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Abstract

In the paper, we propose a class of accelerated zeroth-order and first-order momentum
methods for both nonconvex mini-optimization and minimax-optimization. Specifically,
we propose a new accelerated zeroth-order momentum (Acc-ZOM) method for black-box
mini-optimization where only function values can be obtained. Moreover, we prove that
our Acc-ZOM method achieves a lower query complexity of O(d?’/ 4e=3) for finding an e-
stationary point, which improves the best known result by a factor of O(dl/ 1) where d
denotes the variable dimension. In particular, our Acc-ZOM does not need large batches
required in the existing zeroth-order stochastic algorithms. Meanwhile, we propose an
accelerated zeroth-order momentum descent ascent (Acc-ZOMDA) method for black-box
minimax optimization, where only function values can be obtained. Our Acc-ZOMDA ob-
tains a low query complexity of O((dl +dy)3/ 4&3‘56_3) without requiring large batches for
finding an e-stationary point, where d; and dy denote variable dimensions and , is con-
dition number. Moreover, we propose an accelerated first-order momentum descent ascent
(Acc-MDA) method for minimax optimization, whose explicit gradients are accessible. Our
Acc-MDA achieves a low gradient complexity of O(H3'56’3) without requiring large batches
for finding an e-stationary point. In particular, our Acc-MDA can obtain a lower gradient
complexity of O(I’i?[‘5€_3) with a batch size O(rj), which improves the best known result

by a factor of O(chl/ 2). Extensive experimental results on black-box adversarial attack to
deep neural networks and poisoning attack to logistic regression demonstrate efficiency of
our algorithms.
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1. Introduction

In the paper, we consider solving the following stochastic mini-optimization problem:

min f(z) = Eewp[f(7;€)], (1)

zeX
where f(z) : X — R is a differentiable and possibly nonconvex function, and X C R? is
a convex closed set, and £ is a random variable following an unknown distribution D. In
machine learning, the expected loss minimization is generally expressed as the problem (1).
Stochastic Gradient Descent (SGD) is a standard algorithm for solving the problem (1).
However, it suffers from large variances resulting in a high gradient complexity of O(e~%)
(Ghadimi and Lan, 2013) for finding an e-stationary point, i.e., E||V f(z)|| < e. Thus, many
variance-reduced algorithms (Allen-Zhu and Hazan, 2016; Reddi et al., 2016; Zhou et al.,
2018; Fang et al., 2018; Wang et al., 2019) have been developed to improve the gradient
complexity of the SGD. Specifically, Allen-Zhu and Hazan (2016); Reddi et al. (2016) pro-
posed the nonconvex version of SVRG algorithm (Johnson and Zhang, 2013), which reaches
an improved gradient complexity of O(e~19/3). Subseqently, the SNVRG /SPIDER methods
(Zhou et al., 2018; Fang et al., 2018; Wang et al., 2019) have been proposed to obtain a
near-optimal gradient complexity of O(e~3). More recently, the momentum-based variance
reduced methods (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019) achieved the best
known complexity of O(e~3). At the same time, Arjevani et al. (2019) established a lower
bound of complexity O(e~3) for variance reduced algorithms.

The above first-order methods need to use gradients of the objective function to update
the variables. In many machine learning problems, however, the explicit gradients of their
objective functions are difficult or infeasible to access. For example, in the reinforcement
learning (Malik et al., 2020; Kumar et al., 2020; Huang et al., 2020a), it is difficult to
calculate the explicit gradients of their objective functions. Even worse, in the black-box
adversarial attack to deep neural networks (DNNs) (Chen et al., 2018), only prediction
labels can be obtained. To solve such back-box problem (1) where only the objective
function values can be obtained, the zeroth-order methods (Ghadimi and Lan, 2013; Duchi
et al., 2015) have been widely used with only querying values of the function f(z) and
not accessing to its explicit formation. Recently, some zeroth-order stochastic algorithms
(Ghadimi and Lan, 2013; Duchi et al., 2015; Nesterov and Spokoiny, 2017; Chen et al., 2019)
have been presented by using the smoothing techniques such as Gaussian-distribution and
Uniform-distribution smoothing. Similarly, these zeroth-order stochastic algorithms also
suffer from large variances resulting in a high query complexity of O(de™*) (Ghadimi and
Lan, 2013) for finding an e-stationary point. To reduce the query complexity, Fang et al.
(2018); Ji et al. (2019) recently proposed some accelerated zeroth-order stochastic algorithms
(i.e., SPIDER-SZO and ZO-SPIDER-Coord) based on the variance reduced technique of
SPIDER (Fang et al., 2018). Although these accelerated zeroth-order methods obtain a
lower query complexity of O(de=3), these methods require large batches in both inner and
outer loops of algorithms. At the same time, the practical performances of these methods
are not consistent with this low query complexity, since they require large batches and strict
learning rates to achieve it.

In the paper, thus, we propose a new accelerated zeroth-order momentum (Acc-ZOM)
method to solve the black-box problem (1), which builds on both generic uniform smoothing
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Table 1: Query complexity comparison of the representative non-convex zeroth-order
methods for finding an e-stationary point of the black-box mini-optimization problem
(1) and minimax-optimization problem (2), respectively. GauGE, UniGE and CooGE are
abbreviations of Gaussian, Uniform and Coordinate-Wise smoothing gradient estimators,
respectively. Here x, denotes the condition number for function f(-,y). Note that Appendix
B provides a comparison of assumptions used in the zeroth-order methods, and Appendix
C provides a detailed proof to obtain a correct query complexity of ZO-Min-Max algorithm
(Liu et al., 2019b).

Problem Algorithm Reference Estimator Batch Size Complexity
Z0O-SGD Ghadimi and Lan (2013) GauGE o(1) O(de %)
Z0-AdaMM Chen et al. (2019) UniGE O(e7?) O(d?e™%)
Mini Z0O-SVRG Ji et al. (2019) CooGE O(e72) O(de~1073)
Z0O-SPIDER-Coord Ji et al. (2019) CooGE O(e7?) O(de™3)
SPIDER-SZO Fang et al. (2018) CooGE O(e7?) O(de™3)
Acc-ZOM Ours UniGE O(1) O(d®/*e3)
ZO-Min-Max Liu et al. (2019b) UniGE O((di+dp)r2e?) O((d1+d2)r5e)
Z0-SGDA Wang et al. (2020) GauGE O((d1+d2)e™?) O((dy +dg)rye ™)
Z0O-SGDMSA Wang et al. (2020) GauGE O((d1+d2)e™?) O((dy+dp)r2e™?)
Minimax | ZO-SREDA-Boost Xu et al. (2020a) CooGE O(max(rye L, dy + da)ryeT) O((dy+d2)rye )
Acc-ZOMDA Ours UniGE 0(1) O((dr+dy)*/ kb5 3)

gradient estimator and momentum-based variance reduction technique of STORM /Hybrid-
SGD (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019). Moreover, we prove that our
Acc-ZOM method achieves a lower function query complexity of O(d®/ 4e73) without large
batches for finding an e-stationary point, which improves the best known complexity by a
factor of O(dl/ 4) (please see Table 1 for query complexity comparison of different non-convex
zeroth-order methods).

Besides the mini-optimization problem (1) is widely used in machine learning, there also
exist many machine learning applications (Shapiro and Kleywegt, 2002; Nouiehed et al.,
2019; Zhao, 2020) such as adversarial training (Goodfellow et al., 2014), reinforcement
learning (Wai et al., 2019, 2018), distributionally robust optimization (Qi et al., 2020) and
AUC maximization (Ying et al., 2016), which can be modeled as a minimax optimiza-
tion problem. In the paper, we further focus on solving the following stochastic minimax
optimization problem:

min max f(x, y) = Bevpr[f(2, 45 6], (2)
where function f(x,y) : X x Y — R is strongly concave in variable y but possibly nonconvex
in variable z, and ¢ is a random variable following an unknown distribution D’. Here the
constraint sets X C R% and ) C R% are compact and convex. In fact, the problem
(2) can be seen as a zero-sum game between two players. The goal of the first player
is to minimize f(x,y) by varying z, while the other player’s aim is to maximize f(z,y)
by varying y. When the problem (2) is black-box where only noise stochastic function
values can be obtained, we propose an accelerated zeroth-order momentum descent ascent
(Acc-ZOMDA) method based on the generic uniform smoothing gradient estimator and
the variance reduced technique of STORM. When the problem (2) is transparent where
noise stochastic gradients can be accessed, we present an accelerated first-order momentum
descent ascent (Acc-MDA) method based on the variance reduced technique of STORM.
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Table 2: Gradient complexity comparison of the representative first-order methods for
finding an e-stationary point of the minimax problem (2). Here Y denotes the fact that
there exists a convex constraint on variable, otherwise is N. Note that our theoretical results
do not rely on any assumption on convex constraint sets X and ), so it can be easily extend
to the unconstrained setting.

Algorithm Reference Constraint on z,y | Loop(s) | Batch Size Complexity
PGSVRG Rafique et al. (2018) N, N Double O(e™?) O(k3e™)
SGDA Lin et al. (2019) N, Y Single O(kye?) O(K26_4)
SREDA Luo et al. (2020) N, Y Double O(kie?) O(kie™®)
SREDA-Boost | Xu et al. (2020a) N, N Double O(KZ21672) O(Kie%)
Acc-MDA Ours Y (N), Y Single 0o(1) O(ky°e®)
Acc-MDA Ours Y (N), Y Single | O(k%), v>0| Oy "Pe?)

Contributions: Our main contributions are summarized as follows:

1) We propose a new accelerated zeroth-order momentum (Acc-ZOM) method to solve
the black-box mini-optimization problem (1), where only noise stochastic function
values can be obtained. Moreover, we prove that our Acc-ZOM method achieves
a lower query complexity of O(d®%¢=3) for finding an e-stationary point without
requiring large batches, which improves the best known result by a factor of O(d/4).

2) We propose an accelerated zeroth-order momentum descent ascent (Acc-ZOMDA)
method to solve the black-box minimax-optimization problem (2), where only
noise stochastic function values can be obtained. Moreover, we prove that our Acc-
ZOMDA method obtains a low query complexity of O((d1 + d2)3/ 4%3'56_3) without
requiring large batches for finding an e-stationary point (Please see Table 1).

3) We further present propose an accelerated first-order momentum descent ascent (Acc-
MDA) method to solve the transparent minimax-optimization problem (2), whose
explicit gradients are accessible. We prove that our Acc-MDA algorithm has a low
gradient complexity of O~(m§‘5e_3) without requiring large batches for finding an e-
stationary point. Our Acc-MDA algorithm reaches the best known gradient complex-
ity of O(ﬁge*:”) with batch size O(Hg) for finding an e-stationary point. Moreover,
our Acc-MDA algorithm obtains a lower gradient complexity of O (53'56*3) with batch
size O(ng) for finding an e-stationary point (Please see Table 2).

4) We present a class of accelerated zeroth-order and first-order momentum framework
for both mini-optimization and minimax-optimization. Moreover, we study the con-
vergence properties of our methods for both constrained and unconstrained opti-
mization, respectively.

The remainder of the paper is structured as follows. In Section 2, we review some
related works about zeroth-order and first-order methods for mini and minimax optimiza-
tion. Section 3 introduces some preliminaries about zeroth-order and first-order methods
for mini and minimax optimization. We introduce our Acc-ZOM, Acc-ZOMDA and Acc-
MDA methods in Sections 4, 5 and 6, respectively. In Section 7, we give the convergence
properties of our methods. In Section 8, we apply black-box adversarial attack to DNNs
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and poisoning attack to logistic regression to verify efficiency of our methods. Conclusions
are provided in Section 9. The proofs of the main results are given in the appendix.

2. Related Works

In this section, we recap some zeroth-order and first-order methods for solving the mini-
optimization and minimax-optimization problems, respectively.

2.1 Zeroth-Order Mini-Optimization

Zeroth-order (i.e., gradient-free) methods are a class of powerful optimization tools to solve
many complex machine learning problems, whose explicit gradients are difficult or even
infeasible to access. Recently, the zeroth-order methods have been widely proposed. For
example, Ghadimi and Lan (2013); Duchi et al. (2015); Nesterov and Spokoiny (2017) pro-
posed several zeroth-order algorithms based on the Gaussian smoothing technique. Subse-
quently, some accelerated zeroth-order stochastic methods (Liu et al., 2018b; Ji et al., 2019)
have been proposed by using the variance reduced techniques. To solve the constrained
optimization, the zeroth-order projected method (Liu et al., 2018¢) and the zeroth-order
Frank-Wolfe methods (Balasubramanian and Ghadimi, 2018; Chen et al., 2018; Sahu et al.,
2019; Huang et al., 2020b) have been recently proposed. More recently, Chen et al. (2019)
have proposed a zeroth-order adaptive momentum method to solve the constrained opti-
mization problems. To solve the nonsmooth optimization, several zeroth-order proximal
algorithms (Ghadimi et al., 2016; Huang et al., 2019¢c; Ji et al., 2019) and zeroth-order
ADMM-based algorithms (Gao et al., 2018; Liu et al., 2018a; Huang et al., 2019a,b) have
been proposed.

2.2 Zeroth-Order Minimax Optimization

The above zeroth-order methods only focus on the mini-optimization problems. In fact,
many machine learning problems such as reinforcement learning (Wai et al., 2019, 2018),
black-box adversarial attack (Liu et al., 2019b), and adversarial training (Goodfellow et al.,
2014; Liu et al., 2019a) can be expressed as the minimax-optimization problems. For the
black-box minimax problems where we can only access function values, more recently, some
zeroth-order descent ascent methods (Liu et al., 2019b; Wang et al., 2020; Xu et al., 2020a)
have been presented to solve the minimax-optimization problem (2). In addition, online
zeroth-order extra-gradient algorithms (Roy et al., 2019) have been proposed to solve the
(strongly) convex-concave minimax problems.

2.3 First-Order Minimax Optimization

For the transparent minimax problems whose explicit gradients are accessible, more re-
cently, some first-order minimax methods have been widely studied in (Rafique et al., 2018;
Jin et al., 2019; Nouiehed et al., 2019; Thekumparampil et al., 2019; Lin et al., 2019; Yang
et al., 2020; Ostrovskii et al., 2020; Yan et al., 2020; Lin et al., 2020; Xu et al., 2020b; Boft
and Bohm, 2020). For example, Lin et al. (2019) proposed a class of gradient descent as-
cent methods (i.e., GDA and SGDA) for nonconvex-(strongly) concave minimax problems.
Rafique et al. (2018) studied a class of weakly-convex concave minimax problems and pro-
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posed an efficient stochastic gradient descent ascent method (i.e., PGSVRG) based on the
variance reduced technique of SVRG. Luo et al. (2020); Xu et al. (2020a) proposed a class
of faster SGDA methods (i.e., SREDA and SREDA-Boost) to solve the nonconvex-strongly-
concave minimax problems based on the variance reduced technique of SARAH/SPIDER.
In addition, Tran-Dinh et al. (2020) presented a hybrid variance-reduced SGD algorithm
for a special case of nonconvex-concave stochastic minimax problems, which are equivalent
to a class of stochastic compositional problems studied in (Qi et al., 2020).

3. Preliminaries

In this section, we introduce zeroth-order gradient estimators and some mild assumptions
for mini-optimization problem (1) and minimax-optimization problem (2), respectively.

3.1 Notations

(x,y) denotes the inner product of two vectors z and y. ||-| denotes the ¢5 norm for vectors
and spectral norm for matrices. I denotes a d-dimensional identity matrix. Given function
f(x,y), f(x,-) denotes function w.r.t. the second variable with fixing x, and f(-,y) denotes
function w.r.t. the first variable with fixing y. Let Vf(z,y) = (Vo f(z,y), Vy f(z,y)), where
Vof(z,y) and V, f(z,y) denote the partial gradients w.r.t. variables z and y, respectively.
Define two increasing o-algebras F} := {&,&s,--+ , &1} and F7 := {ul,u?,--- jul~1} for
all t > 2, where {u’ f;} is a vector generated from the uniform distribution over the unit
sphere, then let E[] = E[-|F}, F2]. We denote a = O(b) if a < Cb for some constant
C > 0. The notation O(-) hides logarithmic terms. Given a convex closed set X, we define
a projection operation to X as Py (wg) = arg mingcy ||z — x0]|%.

3.2 Preliminaries for Mini-Optimization

For solving the mini-optimization problem (1), we apply the Uniform smoothing Gradient
Estimator (UniGE) (Gao et al., 2018; Ji et al., 2019) to generate stochastic zeroth-order
gradients. Specifically, given the stochastic function f(z;¢) : R — R, the UniGE can
generate a stochastic zeroth-order gradient, defined as

[+ pu; §) — f(2;€)
p/d

where u € R? is a vector generated from the uniform distribution over the unit sphere, and
f is a smoothing parameter. Let f,(x;&) = Eyp, [f (24 pu; €)] be a smooth approximation
of f(x;&), where Up is the uniform distribution over the d-dimensional unit Euclidean ball
B. Further let Vf,(x) = E¢[V f.(z;€)]. According to Lemma 5 in (Ji et al., 2019), we have

Eeu) [Vf(;€)] = Vfu(z). Next, we give some mild assumptions about the problem (1).

V(€)=

u, (3)

Assumption 1 The variance of stochastic zeroth-order gradient is bounded, i.e., there ex-
ists a constant o > 0 such that for all z, it follows E||V f(x; &) — V fu(z)||> < o2

Assumption 1 is similar to the upper bound of variance of stochastic gradient in (Ghadimi
and Lan, 2013; Cutkosky and Orabona, 2019). In the following, we further give some mild
conditions about the problem (1).
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Assumption 2 The component function f(x;&) is L-smooth such that
IVf(@;€) = V(9 < Lljz — 2’|, Vz,2" € X.
Assumption 3 The function f(x) is bounded from below in X, i.e., f* =inf cx f(z).

Assumption 2 imposes smoothness on each component loss function, which is widely used
in the nonconvex algorithms (Fang et al., 2018; Wang et al., 2019; Cutkosky and Orabona,
2019). Assumptions 3 guarantees the feasibility of the problem (1).

3.3 Preliminaries for Minimax-Optimization

For solving the minimax-optimization problem (2), we also apply the UniGE to generate
stochastic zeroth-order partial gradients. Specifically, for the stochastic function f(z,y;€) :
R4 x R% — R, given B = {£1,---,&} drawn ii.d. from an unknown distribution, the
UniGE can generate stochastic zeroth-order partial gradients, defined as

~

ll)zb:f(ﬂerm?li,y;&)—f(wvy;&)A, (4)

(SR
M@

Vo f(x,y;B) = 2 Vof(,y:&) =+ /s G,
b 37 .. . J— . .
@yf(x,y;B): %Z@ .%' LY gz _ Zf xz, y+u2“;;§;)2 f(m’y’&')ai, (5)

=1

where 1 and po are the smoothing parameters, and U = {6, € R4}_| and U= {ug €
R92}Y_ are generated from the uniform distribution over the unit sphere Up, and Usg,, re-
spectively. Here Up, and Up, denote the uniform distributions over the d;-dimensional unit
Euclidean ball By and ds-dimensional unit Euclidean ball Bs, respectively. The smoothed
functions associated to function f(x,y;§) can be defined as:

S @y ) = Ba[f(x + 10, 439)], fro(,y:6) = Ba[f (2, y + p2i; €)]. (6)

Following Lemma 5 in (Ji et al., 2019), we have E; ) [ f(@,y;:6)] = Vafu (z,y) and

oVuf(@,4;6)] = Vyfu(w,y). Similarly, we have E ;o [Vof(z,y;B)] = Vo fu (2,y)
and E g g [Vyf(z,y;B)] = Vy fus(2,y). Next, we give some mild assumptions about the
problem (2).

