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Abstract—Recently brain networks have been widely adopted1

to study brain dynamics, brain development and brain diseases.2

Graph representation learning techniques on brain functional3

networks can facilitate the discovery of novel biomarkers for4

clinical phenotypes and neurodegenerative diseases. However,5

current graph learning techniques have several issues on brain6

network mining. Firstly, most current graph learning models7

are designed for unsigned graph, which hinders the analysis8

of many signed network data (e.g., brain functional networks).9

Meanwhile, the insufficiency of brain network data limits the10

model performance on clinical phenotypes predictions. More-11

over, few of current graph learning model is interpretable,12

which may not be capable to provide biological insights for13

model outcomes. Here, we propose an interpretable hierarchical14

signed graph representation learning model to extract graph-15

level representations from brain functional networks, which can16

be used for different prediction tasks. In order to further improve17

the model performance, we also propose a new strategy to18

augment functional brain network data for contrastive learning.19

We evaluate this framework on different classification and20

regression tasks using the data from HCP and OASIS. Our results21

from extensive experiments demonstrate the superiority of the22

proposed model compared to several state-of-the-art techniques.23

Additionally, we use graph saliency maps, derived from these24

prediction tasks, to demonstrate detection and interpretation of25

phenotypic biomarkers.26

Index Terms—Signed Graph Learning, Hierarchical Graph27

Pooling, Contrastive Learning, