, and achieved the same order of sample
complexity as the single-level optimization problems. Yang,
Ji, and Liang (2021) proposed two algorithms: MRBO and
VRBO. The MRBO method uses double variance reduction
trick and resembles SUSTAIN, while VRBO is based on
SARAH/SPIDER. Huang and Huang (2021b) proposed BiO-
BreD which is also based on the variance reduction technique
with a better dependence over the condition number of in-
ner problem. Huang and Huang (2021a) proposed BiAdam
which accelerates Bilevel Optimization with adaptive gradi-
ents. Meanwhile, there are also works utilizing other strate-
gies such as penalty methods (Mehra and Hamm 2019), and
also other formulations like the case where the inner problem
has non-unique minimizers (Li, Gu, and Huang 2020; Sow
et al. 2022).

The bilevel optimization has been widely applied to var-
ious machine learning applications. Hyper-parameter opti-
mization (Lorraine and Duvenaud 2018; Okuno, Takeda, and
Kawana 2018; Franceschi et al. 2018) uses bilevel optimiza-
tion extensively. Besides, the idea of bilevel optimization has
also been applied to meta learning (Zintgraf et al. 2019; Song
et al. 2019; Soh, Cho, and Cho 2020), neural architecture
search (Liu, Simonyan, and Yang 2018; Wong et al. 2018;
Xu et al. 2019), adversarial learning (Tian et al. 2020; Gao
et al. 2020), deep reinforcement learning (Tschiatschek et al.
2019), sparse learning (Bao, Gu, and Huang 2019, 2020;
Poon and Peyré 2021) etc. For a more thorough review of
these applications, please refer to the Table 2 of the survey
paper by Liu et al. (2021).

A General Formulation of Hyper-Gradient
Approximation

In general, bilevel optimization has the following form:

min
λ∈Λ

f(λ) := F (λ, ωλ) s.t. ωλ = arg min
ω

G(λ, ω) (1)

where F , G denote the outer and inner problems, λ, ω denote
the outer and inner variables. Under mild assumptions, the

hyper-gradient∇λf can be expressed in Proposition 1:

Proposition 1. If for any λ ∈ Λ, ωλ is unique, and
∂ω2G(λ, ωλ) is invertible, we have:

∇λf = ∂λF (λ, ωλ) +∇λωλ × ∂ωF (λ, ωλ) (2)

and ∇λωλ = −∂ωλG(λ, ωλ)∂ω2G(λ, ωλ)−1.

The proof of this proposition is a direct application of the
implicit function theorem (we include it in Appendix B.2 for
completion). Eq. (2) is hard to evaluate due to the involved
matrix inversion, and we instead evaluate it approximately.
Various approximate methods are proposed in the literature.
The most well-known ones are: Back Propagation through
Time (BP), Neumann series (NS) and conjugate gradient
descent (CG). They look quite different on the first sight: BP
is derived based on the chain rule, NS and CG are based on
different ways of approximating ∂ω2G(λ, ωλ)−1. However,
they share a common structure, as stated in the following
lemma. We use ∇λf to represent ∇λf(λ) when the outer
state λ is clear from the context. In the remainder of this
section: we use [K] to denote the sequence, k refers to kth
element of [K], while s refers to sth element of sub-sequence
[k].

Lemma 2. Given a positive integer K, a sequence of inner
variable states {ωk}, vectors {pk} and a sequence of coef-
ficients {βk} for k ∈ [K]. A general form of approximate
hyper-gradient evaluated at state λ is:

∇λfK = ∂λF (λ, ωK)−
K−1∑
k=0

βksk

where sk has two modes:

sk =

{
∂ωλG(λ, ωk)

∏K−1
s=k+1(I − βs∂ω2G(λ, ωs))pK

∂ωλG(λ, ωK)
∏K−1
s=k+1(I − βs∂ω2G(λ, ωs))pk

We call these two modes as backward and forward respec-
tively (in terms of pk). More specifically, we have:

1. BP is in backward mode with ωk = ω̂k, pk = ∂ωF (λ, ω̂k)
and βk = ηk for k ∈ [K]. {ω̂k} are an inner variable
sequence generated by the gradient descent algorithm
and {ηk} is the corresponding learning rate sequence;

2. NS is in backward mode with ωk = ω̂, pk = ∂ωF (λ, ω̂)
and βk = β for k ∈ [K]. ω̂ is an inner variable state and
β is some constant;

3. CG is in the forward mode with ωk = ω̂ for k ∈ [K].
ω̂ is an inner variable state, {pk} and {βk} is chosen
adaptively by the conjugate steps.