Assumption 4 The variance of zeroth-order stochastic gradient is bounded, i.e.,
there exists a constant 6; > 0 such that for all x, it follows B||V o f (2, y; €) = Ve fu (2, 9)]|? <
62, and for ally, it follows E||@yf(x, Y; &) —Vy fus (z,9)||? < 62. The variance of stochas-
tic gradient is bounded, i.e., there exists a constant §o > 0 such that for all x, it follows
E||Vaof(x,y;€) — Vauf(z,y)||? < 62; There exists a constant 6 > 0 such that for all y, it

follows E||V, f(x,y;§) — Vyf(ﬁU,y)HZ < 63.

Assumption 4 is similar to the upper bound of variance of stochastic partial gradients in
(Luo et al., 2020; Wang et al., 2020). For notational simplicity, let 6 = max(d1,d2). By
using Assumption 4, we have E||V,f(z,y; B) — V fu, (z,y)||? < 62/b and E||V, f(z,y; B) —
Y fys (2, )| < 62/b.
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Assumption 5 Each component function f(x,y;§) has a Ly-Lipschitz gradient, i.e., for
all z, 2’ € X and y,y/ € Y

IV f(z,y:6) = V(' v < Lyll(z,y) = (2, 9], (7)
where Vf(z,y;€) = (Vo f (2, y:€), Vy f (2, 9; €)).
Assumption 6 The objective function f(x,y) is T-strongly concave in variable y, i.e.,

Hvyf(xay) - Vyf(m,y')H 2 THy - y/H7 vV € Xv yvy/ € y (8)

Then the following inequality holds
-
fl@,y) < fl@y) +(Vof(.9)0 =) = Slly = v'II" (9)

Assumption 5 also implies the partial gradients V, f(z,y) = E¢[V. f(z,y;€)] and V, f(z,y) =
E¢[Vy f(x,y;€)] are Ly-Lipschiz continuous. Since f(z,y) is strongly concave in y € Y, there
exists a unique solution to the problem max,cy f(x,y) for any z, and we define the solution

as y*(x) = argmaxycy f(x,y), and let F(x) = max,ey f(z,y) = f(z,y*(x)).

Assumption 7 The function F(x) is bounded from below in X, i.e., F* = inf,cx F(x).

4. Accelerated Zeroth-Order Momentum Method for Mini-Optimization

In this section, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method
to solve the black-box mini-optimization problem (1), where only noise stochastic function
values can be obtained. Although our Acc-ZOM method builds on the momentum-based
variance reduction technique of STORM (Cutkosky and Orabona, 2019), our Acc-ZOM
method is the first to extend the original STORM method to the constrained optimization.
Algorithm 1 summarizes the algorithmic framework of our Acc-ZOM method.

In Algorithm 1, we use the zeroth-order variance-reduced stochastic gradients as follows:

v = oV fag &) + (1 — Oét)(ﬁf(fﬂt; &) — V(zi-1;&) + V1), (10)

where o € (0,1]. When o = 1, v; will degenerate a vanilla zeroth-order stochastic gradient;
When a; = 0, v; will degenerate a zeroth-order stochastic gradient based on variance-
reduced technique of SPIDER (Fang et al., 2018). When the constraint set X = RY, i.e.,
the problem (1) is an unconstrained problem, we use a common metric E||V f(x¢)|| used in
the nonconvex optimization (Fang et al., 2018; Ji et al., 2019) to measure the convergence
of Algorithm 1.

When the constraint set X C R? at the step 8 of Algorithm 1, we use 0 < 7, < 1 to
ensure the variable x; for all ¢ > 1 in the convex constraint set X'. At the same time, we
provide a useful metric E[G;] to measure the convergence properties of our Acc-ZOM for
constrained optimization, defined as

1
G = §Hi’t+1 — x| + [V f(2e) — vel]. (11)
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Algorithm 1 Acc-ZOM Algorithm for Mini Optimization
1: Input: T, parameters {~, k, m,c} and initial input z; € X;
2: initialize: Draw a sample &, and sample a vector u € R? from uniform distribution
over unit sphere, then compute v; = Vf(x1;&1), where the zeroth-order gradient is

estimated from (3);
3: fort=1,2,...,T do

4:  Compute n; = W;

5. if X = R? then

6: Update zi11 = x¢ — ymevy;

7. else

8: Update Zy11 = Px(zs — yv¢), and xp1 = 24 + 0e(Te41 — 2);
9: end if

10:  Compute oy 1 = cn?;

11:  Draw a sample &1, and sample a vector v € R? from uniform distribution over unit
sphere, then compute vi1q = @f(xt+1;§t+1) + (1 — aq1) [Ut — @f(a:t;ftﬂ)], where
the zeroth-order gradients are estimated from (3);

12: end for

13: Output: (for theoretical) z, chosen uniformly random from {z;}7_;.

14: Output: (for practical) xr.

In fact, our metric E[G,] is tighter than standard gradient mapping metric E||Gx (x¢, V f(x), )|
used in (Ghadimi et al., 2016), i.e., G; > ||Gx(x¢, V f(xt),7)]|, where

G0, V f (1), ) = i(xt ~ Plar — 7V (),
Po(r, — 7V (x) = argmin {<Vf(wt), v+ oo - thZ}. (12)

Let w(z) = ||z|?, as in (Ghadimi et al., 2016), we give a prox-function associated with
w(x), defined as

1
Vi(z,z¢) = w(a) — (w(we) + (Vw(zy), s — a4)) = 5”1‘ — x4 (13)
At the same time, the step 8 of Algorithm 1 can be rewritten as
- 1 2
- — ) = i - |z — . 14
Ziy1 = Pa(ze — yop) arg min {(vt,aﬁ xe) + 27Hx x| } (14)
Then we also can obtain a gradient mapping Gy (z¢,vi,y) = %(wt — Px(zy — ’yvt)) =

%(l‘t — Zy41). Since the function w(z) = %||z||? is 1-strongly convex, we have

||GX(1:ta vf(33t),’7)|| = ”GX(ZCt, vf(ﬂft)a’Y) - GX(xta/Uta’Y) + GX(£t7”t77)H
S HGX(xhvf(It)ary) - GX(xtavtu’Y)” + ||GX($taUta’Y)||

(2)
< va(l't) - Ut|| + ||GX(33t,Ut,7)||
1 -
= IV f(xe) — vl + ;th — T (15)
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Algorithm 2 Acc-ZOMDA Algorithm for Minimax Optimization

1: Input: T, parameters {v, A\, k, m,c1,co} and initial input 27 € X and y; € );
2: initialize: Draw a mini-batch samples By = {¢}}%_;, and draw vectors {4; € R#1}Y_,
and {@; € R%}Y_, from uniform distribution over unit sphere, then compute v; =
@xf(a:l,yl;l’)’l) and w; = @yf(aﬁl,yl;Bl), where the zeroth-order gradients are esti-
mated from (4) and (5);
fort=1,2,...,7 do

Compute 7, =

k.
(m+t)1/3 )
if X =R% then
Update z¢41 = xp — ynpvy;
else
Update &1 = Px(zr — yvi) and @1 = @ + i (Tp1 — 21);

end if

10:  Update g1 = Py(ye + Awy) and yer1 = ye + 0e(Jev1 — Ye);

11:  Compute gy = 0177152 and Sy = 02771525

12 Draw a mini-batch samples By = {&71}%_|, and draw vectors {@; € R%}_, and
{@; € R%}2_ from uniform distribution over unit sphere;

13:  Compute vi11 = Vo f(Te41, Yer15 Beg1) + (L — 1) [ve — Vi f (w4, y¢; Bey1) | and wypq =
Vyf(@es1, Yeg1; Bigr) + (1 — Bt+1)[wt — Vyf(xt,yt;BtH)], where the zeroth-order
gradients are estimated from (4) and (5).

14: end for

15: Output: (for theoretical) z; and y¢ chosen uniformly random from {z, 3 }1 ;.

16: Output: (for practical) z7 and yp.

where the above inequality (i) holds by Proposition 1 of (Ghadimi et al., 2016).

In fact, the original STORM method (Cutkosky and Orabona, 2019) is only competent
to unconstrained optimization. In Algorithm 1, when using stochastic gradient instead of
stochastic zeroth-order gradient for solving the problem (1), our Acc-ZOM algorithm will
reduce to a new version of STORM method for constrained optimization.

5. Accelerated Zeroth-Order Momentum Descent Ascent Method for
Minimax Optimization

In the section, we propose an accelerated zeroth-order momentum descent ascent (Acc-
ZOMDA) method to solve the black-box minimax problem (2), where only stochastic
function values can be obtained. In fact, we extend the above Acc-ZOM method to solve
the minimax problem and then obtain the Acc-ZOMDA method. Algorithm 2 describes the
algorithmic framework of our Acc-ZOMDA method.

In Algorithm 2, we use the momentum-based variance reduced technique of STORM
to estimate the stochastic zeroth-order partial gradients v; and w;. When the constraint
set X = R%, j.e., the problem (2) is an unconstrained problem w.r.t. variable z, we use
a common metric E||VF (x4)|| used in (Lin et al., 2019; Wang et al., 2020) to measure the
convergence of Algorithm 2, where the function F(z) = maxyecy f(z,y).

10
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When the constraint set X C R%, we define a useful metric E[H;] to measure the
convergence properties of our Acc-ZOMDA Algorithm,

1 5 *
Hy = ;th-&-l — il + [ Vaf (@, ye) — vell + Lyllye — y™ (o), (16)

where the first two terms of H; measure convergence of the iteration solutions {z;}{ ;, and
the last term measures convergence of the iteration solutions {yt}thl. In fact, our new
metric E[H,] is tighter than the generic gradient mapping metric E||Gx(z¢, VF(x¢),7)]],
ie., Hy > ||Gx(xe, VF(x¢),y)||, where Gy (x, VF(2),y) is a gradient mapping, defined as

Gl VF(22),7) = i(xt — P — AV E(x)),

. 1
Px(xs —yVF(x)) = arg min {(VF(xt),x —x) + %Hx — thHQ}, (17)

where F(x;) = f(x¢, y*(2¢)) = mingey f(x¢,y). At the same time, the step 8 of Algorithm
2 can be rewritten as

- ) 1
Z141 = Px(xy — yv) = arg min {(vt, x—x) + —|lz— :L't|2}. (18)
reX 2’)/
Then we also can obtain a gradient mapping Gy (z¢,vi,y) = %(wt — Px(zy — 'yvt)) =

%(mt — Zy41). Since the function w(z) = %||z||? is 1-strongly convex, we have

HGX(xt,VF(mt),'}/)” = HGX(beF(xt)afy) - G_)(((Ift,’l)t,’}’) + GX<xtavt77)H
SNGx(we, VE(xt),v) — Gx(ze, v, 7)|| + [|Gx (2, v6,7) ||
(@)
< [[VE(zt) = vel| + |G (g, ve, 7) |

1 .
= [|[VF(x) = Vo f(xt,yt) + Vaf (e, ye) — vel| + ;th — Tep|
* 1 ~
<NVaf(@e, y" (@) =V f (@, ye) | + | Vaf (@, ye) — Ut|!+§||$t — ZTp1]|

@ 1
< Lylly™(we) — yell + IV f (e, ye) — vel| + ;th — Tyy1l], (19)

where the above inequality (i) holds by Proposition 1 of (Ghadimi et al., 2016), and the
above inequality (¢7) is due to Assumption 5.

6. Accelerated First-Order Momentum Descent Ascent Method for
Minimax Optimization

In this section, we propose an accelerated first-order momentum descent ascent (Acc-MDA)
method to solve the transparent minimax problem (2), whose explicit stochastic gradients
are accessible. Algorithm 3 gives the algorithmic framework of our Acc-MDA method. In
Algorithm 3, we use the stochastic gradients instead of the stochastic zeroth-order gradients
used in Algorithm 2. In our Acc-MDA algorithm, we use the momentum-based variance-
reduced technique of STORM to estimate the partial derivatives vy and w; on variables x

11
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Algorithm 3 Acc-MDA Algorithm for Minimax Optimization

1: Input: T, parameters {v, A\, k, m,c1,co} and initial input 27 € X and y; € );
2: initialize: Draw a mini-batch samples B; = {51-1}2’:1, and then compute stochastic
gradients vi = V, f(x1,y1;B1) and wy = Vy, f(z1,91; B1);
3: fort=1,2,...,T do
Compute 7 =

4 —k
(m+t)1/3 ’

5 if X =R% then

6 Update x41 = xp — ynivy;

7. else

8 Update Zr1 = Px(xy — yv) and @1 = xp + m(Tyg1 — x4);

9: end if

10:  Update G141 = Py(yr + Mwy) and ye1 = v + ne(Gee1 — t);

11:  Compute at+1 = c1n? and Brr1 = can?;

12: Draw a mini-batch samples B;11 = {ff“}ﬁ-’:l, and then compute stochastic gradi-
ents vip1 = Vo f(@e1, Y15 Ber1) + (1 — 1) [ve — Vaf (ze, yes Beyr)] and weq =
Vo f @1, yeg1; Bega) + (1 = Begr) [we — Vy f (@, yes Beg1) |

13: end for

14: Output: (for theoretical) z; and y¢ chosen uniformly random from {z, 3} ;.

15: Output: (for practical) z7 and yp.

and y, respectively. Moreover, our Acc-MDA algorithm also uses the momentum iteration
to update variables  and y as follows:

Tir1 = Px(ze —yve), @41 = @+ ne(Tep1 — 1), (20)
Uir1 = Py(ye + Mwe),  yev1 = ye + 0 (Jes1 — ye)- (21)

At the same time, at step 6 of Algorithm 3, i.e., x411 = x; — Ym0y also can be rewritten as
Tpp1 = o — yvp and @1 = T + e(Tegp1 — T).

By combining Algorithms 2 and 3, we can propose an accelerated semi-zeroth-order mo-
mentum descent ascent (Acc-Semi-ZOMDA) method to solve one-sided black-box problem
(2) studied in (Liu et al., 2019b), where the explicit stochastic partial gradients in variable
x can not be accessible. Specifically, in the Acc-Semi-ZOMDA algorithm, we only use the
stochastic partial gradients w; instead of the stochastic zeroth-order partial gradients w; in
Algorithm 2.

7. Convergence Analysis

In this section, we study the convergence properties of our algorithms (Acc-ZOM, Acc-
ZOMDA and Acc-MDA) under some mild conditions.

7.1 Convergence Analysis of the Acc-ZOM Algorithm

In this subsection, we analyze convergence of our Acc-ZOM algorithm for solving the
constrained and unconstrained mini-optimization problem (1), respectively.

12
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7.1.1 CONVERGENCE ANALYSIS OF THE AcCc-ZOM ALGORITHM FOR CONSTRAINED
MINI-OPTIMIZATION

In the subsection, we analyze convergence properties of the Acc-ZOM algorithm for solving
the constrained problem (1), i.e., X C R?. The following convergence results build on
a new metric E[G;|, where G; is defined in (11). The related proofs of these convergence
analysis are provided in Appendix A.1.

We begin with defining a function f,(x) = Ey~vy[f(x + pu)], which is a smooth ap-
proximation of function f(z), where Up is the uniform distribution over the d-dimensional
unit Euclidean ball B.

Theorem 1 Suppose the sequence {x;}1_, be generated from Algorithm 1. When X C RY,

k . 1/3 2 5
WfOTa”tZO,0<’}/§mln(rng,2\/—L)CZW+Z,I€>O,

m > max (2, (ck)?, k%) and 0 < p < we have

and let ny =

1
d(m+T)2/37

H<*2Egt \/7m VoM L

*ZEHGX xt, V f (@), T1/2 T3 T 2(m + T)%/3

(22)

where M —= (ki f* L m 1/3 2

+ 4k2 +2k2c20?In(m +T).

ml/3

Remark 2 Without loss of generality, let m > max (2, (ck)3, k3, (\/%)3), we have B >

2\/2—%. It is easy wverified that v = O(ﬁ), ¢ = O() and m = O(1). Then we have
4) convergence

M= O(\f—kln(m—i—T)) = ON(\/Q) Thus, the Acc-ZOM algorithm has O(T1/3

rate. By 4 T1/3 <€, i.e., E[G:] <€, we choose T > d3/4e=3. In Algorithm 1, we require to
query four function values for estimating the zeroth-order gradients v, at each iteration, and
need T iterations. Thus, the Acc-ZOM algorithm has a query complexity of 4T = O(d3/4e_3)

for finding an e-stationary point.

7.1.2 CONVERGENCE ANALYSIS OF Acc-ZOM ALGORITHM FOR UNCONSTRAINED
MINI-OPTIMIZATION

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for
solving the unconstrained problem (1), i.e., X = R?. The following convergence analysis
builds on the common metric E||V f(x)|| used in nonconvex optimization (Ji et al., 2019).
The related proofs of these convergence analysis are provided in Appendix A.2.

Theorem 3 Suppose the sequence {x;}1_, be generated from Algorithm 1. When X = RY,

and let ny = W forallt > 0,0 < v < min(TgLf’er) c > %—i—g, k > 0,
m > max (2,k%, (ck)?) and 0 < p < W, we have
\/ V2M L
—ZEHVf (z)]| < M | + , (23)
Tl/2 T3 2(m+T)%/3

where M = (ki ff4m 1/3 4 4k2 > + 2k2c2 02 In(m +T).

13
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Remark 4 Since the conditions of Theorem 3 are the same conditions of Theorem 1, The-
orem 8 also show that our Acc-ZOM algorithm has a lower query complezity of O(d3/46_3)
for finding an e-stationary point.

7.2 Convergence Analysis of the Acc-ZOMDA Algorithm

In this subsection, we analyze convergence of our Acc-ZOMDA algorithm for solving the
constrained and unconstrained minimax-optimization problem (2), respectively.

7.2.1 CONVERGENCE ANALYSIS OF THE Acc-ZOMDA ALGORITHM FOR CONSTRAINED
MINIMAX OPTIMIZATION

In the subsection, we provide the convergence properties of our Acc-ZOMDA algorithm for
solving the constrained minimax problem (2), i.e., X C R® and ) € R% (or Y = R%).
The following results build on new convergence metric E[H;|, where H; is defined as in (16).
The related proofs of these convergence analysis are provided in Appendix A.3.

We first define a function Fy, (z) = Ey,~v,, [F'(z+ p1u1)], which is a smoothing approx-
imation of the function F ( ) = f(z,y*(x)) = maxyey f(z,y). For notational simplicity, let

d=dy+dy, Ly =Ly + —L and k, = Ly /7 denote the condition number for function f(-,y).

Theorem 5 Suppose the sequence {xt,yt}tT 1 be generated from Algorithm 2. When X C

625dL2

R% | and let n; = CIORE forallt >0, c; > k3+97 and co > k3—|— ,k>0,1<0<

(+t

1 . b/d ml/3
d, m > max (2,k3, (clk) , (c2k) ), 0 < A <min (%, 7251) 0 <~ < min (2)\; 7/ 36/\&/62552, 2Lgk)

0<p <

1 1
W and0<u2§m, we have

2/3M'm! 2v/3M’ Ly
N < = ZE He] < T1/2 + T1/3 2(m +T)2/3
(24)

— ZEHGX x, VE(x),

Fuy (z1)—F* | 25dL7A1  9,1/352 3672L§+625L‘}(m
vk kAT br2k2 8br2

where A1 = ||ly1 — y*(x1)||? and M’ =

_ 9L 2 2 2 62k2
T)"23 + gy + 2R n(m + 7).

Remark 6 Without loss of generality, let m > max ((Lg/\ﬂq / 36)\261%)3, 2, (c1k)3, (cok)3,
Y

k3) and T < 4-. It is easy verified that k = O(1), A= O(7), v = O(\/g 2) cp = 0(1),

3 < 2
cy = O(glﬁ) c~md m = O(b—3L?p). Then we have M’ = O(\/g/ig + %KS + b—zny + iby(m +
T)-2/3 + 'Lby + ‘g—;/@'z In(m+T)). Note that in M', we only keep b, d, T and Ky terms. When

b=1, we have M' = O~(\/c7f<e3—i—cz2 2) . When k, > d3/2, the Acc-ZOMDA algorithm has a
wy/ 2d /4 ry/ 2di/4 ~ 4.5 73/4 .—3
convergence rate ofO( 73 ) By ™ Fis S € e E[H¢] <€, we choose T > ki °d*/ "¢

In Algorithm 2, we need to query eight function values for estimating the zeroth-order gra-
dients vy and wy at each iteration, and need T iterations. Thus, the Acc-ZOMDA algorithm

14
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4573/4¢ *3) for finding an e—stationary point. When

has a query complexity of 81 = O(
1 <ry < d®2, the Acc-ZOMDA algorithm has a convergence rate of O(T1/3) Similarly,

the Acc-ZOMDA algorithm has a query complexity of 8T = O( §d3 _3) for finding an
e-stationary point.

7.2.2 CONVERGENCE ANALYSIS OF THE Acc-ZOMDA ALGORITHM FOR
UNCONSTRAINED MINIMAX OPTIMIZATION

In the subsection, we further provide the convergence properties of our Acc-ZOMDA algo-
rithm for solving the unconstrained minimax problem (2), i.e., ¥ = R% and ) = R% (or
Y C R%). The following convergence results build on the common metric E||VF(z)|| used
n (Lin et al., 2019; Wang et al., 2020), where F'(z) = maxycy f(x,y). The related proofs
of these convergence analysis are provided in Appendix A.4.

Theorem 7 Suppose the sequence {xt,yt}tT 1 be generated from Algorithm 2. When X =

625dL2

R and let n; = forallt >0, 01>3k3+9T andc2>3k3—|— L kE>0,1<b<

( +t 1/3

5 . b/d ml/3
d, m > max (2,k%, (c1k)?, (c2k)?), 0 < A < min (ﬁ’ 97), 0 <y < min (2)\LT \/ 36)\26—&-/62552’ 2L, 7))

1 1
0<pu < NCEREE and 0 < pg < T2y (i) we have

V2M'mS  \2M! Ly

— <
7 ;EHVF(:Q)H T + T3 + Sm + 1) (25)
F 25dL2A 1352 3672L24+625L4
where Ay = ||y1 —y*(z1)]|? and M’ = “1(3;2) + 7k -+ 27£2k§5 += e (U
_ 9L 2(c2+c2)62k?
T)=2/3 4 ey + 2R 4y 4 ),

Remark 8 Since the conditions of Theorem 7 are the same conditions of Theorem &5, The-
orem 7 has the same results of Theorem 5. When b =1, we have M' = O(\/c?m —i—CPHZQ/) .

~ /
When ky > d®2, the Acc-ZOMDA algorithm has a convergence rate of O(Tlic/l;‘l) By

K372 41/4
Tlic/l?) < e, ie., E|VF(z)|| <€, we choose T > m§'5d3/4e*3. In Algorithm 2, we need

to query eight function values for estimating the zeroth-order gradients vy and wy at each
iteration, and need T' iterations. Thus, the Acc-ZOMDA algorithm has a query complex-
ity of 81 = O( 45 73/4¢ _3) for finding an e-stationary point. When 1 < ky < d3/2, the
Acc-ZOMDA algorithm has a convergence rate of O(Tl/g) Similarly, the Acc-ZOMDA
algorithm has a query complexity of 8T = O( Sd?’ ) for finding an e-stationary point.

7.3 Convergence Analysis of the Acc-MDA Algorithm

In the subsection, we analyze convergence of our Acc-MDA algorithm for solving the
constrained and unconstrained minimax-optimization problem (2), respectively.
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7.3.1 CONVERGENCE ANALYSIS OF THE Acc-MDA ALGORITHM FOR CONSTRAINED
MINIMAX OPTIMIZATION

In the subsection, we give the convergence properties of our Acc-MDA algorithm for solving
the constrained minimax problem (2), i.e., X € R¥ and ) € R% (or Y = R%). The
following convergence results build on a new metric E[H;], where H; is defined in (16). The
related proofs of these convergence analysis are provided in Appendix A.5.

Theorem 9 Suppose the sequence {4, y:}1_, be generated from Algom'thm 3. When X C

7513
Rdl, andntzﬁforallt>0 cl_3i3+% and02_3k3+ , k>0 m>

(m+t
1/3
max (2, k3, (c1k)3, (c2k)?), 0 < A < min (%, %) and 0 < vy < min (2)\LTf \ /7&24—2?5551)7 —’QnLgk),

we have

T
3M//m1/6 23 M"
—ZEHGX 2, VF(z4),y ||<fZEHt S ——m — t A (26)
_F* A
where Ay = [lyy —y*(@1)|[2 and M7 = PEIE 4 VAR om0 | AR 1, 4 )

Remark 10 Without loss of generality, let ;\TTf /8)\243;)5,@21) < gnL/k} we have m > max (27 k3,

3 3 (LgATk 2b 3 DY 2b _ A 2b —
(c1k)?, (e2k)?, ( Ly 8/\2+75n§b) ). Lety = 2Ly \/ BN24T5R2b  2ry \/ BAZ1 752D and A =

min (%, %). Without loss of generality, let T < Lif When b = 1, it is easy verified

that k = O(1), A = O(7), v = O(K3), c1 = O(1), co = O(L?) and m = O(L?). Then

y
we have M" = O(k3 + k2 + K + K ln(m + T)) = O(k}). Thus, the Acc-MDA algorithm
3/2
has a convergence rate of O(T1/3). By Z T1/3 <€, i.e, E[H] < €, we choose T > H§'5e*3.

In Algorithm 3, we need to compute four stochastic partial gradients to obtain gradient es-
timators vy and wy at each iteration, and need T iterations. Thus, the Acc-MDA algorithm
has a gradient complexity of 4-T = O( 45 _3) for finding an e-stationary point.

Corollary 11 Under the same conditions of Theorem 9, when b = O(KZ) forv >0 and

% < %, B.e., Ky < ﬁ, our Acc-MDA algorithm has a lower gradient complexity of

O(Kgg_y/2)€_3) for finding an e-stationary point.

Proof Under the above conditions of Theorem 9, without loss of generality, let L, / ﬁ%ngb
Yy

m! 3 3 3 (LgAtk 2b _ 2b
< 3L, k:’We have m > max (2, k%, (c1k)?, (c2k)?, ( T 8)\2+75n§b) ) Lety = 35 f BNTT5R20
_ % (1 2Tbr
= 9y \/ 8373 75x25 20d A = min (GLf7 i6)-

Given b = O(ky) for v > 0 and % < 6%,-’ ie, Kk

y < ﬁ, it is easy verified that

2
k=0(1), \=0(@r), v = O(%’%), c1 = O(1) and ¢g = O(L?). Since Ly = Ly + %, we

LAtk 3
have T /8)\2+2$552b (1—1—/<;y))\7'k:, /m O(L ) we have m = max(LS, %) Then

K]2

we have M" = O( + + + + y In(m+1T)) = O(Tg) = 0(57537”)). Thus, our Acc-MDA
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H53/2 v/2) Hg(/S/Q_U/Q) .
s )- By s <6 i, E[Hc] <€, we

€73, Thus, our Acc-MDA algorithm reaches a lower gradient com-

algorithm has a convergence rate of O(
choose T' > Kk (45 8v/2)
plexity of 4b - T O( (4-5-v/2) ’3) for finding an e-stationary point. |

7.3.2 CONVERGENCE ANALYSIS OF Acc-MDA ALGORITHM FOR UNCONSTRAINED
MINIMAX OPTIMIZATION

In the subsection, we further give the convergence properties of our Acc-MDA algorithm for
solving the unconstrained minimax problem (2), i.e., X = R% and J) = R% (or Y C R%).
The following convergence results build on the common metric E||VF(x)| used in (Lin
et al., 2019; Luo et al., 2020), where F(z) = maxycy f(z,y). The related proofs of these
convergence analysis are provided in Appendix A.6.

Theorem 12 Suppose the sequence {xt,yt}thl be generated from Algorithm 3. When X =
2 75L2
R, (mdletnt:WforalltZO, c > 3%4—9% andczzg%—i—Tf, k>0,m>

. . 1/3
max (2, k3, (c1k)?, (c2k)?), 0 < A < min (%, %) and 0 < v < min (2)1‘:—:1 /7&24-2?5,@51;’ —’Q"Lgk),
we have

T
1 2M"m?1/6 2M"

T}:Euvp(xt)”g Y R vt (27)
t=1

F _F* 9L2 A, 2m1/352 2(c2+c2)62k2
where A1 = |lyy —y*(20)|? and M" = FEYZE 4 SI20 4 20l AR 1n(m + 7).

Remark 13 Since the conditions of Theorem 12 are the same conditions of Theorem 9,
Theorem 12 has the same results of Theorem 9. When b = 1, our Acc-MDA algorithm
has a gradient complexity of 4 - T = 0(53‘56_3) for finding an e-stationary point; when
b= 0(k y) for v > 0 and 271” < %, i.e., Ky < %, our Acc-MDA algorithm also
~( (4.5-v/2) —3)

reaches a lower gradient complemty of 4b-T = O for finding an e-stationary

point. When giving b = O(k 2), our Acc-MDA reaches the best known gradient complexity
of O( 3 _3). When giving b = O(k2%), our Acc-MDA reaches a lower gradient complexity

Y
OfO( 25 —3)

Remark 14 The above low gradient complexities are obtained when b = O(ky) and k; <

ﬁ, where Ly denotes the smooth parameter of objective function f(x,y). Without loss of
generality, let v =1, we have Ly < 2‘/5 Although Ly may be large, we can easily change the

original objective function f(z,y) mto a new function f(x y) =rf(z,y), 0 <r < 1. Since
Vf(a: y) =rVf(z,y), the gradient of function f(a/: y) is L-Lipschitz continuous (L = rLf)

Thus, we can choose a suitable hyper-parameter r to let this new objective function f(ac, Y)
satisfy the condition L< %.
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8. Numerical Experiments

In this section, we evaluate the performance of our algorithms on two applications: 1)
black-box adversarial attack to deep neural networks (DNNs) and 2) poisoning attack to
logistic regression. In the first application, we compare our Acc-ZOM algorithm with the
ZO-AdaMM (Chen et al., 2019), ZO-SPIDER-Coord (Ji et al., 2019), SPIDER-SZO (Fang
et al., 2018) and ZO-SFW (Sahu et al., 2019). In the second application, for two-side
black-box attack, we compare our Acc-ZOMDA algorithm with ZO-Min-Max (Liu et al.,
2019b) and ZO-SGDMSA (Wang et al., 2020) and ZO-SREDA-Boost (Xu et al., 2020a).
For one-side black-box attack, we choose ZO-Min-Max (Liu et al., 2019b) as a baseline.
For transparent attack, we compare our Acc-MDA algorithm with SGDA (Lin et al., 2019)
and SREDA-Boost (Xu et al., 2020a). Note that the SREDA-Boost (Xu et al., 2020a) is
an improved version of the SREDA algorithm (Luo et al., 2020) and the difference between
SREDA-Boost and SREDA is using different learning rate. In the transparent attack, thus,
we only choose the SREDA-Boost as a comparison method.

8.1 Black-Box Adversarial Attack to DINNs

In this subsection, we use our Acc-ZOM algorithm to generate adversarial perturbations to
attack the pre-trained black-box DNNs, whose parameters are hidden and only its outputs
are accessible. Let (a,b) denote an image a with its true label b € {1,2,--- | K}, where K is
the total number of image classes. Given multiple images {a;, b;}}'_;, we design a universal
perturbation = to a pre-trained black-box DNN. Following (Guo et al., 2019), we consider
the following untargeted attack problem:

1 n
in — . ;) — ; ),0), st. X = <e 28
mig - s (o 0 e e +00), st X = (ol <eb (29
where f;(z+a;) represents the output with j-th class, that is, the final output before softmax
of DNN. In the experiment, we normalize the pixel values to [0, 1]d, and use the following
smooth form as in (Lee and Mangasarian, 2001) to approximate the above untargeted attack
problem:

n

géi/% i; {fbi(:c +a;) — rjr;%i;fj(x +a;) +In (1 +exp (rj;;éa}?i;fj(x +a;) — fo,(x + ai)))},

st X = {[lzfleo < €}

In the experiment, we use the pre-trained DNNs on four benchmark datasets: MNIST,
FashionMNIST, CIFAR-10, and SVHN, which attain 99.4%, 91.8%, 93.2%, and 80.8% test
accuracy, respectively. Here, n in problem (28) is set to 40 for all datasets. The batch size
of all algorithms is 10. Different datasets require different €. Specifically, € is set to 0.4,
0.3, 0.1, 0.2 for MNIST, FashionMNIST, CIFAR-10, and SVHN, respectively. The hyper-
parameters v, k, m, ¢ of the Acc-ZOM are 0.1, 1, 3, 3. For the other algorithms, we follow
the hyper-parameters in their original paper for a fair comparison. In Fig. 1, we plot attack
loss vs. the number of function queries for each algorithm. Fig. 1 shows that our Acc-ZOM
algorithm can largely outperform other algorithms in terms of function queries. We select
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Figure 1: Experimental results of black-box adversarial attack on four datasets: MNIST,
FashionMNIST, CIFAR-10 and SVHN.
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Figure 2: Impact of batch-size on our Acc-ZOM algorithm.

hyper-parameters following the theoretic analysis. k is first chosen as 1. Given k, ¢ have to
be larger than 3% + g, we then choose c as 3, which is the smallest integer larger than the
threshold. Similarly, m is chosen as 3 to satisfy the condition m < max((ck)3, k?). To study
the impact of batch-size, we use three different batch-size settings: 5, 10, 20. From Fig. 2,
we can see that our Acc-ZOM algorithm can work well on a range of batch-size selections.

8.2 Poisoning Attack to Logistic Regression

In this subsection, we apply the task of poisoning attack to logistic regression to demonstrate
the efficiency of our Acc-ZOMDA, Acc-Semi-ZOMDA and Acc-MDA. Let {a;,b;}?_; denote
the training dataset, in which ng < n samples are corrupted by a perturbation vector .
Following Liu et al. (2019b), this poisoning attack problem can be formulated as

i =h :D h(0,y:; D, 29
glea:%(gg)ril f($7y> (x,y, p)+ (7ya t)ﬂ ( )

st X = {[lzllo <}y V= {llyl3 < Areg)

where D), and D; are corrupted set and clean set respectively, y is the model parameter, the
corrupted rate 1Pl s set to 0.15. Here h(z,y; D) = —ﬁ 2 (i bi)eD [bilog(g(,y; a:)) +

[D:[+[Dy]
(1 — b)) log(1 — g(z,y;a:))] with g(z,y;a;) = Note that the above problem

(29) can be written in the form of (2), i.e., mingex maxyecy { — f(z,y)}. In the experiment,
we generate n = 1000 samples. Specifically, we randomly draw the feature vector a; € R

from normal distribution A/(0, 1), and label b; = 1 if % > %, otherwise b; = 0. Here
14e Vi 7TV

-1
I4e—(@ta)Ty”
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Figure 3: Stationary gap of different methods in two-side black-box scenario, one-side black-
box scenario and transparent scenario.
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Figure 4: Stationary gap given different combinations of tuning parameters (7, \).

we choose # = (1,1,---,1) as the ground-truth model parameters, and v; € N'(0,1073).
For this experiment, we set € and Mg to 2 and 0.001. We also chose the hyper-parameters
v, A, k,m, c1,ca of our Ace-ZOMDA as 0.2,0.08,1, 3,3, 3.

From Fig. 3(a), we can find that our Acc-ZOMDA algorithm converges fastest and
achieves lowest stationary gap. The Acc-ZOMDA is also robust to different learning rate
pairs of (v, A). In Fig. 3(b,c), we show the comparison results for one-side black-box (black-
box w.r.t attacker) poison attack and transparent poison attack. All hyper-parameter
settings are the same as two-side black-box attack. These results demonstrate that our
Acc-Semi-ZOMDA and Acc-MDA algorithms compare favorably with other algorithms.

To better understanding the settings of hyper-parameters, we visualize the stationary
gap given different combinations of (v, A). We set v from 0.04 to 0.036 and A from 0.02 to
0.18. From Fig. 4, we can see that our method can achieve ideal stationary gap with most
combinations of (v, \) across three different scenarios.

9. Conclusions

In the paper, we proposed a class of accelerated zeroth-order and first-order momentum
methods for both nonconvex mini-optimization and minimax-optimization, which build on
the momentum-based variance reduced technique of STORM and momentum update. More-
over, we gave an effective convergence analysis framework for our methods. Specifically, we
proved that our zeroth-order methods can obtain a low query complexity without requir-
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ing any large bathes. Meanwhile, our first-order method also can obtain a low gradient
complexity without requiring any large bathes. In particular, our methods are the first to
extend the STORM algorithm to constrained optimization and minimax optimization.
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Appendix A. Detailed Convergence Analysis

In this section, we provide the detailed convergence analysis of our algorithms. We first
review some useful lemmas.

Lemma 15 (Lin et al., 2019) Under the above Assumptions 5 and 6, the function F(z) =
maxyey f(x,y) has Lg-Lipschitz continuous gradient, such as

|VF(z) — VF(2')|| < Ly|lz — 2|, Va,2' € X (30)

L2
where Ly = Ly + ?f

Lemma 16 (Lin et al., 2019) Under the above Assumptions 5 and 6, the mapping y*(x) =
arg maxycy f(z,y) is ky-Lipschitz continuous, such as

ly*(z) —y* (@) < Kyllz — 2’|, Vo,2" € X (31)
where ky = Ly /T denotes the condition number for function f(-,y).