Proof. In the proof, we justify that the three cases mentioned
above indeed satisfy the proposed general hyper-gradient
computation formulation.
Case (1): Without loss of generality, assume we run a gradient
descent optimizer K steps over the inner problem in the BP
method. In other words, it solves:

min
λ∈Λ

fK(λ) := F (λ, ω̂K)

s.t. ω̂k = ω̂k−1 − ηk∇G(λ, ω̂k−1), k ∈ [K]

where ηk is the learning rate. By the chain rule, we get the
hyper-gradient∇λfK of this problem:

∇λfK =∂λF (λ, ω̂K)−
K−1∑
k=0

(
ηk∂ωλG(λ, ω̂k)×

K−1∏
s=k+1

(I − ηk∂ω2G(λ, ω̂s))

)
∂ωF (λ, ω̂K)

It is easy to verify the claim in the lemma;
Case (2): The NS method is based on the hyper-gradient
expression in Proposition 1, but it assumes access of an ap-
proximate solution ω̂ instead of the optimum ωλ and then
approximates ∂ω2G(λ, ω̂)−1 with the first K terms of the
Neumann series. More precisely:

∂ω2G(λ, ω̂)−1 ≈ β
K−1∑
k=0

(
I − β∂ω2G(λ, ω̂)

)k
(3)

where β is a small constant. Then we replace ωλ with ω̂ in
Eq. (2) and combine with Eq. (3). We have:

∇λfK =∂λF (λ, ω̂)−
K−1∑
k=0

(
β∂ωλG(λ, ω̂)×

(
I − β∂ω2G(λ, ω̂)

)k)
∂ωF (λ, ω̂)

Substitute k with K − k − 1, it is straightforward to verify
the claim in the lemma;
Case (3): The CG method uses the fact that x =
∂ω2G(λ, ω̂)−1∂ωF (λ, ω̂) is the minimizer of the quadratic
optimization problem: arg min

v

1
2x

TAx − xT b, where A =

∂ω2G(λ, ω̂) and b = ∂ωF (λ, ω̂). Solving this quadratic prob-
lem with the conjugate gradient descent, we have the follow-
ing update rule:

xk+1 = xk − αk(pk) = (I − αkA)xk + αk(b+ γkpk−1)

Then second equality follows the update rule of linear CG
algorithm. αk, γk are the learning rate and pk is the conjugate
directions. Please refer to section 5 by Nocedal and Wright
for more details. Then xK takes the following form:

xK =
K−1∑
k=0

αk

K−1∏
s=k+1

(I − αsA)(b+ γkpk−1) (4)

Substitute the values ofA and b into Eq. (4) and then combine
it with Eq. (2), where we approximate ∂ωλG(λ, ωλ) with
∂ωλG(λ, ω̂). It is straightforward to verify the claim in the
lemma. This completes the proof.

The general formulation in the lemma provides a unified
view of the BP, NS and CG methods. Firstly, we can ver-
ify that using the NS method is equivalent to solving the
quadratic problem (defined in case (3)) with (constant learn-
ing rate) the gradient descent. Since the CG method usually
performs better than gradient descent in solving linear sys-
tems, we expect the CG method requires smaller K than

the NS method to reach a given estimation error. Then we
compare NS with BP, their difference lies in the sequence
{ωk} and {βk}: NS uses a single state ω̂(β) , while BP uses
a sequence of states {ωk}({βk}).

It would be interesting to identify sufficient conditions
for {βk}, {ωk} and {pk} such that the general formulation
converges to the exact hyper-gradient∇λf . In fact, we have
the following lemma:

Lemma 3. Suppose we denote mk =
∏k
s=0(1 − µGβs),

eω,k = ||ωk − ωλ||, ep,k = ||pk − ∂ωF (λ, ωλ)||
for k ∈ [K]. Then if lim

K→∞
mK = 0, lim

k→∞
eω,K =

0, lim
K→∞

mK

∑K−1
k=0 βkeω,k/mk is finite, in addition, for

the backward mode: lim
K→∞

ep,K = 0; for the forward

mode: lim
K→∞

mK

∑K−1
k=0 βkep,k/mk is finite. Then we have

∇λfK → ∇λf , when K → ∞, where ∇λfK is defined in
Lemma 2.