Lemma 17 (Nesterov, 2018) Assume that f(x) is a differentiable convex function and X
is a convex set. x* € X is the solution of the constrained problem mingcx f(x), if

(Vf(x"),x —2*) >0, Vo € X. (32)

Lemma 18 (Nesterov, 2018) Assume that the function f(x) is L-smooth, i.e., |V f(z) —
Vil < Ll||lx —y||, the following inequality satisfies

7) — F(2) = V@)~ )| < Sl — ol ()

Lemma 19 (Gao et al., 2018; Ji et al., 2019) Let f,(x) = Eyov,[f(x + pu)] be a smooth

approximation of function f(x), where Up is the uniform distribution over the d-dimensional

unit Euclidean ball B. Given zeroth-order gradient @f@) = f(x%/)d_f(x)u, we have

(1) If f(x) has L-Lipschitz continuous gradient (i.e., L-smooth), then f,,(x) has L-Lipschitz
continuous gradient;

(2) |fu@) = F(@)| < 155 and ||V fu(z) = VI (@)] < 52 for any = € RY;
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(3) Elg Xics VI (@:6)] = V fu(@) for any x € RY;
(4) EH@f(x,f) — @f(ac’,ﬁ)”z < 3dL?||x — 2'||? + % for any x,z’ € R?.

Lemma 20 For i.i.d. random variables {&}' , with zero mean, we have [E||% Z:‘L:l §ZH2 _
LE||&]|? for any i € [n].

Note that the above results (1)-(2) of Lemma 19 come from Lemma 4.1 in (Gao et al.,
2018), and the above results (3)-(4) come from Lemma 5 in (Ji et al., 2019). In addition,
the result (4) of Lemma 19 is an extended result from Lemma 5 in (Ji et al., 2019).

A.1 Convergence Analysis of Acc-ZOM Algorithm for Constrained
Mini-Optimization

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for solv-
ing the black-box constrained problem (1),i.e., X C R%. We first let f,(z) = Eyuv, [f(z+
pu)] be a smooth approximation of function f(z), where Up is the uniform distribution
over the d-dimensional unit Euclidean ball B.

Lemma 21 Suppose that the sequence {x;}1_; be generated from Algorithm 1. Let 0 <
m<land0 <~y < ﬁm’ then we have

Mt~
Ful@er) = fu(xe) < mv||V fulw) — ol - i”xt—kl — % (34)
Proof According to Assumption 2 and Lemma 19, the function f,(z) is L-smooth. Then
we have
L 2
Fulesr) < fulze) +(V fu@e), 21 — @) + 5 llween — 4] (35)

) L},
= Ful@) + 1V ful@) Fror = a0) + I Fan — o]
— ~ = L77t2 ~ 2
= ful@e) +ne(V ful@e) — ve, Tepr — 2¢) + (v, Ty — 24) + - [Ze+1 — 2|7,

where the second equality is due to z4+1 = x¢ + 9e(Zr+1 — x¢). By the step 8 of Algorithm
1, we have &1 = Py (xy —yvr) = arg minge y %H:z: — 2t +7yv¢||2. Since X is a convex set and
the function ||z — z; + yv|? is convex, by using Lemma 17, we have

(Tpgp1 — e + Y0, — Ty41) > 0, Vo € X. (36)

In Algorithm 1, let the initialize solution z; € X, and the sequence {z;};>1 generates as
follows:

Tpg1 = Xt + Ne(Tpp1 — @) = MTppr + (1 — me) e, (37)

where 0 < 1y < 1. Since X is convex set and x¢, Try1 € X, we have x4, € X for any ¢ > 1.
Set x = z; in the inequality (36), we have

- 1
(vt, Te1 — m) < —;||33t+1 — % (38)
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By using Cauchy-Schwarz inequality and Young’s inequality, we have

(V@) = v, Tear — o) <[V ful@e) — vl - | Zee1 — ]

1
<AV Fulwe) = wel® + 1 1% — . (39)
Combining the inequalities (35), (38) with (39), we obtain

Ju(es1)
3 N Lt 2
< fulwe) + eV fu(we) — v, Ty — ) 4+ e (e, o1 — 24) + TthH — x|

Mt~ M~ Ln?
< fulze) +ney[|V ful@e) — vl® + EHQUHI — x| - ;Hfﬂtﬂ —ay|? 4+ | B —

2
= fulen) + 9 ) — wnlP = s — 2l = (2~ EE iy — )
K a 2y 4y 2
Nt | ~
< ful@e) + vV fu(ae) — vl|* — a”xt—irl — z|?, (40)
where the last inequality is due to 0 < v < 54— |

QLT]t :

Lemma 22 Suppose the zeroth-order stochastic gradient {v;} be generated from Algorithm
1, we have

BV fu(@i41) — vl < (1 = i) °E(|V ful@e) — ve|l* + 6(1 — a1 )2 dL* 07 BT 41 — 24|
+3(1 — apy1)2L2d%p? + 20, 0% (41)

Proof According to the definition of v;11 in Algorithm 1, we have

Vi1 — v = =010y + (1 — 1) (Vi (@415 §1) — V(@03 €41)) + 01V (@er15 &)
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Then we have

E|IV fu(zi1) — vega ||
=BV fu(@rs1) — v = (veg1 — vo) |2
= E||V fu(wer1) — v + qer1ve — 1 VF (w413 1)
— (1= 1) (Vf (@eg1: &41) — V(03 &41)) |12
=E[(1 — 1) (Vful@e) — v0) + a1 (Vu(zr) — VF(@er15641))
+ (1= 041) (V@) = V(@) = V(@ &41) + V(@ &) 1P
= (1= o 11)’EV ful@e) — vl + a1 (Vu(@er1) = V(@15 &41))
+ (1= 1) (V@) = V() = V(@13 &) + V(@ &) |
< (1= a1)’E||V fu(@e) — vel? + 2(1 — e 1) ? BV fu(@is1) — V(i) — V(@415 €41)
+ V(@ &) lIP + 2078 BNV fu(misn) = VI (@1 &) P
(1 — 1) BV fu(ae) —veP+2(1 — g1 ) BV f (@115 &41) =V (205 &) | +20 1 02
(1= ar1)’E(|V fu(@e) — vel|* + 6(1 — arp1)*dL°E| a1 — o
+3(1 — agy1)2L2d* 0 + 207,107
=(1- at+1)2]EHVfu(xt) — g2+ 6(1 — sy 1) 2dLPPE|| Ty 1 — x|
+3(1 — 1) LPd*p® + 207 402, (42)

<
<

where the fourth equality follows by E, ) [Vf(2eg1; &) = V fu(ze41) and

Euo) [V (@t115&+1) — VI (@5841)] = V(1) — Vfu(2e); the first inequality holds by
Cauchy-Schwarz inequality; the second inequality holds by the equality E||¢ — E[¢]||? =
E||¢||? - |E[¢]||? and Assumption 1, and the last inequality holds by Young’s inequality and
Lemma 19. u

Theorem 23 (Restatement of Theorem 1) Suppose the sequence {x;}_, be generated from

Algorithm 1. When X C R%, and let n; = W forallt>0,0 <~y <min (%/ka, ﬁ),

c>3k3+5k>0 m>max(2k:3(k)3)and0<u§ we have

L
d(m+T)2/37

T T

%ZEIIGX(% Vi), < = ZE IV f (@) — vel| + *let+1 — ]
t=1
< 2\/ Mm?/ 2vV2M L

< — i + T +2(m+T)2/3, (43)
where M = L& (k')y Iy 1;;‘72 + % +2k2c20? In(m +T).
Proof Since n; = W on t is decreasing and m > k3, we have n; < ng = m]f/3 <1
and v < "212;: = Qle < 2le for any ¢ > 0. Due to 0 < 7; < 1 and m > (ck)3, we have
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a1 =cnf <oy <

*EHVfu(ﬂCtH) - Ut+1\|2 - ﬁEHVfu(%t) — vl

Tt
1 — oyyq)? 1 ~
< (( nt+ - 7 1)E”Vfu(37t) —ug|? 4 6(1 = ag1)*dLP | Fe 1 — a4
t t—
N (1—aut1) P 2%
Mt uiz
l1—a 3L2d% % 203,07
< (S BV (o) - P O e — a4 S
Ul Mi— " 1t
L1 ) BL2d%? | 207,,0°
= (———— — ) B[V fulae) — vl >+6dL°pE|Er 1 — 2]+ P =B (4
Ne Mi—1 e "t

where the second inequality is due to 0 < ay4+1 < 1. By ny = W, we have

1 1 1 1 1
—_—— —=—((m+t)s —(m+t—1)3
N Me—1 k(( )o = )
1 < 1
T 3k(m+t—1)2/3 ~ 2/3
3k(m/2 +t)
22/3 22/3 k2 22/3 2

(45)

< =
= 3k(m+ 023 3K3 (m 1 )23 3k3 S gy

where the first inequality holds by the concavity of function f(z) = /3 e, (z+ y)l/ 3 <

/3 4+ 312 75; the second inequality is due to m > 2, and the last inequality is due to

0<n <1 Letckzi%—i—%,wehave

1 1
o EIV ful@ee) = ver||* — iy BV Fule) = o

5
< —ﬁEHVf#(xt) — 0|2+ 6dL2 By — x|+

3L2d% 2 201%“02
+ .
Tt
Next, we define a Lyapunov function Ry = E[f,(z¢)+ -1 i IV fu(e) — v¢||?] for any ¢ > 1.

According to Lemma 21, we have

Rist — Ry =E[fu(wer) — fulan)] + %Envmxm) — v |® - %Euvmxo —

(46)

5777t

M s
< VBV fu(ae) — vl” - iEHJUtH — | = =BV fu(we) — v

3LAd* 1Py n 2O‘t+10 Y
Tt Mt
il 2 2, 3L2d% %y 2a?+102fy
< -3 BV — |2 = LEEe - a7
< =7 ElViulz) —ul Iy [Ze41 — x]|” + o + — (47)

+ 6d L2 E|| Ty — x|)® +

. . . 1 .
where the last inequality is due to v < NG Thus, we obtain

8Ly | 207,07
Uz Nt '

%E\qu(mt) —ul” + %E\Ii’tﬂ —z¢|* < Ry — Ry + (48)
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Since infyex f(x) = f*, we have infycx fu(z) = infrex Eynvy [f(@+pu)] = infcn % [ f(x
pu)du > % Jpinfeex f(x + pu)du = f*, where V denotes the volume of the unit ball B.
Taking average over t = 1,2,--- , T on both sides of (48), we have
1 ¢ AL
t
T 2 B IV ulw) =l + 7 — il
t=1

< fulz1) — f* n YNV fulz1) — U1H2 Z LngMQV Z 207,07y
- T Tno Ty Ty
n Ty n

7, (49)

where the second inequality is due to v; = Vf (z1,€&) and Assumption 1. Since 7 is de-
creasing, i.e., 77;1 > 77;1 for any 0 < t < T, we have

1
= E[-|[Vful (1) — ve® + Fyi1 — 24|
Z ! " -+ 472!! + [

* T T
< fulz1) = f N m'/352 n 3L2d? 2 22030

Ty kImr & Tomr = Tir
% 1/3 .2 L2 2,,2 T 1/3 9 2 2 T
< fu(JUl) f m-o + 3L%d Y / (m+t) dt + co / k:3(m+t)_1dt
Tnry KT'nr Tnr )i k Tnr )i
_ f* 1/3 .2 L2 2,,2 92 3,2 .2
< fu(xl) / mro 9L"d o (m T)4/3+ k*cto ln(m—i—T)
Tnry kTnr — 4kTnr Tnr
fulz1) — f* /342 9L2d2 2
:MTiyk(erT)l/ng o (m 1)+ = (m + 1)
92 2.2 2
O (m + T)(m + T)'/?
f (371) _f m1/3 2 9L2
< £ o + )P+ = (m o+ TP o (m+ )Y
92 2.2 2
WO in(m + T)(m + T)/3,

(50)

where the second inequality holds by Zt 17 L Sodt < f Tl -dt = fl m+t) ® dt and Zt (mpdt <

flT npdt = fl E3(m + t)~!, and the last mequahty is due to 0 < p < W. Let
M = fu(z]g—f* 4 m0% 4 92 4 92262 In(m + T), we have
T
1 . M
Z IV = 0l + s = l) < S m o+ 7)1 (51)
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According to Jensen’s inequality, we have

*ZE IV fu(@e) — el +—th+1 — ]

T
2 1 1. 1/2
< (i B[V Aulen) =l + g e — )
t=1
oy vi /5T 1/6 /oNT
< V2 e o V2MMT VM (52)
T1/2 T1/2 T1/3"
where the last inequality is due to (a 4 b)Y/¢ < /6 + /6. Then we have
T
1 I 2v2Mm'/S  2v2M
7 L ElIVAe) = wll+ Sl —al] < =+ T 69

By Lemma 19, we have ||V f,(x¢) —vi|| = ||V fu(ze) =V (@) +V f(e) —ve]| > ||V fg) —
vel| = IV fulze) = V@)l = [V f(ze) —ve]| — “—Ld Thus, we have

1 & 1
T ZE[HVf(xt) = vrll + SlEee — ]

uLd 1., .
§H$t+1 — ]

| A

*ZE IV fe) — vl + 222
< 2\/ Mm! 2v2M  uplLd

- Tl/2 T/3 2
1/6
< 2vV2Mm 2v2M n L , (54)
T1/2 T1/3 2(m+T)2/3

where the last inequality is due to 0 < p < W Then by using the above inequality
(15), we have

T
= S ElGa (e V) )] < ZE IV (1) =l + v = o]
2\/ Mm!/ 2v/2M L

- T1/2 + T1/3 +2<m+T>2/3'

(55)

A.2 Convergence Analysis of Acc-ZOM Algorithm for Unconstrained
Mini-Optimization

In this subsection, we study the convergence properties of our Acc-ZOM algorithm for
solving the black-box unconstrained problem (1),i.e., X = R?%. The following convergence
analysis builds on the common metric E||V f(x)|| used in (Ji et al., 2019).
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Lemma 24 Suppose the sequence {xt}tT:l be generated from Algorithm 1. When X = R?,

given 0 < v < 277 7, we have

Ful@ern) < fulwn) + SEIV fulwe) —wil? = ZHIVE@)I? = Tl (56)

Proof According to Assumption 2 and Lemma 19, the approximated function f,(z) is
L-smooth. Then we have

2L
ulen) < Fulen) = (5 fulen). )+ 0 oy 2 (57)
2,,2
= fule) + 29 () — P = 29 ()P 4+ (I T P
< fula) + SV fulan) = il - ’Y’”uvm OI? = Tl

where the last inequality is due to 0 < v < Then we have

217L

Ful@err) < fulwe) + BEIV fulae) = vl = ZHIVEG)I? - Tl (68)

Lemma 25 Suppose the zeroth-order stochastic gradient {v;} be generated from Algorithm
1, we have
BV fu(@e+1) = vepa[* < (1= a1 *ElV fu(@e) = vel|* + 6(1 — 1) dL?niy B
+3(1 — ay1)?LPd*p? + 207 0%, (59)

Proof The proof is similar to the proof of Lemma 22. |

Theorem 26 (Restatement of Theorem 3) Suppose the sequence {x,}_; be generated from
Algorithm 1. When X = R, and let 1 = gl for all 2 0,0 <y < min (375 57357)

2Lk 2\/6dL/’
623%+%,k>0,mZmax(?,k3,(ck))and0<u§ we have

d(m+T)2/5 ’

VoMm! + vV2M n L
Tl/2 T3 2(m + T)2/37

—ZEHVf (z0)|| < (60)

ml/352

where M = (ki LA T+ % +2k2c20? In(m +T).

Proof This proof is similar to the proof of Theorem 23. Under the same conditions in
Theorem 23, by using Lemma 25 and let ¢ > 3% + %, we have

1 1
oy EIV ful@e) = v [® iy BV fue) = vl®

oM

324242 202, 02
<_7E||vfu(xt)_Ut”2+6dL2’yzntEHth2 A e L

M
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IV fue) = orl?]

At the same time, we give the Lyapunov function Ry = E[f,(z:) + o

defined in the above Theorem 23. According to Lemma 24, we have

.mﬂ—RfﬂMmuHu—muwy+1mwmmwﬂ—WHW—Elwwvmuo—wW

Ve Bl Ve
< 5 BV fule) — vel|? — 5 ElIV/u(z DlI* - TEIIUHF

_5 3L2d212y 202,02y
nﬂE|‘Vfu(a:t)—vt||2—|—6dL2'y317tE||vt||2 K, 2%

e
3L2d%u? 202, 0%y
< MR\ f () |+ T L T T (D 6aL248 ) vy |
2 U M 4
L2d2 2 20[2 0.2
< Y EIV Al = T (62

where the last inequality is due to v < 5 WL Thus, we can obtain

Bty | 207,07y

Y 2
—E||Vf.(x < R;— Rii1+
5 BIV S|P < o R+ = m

Since infyex f(x) = f*, we have inf ey fu(2) = infrex Eyovy [f(2+pu)] = infcn % 5 fz+
pu)du > & [5infeex f(z 4 pu)du = f*, where V denotes the volume of the unit ball B.

Taking average over t = 1,2,--- ;T on both sides of (63), we have

T
L m
T Z; fEIIVfu(th
t=

ful@) = f* AV Sulz) ol Z BL2d% 1y ZQ%HUV

<
— T TUO =1 T?’]t Tnt
< fulz) = f~ i o Z 3L d* i’y Z 201107
T Tno &= Tm —~ T
% T
_ fulzr) = f n Am1/3g2 3L2d% %y Z 22t oy (64)
T kT Ty T
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where the second inequality is due to vy = \Y f(x1,€) and Assumption 1. Since 7 is de-
creasing, i.e., 77;1 > nt_l for any 0 <t < T, we have

1 & Lo )
T212 IV fulze)l
t=

e i Ly | i

Tnry kKTnr & Tomr & Tir
_ fu@l) — ml/30.2 N 3L2d2M2 /T (m+t)l/3dt
- Tnry kTt Tnr 1 k
2c20? /T
- k3 (m+t) " dt
Tnr /i ( )
fu(xl) — m1/30_2 9L2d2u2 4/3 2k3 202
< + m—+T + In(m+T
Toey T W T dkTny T Ty em )
f (x1> _ f* 1/50.2 9L2d2,u2
— “Tiw(m+T)1/3+k:27T(m+T)l/3+4k72T(m+T)5/3
9122 g2
’“;“ In(m + T)(m + T)4/3
fulz1) = f m!/3g? 9L2
< £ T (m+T)Y? + == (m + )P + oo (m o+ 1)
22202
© 7 In(m+T)(m +T)3, (65)

where the second mequahty holds by S 1y L edt < flT 7} dt = T (m+t) ®dt and Zt (mpdt <

T nidt = k:3 (m +t)~!, and the last 1nequahty is due to 0 < p < — - Let
1 ' 1 d(m+T)>2/3
M = fu(ﬂv]x_f +m 1/3 ® + % + 2k?c20? In(m + T'), we have
1 & , oM 18
=S BIVL @I < o (m o+ TV, (66)
t=1
According to Jensen’s inequality, we have
1 2
*ZEHWM z)ll < ( ZEIIVfu /
\/2M e _ V2MmS VoM
< T1/2 (m+T) < T1/2 + T1/3" (67)

where the last inequality is due to (a 4 b)Y/¢ < /6 + p1/6,
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By Lemma 19, we have [V fu(eo)] = [V fu(e) — VS (o) + VSl > 97 ()] -
IV ful) = V7l = [V £l — 224 Thus, we have
T T Ld
=BV < 7 3 EIV @+ L0
t=1 t=1

_ VoMm!/ + V2M  uLd
= T1/2 T1/3 2
. VaM Mm?!/6 N V2M N L
- T1/2 T1/3 2(m + T)2/3’

(68)

where the last inequality is due to 0 < p < W

A.3 Convergence Analysis of the Acc-ZOMDA Algorithm for Constrained
Minimax Optimization

In the subsection, we study the convergence properties of our Acc-ZOMDA algorithm for
solving the black-box constrained minimax problem (2), i.e., ¥ C R% and Y € R% (or
Y = R%), where only the noise function values of f(z,y) can be obtained. The following
convergence analysis builds on a new metric E[H;], where H,; is defined in (16).

We first let f,ul (l’, y) = IEulf\*UBl [f(l‘ + paug, y)] and f,u2 (l’, y) = EUQNUBQ [f(:l:a Y+ MZUQ)]
denote the smoothing version of f(x,y) w.r.t. z with parameter p; and the smoothing
version of f(z,y) w.r.t. y with parameter psg, respectively. Here Up, and Upg, denote the
uniform distributions over the di-dimensional unit Euclidean ball B; and ds-dimensional
unit Euclidean ball B, respectively. At the same time, let Fy, () = Ey,~up, [F(z 4+ piwr)]
denote the smoothing approximation of function F(x) = maxy,cy f(z,y).

Lemma 27 Suppose the sequence {xy, yt};f:l be generated from Algorithm 2. Let 0 < n <1

andO<’y<2Ln,wehave

Fuy (Te41) — Fuy (1) < —*||~’Ut+1 — 24| + 6nev L7y () — mell” + 2069 | Ve S (e, we) — i
+ 3ntwlc12L2, (69)
where Ly = Ly + L2 $/T.

Proof According to the above Lemma 15 and Lemma 19, the function F},, () is Lg-smooth.
By the L,-smoothness of F),, (z), we have

L
Fuy(ze41) < Fuy(w0) +(VE, (1), 2001 — o) + 7g||$t+1 — xy|? (70)
2

gl = 2
5 | Ze+1 — 2]

- L
= Fm (xt) + nt<VFM1 (xt)v LTt+1 — l't> +
i
H53t+1 - xtHQ-

N 5 L
= Fy, (z¢) + e(VFp, (20) — v, Tepr — o) + 0e(0g, Ty — ) + 92
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By the step 8 of Algorithm 2, we have Z;41 = Py (x — yv;) = arg mingey %Hx — x + yue|2.
Since X is a convex set and the function %Hx — ¢ + yvy||? is convex, according to Lemma
17, we have

<it+1 — Tt + YU, T — i‘t+1> > 07 Ve e X. (71)

In Algorithm 2, let the initialize solution z; € X, and the sequence {z;};>1 generates as
follows:

Tip1 = Tp + (i1 — ) = MTyg1 + (1 — )2, (72)

where 0 < n; < 1. Since X is convex set and x4, T441 € X, we have 241 € X for any t > 1.
Set © = x4 in the inequality (71), we have

- 1, .
(Vg, Tep1 — x4) < —;||~’Ct+1 — z|%. (73)

Next, we decompose the term (VF), (z¢) — vg, Zi41 — 2¢) as follows:

(VFu, (2t) — vt, Te41 — 21)
= (VFu (z¢) = Vafu (@, ), Tegr — o) + (Vo fun (@6, Y1) — 06, T — x) (74)

=T =T5

For the term 77, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T1 = <VF,U«1 (fL’t) - vxf/u (xtvyt)vjt-i-l - th>
S NVFu () = Vafu (@ ye)|| - [[Ze1 — 24|

1
< 29[|[VE,, (21) = Vafu (e, ye)|* + @th—&-l — zy|?

= 29[Sy (" (@) = T Cars )+ -1 = P

2|V fos (257 (20)) — Ve (@05 (0)) + Vi (0,7 (0)) — Vi, )
Vil 1 1) = Vb )P+ -l = o

< 69V, fy (0, (20)) — Ve f (@, @) |2+ 691V s " (1)) — Vo f s ) |2
+ 699 ) = Vi) + -1 =

* L.
< 3ypddiLG + 6yLilly* (wr) — well* + gy 141~ z]|?, (75)

where the last inequality holds by Assumption 5, i.e., implies that the partial gradient
V. f(x,y) is Ls-Lipschitz continuous and Lemma 19, we have

Lydypn

Lydypn
2 ?

2

IVafur (26,57 (24)) = Ve f (2,7 () || < s Vet (@ ye) = Vafu (26, 90l <

and by Assumption 5, we have

IVaf (e, y™ (@) = Vaf (e, y)ll < IV F(@e v (20) = V(2 y) || < Lyllys — y* (2]
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For the term 75, by the Cauchy-Schwarz inequality and Young’s inequality, we have

Ty = (Vafu (24, y:) — v, T — )
< ”foul (xtvyt) - Ut|| : Hi’t+1 - l’tH

< 21V or,10) = 1l + - s = ] (76)
where the last inequality holds by (a,b) < 3||al|? + 5x[|b]|*> with A = 4y. Thus, we have
(VEu (@) = ve, Tegr — @) = 37#%&/? + 67L?f”y*(l’t) - yt”2 + 29V fun (e, ye) — Ut||2
+ 417H56t+1 — x|, (77)
Finally, combining the inequalities (70), (73) with (77), we have

Fyuy (w41) < Fyy () + 3y di L + 6meyLily* (20) — yell* + 20091V e fun (5 90) — v

M- N - Lgn
+ *tHQTH—l —x|® - *t||$t+1 — || + "L |1 — 2P
4y v
< Fy, () + 3nevpddi LG + 6ney L3y () — well* + 2069V frur (e, me) — v
~ o W — il (78)
where the last inequality is due to 0 < v < 52— |

2Lgnt”

Lemma 28 Suppose the sequence {xt,yt}thl be generated from Algorithm 2. Under the

above assumptions, and set 0 < <1 and 0 < A < %, we have
THTA 3Nt~
Y1 — y*(a;t+1)H2 <(- 4 Myt — y*(ﬂft)H2 - THyt—i—l - ytH2
251 A 2, 25Ky =2
+ =5, IVuf (@m0 —wel” + 67y)\ [t — Tega " (79)

where ky = Ly /T.

Proof According to the assumption 6, i.e., the function f(z,y) is 7-strongly concave w.r.t
y, we have

Feey) < Flaey) + (Vo @y — v = Sy = wl?
= flze,ye) + (e, y — Ge1) + (Vo f (2, 9e) — we, y — i)
(T ey, G = v0) = 5y — vl (80)
According to the assumption 5, i.e., the function f(x,y) is Ls-smooth, we have

Ly

—7\\?§t+1 —yel® < f(@e Gerr) — fle,we) — (Vyf (@, v), et — Ye)- (81)
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Combining the inequalities (80) with (81), we have
f(@e,y) < (@ Gi1) + (Wi y — i) + (Vo f (@ 98) — wiy — Get1)
T Ls
= g lly = well® + Sl — el (82)

Next, by the step 10 of Algorithm 2, we have 7,11 = Py(y; + Aw;) = argmingey %Hy -
yr — Awe||%. Since Y C R% is a convex set and the function 3|ly — y; — Awy||? is convex,
according to Lemma 17, we have

(U1 — Yyt — Mwg, ¥y — Jey1) = 0, Yy € V. (83)

When ) = R%, clearly, we still can obtain the above inequality (83). Then we obtain

(e, ¥ — Tev1) < ~(Ter1 — Y6, ¥ — Jey1)

e e B

_ . 1,
= ~(Ut+1 — Yt> Yt — Yeg1) + X<yt+1 — Yt Y — Yt)

>

1., . 1,.
= _XHyt-&-l _?/tH2+X<yt+l — Yt Y — Yi)- (84)

Combining the inequalities (82) with (84), we have

. 1, .
f(xe,y) < f(ze, Gigr) + X<yt+1 — e,y — Ye) + (Vyf(@e, ye) — wi, ¥ — Jeg1)

1, . T Lg,
= Lldeer = el = Slly = wel® + Z s = well” (85)
Let y = y*(z¢) and we obtain

flae, y™ (xe)) < fl@e, Y1) + §<?jt+1 — Y6,y (x) — ye) (Vi f(xe, ye) — we, " (24) — Geg1)

1, . T . Ly
= e = wll® = Sy ) =l + Sl — will® (86)

Due to the concavity of f(-,y) and y*(x;) = argmaxycy f(x¢,y), we have f(zs,y*(zs)) >
f(zt, Yig1). Thus, we obtain

1

0< X<ﬂt+1 — Y6,y (@) — ) + (Vo f (@6, y¢) — we, y™ (24) — Gey1)
1 Ly T
= (5 = e = wll” = Sl (o) — el (87)

By yt+1 = yt + nt(Ge+1 — y¢), we have
lyesr =y @)IP = Ny + me(Gerr — ve) — y* (@) |?
= [lye — y* (@) 1> + 20 (Gee1 — Yo, v — Y5 () + 0| T — well®. (88)

Then we obtain

- 1 N\~ 1
@1 —yoy (@) —y) < s—llwe =y @I? + 1001 — well® = 5—llyers — v (@) > (89)
20, 2 2my
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Considering the upper bound of the term (V f(x¢, y¢) — we, y*(2¢) — Ge41), we have
(Vyf(@e, yt) — wi, y™ (@) — Get1)
= (Vyf(xe,yt) —wi, g™ (2) — ye) + (Vy [ (@, 9¢) — wi, ye — Gey1)

1 T * 1 T .
< ;Hvyf(mtvyt) —wy|? + ZH?J () — well* + ;Hvyf(ﬂﬁt,yt) —wy|? + ZHyt — e

2 T . T 5
= ;”Vyf(xtayt) —wy|® + ZHy () — well® + ZHyt — G ||

(90)
Next, combining the inequalities (87), (89) with (90), we have
1 . 5
m”yt-ﬂ —y* (x|
1 T * o om T Ly 1. )
< Y] - D - _— J—
< Gy — e =" @I+ G5+ 7+ 5 = s il
2
+ ;Hvy (w4, y¢) — th2
1 T % 2 3Lf 1 5 9 92 )
< (— = DYy = Ly 1 B 2 -
< (277t)‘ 4)”% Y (we)[]” + ( 1 2)\)|Iyt+1 yel|” + 7_||Vyj'"(xt,yt) wy|
— 1 T * 2 3 1 3Lf ~ 9
= (G~ Pl = v @IP = (g5 + g5 = 3 ) —wi
2
+ ;Hvyf(xtvyt) - th2
1 T . 3 9
< (m - 1)”% —y (@) - 8j\||yt+1 — il + ;”vyf(xtvyt) — wy|?, (91)

where the second inequality holds by Ly > 7 and 0 < n; < 1, and the last inequality is due
to0< A< %. It implies that

77157')\

* * 477tA
e =y @)lI* < (1= )y — ™ ()

T

3N, -
12 = S = el + =2V f ) — w

(92)
Next, we decompose the term ||y;11 — y*(z441)]|> as follows:
Y41 — y*($t+1)”2
= llyerr =y (@) +y" (@) — y* (@) |
= [lyer1 — v (@)lI” + 20w — v (), v (20) — v (we1)) + 19" (21) — v (o) |12
77t7_)‘ * 2 4 * * 2
<( - 14+ —— -
< (4 =)y =y (@) 1P + (1 + mT}\)Ily (@) = y* (2|
NeTA * 2 4 2 2
< U+ = yern =y (@) 7+ A+ m)ﬁylm — Zepa|
MWTA . 4 ~
= 1+ ) e =y @)+ (1 + m)"éiﬁf”l’t — T, (93)

where the first inequality holds by the Cauchy-Schwarz inequality and Young’s inequality,

and the second inequality is due to Lemma 16, and the last equality holds by z;41 =
T + nt(jt—i—l — .Tt).
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Combining the above inequalities (92) and (93), we have

MTA MWTA

Ge1 — wel|?

. . MTA 3N
Iy =y @)1 < (L4 = 2) (0 = )y =y (@) = (U + 7)1
T A 4 =
U T TNy f o) — il + (4 s e = Fa

(94)

SinceO<nt§1,0<x\§%andeZT,Wehave/\gﬁgéand)\ntgé. Then we

obtain
2,242
(1+ nt;')\)(l B m;A) _q1_ m;A ntZA 3 771:;)\ <1- nik’
ntTA 377t 37’]t
—(1 i i1
(42027 < T
T]tT)\ 47],5)\ 1 477tA 25T]tA
1 <(14+ —)— =
(+4>7'_(+24)7' 6T
4 4k2n,  K2me AR2me 25k2my
1 2,2 _ 2,2 Y < Y Y _ Y .
t mﬂ)ﬁym s S WA 67\
Thus, we have
* 77257—)\ * 377t ~
Y1 — v (@e1)]]* < (1 — 1 Mye — v*(z0)|)* — T”ytﬂ —
25m A 25k21); ~
+ 6; IVy f (e, ye) — wil® + 67}1\ |2 — Fe]?

(96)

Lemma 29 Suppose the zeroth-order stochastic gradients {vy, wt}thl be generated from Al-

gorithm 2, we have

E||V:Efu1(xt+1a yt+1) - Ut+1H2
3(1 — ay1)?LEpidy

< (1= ap11)°E|| Vo fur (T, ) — vel” + b

6d1L?c(1 — 1)’}

2 52
208,10

E(l|Zee = el + e+ — well?) +

b b
EHvyfuz(xtJrla Y1) — wt+1||2
3(1 = Ber1)?L7u3d3
< (1= Bt ) BV Sy () — > + S
6do L% (1 — Byy1)’nf B 232, .62
+ ! ; E(|Ze+1 — zell® + |Ges1 — wel?) + %
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Proof We first prove the inequality (97). According to the definition of v;41 in Algorithm
2, we have

i1 — v = —og1vy + (1 — 1) (Vo f (41, Yer1s Begr) — Vo f (@, v Bega))
+ a1 Vo f (Tert, Y1 Big). (99)

Then we have

||V fur (@11, Yra1) — vega |
= E[|Vafu (Te41, Ye1) — v — (Vg1 — 1)
= E||Vafu, (@41, ve41) — ve+ o100 — a1 Vo f (41, yers; Bian)
-(1- O<t+1)(@zf($t+1,yt+1§ Bit1) — @zf(«rtayt? 15’:5+1))||2
= E[|(1 = 1) (VoS (@, y¢) — 02) + g1 (Ve frn (Te11, i) — Vaf (@1, Y15 Besn))
+ (1—04t+1)(vzfm (Tt41, yt+1)_vxf,u1 (¢, yt>_@xf<xt+la Y41, Bt+1)+@xf($t7 Yt Bt+1)) H2
= (1= 1)’ Bl Va fur (1, 90) — vill* + Ellaers (Ve (@41, 9141) = Vaf (@1, yesn; Been))
+ (1=c1) (Vo fro (@1, Y1) =V Fun (@, 96) = Vo f (Rer1, Y13 Ber1) + Vo f (e, v Biga) ) |12

I

202 N
< (1= 1)’ E||Vafu (xe,ye) — vel? + —EE| Vo fu (@41, Yes1) — Vaf (@1, yers; €)1

b
2(1 — apq1)? . .
+ (th)EHfom (Tt 15 Y1) = Vi Fur (@0, y) = Va F (@41, Yes1; E) + Va (e, yes €112
202, .6
<(1- Oét+1)2EHfou1 (ze, 1) — ve]|* + tJbrl
2(1 — « 1 2 ~ ~
+ (bH) E(|Vaf (i1, Yi41: €L — Vaf (@, ys DI, (100)

-~

=T

where the fourth equality follows by E(Q’Btﬂ)[@zf(xtﬂ,yt+1;Bt+1)] = Vo fu (Tes1, ye41)

and E(U7Bt+1) [ﬁxf(xt—i-la Ytr1; Biy1) — @$f(xtv yt; Bey1)] = vxful (Te41, Ye+1) — va:f,ul (74, Ye);
the first inequality holds by Young’s inequality and the above lemma 20; the last inequality
is due to the equality E[¢ — E[¢]||* = E||¢]|* — |E[¢]||* and Assumption 4.
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Next, we consider the upper bound of the above term T3 as follows:

Ty = E||Vaof (@41, ye1: €1 — @xf(xtvyt;fi)ug (101)
E|| di (f (g1 + paun, g5 &) — f($t+1,yt+1;f§))ul
M1
Cdi(f(ze + paut, yes &) — f($t7yt;§1i))u1“2
H1
_ &x| fleen + iy, ye1; €)= F(@e01, vea15 60 — (Vo f (Tea1, Yesa; ff)v/ﬂ“ﬁul

M1
+ ((Vaf @1, ye11: €D ur ) — (Vo f (2, 45w ) ) wa
[ + paur, ye; ff) — f(x, ys; ff) - <Va:f($t7yt;ff), ﬂ1u1>u1H2
M1

3L7p3d? i
< fT BAE|(Vaf (wes1, Yer13€1) — Vaf (@, ye: €1), ur yur|
31213 ’
T + 3BV f (o1, ye415 €1) — Vi f (@0, 45 €1), ua )
_ Shpid;

o+ 3BE[(Vaf (e, i1 €) = Vol (o, €)” (wru])
(Vaf @1, ye41561) — Vaf (2, u:£0)) ]

where the above inequality is due to Young’s inequality and Assumption 5, i.e., f(x,y;§) is
Ly-smooth w.r.t z, so we have f(zer1+put, Yer1; €)= f (@er1, Yer15 €)= (Vo f (@41, yer1; €L
,M1U1> < %”Mlulﬂ2 and f(z¢ + prun,ys €l) — f(enyn &) — <me(€'3tayt;§§)7mu1> <
%Hululw, and the forth equality holds by ||luy|| = 1.

Following the proof of Lemma 5 in (Ji et al., 2019), we have ufu; = d—llldl. Thus, we
have

3L2 2d2
FHI t |12
h=s—5—+ B E(Vaf(@ir1, ye+1: 1) — Vaf (@, v 6|
3L3pRd}
< fT +3d1 LFE (|41 — l” + lyers — ell?)
3L} pids - -
= L 4 B L3R ([Fe — wel® + e — w1, (102)

where the last inequality holds by Assumption 5. Plugging the above inequality (102) into
(100), we obtain

EHvﬂffm ($t+layt+1) - Ut+1||2
3(1 — ay41)?Lipid]
< (1= 1) B Ve fy (o1, 0) = url* + T

6d1 LA(1 — ayr1)’n? ~ _ 202, 62
T E(|Zer1 = will® + |G — ell?) + =
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We apply a similar analysis to prove the above inequality (98). We obtain

E||Vy fus (Tt41, Y1) — wepa]]?