We defer the proof of Lemma 3 in in Appendix C, we
show some basic ideas here. Firstly, it is straightforward
to show ∂λF (λ, ωK) → ∂λF (λ, ωλ) by using the smooth-
ness assumption and the condition ωK → ωλ. For the term∑K−1
k=0 βksk, we take the backward mode as an example (the

forward mode follows similar idea). We denote AK and A∗
as:

AK =

K−1∑
k=0

βk∂ωλG(λ, ωk)

K−1∏
s=k+1

(I − βs∂ω2G(λ, ωs))

(5)
and A∗ = ∂ωλG(λ, ωλ)∂ω2G(λ, ωλ)−1. To show AK →
A∗, we use the recursive relation of Ak and A∗:

Ak+1 =Ak (I − βk∂ω2G(λ, ωk)) + βk∂ωλ(λ, ωk)

=(1− βk)Ak + βk(Ak(I − ∂ω2G(λ, ωk))

+ ∂ωλG(λ, ωk))

(6)

and A∗ = A∗(I − ∂ω2G(λ, ωλ)) + ∂ωλG(λ, ωλ). Based on
the recursive relation above and some linear algebra deriva-
tion, we get:

||Ak+1 −A∗|| ≤(1− µGβk)||Ak −A∗||+ C1βkeω,k (7)

It is straightforward to verify that the conditions in the lemma
guarantee the convergence of Eq. (7). As shown in Eq. (7), the
momentum coefficient βk represents the trade-off between
the progress and the induced error in one iteration: Larger
βk leads to better contraction factor ε, but also bigger bias
term eω,k. In fact, we can get meaningful convergence rate
of ∇λfK for several special choices of sequences. As shown
in Corollary 3.1 and Corollary 3.2:
Corollary 3.1. Given a positive integer K, inner state ω̂K
and constant β. Then we set ωk = ω̂K , pk = ∂ωF (λ, ω̂K)
and βk = β for k ∈ [K]. If ∃ ε ∈ (0, 1), such that βk ∈
(ε/µG, 1/µG), then we have:

||∇λfK −∇λf || = O(eω,K)

Corollary 3.2. Given a positive integer K, we have se-
quence {ω̂k} and {β̂k} for k ∈ [K]. We pick ωk = ω̂k,

pk = ∂ωF (λ, ω̂K) and βk = β̂k for k ∈ [K]. Suppose we
have βk = O(k−1) and eω,k = O(k−0.5), then:

||∇λfK −∇λf || = O(K−0.5)

In fact, the sequences chosen in Corollary 3.1 correspond
to that in the NS method, and we show that if we choose
β properly, the hyper-gradient estimation converges in the
rate of eω,K . The BP method corresponds to Corollary 3.2.
Suppose we optimize the inner problem with stochastic
gradient descent and learning rate βk = O(1/k), we get
eω,k = O(1/

√
k). This satisfies the condition in the corol-

lary.
To the best of our knowledge, this is first complexity result

of the stochastic case. Grazzi et al. considered the linear
convergence case for BP method. We introduce some more
examples of the application of Lemma 3 in the Appendix C.

New Fully Single Loop Algorithm (FSLA)
In this section, we introduce a new single loop algorithm
for bilevel optimization. In section , we identify a general
formulation of hyper-gradient approximation in Lemma 2:
∇λfK = ∂λF (λ, ωK) −

∑K−1
k=0 βksk, where sk has two

modes: forward mode and backward mode. For both modes,
they can be expressed by a recursive equation. In the back-
ward mode, we write a recursive relation in terms of Ak
as defined in Eq. (5) and Eq. (6). Similarly, we define
vK =

∑K−1
k=0 βk

∏K−1
s=k+1 (I − βs∂ω2G(λ, ωs)) pk in the

forward mode, and derive a recursive relation as:

vk+1 = (I − βk∂ω2G(λ, ωk)) vk + βkpk (8)

Based on this observation, we can propose a new single loop
bilevel optimization algorithm without Hessian Inverse. In
previous literature, researchers maintain a inner state ωk to
avoid the inner loop solving ωλ for each new outer state λ.
On top of this, we maintain a new state vk and evaluate the
hyper-gradient as follows:

vk = βk∂ωF (λ, ωk) + (I − βk∂ω2G(λ, ωk))vk−1

∇λfk = ∂λF (λ, ωk)− ∂ωλG(λ, ωk)vk
(9)

Note we set pk = ∂ωF (λ, ωk). Then we alternatively update
ωk, vk and λk, and achieve a fully single loop algorithm with-
out Hessian-Inverse. Note that it is also possible to keep track
of Ak, but then we need to store a matrix, which cost more
storage. More formally, we get the following new alternative
update rule:

λk = λk−1 − αk−1∇λfk−1

ωk = ωk−1 − τk∂ωG(λk, ωk−1)

vk = βk∂ωF (λk, ωk) + (I − βk∂ω2G(λk, ωk))vk−1

∇λfk = ∂λF (λk, ωk)− ∂ωλG(λk, ωk)vk
(10)

where τk and αk are learning rates for inner and outer updates.
As a comparison, existing single loop algorithms recompute
∇λf from scratch for each new λ, while our algorithm per-
forms one step update over vk. What’s more, we can express

Algorithm 1: Fully Single Loop Bilevel Optimization Algo-
rithm (FSLA)

1: Input: Initial state λ0 ∈ Λ, ω0 ∈ Rn; the number of
hyper-iterations K; constants cτ , cβ , cη , δ

2: for k ← 0 to K − 1 do
3: αk ← δ/

√
k, λk+1 ← λk − αkdk

4: τk+1 ← cταk, βk+1 ← cβαk and ηk+1 ← cηαk
5: Sample ξk+1(ξk+1,1 − ξk+1,5)
6: ωk+1 ← ωk − τk+1∂ωG(λk+1, ωk; ξk+1,1)
7: vk+1 ← βk+1∂ωF (λk+1, ωk; ξk+1,2) + (I −

βk+1∂ω2G(λk+1, ωk; ξk+1,3))vk
8: ∇fk+1(ξk+1) ← ∂λF (λk+1, ωk+1; ξk+1,4) −

∂ωλG(λk+1, ωk+1; ξk+1,5)vk+1

9: dk+1 ← ∇fk+1(ξk+1) + (1 − ηk+1)(dk −
∇fk(ξk+1));

10: end for

∇λfk in Eq. (10) as follows:

∇λfK(λK) =∂λF (λK , ωK)−
K−1∑
k=0

βk∂ωλG(λK , ωK)×

K−1∏
s=k+1

(I − βs∂ω2G(λs, ωs))∂ωF (λk, ωk)

This almost fits the forward mode of the general formulation
in Lemma 2 except that the outer state is a sequence {λk}. In
Lemma 3, we show that ωK → ωλ is a sufficient condition of
∇λfK(λ)→ ∇λf(λ). It is reasonable to guess that if λK →
λ and ωK → ωλ, the convergence is also guaranteed. But the
analysis is more challenging than Lemma 3 as the three terms
λk, ωk and ∇λfk entangle with each other. However, we
will show in the next section that λK → λ∗ when K →∞,
where λ∗ is the optimal point of the outer function f(λ).

Finally in Algorithm 1, we provide the pseudo code of
our fully single loop algorithm. Compared to Eq. (10), we
assume access of the stochastic estimate of related val-
ues. What’s more, we also maintain a momentum of the
hyper-gradient dk with variance reduction correction in Line
10. This term is used to control the stochastic noise. The
momentum-based variance reduction technique is recently
widely used in the single level stochastic optimization, such
as STORM (Cutkosky and Orabona 2019).

Theoretical Analysis

In this section, we prove the convergence of our proposed
single loop bilevel optimization algorithm. We consider the
non-convex-strongly-convex case. We first briefly state some
assumptions needed in our theoretical analysis for the conve-
nience of discussion. A formal description of the assumptions
is in the Appendix A.

We first bound the one iteration progress in the following
lemma, which follows the usage of smoothness assumption.

Lemma 4. Under Assumptions A, B, C, we have:

E[f(λk+1)]

≤f(λk)− αk
2
||∇f(λk)||2 + αkΓ2

2E[||ωk − ωλk
||2]

+ 4αkΓ2
1E[||vk − vλk

||2] + αkE[||∇fk − dk||2]

− αk
2

(1− αkLf)E[||dk||2]

where vλ = (I − ∂ωΦ(λ, ωλ))−1∂ωF (λ, ωλ) and Γ2
1 =

C2
G,ωλ, Γ2

2 = 2L2
F,λ + 4C2

F,ωL
2
G,ωλ/µ

2
G are constants.

The proof is in Appendix D.2. Lemma 4 shows that there
are three kinds of errors at each iteration: estimation error
of ωλk

(||ωk+1 − ωλk
||2), error of vλk

(||vk+1 − vλk
||2) and

error of momentum dk (||∇fk − dk||2). We denote them as
Ak, Bk and Ck in the remainder of this section. The three
errors entangle with each other as shown by Line 7-10 of
Algorithm 1, e.g. the estimation error to ωλk−1

will contribute
to the error of momentum dk as shown in Line 8. In fact, we
can bound them with the following inequality (use Ak as an
example):