3(1 = Brr1)? Lipads
< (1= Bes1) Iy fua (21, 11) — i + S

6d2 L} (1 — Bea)’nf _ 26716
+ (e = el + 1Geer = well?) + =51

Theorem 30 (Restatement of Theorem 5) Suppose the sequence {x¢,yi}iq be genemted

from Algorithm 2. When X C R4, and let n; = W for allt >0, ¢ > 3k3 + 97 and
625dL

02>3k3+ Lk >0,1<b<d, m > max (2, k3, (c1k)?, (c2k) ),0<)\§mm(%,725—47),

AT Gb/d ml/3 1 _—
0 <7 < min (2Lf \/ 36A%+625x2 2Lgk)7 0<m < 4y (m4T)2/3 and 0 < pp < 3724y (mym)2s 0 e

have

T

T

1

T D E|Gx(x, VF(x0), 7)< ZE Lilly™(z) — el (Vo f (2, 9e) — Ut||+*||xt+1 — 2]
t=1 t 1

_2V3M'm!/® | 2v/3M Ly

- T1/2 + T1/3 + 2(m + T)2/3’ (103)
" F, —F* 25dL2 1/352  3672L24+625L4
where Ay = |lyr — y*(z1)||* and M’ = #1(?19) EATD FAL+ 2mT2k25 : 827—2 E(m +

_ 9132 2(c24-¢2)62k2
T)75 + g + “ bf—%) In(m +T).

Proof Since n; = W on t is decreasing and m > k3, we have n; < ny = m]f/S <1 and

1/3
v < SrE = 2Li770 < 2Lt;77t for any ¢ > 0. Due to 0 < 7 < 1 and m > max ((clkz)3, (czk‘)?’),

we have a1 = c1n? < ey < 7511’/“3 <1and Bi11 = can? < comy < "221’/“3 < 1. According to

39



Huang,Gao,PEL,HUANG

Lemma 29, we have

1 1
EEHfo,U«I (Ze41, Ye41) — Ve || — TEHV:Efm(xtayt) — v||? (104)
272,252 2 9
(1—ayy1)? 1 o 31— ou1)?Lypsd] 2076
< — E|V T, Yt) — vt||° + +
(F=2t — BV o) — v - -
6d1L2(1 — Oét+1)277t ~ N
— E(|&es1 — 2l + lgers — )
l—ap 1 6di L3 3
< (L S VE| Ve fuy (@ y) — vl L E (|1 — 2ol + Ge1 — wel?)
Nt Ni—1 b
3L%u%d%+2af+152
bne b
11 6diLine 3
= (———— — 1) E|Va fuy (e, ye) — vel*+—LE (| Fer1 — o] + 1 —vell?)
N Mi—1 b
3L3pidi 203,02
+
bnt bne
where the second inequality is due to 0 < ay4+; < 1. By a similar way, we obtain
1 1
EEHvyfuz(J:tJrla Y1) — W || — TEHVyqu (2, ye) — we)? (105)
11 6daLin: N
— ——— — o) E||Vy fruo (e, yt) — wt||2+7fE(||$t+1 —ze|? + |1 — wel?)
N M—1 b
3LGu5d5 287,67
+ .
by bne
By m = W, we have
1 1 1 1 1
— = ((m+t)s3—-—(m+t—1)3
N M1 k‘(( ) ( ) )
1 1
< <
Bk(m +1 = 1)%/% = 3p(m/2 4 ¢)**
92/3 92/3 2 22/3 ) ) 106
< = = < —
= Bk(m+ )23 3K (m/2+ )23 3k = 33 (106)

where the first inequality holds by the concavity of function f(z) = z'/3, i.e., (z + y)'/3 <
/3 4+ 3;§ 755 the second inequality is due to m > 2, and the last inequality is due to

2
0<n <1 Letclzfﬁ+9%,vvehave

1 1
EEHvxfm(xt+1,yt+l) — v l? — ﬁEHfom (e, 1) — ve|? (107)

972 6di Lam B
< *TntEHfom (ze, 1) — ve]|* + Tf]E(||5Ut+1 — 2| + || Ges1 — vel?)
SLiu%d% 203, 67
+ .
b bne
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625dL2

Let ¢y > 3 + L with d = di + ds, we have
1 2 1 2
EE”Vyfm (11, Y1) — wep ||* — EEHVyfuz (w4, y) — we| (108)
L2 6da L3,

< g MEIVyfos () = wn][P + E(|l@e1 = ol + llges = wel?)
3L2u2d2 2832 52
i FH2%2 I B )

bnt bny

b

According to Lemma 28, we have

Hyt+1 - y*($t+1)||2

77tT)\ 3, - 2517t)\
<(1- Mye — y* ()| — 1 41— yell® + IVy f (e, ye) — wi]|
25K2n, _
6 ?i\ llze — 9Ct+1||2
mTA 30, - 25k, _
=@ ==y~ v (z)|? = S5 10 — vl + —2 e — Zea|?
4 67T\
251’],5 2
+ ”Vyf(xta Yt) — Vy fus (w4, y¢) + Vy fus (w4, yt) — we|
2
7]t7')\ 3N, - DKMt -
<(1- Mye =y (@)|)* - 1 N1 = yel® + GTyA |z — Eoqa|?

25Au sL3dsn, 2517t>\
_|_
127

IV y fuo (zes ye) — th27
where the last inequality is due to Young’s inequality and Lemma 19. Thus, we have

lyes1 =y (e )P = lye — y* (o)

77t7)\ 3, -
< - lye — y* ()] — 7Hyt+1 — Yt

25/\/~L%L3‘d277t 2577t)\
+
127

||2 25527715
67

Iy Fra (0, 5e) — wie . (109)

2 — Zeg |?

Next, we define a Lyapunov function (i.e., potential function) ®;, for any ¢ > 1

257(2[1?0 * 2 2
@tzE[me o =" @I+ g Ve (o) — v
oz Vo da @ 0) = wi|?].
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By using Lemma 27, we have

Gy — Py
25dL2~
= E[Fy, (@e41) = Fy (@0)] + — 7= (Ellyerr = " @)l — Ellys =7 (@0)|%)

v, 1 1
+ *2(77*EHV:cfm (eg1, Ye41) — Ve ||® — EEHszm ze, ) — vel|?)

i
v, 1
+ 7(77 E(|Vy fus (@41, Yr+1) — wt+1H - EE“vnyQ(xtayt) — we| )

< *EEH%H — 24||* + 6ney LFE[|y* (z0) — yell? + 20eVE| Vo S (e, ye) — vel|* + 3meypidi LG

25dL3y m 30, 257\
o (=Bl =y @)l = B =l + T By fn (2 )~
25/\/L%Lfcd%nt 25K2m; . 9 9’Y77t
127 67_y>\ Ellze — Zy4a| ) —E(Vafu, (2, 1) — Ut”
6d1L277t"y 5 ~ 6d2L ney - ~
— 5 (Bll&es — @il + Bl - ytu?) g (EllE — el + Elgees — wel?)
6256?L3rynt 2, %dlfy 202, ,6% 3Lfc,u%d%’y 282,10y
— =5 ElVy fus (T, ) — wil|” +
3b72 bT]tTQ b, T2 b2 b2
fyL 0t v 625dd3 LA pidney
LBl ) — el = BNV f () = ol 3t Lmet —— 5
f“ld 207,67y f:u2 5 267,10%
b??tT b7]t7'2 bnt7—2 b?]tT2
75dL2~y  6dL%~ ) 1 6dL%y  625dL%k2y )
- ( 4()/\7{ - ng )771;E||yt+1 - yt||2 - (% - ng - 66)\;;29 )nt]EthH — $tH2
YL " ¥
< LRy (@) - wl® - ntEHV Fun (@, 90) — oi|? = 7E”xt+1 — x4||* + 3pidi Liney

625dd3Lipdney  3LAutdy 202, 6%y  3L3u3d3y 25t+152

11
12672 b2 b2 bne? b7 (110)

where the first inequality holds by combining the above inequalities (107), (108) and (109),
and the second inequality is due to 1 < b < d and the last inequality is due to 0 < v <

Ar2 6b/d 757
3L, \| 36321 625m2 and A < 9F. Thus, we have

2

@)~y + FEI VS (e y0) =l + Bl — el (111)

P — g 625&‘1311;10#%7715 3LfM 1d 261%“52 3L%M%d§ 25t2+152

<
- 12672 b T2 b, T2 b2 by T2

+ 3u] dszm +
Since inf e x F(x) = F*, we have infcx F),, (2) = infyex By ovy [F(z4+piur)] = infren % I3
F(x 4 pyuy)du > % fB infoex F(x + prur)duy = F*, where V' denotes volume of the unit
ball B.
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Taking average over t = 1,2,--- ;T on both sides of (111), we have:

T 2

1 L Nt Uz ~
E EHy () — yel> + 1 BV fu (e, ye) = vel|* + HQEH%H —a]|?)
=
T T 72742 2 12
b, — (I)t+1 1 2272 625dd3 L 3LGpidy
< — 3uidiL
Z + T Z; (3psvy 7+ 12672 b77ﬂ'2

t=
20‘t+152 3L p3d3 267,,0°
b, 72 bnm‘z by 72

).

Let Ay = |jy1 — y*(:z:l)HQ, we have

25762[/?0 * 2 g 2
21 = Fu) + 5l = @)+ SEIVe fu (1) — wil

Y 2
+ o SBVyfaer) — il

25ydL? .y R )
= Fy, (z1) + b Llyn — v ()] + WEHszfm(l“hyl) — Ve f(z1,y1;B1) ||

oS BIV fua(e90) = Vol (o1, B

712
2yl
ATh bnot?2’

< FM1(x1) +

(112)
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where the last inequality holds by Assumption 4. Since 7; is decreasing, i.e., 77:;1 >n, L for
any 0 <t <T, we have

T
1 Lo
72 fEny (@) =l + BNV (o) = il + 5Bl — )
t:l
1 & 1 & 625dd3Lip3n:  3LAudY 202, 4

< o, — P — 2d2 L%
- T’ynT Z( ¢ Hl) + Tnr Z et 12b72 + by T2 + b 72

2p3d: 242,52
Lipyds n Bt )

bntT bntT
1 25ydL? 9262 r 625Jd§L‘}M§nt
< —(F —F*+ A (Budd3L%my + ——— L
= Tynr ( w (71) ATb L b72n0 ; pAaL S 12672
3L f”lal2 2a7,,0” BL?’/‘%d% 25t+162)
b2 b2 b2 b2
_ F(z1) - F* N 25dL% AL 262 . 3672 pid; L + 625dd5 L3 ZT:
- Tynr TnrAtb ! Tor2nrno 12672y — e
BL3 (33 + 1i33) ZT: 1 2G4+ )0 Zijf
Tor2np — Tor2np — t
- P (z1) — F*  25dL% . 262 N 3672 pidi L7 + 625dd3 L4 T3 / k W
- Tynr TnrATh Thr2n7rno 12b72Tnr 1 (m+t)l/3
3L} (uid} + i3d3) / (m+n)' L 2AG+ B3P (T K
Tor2nr 1 k Tor?nr )1 m+t
* i) 272 2
- Fu(z1)—F 25d L7 A+ 262 N 3672 u3d2 L k+625dd Lf,qu'( Ly
- Tynr TnrAth Tor2nrno 8672T77T
20,2792 1 272
9L} (uidt + p3ds) (m+T)3 + 2(c? + c3)5%k? In(m 4 7)
ATbronrk Tor2yr
772 272 4 2
< B (21) — F*  25dL3% A+ 262 . 367L3k + 625Lfk(m LTy 9L%
Tynr TnrAth Tor2n7n0 8b72Tnr ATbr2nrk
2(c? + c3)6%k3
— 1 T
Tor?np n(m +T)
* ir2 1/3¢2 2712 4
_ (Fm(azl)—F N 25dL% 1+2m/ ) )(m+T)1/3+36T L% +625L% )18
T~k TkAtb Tbr2k? 8b72T
9L2 22 + )52k
f 1/3 i +¢3) 1/3
— T —= 1] T T 113
T e ) T Il AT (m T (113)

where the second inequality holds by the above inequality (112), and the last inequality is

F _F¥ 25dL2
Let M’ = D02 Dd N

1 1
duet00<u1ﬁmando<“2§m'
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om1/352 3672[,2 +625L 2/3 QL? 2(c2+c2)52k?
ok g (m+ 1) + pols + = In(m + T'), we have

1 1 - M
*Z fEHy (1) ytHerZEHmem(mt,yt)—th2+—2Eth+1—xtH?)§7(m+T)1/3.

dry
(114)
According to Jensen’s inequality, we have
Lf

*Z < Elly™(z0) — vl + EHfom(fvt?yt) vl + 5 Ellxt+1—xtll)

t=1

P’i LfEuy (@) — pl + FEIV o () — ) + g Bl — ael2)

T — AT 492

3M’ 16 V3M'm!/ V3M'
< T1/2 (m+T) - T1/2 T1/3 (115)

where the last inequality is due to (a + b)1/6 < a'/6 + /6. Thus we obtain

1
Z [Lilly™(2e) = yell + Ve for (20, 90) — vl + ;thﬂ — ]

2v/3M'm} 3M’
- T1/2 + T3
According to Lemma 19, we have ||V fu, (@, y¢) — vel| = (Vo fu (@6, y¢) — Vo f (@, ) +
Vo f (@, ye) —vell 2 (Vo f (@, ye) —vell = (Ve fu (2, ye) = Vaf (@, y) | 2 (Vo f (e, ye) —vell =
%. Thus, we have

T

T ZE Llly™(ze) = yell + IV f (20, ye) — oell + *me — 2]
t=1
T

1 ,
< 7 Y E[Lylly (@) = vl + Ve Fy (e, ) = vl +
t=1

- 2v/3M'm?1/® N 2v/3M’ L Lsd
- T1/2 T1/3 2
_ 2V3M'm!/ RECIZEN Ly
-T2 V3 2(m+T)%/3
where the last inequality is due to 0 < p; < m.
(19), we have

p1Lydy
2

+ —[|Ze41 — @4l]
v

(116)

Then by using the above inequality

T

T

1 1.

7 2 ElGx(ze, VF(z1), )] Z [Lylly™ () yt||+||fo(f6t,yt)—th+;Hfﬂt+1—:ﬂtH]
t=1 =

<2\/ mMS  2\/3M' Ly
- T1/2 + T1/3 +2(m+T)2/3'

| /\

(117)
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A.4 Convergence Analysis of Acc-ZOMDA Algorithm for Unconstrained
Minimax Optimization

In this subsection, we study the convergence properties of our Acc-ZOMDA algorithm for
solving the black-box unconstrained minimax problem (2), i.e., X = R% and ) = R% (or
Y C R%). The following convergence analysis builds on the common convergence metric
E[|VF(z:)| used in (Lin et al., 2019), where F(z) = maxycy f(z,y).

Lemma 31 Suppose the sequence {xy, i}, be generated from Algorithm 2. When X =
R% given 0 < v < T L , we have

Sy Lidiud
Fou (@e1) < By () + 3my L e — 7 ()P + —— =~
e e
Vi o) = wll? = SNV Ey (@0l* = “F el (118)

4

Proof According to Lemma 15 and Lemma 19, the approximated function F), (x) has
L4-Lipschitz continuous gradient. Then we have

Fuy (T41)

VniLg, o
< Fuy () — ymilV Ep, (1), ve) + TH%H (119)

2,2
YNt e YniLg  yme
= Fy () + *HVFM (z¢) — vel|* = HVFM( ze)|* + ( Qt g — *)IlthQ

'777 '777
F/h(xt) + 7t||VFH1(xt) xfm(xtvyt) +v$f,u1(xt,yt) _UtH2 tHVFMl(xt)W
Y’niLy  me
DLy 20y 2
< (o) + e[V EFy, (2

+

I?

v:vf/u (H?t,yt) + ’YUtHszm(xu yt) - UtH2

)
e 2 ELg v, o
||VFm( )|+ ( 5 — —)|lve|

< F, (xt) + 777t||VFm($t) - fom (%Jﬁ)”2 + 777t||vasfu1 (e, y¢) — Ut||2
O Wlt
5 IVEu (2 zy)|1? — == [loell?,

where the last inequality is due to 0 < v < 277t -

Considering an upper bound of |V E, (zt) — Vau fu, (24, ) ||?, we have

IV Fuy (1) = Ve fyuy (2, 92) |1
= IV (6, Y (1)) = Vi fn (@1, 90|
= ||Vafu (@, y" (x1)) = Vo f (@, y" (21)) + Vo f (20, v (21)) = Vaf (26, yt)
+ Vel (@ yt) — Vel (@901
<3|\ Vafuy (w1, y* (1)) = Ve f (w0, y* (@) I” + 31V f (21, y* (2:1)) — Vo f (e, 1) |
+3|IVa f (e, yt) — Vel (w90
22 2
< I S — v )l (120
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the last inequality holds by Assumption 5 and Lemma 19, i.e., we have

Lydyp

Lydypn
2 b

2

IV fun (e, ¥ (20) = Ve f (@, y" (24))]] < MWV f (e y) — Vafu (@90 || <

and

IVaf (@, y™ () = Vaf (@6, yn) | < IV F (e, y™(20) = V(@90 < Lllye — y* ()]

Then we have

3y L3dips \
Fo(w1) < Fyy () + == + 300y |ye — o (a2) |
Vi (@) = wnll? = BNV E @l = . (121)

4
|

Lemma 32 Suppose the sequence {xy,y;}i_, be generated from Algorithm 2. Under the
above assumptions, and set 0 <y <1 and 0 < A < &, we have

7’]{7’)\

* * 377t ~
lyee1 —y (fl”tJrl)H2 <1 1 Nye —y (iﬁ't)H2 - TH%H - yt”2
257, 2, R
\Y ,Yt) — _— , 122
+ 2N, f ) — wil+ S 2, (122)
where ry = Ly /T.
Proof This proof is similar to the proof of Lemma 28. |

Lemma 33 Suppose the zeroth-order stochastic gradients {vy,w;}1_, be generated from Al-
gorithm 2, we have

B[V fu (Te41, Yer1) — viga ||
3(1 - Oét+1)2L3fM%d%

< (1 - atH)QEHfom (ffuyt) - Ut||2 +

b
6dy L2(1 — apr1)n? R 202, 62
+—L— (VEIlll” + Ellgiss - wel?) + =51 (123)
EHVyqu ($t+17yt+1) - wt+1||2
3(1 — Buy1)? L3 p3d3
< (1= BtV fua (1) — wie]* + T
6da L4 (1 — Byy1)?nf . 232,,0°
+— (VE|[vel|? + B[ Ges1 — we]?) + . (124)

b b
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Proof This proof is similar to the proof of Lemma 29. |

Theorem 34 (Restatement of Theorem 7) Suppose the sequence {x;,y;}—, be generated
from Algorithm 2. When X = R% | and let n;, = % forallt >0, ¢ > 3% + % and

(
co > 3k3—|—625de k>0,1<b<d, m>max (2,2, (c1k)?, (c2k)?), 0 < A < min (%,%),

AT Gb/li ml/3 1
0 <y <min (5771 sowreaseg: L,5)» O < #1 < gy and 0 < 2 < Gragr s, we

have

VeM'm'/s  \2M’ Ly

—N"E|VF < , 125
T; IVF@) < 55—+ 5+ 3o 5 7775 (125)
F, 7F* 25dL2 1/352  3672L2+625L4%
where A1 = |ly1 — y*(z1)|]> and M' = #1(32113 Tt A1+ 2217%25 : S (m

_ OLF | 2(c2+c3)5%k?
T)72 4 gder + 2B In(m + 7).

Proof This proof is similar to the proof of Theorem 30. Following the above proof of

Theorem 30, let ¢; > 3k3 + 272 we have
1 1
EEHfom (Ter1, Ye1) — ver | — TEHVJEJCHJ (@, 90) — vi|? (126)
972 6y LEn, ) 2,2d2 902, 52
<_TmEHfo”1 (w¢,y¢) — Ut||2+Tf(72E||UtH2 + El|ge41 — yt||2) 2 + ZH .
Tt ur
d 2 ~
Similarly, let ¢ > -25 + ot with d = dy + da, we also have
1 1
EEHvyfuz(xt-i-l,yt-i-l) — w1 — ﬁEIIVny (1, 1) — wel|” (127)
625dL L3 6do L2, ) 2usds 232, .42
<- LBy fn (e, ) — wt\|2+7f(72E||th2+EHyt+1—ytHQ) i I
3b b bny bny

According to Lemma 32, we have

. TA 3 2577
lyss1 =y (@) > < (1= 222 lys—y (xt)Hz—thytJrl—ytHQ NIy f (e, ) —wi |2
25% ¥,
Yy 2
Torn [[ve |
2.2
’I’]t’T)\ 2 377t . 2 25’{:1/’7 e 2
—(1— _ 2l _ Sy T
( Mye — y*(x0) || 1 Ge41 — well Y [[ve |
2577
+ : Hvyf(l’u yt) yfuz (%; yt) + vyfuz (xta yt) - th2
177>\ 3. 25k2y%n;
< (1= )y — y* ()] — *tHytH — | 6y7|fvt\|2
TA
25AM§L d277t 25
+ ! "t 2y ) = ], (128)

127
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where the last inequality is due to Young’s inequality and Lemma 19. Thus, we have
1P = llye — v ()17

3t -
Hyt (f’ft)HQ - 7Hyt+1 —

25)\M2L A3 25m\
+ 2 TR S () — il (129)

At the same time, we give the Lyapunov function ®; defined in the above proof of
Theorem 30,

lyis1 — y™ (zi41)

7’],57')\

”2 25”5’727715

2
oy (vt

S_

257dL2 2,
@ = B[y (w0) + =l =y @0l + ) — IV o 0) = P

IVy s (e, ) — wel?].

By using Lemma 31, we have

Qi1 — Py

+7'27]_

25d L2~
=E[F, (x141) — Fpuy (z0)] + )\Tf (Ellyr1 — y* (@e1)|1? = Ellye — y* (z0)|1?)

v ,1 1
+ ﬁ(aEHV:ﬂfm(l‘tH, Yir1) — Ve | — TEHmem(l“t,yt) —vel?)

v ,1 1

+ =5 (ZEVy fuo (@41, ye11) — wegr]|* — ——E||Vy fuy (xe, 31) — wil?)

T Nt Nt—1

377t7L?vd%M%
2

n
< 3y LIE|y — y* () >+ F BV fuy (T4, ye) — UtHQ—?tEHVFm () ||

dL%y  prh 3n
Ry Bl =y (@)l - i

bAT
25 A 255 L3 d3n; 977%
5 By (2,01) - wtn? )

6d1 L2n,y ) 625d L2~

— (PElurl® + Ellgiee — wel) - ijmuvmz(wt,y» —

6d2L?¢nt7 %dl'y 2at+152’}’ gd27 2/8t+1 Y
br2

bn 72 b2 me2 b2
13~L3 e

oYMt N
< —— Bl -y @)? = BNV f (1 0) — vl = SEEIVE, (20)]?

HQ + 25%3’727%
67\

EHV ful(ﬂﬂt» @/t) - Ut”

E v

EHyt+1 — Yt

+

(VEllvel* + Ellger1 — well?) +

., 3/~L2d2L277t7 625dd%L;10,Uz%7]t7 3Lfc,u%d%7 207 10% SLfcM%d%”y 2082,16%
2 12b72 by by bp® by

= o 59 ir2.3 2,23

S e A P YT R e/ 62202?5&37 e

625dd3 L4 pudney
12b72

BLipuddly 207,,6%y  B3L3u3d3y 287,6%y

b??tT2 b2 b77tT 2 by r?

< —ZLE||VE, (20| + 33di Liney +

(130)
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where the first inequality holds by combining the above inequalities (126), (127) and (129),

and the second inequality is due to 1 < b < d and the last inequality is due to 0 < v <
Ar? 6b/d 75
ﬁ W and A\ S T4T Thus7 we have

P, —

71274,2
Ui 2 ¢t+1 2.2+9 625dd2Lf,U,277t
LBV (@] < P 4 gt + S
3L3¢M%d%+20¢%+152 n 3L?/L%d% 2ﬁt2+152

. 131
b77t72 bTItT2 me2 bﬂth ( )

Since infyex F(z) = F*, we have infyex Fy, (2) = infpex By, vy, [F(z+piur)] = infex % I

F(x + ppuq)duy > % fB infoex F(z + pyug)duy = F*, where V' denotes the volume of the
unit ball B. Let Ay = ||y1 — y*(21)]|?, we have

)
25ydL3

% v
b lyr — y*(z1)||* + WEHV:BJ% (z1,91) — v1|?

7 2
- WE”vyfuz (1,y1) —wi|

Oy = Fy, (z1) +

25ydL? . y . 2
b ly1 — y* (w1)]|” + WEHV‘T‘M (z1,y1) — Vo f(x1,y1; B1)||

BBV fa 1) = Vo f (e, B

= Fﬂl(wl) +

132
ATh + bnor?’ (132)

where the last inequality holds by Assumption 4.
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Taking average over t = 1,2,--- ,T on both sides of (131) and by using 77:;1 > nt_l for
any 0 <t <T, we have

11
TziEHVFm(xt)HZ
t=1

T T F274,2 2,272
1 1 625dd5 L 3L5ptd7 202, 62
S Z ((I)t _ q)t+1) 4+ Z 3,U«1d2Lf77t 2 j;u277t ]"Ml2 1 at+12
Tnr P Tnr P 12br bt byt
3L?N%d% 2@52-1-152 )
b’l’]ﬂ'z b?’]th
—F*  25dL2 2 3672u3d3 L% + 625dd3 L}
< Fnln) = F LA+ 225 + 28 5 H3 Zm
Tynr TUT)\Tb Tbr4nrno 12bT Tnr
TbT nr P 77t TbT 77T P
—p* 25dL2 2 367203d3 L% + 625dd3L}
< Fu(z1) - F N - 225 n 251 ' fﬂz / k gt
Tynr TnT)\Tb Tbhr2nrno 12b7’ Tnr 1 (m41)/3
3L% (uidi + p3d3) (T (m 4 t)1/3 2(c2 +c2)6? [T k3
5 dt + 3 dt
Tbr4nr 1 k Tbrnr 1 m+t
X 772 2 272 4 2
o Fu(p) —Fr | 2dL3 o 367 Lfk:+625Lfl~c(m+T)72/3Jr 9L3
= Tynr TnrATh Thr2nrno 8bm2Tnr ATbr2nrk
22 + )52k
—= 1] T
Tb7'277T D(’I’)’L * )
F _ p*  25dL2 om1/352 3672L2 + 625L4
_ ( (1) + f L+ mi)(m+T)1/3+ ! ! m+T)_1/3
T~k TkATh Tbr2k? 8b72T
9L2 22 + 2)62k2
+ 2k2 (m+T)1/3+(ClTbCT22)1n(m+T)(m+T)1/3, (133)
where the second inequality holds by the above inequality (132), and the last inequality is
F _F* 25alL2
due t00<ul Wand0<ﬂ2 m Let M/: ul(ajylk) + TNTh A1+
3672 L% +625L% 913 21 2152%2
27;112/,:262 + 8’?2 Lim4T)"2/3 + oz + 2(01:(;22)6 b In(m + T'), we have
T
1 2M’
= Y EIVE, (@)]? < S (m+ 1) (134)
t=1
According to Jensen’s inequality, we have
1 1/2
- ZEHVFM 2l < (7 D EIVEL @)I)”
t=1
< T2 (m+T)7° < Ti2 + T3 (135)
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where the last inequality is due to (a + b)/¢ < a'/6 + /6. According to Lemma 19, we
have [V Ey, (20)[| = IV Fyy (20) = V() + VF(20) | = [VEF (o) || = [[VEuy (20) = VE(24) || =
IVF(x)| — %. Thus, we have

T

T
1 1 prLiydy
= S EIVF@)] < 7 3 EIVE, (@)l + =55
t=1 t=1
- V2M'm®  \2M' i Lydy
= 712 T1/3 * 2

_ VeM'm'/s  \2M’ Ly
- T1/2 + T1/3 + 2(m+T)2/3’

(136)

where the last inequality is due to 0 < p; < W.

A.5 Convergence Analysis of Acc-MDA Algorithm for Constrained Minimax
Optimization

In this subsection, we study the convergence properties of our Acc-MDA algorithm for
solving the constrained minimax problem (2), i.e., X C R4 and Y € R® (or Y = R%),
where the noise stochastic gradients of function f(x,y) can be obtained. The following
convergence analysis builds on a new metric E[H;], where H; is defined in (16).

Lemma 35 Suppose the sequence {x, yt}le be generated from Algorithm 3. Let 0 < n <1
and 0 <y < ﬁ, we have

M~ *
F(ze41) — F(x) < —gﬂwtﬂ — zy|? + 20y L3y () — well® + 2009V f (e ye) — i,
(137)
where Ly = Ly + L?/T.

Proof This proof is similar to the proof of Lemma 27. According to Lemma 15, the
function F'(z) has Lg-Lipschitz continuous gradient. Then we have

F(zi1) < F(ay) + (VF (@), 0441 — @) + %Hmﬂrl —ay|f? (138)
- Lg??t2 ~ 2
= F(ze) +me{VE (@), Tea1 — 20) + =5 [[Te41 — 24|
3 N Lgn? .
= F(z¢) + ni(VF(21) — v, B — 1) + mie(ve, Ter — o) + 92 AL

By the step 8 of Algorithm 3, we have &1 = Px(x; — yv) = arg mingey %Hx — e |2
Since X is a convex set and the function %Ha: — x¢ + yve||? is convex, according to Lemma
17, we have

<it+1 — Tt + YUt, T — i‘t+1> Z O7 Vax e X. (139)
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In Algorithm 3, let the initialize solution z; € X, and the sequence {z;};>1 generates as
follows:

Topr = T+ (Lo — ) = MeTerr + (1 —me) e, (140)

where 0 < 1y < 1. Since X is convex set and x4, T¢41 € X, we have x41 € X for any ¢ > 0.
Set x = z; in the inequality (139), we have

- 1, .
(ve, Tepr — @) < —§||33t+1 — x| (141)

Next, we decompose the term (VF(x) — vy, Ty41 — o) as follows:

<VF(«’13t) — Vg, Tyq1 — l’t>

= <VF(37t) - fo(xt; yt); Tpp1 — 3?t> + <fo(f13t7 yt) — Vg, Tpy1 — wt) . (142)
;El :TQ

For the term 77, by the Cauchy-Schwarz inequality and Young’s inequality, we have

Ty = (VF(x¢) = Vaf(ze, ye), Tep1 — o)
S|NVE (@) = Ve f (@, ye)ll - [|Ze01 — 24|

1.
< 2Y||VE(zy) — Vi f (e, ye)||> + QHMH — g2
X 1.
= 29| Vo f (@6, y* () — Vo f (ze, ye)|* + @vatﬂ — xy|?
« 1.
< 29|V f (2, y* (1)) — Vi (e, m0)|* + g“xt—kl — x|

* L.
< 29L3|ly* (xe) — well* + @H%H — a|f?, (143)

where the last inequality holds by Assumption 5.
For the term 75, by the Cauchy-Schwarz inequality and Young’s inequality, we have

Ty = (Vo f(xe, ye) — v, Teg1 — o)
SV f (e, ye) — vel| - |Te01 — 24|

1.
< 29|V f(xt, ye) — vel® + gy 1041~ atl|?, (144)
where the last inequality holds by (a,b) < 3||al|> + 5x[|b]|> with A = 4. Thus, we have

N N 1.
(VF () — v, Bep1 — ) = 27L7||ly" () — mell” + 29I Vo f (me, me) — vel > + BH%H — x|,
(145)
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Finally, combining the inequalities (138), (141) with (145), we have
21, % 2 2, Mta 2
F(xey1) < Fae) + 2neyLilly™ (xe) — yell® + 20y |V f (22, ye) — ve]|” + EHfEtJrl — x|

—%mH—MW+Jin—%W

2
N~
< F(xe) 4 20y L3y (@) — yell> + 2y || Vo f (@, 3) — vell* — %”mt-l—l — x|,
(146)
where the last inequality is due to 0 < v < ﬁqm
A |

Lemma 36 Suppose the sequence {xt,yt}t 1 be genemted from Algorithm 3. Under the

above assumptions, and set 0 <n <1 and A < 6L , we have

77t7'>\ 3, -
et =y (zep) | < (1 — Mye — v (o) ||> = TH%—H — e
25 25/1277t 5
mHVM@mM w2+ gy —ma |2, (147)
67T\
where ky = Lg/T.
Proof This proof is the same to the proof of Lemma 28. [ |

Lemma 37 Suppose the stochastic gradients {vy, wt}thl be generated from Algorithm 3, we
have

2 52
20,0

E|Vaf (@1, Yi1) — v ||? < (1 — 1)’ E||Va f (e, ye) — vl + b

2(1 = ap1)?Ling
b

(E||$t+1 — zy|® + El[ g1 — we||?).  (148)

E|Vyf(@es1, Y1) — wesr]|® < (1= Bes1) BV f (@, 1) — we* + —F—

2(1 = Be1)*Ling
b

(E||5ft+1 — ze|)® + El[giesr — vell?). (149)

Proof This proof is the same to the proof of Lemma 29. According to the definition of
w41 in Algorithm 3, we have

Wi — wr = —Bep1wr + (1 = Beg1) (Vo f (@eg1, yes1; Bew1) — Vo f (e, ye; Big))
+ Be+1Vy f (@41, Yey1: Big1)-
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Then we have

E|[Vyf(@es1,9e41) — vera |
= EHVyf(xtH, Yer1) — U — (Vg1 — Ut)HQ (150)
=E|Vy f(@er1, Y1) — v + Bir1ve — Ba Vo f (41, Yet1; Bigr)
— (1= Big1) (Vo f (@41, Yeg13 Bisr) — Vi f (e, ye; Bega)) I
= E|[(1 = Bey1)(Vyf (e, ye) — v0) + Berr (Vo f (@1, ye01) — Vo f (Zeg1, Yer1; Bis))
+ (1= Big1) (Vo f (@1, Yes1) — Vo f (@i, ye) — Vo f (@1, Yer1; Bevr) + Vi f (6, v Ber)) |12
= (1= Bir1)’EIVy f (@, ye) — vell” + EllBest (Vo f (@41, Yer1) — Vi f (@es1, Yes1; Besa))
+ (1 = Bes1) (Vyf (@ig1, Y1) — Vi f (e, y¢) — Vo f (@1, Yeg1; Bigr) + Vo f (@, y15 Begr)) |12
< (1= B’ Bl Vy f (26, ye) — vl|” + 2820 B Vy f (@er1, Yra1) = Vi f (41, yer1; Bern) |
+2(1 = B4 1)*ElIVy f (@41, Yer1) = Vo (6, 96) = Vo (41, Yerss Bean)+ Yy f (@, y6 B |12

2(1 — 2
< (1= BBl Vy f e, ) — vel|* + (bME‘Vyf($t+17yt+l§ Bit1)

267,10
b

— Vy f(ze, ys; Bt—l—l)”2 +

2(1 = Be1)* Lyt
b

< (1= Bis1)’E|Vy f (@, ye) — vel|* +
2 2 52
" Bt 7
b
where the fourth equality follows by Eg,. [V, f(2t41,Yi+1; Biv1)] = Vyf (@41, ye41) and
Eg, 1 [Vyf(@tr1, yer1; Bev1) = Vi f (w6, ye; Ber1)] = Vy f (@41, yer1) — Vi f (24, 9¢); the second

inequality is due to Lemma 20 and Assumption 4; the last inequality holds by Assumption
5. Similarly, we can obtain

(E||Z141 — ze]|* + El|ge1 — well?)

20262

E[|Vaf(xe, ye) — UtH2 <(1- Oét)zEHfo(mt—l,yt—l) - Ut—l”2 + b

2(1- Oét)2L?v77t2—1
b

_l’_

(E||# — 2o * + Elge — we—1]”).  (151)
[ |

Theorem 38 (Restatement of Theorem 9) Suppose the sequence {xt,yt}?zl be generated

from Algorithm 3. When X C R%, and let n; = W forallt >0, ¢; > % + %
75L2 . -

and cg > 3% + L, k>0, m>max(2,k% (c1k)?, (c2k)?), 0 < XA < min (%, %) and

(A 2b /3
0 <7 < min (2LTf\/ SAZ+T5RZb’ 327)7 we have

T T
1 1 . 1.
7 ;_1 E|| G (s, VF(20),7)| < T ;_1 E[Lglly (@) — yell + 1 Vaf (@6, ) — Ut||+§||xt+1 — a]

2V/3M"m/6  2/3M"
- T1/2 + T3

(152)

55



Huang,Gao,PEL,HUANG

JFe | OLAAL a2 |

where Ay = |ly1 — y*(21)]|2 and M" = £ + 2 t e t = n(m+1T).

vk

Proof Since n; = W on t is decreasing and m > k3, we have n; < ng = ’f 7z <1 and
v < 2ngfk = 2Li770 < 2L1gm for any ¢t > 0. Due to 0 < 7 < 1 and m > max ((c1k)?, (c2k)?),
we have a1 = c1n? < e1my < "Cllf]fg <1and Bi11 = can? < comy < 621’/“3 < 1. According to
Lemma 37, we have

1 2 1 2

;Eﬂvxf@tﬂ,ytﬂ) — vp]|” = ﬁEHvxf(xt,yt) — ] (153)

t t—

207 (1—au41)?ny

(1—at+1)2 1 2 ~ 2 ~ 2
< ( - VEVaf(ze, ye) — vel|” + (1Ze1 — ze|*+ 1 Fesr — well?)

N Ul Ne—1 b
20,0
bne
2 2 2
1—ayy 1 2L%5m; - - 204,10
< (T )EVaf (a w) TE ([F1 = @el* e — gel?) +
yiz -1 yr
11 2L5m, N 202, |52
= (———— —an)E||Vaf(ze,ye) 2 / E(|Ze41 — 22+ |1 — ytHQ)‘i‘%l?
m M-1 U

where the second inequality is due to 0 < ayy1 < 1. Similarly, according to Lemma 37, we
can obtain

1 1
EEHvyf(wH-layH-l) - wt+1H2 - HEHVyf(xu?Jt) - th2 (154)
1

1 2Ly, N 282,52
— ——— — o) E||Vy f e, ye) — we]|*+ ! E(|[Ze+1 — el ?+ |Fes1 — wel|?) +
N Me—1 b bny

By n = W, we have

1 1 1 1 1
— = ——=—((m+t)3 —(m+t—-1)3
Nt Me—1 /ﬂ(( )= )
1 < 1
T Bk(m At =123 7 3k (my2 4 )/

22/3 22/3 k2 22/3

2
< =

where the first inequality holds by the concavity of function f(z) = /3, ie., (x + y)l/ 3 <

213 4 . Y755 the second inequality is due to m > 2, and the last inequality is due to

0<n <1 Letcl>3k3+ , we have

1 1
;E||vxf(xt+1’yt+1) — v |” - EEHfo(ivt, ) — vg||? (156)
9T 2L277t ~ B 2042 52

=" nt]EHfo(xt,yt) —uill” + g E(||Ze41 — 2el” + G — well?) + %ml
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2
Let cg > % + %, we have
1 s 1 2
EEHVyf(xl%laytJrl) —wip1]|” — TEHVyf(xtayt) — wy| (157)

267,,0°
bne

75L277t 2L2’I7t
< —TQEIIVyf(xt,yt) - wt||2+ /

E(||Z41 — zil|2 4 |1 — yt||2)

Next, we define a Lyapunov function, for any ¢ > 1

2

9Lffy * 2
W= E[F(wt) + 7\\% =y (@) ||* + I Hvxf(xtvyt) — ve)?