Ak ≤ βAk−1 + C1Bk−1 + C2Ck−1 + C3

with β < 1 and C1, C2, C3 are terms not relevant to Ak, Bk
and Ck. Please check the Appendix D.3 for more details. Spe-
cially, the momentum term Ck reduces the variance similarly
to that in the single level variance-reduction optimizers, by
which we mean:

E[||dk −∇fk||2]

≤(1− ηk)2E[||dk−1 −∇fk−1||2] + 2η2
kσ

2

+ 2(1− ηk)2E[||∇fk(ξk)−∇fk−1(ξk)||2]︸ ︷︷ ︸
Π

The part of noise proportional to (1− η2
k)σ2 is absorbed in

the term Π due to the correction made by∇fk−1(ξk) in the
dk update rule. However, the key difference is that Π not only
relies on E[||dk−1|||2] but also Ak−1 and Bk−1.

Finally, to show the the convergence of Algorithm 1, we
denote the following potential function:

Φk =f(λk) +D1Ak +D2Bk +D3Ck

where D1, D2 and D3 are some constants. Combine
Lemma 4 with the inequalities for Ak, Bk and Ck, and we
have: Φk+1 − Φk ≤ −αk/2||∇f(λk)||2 + Cα2

kσ
2 where C

is some constant. With the above inequality, we can get a
convergence rate of O(1/

√
K) (O(1/ε2)) by choosing the

learning rate with O(1/
√
k). More formally, we have:

Theorem 5. With Assumption A, B, C hold, and take βk =
cβαk, τk = cταk, ηk = cηαk, and αk = δ√

k
. We have:

1

K

K−1∑
k=0

||∇f(λk)||2 ≤ 2Φ0

δ
√
K

+
2δC̄σ2

√
K

where C̄, δ, cβ , cτ and cη are some constants.

The proof of the theorem is included in Appendix D.4.

Figure 1: The estimation error of hyper-gradient ||∇fK −
∇f ||2 for different sequences {ωk}.

Experiments
In this section, we perform experiments to empirically verify
the effectiveness of our algorithm. We first perform exper-
iments over a quadratic objective with synthetic dataset to
validate Lemma 3. Then we perform a common benchmark
task in bilevel optimization: data hyper-cleaning. The experi-
ments are run over a machine with Intel Xeon E5-2683 CPU
and 4 Nvidia Tesla P40 GPUs.

Synthetic Dataset: Quadratic Objective
In this experiment, we verify Lemma 3 over some synthetic
data. We consider the bilevel optimization problem where
both outer and inner problems are quadratic. To make it
simpler, the outer problem does not depend on the outer
variable directly. More precisely, we study:

min
λ∈Λ

f(λ) := ||Aoωλ − bo||2

s.t. ωλ = arg min
ω
||Ai,λλ+Ai,ωω − bi||2

For this bilevel problem, we can solve the exact minimizer of
the inner problem and then evaluate the exact hyper-gradient
based on the Proposition 1. This makes it easier to compute
and compare the approximation error of different methods.
In experiments, we pick problem dimension 5 and randomly
sample 10000 data points. We construct the dataset as fol-
lows: first randomly sample Ao, Ai,λ, Ai,ω ∈ R104×5 and
λ, ω, ωλ ∈ R5 from the Uniform distribution, then we con-
struct bo and bi byAoωλ+σo andAi,λλ+Ai,ωω+σi, where
σi and σo are Gaussian noise with mean zero and variance 0.1.
We use this simple task to validate our claim in Lemma 3.
More precisely, we fix the outer state λ and estimate the
hyper-gradient with different sequence {ωk}, {βk}, {pk} and
then compare their estimation errors. The results are shown
in Figure 1.

We perform two sets of experiments. The first set includes
our single loop method FSLA, and NS, BP and CG, which
are three cases discussed in Lemma 2. For these methods,
we generate the sequence {ωk} through solving the inner
problem with K steps of gradient descent and we use learn-
ing rate βk we pick 2 × 10−5. Note since the second order
derivatives of the quadratic objective are constant, BP and
NS are the same. As shown by the figure, the hyper-gradient
estimation errors of all the four methods converge. Our FSLA

Figure 2: FSLA vs BP plot of Validation Loss w.r.t Number
of hyper-iterations (Left) and log10(Running Time) (Right).
The perturbation rate γ is 0.8. The post-fix of legend repre-
sents the number of inner iterations T .

takes a bit more number of iterations to converge, however,
our algorithm takes less running time. Our method requires
O(1) matrix-vector query for every given K, while the other
methods requires O(K) queries. In the next set of exper-
iments, we compare with some synthetic {ωk} sequences
which have different convergence rate. More precisely, we
use sequence {ω + ω̃/(kα)}, where ω̃ is some random start
point, we pick different alpha values (2, 1, 0.5, 0.25). We
estimate ∇λf according to Corollary 3.1 (same as the NS),
the learning rate is chosen as 2× 10−5. Corollary 3.1 bounds
the convergence rate of∇λfK with the rate of ωk, which is
well verified through the results shown in Figure 1.