+ P — \Vyf(xe,ye) — wt||2]'

Then we have

Qupr — U
9L2%y
= E[F(aet1) — F(ao)] + = (Ellyerr = " (@) |* — Ellye — v (@0))
v ,1 1
+ 5 (CEIVaf (@1, yee1) = v |? = ——ElVaf (@, 90) — vl
T M Nt—1

1 1
+ EEHvyf(fvt+1:yt+l) —wi|* — T]Euvyf(fvt»yt) — wy]?)

< —%EH@H — xy||* + 20y LIE |y (z0) — well® + 2007E(| Vo f (22, y1) — vel)?

Qi?y( mT}\EHyt y* (z0)]|? — %EHZ]HA —yl* + 25677t)\EHVyf($tayt) wy||?
QZﬁ”tEnxt ~el) = AT o1, ) — P — ) (B — a1
+E||Ge+1 — wel]?) + 20?:21; T o z WE(Vyf (@, ye) — wel?
2?;?7 (El|Ze1 — 2e|® + El|gesr — vell?) + 2%2;21;27
< - Y ) - l? — ZEE ) - il + c L Ll
QZE 4bL2 )mElGe = wl* — (21’7 - 4:5; 751;?37)7%@55#1 — ay||?
<- Lf"”Euy - R A
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where the first inequality holds by Lemmas 35, 36 and the above inequalities (156), (157),
and the last inequality is due to 0 < < 5 Lf A /#%sz and A < %. Then we have

Lin, Ul M i ~

TZB||y* (1) — el + CE|| Vo f (20, 92) — vel|® + —E||Z1 — z)?

4 4 iy
< Q — Qi1 n 207,,0°  267,6° (159)
- ~ br2n, by,

Taking average over t = 1,2,--- ,T on both sides of (159), we have

T
UG UG ~
Z )=l + IV ow) —ul + L5ElF — w)
T T 2 2
Qt Qt+1 1 2(1t+1(5 2515—‘,—15
< .
21y 1 Coy )

Let Ay = [y1 — y*(x1)]|*, we have

9L2
M= (w1)+7\|y1—y (z1)]] +7E!\fo(:c1,y1)—v1|!2 7 EIIVyf(xl,yl)—le

2

9L%~ b
ZF($1)+T£HZ/1*?J*($1)H2 EHfo T1,Y1) ZZ fl@nys €)1

—_

b
1 ~
e VG R DA GRS

(160)
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where the last inequality holds by Assumption 4. Since 7; is decreasing, i.e., 77:;1 >n, L for
any 0 <t <T, we have

T
L3 1
fz flly (ze) — yel® + *IIfo(xt,yt) — vy|? t 2 IIfCtH —z|?)

T T 2
1 1 202,62 2826
< Q — Quir) + +
Tynr ; (= Q) + 7 nr ; ( b2 bT2ne )
9L%y 952 1 o 202,0% 282,07
< F(xzy) — F* + LA t+1 t+1
B T’W?T( o) T T 672770) " TUTZ( b, bron )
F(zy)— F* 9L} 252 2(c2 + )02 < 4
_ + |+ g >
Tynr TpAr Tbr*nrno Tor?n =
_ Fa) - P 9L% N 262 22+ 2)82 (T k3 ”
Tynr TnrAt ! Tor2nrno Tor2np 1 m+t
F(z)— F* 9L} 242 2(c2 + 2)6%k3
< (‘Tl) f 1+ 5 (Cl + 022) ln(m + T)
Tynr TnrAt Tor*nrno Tor*nr
F(z)— F* 9L} 2mi/362  2(c2 + 3)52k> .
= 1 T Y3, (161
< Tk Tiar ' T Tor2ie Torr  mm+T) J(m+ 177 (161)
where the second inequality holds by the above inequality (160). Let M” = w +
2A
QII::J;\T 1 271;'12/13552 + 2(6%_‘;):-%2)62k2 ln(m + T)7 we have
T f M
F LIV @)~ i+ e il + ol —ef] < Hetn vV
According to Jensen’s inequality, we have
T
1 Ly . 1 1,
T ;E[;Hy (zt) =yl + iHvxf(xtayt) — vl + 2*||¢t+1 — 4]
3 4 L 1/2
<( T Z f ly* () = well* + *Hfo(:vt,yt) — v + e H$t+1 — a||*])
3M// 1/6 3M//m1/6 YV
< T1/2 (m+T) = T1/2 + T1/3 (162)

where the last inequality is due to (a + b)/¢ < a'/6 4+ b'/6 for all a,b > 0. Thus we obtain

N

1. 2V/3M"m/6  2\/3M"
Z Lny $t yt” + ||v$f(xt7yt) - Ut” + ;||$t+1 - $t||:| g T1/2 + T1/3
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Then by using the above inequality (19), we have

T T
1 1 . L, .
T ZEIIGx(xt,VF(xtM)H < T ZE[Lny (@¢) = yel| H IV f (2, 1) — th+§Hﬂft+1 — ]
t=1 t=1
2V/3M"m1/6  2\/3M"

- T1/2 + T1/3 (163)

A.6 Convergence Analysis of Acc-MDA Algorithm for Unconstrained
Minimax Optimization

In this subsection, we study the convergence properties of our Acc-MDA algorithm for

solving the unconstrained minimax problem (2), i.e., X = R% and Y = R% (or Y C R%).

The following convergence analysis builds on the common convergence metric E||VF(z)||

used in (Lin et al., 2019), where F(z) = max,cy f(z,y).

Lemma 39 Suppose the sequence {xy,yi}i, be generated from Algorithm 3. When X =

R% given 0 < v < T L , we have

F(z41) < F(z) + 0oy L lye — y* @)1 + 0l Vo f (e, ye) — ve)?

_m ’W?t
SHIVE@)? = TE el (164)

Proof This proof is similar to the proof of Lemma 31. According to Lemma 15, the
approximated function F'(x) has Lg-Lipschitz continuous gradient. Then we have

’YQU?L 2
F(xi41) < F(xg) — yme(VF(2¢), vp) + BCEE gl (165)
2,.2
" " Y niLg
= F(2¢) + tHVF(xt) —ve|)? - 2t IVF (2> + (7; L — 72t)Hth2
= Fla) + ””tum 0 = Vel () + Vol (e, y) = il = SV (@)
vVniLy  n
+ (L - L) g2

2
< F(xy) + vl VE (20) — Vo f (@6, yo) I + el Vaf (@, ye) — vel)?

2.2
vm Y nyLg e
IVE(z)]* + ( Zt g — 20 jve?

< F(»’Ut) + ||V E (24) = Vi f (@, yo) I + 10| Va f (2, ye) — ve)?
'777t 'W?t
IVE(z)]|> — == llvell?,

where the last inequality is due to 0 < v < 277%
Considering an upper bound of ||VF(z;) — V. f(xs, y:)||?, we have

IVE(ze) = Vo f(zeyo)I* = [Vaf (e, y"(@0) = Vo f (@ y)1? < Ly —y* (@)|?,  (166)
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the last inequality holds by Assumption 5. Then we have

F(z441) < F(w) + L3 Hyt (%)HQ + ||V f (ze, y:) — UtH2
777 N
HIVE(z)||? - f o 1. (167)

Lemma 40 Suppose the sequence {x;,y;}i_, be generated from Algorithm 3. Under the
above assumptions, and set 0 < ny <1 and A < %, we have

. NeTA * 30\~
lye+1 —y (»’UtJrl)H2 <(1- 1 Nye —y (l”t)”2 - T”yt“ - ytH2
2517t)\ 25k
+ IV f (e, o) — wil? + ——=—[loe 1%, (168)
67
where ky = Lg/T.
Proof This proof is the same to the proof of Lemma 28. |

Lemma 41 Suppose the stochastic gradients {v, w;}1_; be generated from Algorithm 3, we

have
E[Vaf (@1, yer1) = veral? < (1= 1) B Vi f (@6, 40) — ve)* + 2()[221(52
. 2(1—at21) 2Lan} L (VEl|vi? + Ellgisr — wll?).  (169)
2 s 20
E(Vyf (@1, yer1) —wenll* < (1= BBl Vy f (2, 9) — wel|* + b
= Bt;;l> L (VElvell* + El[ge1 — well?).  (170)

Proof This proof is the same to the proof of Lemma 37. |

Theorem 42 (Restatement of Theorem 12) Suppose the sequence {xy, yt}thl be generated
from Algorithm 3. When X = R%, and let n; = % forallt >0, ¢; > % + %

(m
7512
and co > 3k3 + ° —+, k>0, m > max (2,k3,(clk)3,(62k)3), 0 < A < min (%, %) and
1/3
0 <~y <min (2/\LT A /78/\243%551,, %nLgk), we have
T
1 2M//m1/6 M

t=1

_F* 9L A 21 2)52%2
where A1 = ||ly1 — y*(z1)||? and M" = F(“W)k L k/\Tl + 22112/12552 + 2(61:(;22)5 b In(m+1T).
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Proof This proof is the similar to the proof of Theorem 38. As in the proof of Theorem
38, let ¢ > 3 3 + 9T , we have

1 1
n*EHme(iEtH,ytH) - Ut+1H2 - EEHVJ:J((%’ yt) — ”tHQ (172)
t _
9 2L2’I7t _ 2&2 52
< —ZUtE”me(xt,yt) —u* + TfE(’YQHUtHQ + | Fe41 — ytHQ) + %
Mt
L2
Let co > 3k3 + —L, we have
1 2 1 2
EEHVyf(th,?/tH) —wpp [|” - EEHVyf(ﬂﬁta Yyt) — w| (173)
512 2L2n; } 232, ., 52
< =53 MBIV, (@) = will® o+ =B O ol 151 = ) + =50

According to Lemma 40, we have

77157‘)\

3N, -
Y1 — y* (@er) 1> = e — v (@) ||” < lye — y* (z)|I” — THytH — y|?

2577t)\ 25k
Vo f(ze, ye) — we||® + 61;7)\”%”2-

(174)

_|_

At the same time, we give the Lyapunov function €; defined in the proof of the Theorem
38,

2

9L%~
m=EV@»+—iwm—w@mP Vo f (e, 5e) — v |2

7’],
+

o Vg f (e, ye) — wel*].
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By using Lemma 39, we have

Qi1 —
9L2%~
= E[F(ar1) = Fe)] + =2 (Ellyers = y* @) = Ellys =y (@)II)
v
+ ﬁ(n E|Vef(zi1, Y1) — Ut+1HQ - EEHV o f (@, y) — Ut||

+ EEHvyf(xt-i-lyyt-&-l) —wep|” — EEHVyf(fEt?yt) — w?)

x Ve Ve
< mvLiElye — v (@) |* + ymE[ Ve f (20 3) = vil|* = SCEIVE (@) = <~ Ellvr]|*

9L%y nﬂ 30t - 251\
Ai ( ' Ellye — y*(ze)|I* - TtE”?/tH — el + 67 . E[Vy f(ze, ye) — wi|?
25/{2,72771‘/ 9777 2L277t7 ~
—i—(syi)\EH’U H2) _ TtEvaf(xt,yt) — vy |2+ b];Q (72EHth2 + Bl g1 — ytHQ)
2a7,,6%y  75L 2y 2L3my _ 28¢410%
thH 2£ BV y f (2, ye) —we || >+ bj;2 (szllth2+EHyt+1—yt||2)+ﬁ
SLAMy . 5y gl 204419%
< —— Bl (@) — wll? = SEIVas () =l = FEIVE @I+ =25
) ) 9 9 2,.2.3
Praoh (0 4’3”)%1@”@“ - (@ BESY e
br2iy D o 4 bt 2w
202,62y 282,82
< THEV P |2 + 20000 | 2l (175)

b’/’277t b7'277t

where the first inequality holds by combining the above inequalities (172), (173) and (174),
and the last inequality is due to 0 <y < 57- Lf \ /ﬁ%mgb and A < 22T, Then we have

O —Mp n 207,16 | 2f},6° (176)
gl b2 b2

TE|VF(w)|? <

Let Ay = |jy1 — y*(:vl)H2, we have

9L2%y % Y
Q= F(z1) + TﬁHyl —y* (@) + TTHOEHfo(ﬂCh y1) — vil]* + TEHVyf(l’l,m) —wy|?
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9L 2
A, 4 20 (177)

< F
< (x1)—|— r 672770’

where the last inequality holds by Assumption 4.
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Taking average over t = 1,2,--- , T on both sides of (176) and due to 77:;1 > 77;1 for any
0<t<T, we have

1<~1
— N _E|VF 2
Tt;Q |VE ()]

1 T

T 2 2 2 2
1 200410 2B
< Q:—Q + +
Tynr = (= Q) + 7 nr ;( b2 b2 )
1 9L%y 2762 1 & 202,62 282,62
< F(ay) — F*+ =LA - H
- T’W?T( o) s 1+b72n0)+T77T;( brone | brn, )
_ F(w) - F* 9L% L2 AR+ )0 ZT: 5
— Tynr TnrAt ! Tor2nrno Tor2n, — e
F(z)—F* 9L} 262 22+ 202 (T k3
< 1+ + dt
Tynr TnrAt Tor2nrno Tor2np 1 m+t
F(xzy)— F* 9L} 262 2(c? + 2)52k3
< (‘Tl) f 1+ (Cl + 02) ln(m + T)
Tynr TnrAt Tor2nrno Tor?nr
F(x)— F* 9L} 2mi/362  2(c2 + 3)52k> .
— 1 T Y3, (178
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where the second inequality holds by the above inequality (177)
9L2A 1/352  2(c24c2)62k2
e =R (€1 bi'é) In(m + T'), we have

. Let M" = P2

vk +

M/
—ZEHVF )| < (m+T)1/3.

According to Jensen’s inequality, we have

fZEHVF )l < ( ZEHVF 22

2M” 176 2M//m1/6 M
= T1/2 (m—I—T)/ = T1/2 + T1/3 (179)

where the last inequality is due to (a + )'/6 < /6 + /6 for all a,b > 0

Appendix B. Comparison of Assumptions Used in Zeroth-Order
Methods

We admit that our methods (Acc-ZOM, Acc-ZOMDA, Ace-MDA) and the existing variance-
reduced zeroth-order and first-order methods (e.g., ZO-SPIDER-Coord, SPIDER-SZO
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ZO-SREDA-Boost, SREDA and SREDA-boost) rely on a relative strong assumption
(component function smoothness), i.e., |V f(x1;§) —V f(x2;€)| < L||x1 — 22| for mini-
optimization and ||V f(z1,y1;€) — Vf(z2,y2;&)|| < L(||z1 — x2|| + |ly1 — y2||) for minimax-
optimization.

At the same time, we also argue that the comparison non-variance-reduced meth-
ods (such as ZO-AdaMM and ZO-Min-Max) in Table 1 require stronger assumptions than
the component function smoothness assumption. For example, ZO-AdaMM (Chen
et al., 2019) method requires the following two assumptions (Please see the page 4 of paper
“Z0O-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization”
https://arxiv.org/pdf/1910.06513.pdf):

Al) fi(-) = f(-,&) has Lg-Lipschitz continuous gradient, where Ly > 0.
A2) f; has n-bounded stochastic gradient ||V fi(x)]|c < 7.

In fact, the above assumption Al is a component function smoothness assumption. Clearly,
the above assumptions Al and A2 required in ZO-AdaMM method is more stronger than
the component function smoothness assumption required in our methods.

Meanwhile, ZO-Min-Max (Liu et al., 2019b) method requires a stronger bounded gra-
dient Assumption ( Please see Assumption A1l at the page 4 of paper '"Min-Max Optimiza-
tion without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning
Attacks’ https://arxiv.org/pdf/1909.13806.pdf):

Al) f(z,y) = Eeup[f(x,y; £)] has bounded gradients ||V, f(x,y;&)|| < n? and |Vy fz,y; )|l
< n? for stochastic optimization with & ~ p.

Clearly, this Assumption required in ZO-Min-Max method is stronger than the component
function smoothness assumption required in our methods.

Appendix C. Query Complexity of ZO-Min-Max Method in (Liu et al.,
2019b)

Liu et al. (2019b) do not provide the explicit query complexity of ZO-Min-Max method.
However, the query complexity O((dy + d2)e~%)) of ZO-Min-Max method given in (Wang
et al., 2020) is incorrect (See Table 1 at page 10 of https://arxiv.org/pdf/2001.07819.pdf).
Here, we give a correct complexity O((d; + dQ)HSG_G)) of ZO-Min-Max method based on
the results in the original paper (Liu et al., 2019b). The detailed proof is given as follows:

From Theorems 1-2 and Remarks 1-2 in (Liu et al., 2019b) ( Please see the pages 5-
6 of paper: “Min-Max Optimization without Gradients: Convergence and Applications to
Black-Box Evasion and Poisoning Attacks” https://arxiv.org/pdf/1909.13806.pdf ), we have
B =gtz a=1/(Ls + gi + BL2), ¢ = min (@, 253 + %) and ¢ = max (LI + 3/(1,3/5),
where i}x and L, are the smooth parameters, v is the parameter about strongly concave
flx,y) wr.t. y.

For notational simplicity, let L = L, = L, as in (Luo et al., 2020; Xu et al., 2020a) and
Ky = L/7. It is easy verified that 37! = O(ky) and @™ = O(k3), c = O(Iiz) and ¢ = O(ky).

y
Thus, we have ¢ = O(x2) in Theorem 1. Since Theorem 2 is similar to Theorem 1 in (Liu

et al., 2019b), we also have & = O(Hz). Then based on the remarks about Theorems 1-2
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2 2 27
in (Liu et al., 2019b), we have E||G(z",y")|*> = O(%ﬁ’ + %y + K%d), where (z",y") randomly

picked from {(zf,y) th17 and d = di + do, b is mini-batch size, and ¢ is the number of

random direction vectors for estimating zeroth-order gradient.
S i -
Considering E||G(z",y")|| = O(% + % + K%) <€ let T = b = g/d, then we have

T=0b=gq/d= O(nZe_z). Since the ZO-Min-Max algorithm requires query 4bq function

values to estimate zeroth-order gradients V, f (z,y) and @y f(z,y) at each iteration, and
need T iterations, it requires a query complexity of 4bqT = O(dmgefﬁ) = O((d1 +d2)/<cge*6)
for finding an e-stationary point (i.e., E||G(z",3")|| < €). At the same time, the mini-batch

size is max(b, q) = O((d1 + d2)r e ?) in ZO-Min-Max method.
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