Hyper Data-cleaning
In this experiment, we demonstrate the efficiency of our
FSLA, especially the effect of tracking hyper-gradient his-
tory with vk. More precisely, we compare with three hyper-
gradient evaluation methods: BP, NS and CG. For NS and
CG methods, we consider both the double loop version and
the single loop version. In the single loop version, we update
the inner variable with the warm start strategy.

Data cleaning denotes the task of cleaning a noisy dataset.
Suppose there is a noisy dataset Di with Ni samples (the
label of some samples are corrupted), the aim of the task is to
identify those corrupted data samples. Hyper Data-cleaning
approaches this problem by learning a weight per sample.
More precisely, we solve the following bilevel optimization
problem:

min
λ∈Λ

l(ωλ;Do) s.t. ωλ = arg min
ω∈Rd

1

Ni

Ni∑
j=1

σ(λj)l(ω,Di,j)

In the inner problem, we minimize a weighted average loss
l over the training dataset Di, with σ(λ) the sample-wise
weight (σ(·) is a normalization function and we use Sigmoid
in experiments), suppose the minimizer of the inner problem
is ωλ. In in the outer problem, we evaluate ωλ (a function of
λ) over a validation datasetDo. Then the bilevel problem will
find λ such that ωλ is optimal as evaluated by the validation
set.

More specifically, we perform this task over several
datasets: MNIST (LeCun, Cortes, and Burges 2010), Fashion-

Figure 3: FSLA vs NS and CG plot of Validation Loss w.r.t Number of hyper-iterations (Top) and log10(Running Time) (Bottom).
The perturbation rate γ is 0.8. The post-fix of legend represents the number of inner iterations T and approximate steps K.If
inner gradient steps equal to 1, we use the warm start trick, otherwise not.

MNIST (Xiao, Rasul, and Vollgraf 2017) and QMNIST (Ya-
dav and Bottou 2019). We construct the datasets as follows:
for the training setDi, we choose 5000 images from the train-
ing set, and randomly perturb the label of γ percentage of
images. While for the validation set Do, we randomly select
another 5000 images but without any perturbation (all labels
are correct). We adopt a 4-layer convolutional neural network
in the training. The experimental results are shown in Fig-
ure 2 and Figure 3. For all the methods, we solve the inner
problem with stochastic gradient descent, while for the outer
optimizer, all the methods use the variance reduction for fair
comparison. In experiments, we vary the number of inner
gradient descent steps T and the number of hyper-gradient
approximation steps K. The legend in the figures has the
form of method-T -K. For other hyper-parameters, we per-
form grid search for each method and choose the best one
(hyper-parameters selection is in Appendix E).

As shown by the figures, our method converges much
faster than the baseline methods. Compared with BP, FSLA
surpasses the best BP variant BP201 at the 500 iteration, as
for the running time, FSLA runs much faster. For NS and CG,
T = 1 in figures represents using the warm start, where the
inner variable is updated from the state of last hyper-iteration.
The warm start trick has some kind of acceleration effects.
However, for NS, the running time is dominated by the eval-
uation of Neumann Series. For CG, it converges with around
10 steps, but the extra time is still considerable compared
to FSLA. Even with similar computation cost, FSLA still
outperforms CG. CG 1 1 and FSLA both perform one step
update per hyper-iteration, but CG converges much slower.
This is due to failure of reusing the historical information.
Finally, Figure 4 includes results for Fashion-MNIST and

Figure 4: FSLA vs CG plot of Validation Loss w.r.t
log10(Running Time). The Left plot shows Fashion-MNIST
and the right plot shows the QMNIST. γ is set 0.8.

QMNIST, where we compare with the best baseline method
CG. Our FSLA still outperforms it.

Conclusion

In this paper, we studied the bilevel optimization problem.
More specifically, we first proposed a general formulation
of hyper-gradient approximation. This formulation encom-
passes several important methods in the bilevel optimization.
Then inspired by this, we introduced a new fully single loop
algorithm, which performs alternative optimization of inner
and outer variables. Our algorithm attains convergence rate
O(ε−2). Moreover, the empirical results also verify the supe-
rior performance of our new algorithm.

References
Bao, R.; Gu, B.; and Huang, H. 2019. Efficient Approximate
Solution Path Algorithm for Order Weight L 1-Norm with
Accuracy Guarantee. In 2019 IEEE International Conference
on Data Mining (ICDM), 958–963. IEEE.
Bao, R.; Gu, B.; and Huang, H. 2020. Fast oscar and owl re-
gression via safe screening rules. In International Conference
on Machine Learning, 653–663. PMLR.
Bengio, Y. 2000. Gradient-based optimization of hyperpa-
rameters. Neural computation, 12(8): 1889–1900.
Chen, D.; and Hagan, M. T. 1999. Optimal use of regular-
ization and cross-validation in neural network modeling. In
IJCNN’99. International Joint Conference on Neural Net-
works. Proceedings (Cat. No. 99CH36339), volume 2, 1275–
1280. IEEE.
Chen, T.; Sun, Y.; and Yin, W. 2021. A single-timescale
stochastic bilevel optimization method. arXiv preprint
arXiv:2102.04671.
Cutkosky, A.; and Orabona, F. 2019. Momentum-based
variance reduction in non-convex sgd. arXiv preprint
arXiv:1905.10018.
Do, C. B.; Foo, C.-S.; and Ng, A. Y. 2007. Efficient multiple
hyperparameter learning for log-linear models. In NIPS,
volume 2007, 377–384. Citeseer.
Domke, J. 2012. Generic methods for optimization-based
modeling. In Artificial Intelligence and Statistics, 318–326.
PMLR.
Ferris, M. C.; and Mangasarian, O. L. 1991. Finite per-
turbation of convex programs. Applied Mathematics and
Optimization, 23(1): 263–273.
Franceschi, L.; Donini, M.; Frasconi, P.; and Pontil, M. 2017.
Forward and reverse gradient-based hyperparameter opti-
mization. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1165–1173. JMLR.
org.
Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; and Pontil,
M. 2018. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. arXiv preprint arXiv:1806.04910.
Gao, C.; Chen, Y.; Liu, S.; Tan, Z.; and Yan, S. 2020. Ad-
versarialnas: Adversarial neural architecture search for gans.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5680–5689.
Ghadimi, S.; and Wang, M. 2018. Approximation Methods
for Bilevel Programming. arXiv preprint arXiv:1802.02246.
Grazzi, R.; Franceschi, L.; Pontil, M.; and Salzo, S. 2020.
On the iteration complexity of hypergradient computation. In
International Conference on Machine Learning, 3748–3758.
PMLR.
Guo, Z.; Xu, Y.; Yin, W.; Jin, R.; and Yang, T. 2021. On
Stochastic Moving-Average Estimators for Non-Convex Op-
timization. arXiv preprint arXiv:2104.14840.
Hong, M.; Wai, H.-T.; Wang, Z.; and Yang, Z. 2020. A
two-timescale framework for bilevel optimization: Complex-
ity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170.

Huang, F.; and Huang, H. 2021a. BiAdam: Fast Adap-
tive Bilevel Optimization Methods. arXiv preprint
arXiv:2106.11396.
Huang, F.; and Huang, H. 2021b. Enhanced Bilevel Optimiza-
tion via Bregman Distance. arXiv preprint arXiv:2107.12301.
Huang, F.; Li, J.; and Huang, H. 2021. SUPER-ADAM:
Faster and Universal Framework of Adaptive Gradients.
arXiv preprint arXiv:2106.08208.
Ji, K.; and Liang, Y. 2021. Lower Bounds and Acceler-
ated Algorithms for Bilevel Optimization. arXiv preprint
arXiv:2102.03926.
Ji, K.; Yang, J.; and Liang, Y. 2020. Provably Faster Algo-
rithms for Bilevel Optimization and Applications to Meta-
Learning. arXiv preprint arXiv:2010.07962.
Khanduri, P.; Zeng, S.; Hong, M.; Wai, H.-T.; Wang, Z.; and
Yang, Z. 2021. A Near-Optimal Algorithm for Stochastic
Bilevel Optimization via Double-Momentum. arXiv preprint
arXiv:2102.07367.
Larsen, J.; Hansen, L. K.; Svarer, C.; and Ohlsson, M. 1996.
Design and regularization of neural networks: the optimal use
of a validation set. In Neural Networks for Signal Processing
VI. Proceedings of the 1996 IEEE Signal Processing Society
Workshop, 62–71. IEEE.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2.
Li, J.; Gu, B.; and Huang, H. 2020. Improved bilevel model:
Fast and optimal algorithm with theoretical guarantee. arXiv
preprint arXiv:2009.00690.
Liao, R.; Xiong, Y.; Fetaya, E.; Zhang, L.; Yoon, K.; Pitkow,
X.; Urtasun, R.; and Zemel, R. 2018. Reviving and improving
recurrent back-propagation. In International Conference on
Machine Learning, 3082–3091. PMLR.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055.
Liu, R.; Gao, J.; Zhang, J.; Meng, D.; and Lin, Z. 2021.
Investigating bi-level optimization for learning and vision
from a unified perspective: A survey and beyond. arXiv
preprint arXiv:2101.11517.
Lorraine, J.; and Duvenaud, D. 2018. Stochastic hyperpa-
rameter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419.
Maclaurin, D.; Duvenaud, D.; and Adams, R. 2015. Gradient-
based hyperparameter optimization through reversible learn-
ing. In International Conference on Machine Learning, 2113–
2122.
Mehra, A.; and Hamm, J. 2019. Penalty method for
inversion-free deep bilevel optimization. arXiv preprint
arXiv:1911.03432.
Nocedal, J.; and Wright, S. 2006. Numerical optimization.
Springer Science & Business Media.
Okuno, T.; Takeda, A.; and Kawana, A. 2018. Hyperpa-
rameter learning via bilevel nonsmooth optimization. arXiv
preprint arXiv:1806.01520.
Pedregosa, F. 2016. Hyperparameter optimization with ap-
proximate gradient. arXiv preprint arXiv:1602.02355.

Poon, C.; and Peyré, G. 2021. Smooth Bilevel Programming
for Sparse Regularization. Advances in Neural Information
Processing Systems, 34.
Sabach, S.; and Shtern, S. 2017. A first order method for
solving convex bilevel optimization problems. SIAM Journal
on Optimization, 27(2): 640–660.
Shaban, A.; Cheng, C.-A.; Hatch, N.; and Boots, B. 2018.
Truncated back-propagation for bilevel optimization. arXiv
preprint arXiv:1810.10667.
Soh, J. W.; Cho, S.; and Cho, N. I. 2020. Meta-transfer
learning for zero-shot super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3516–3525.
Solodov, M. 2007. An explicit descent method for bilevel
convex optimization. Journal of Convex Analysis, 14(2): 227.
Song, X.; Gao, W.; Yang, Y.; Choromanski, K.; Pacchiano,
A.; and Tang, Y. 2019. Es-maml: Simple hessian-free meta
learning. arXiv preprint arXiv:1910.01215.
Sow, D.; Ji, K.; Guan, Z.; and Liang, Y. 2022. A Constrained
Optimization Approach to Bilevel Optimization with Multi-
ple Inner Minima. arXiv preprint arXiv:2203.01123.
Tian, Y.; Shen, L.; Su, G.; Li, Z.; and Liu, W. 2020. Alpha-
gan: Fully differentiable architecture search for generative
adversarial networks. arXiv preprint arXiv:2006.09134.
Tschiatschek, S.; Ghosh, A.; Haug, L.; Devidze, R.; and
Singla, A. 2019. Learner-aware teaching: Inverse rein-
forcement learning with preferences and constraints. arXiv
preprint arXiv:1906.00429.
Willoughby, R. A. 1979. Solutions of ill-posed problems (an
tikhonov and vy arsenin). SIAM Review, 21(2): 266.
Wong, C.; Houlsby, N.; Lu, Y.; and Gesmundo, A. 2018.
Transfer learning with neural automl. arXiv preprint
arXiv:1803.02780.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.-J.; Tian, Q.;
and Xiong, H. 2019. PC-DARTS: Partial channel connec-
tions for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737.
Yadav, C.; and Bottou, L. 2019. Cold case: The lost mnist dig-
its. In Advances in Neural Information Processing Systems,
13443–13452.
Yamada, I.; Yukawa, M.; and Yamagishi, M. 2011. Minimiz-
ing the Moreau envelope of nonsmooth convex functions over
the fixed point set of certain quasi-nonexpansive mappings.
In Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, 345–390. Springer.
Yang, J.; Ji, K.; and Liang, Y. 2021. Provably Faster
Algorithms for Bilevel Optimization. arXiv preprint
arXiv:2106.04692.
Zintgraf, L.; Shiarli, K.; Kurin, V.; Hofmann, K.; and White-
son, S. 2019. Fast context adaptation via meta-learning. In
International Conference on Machine Learning, 7693–7702.
PMLR.

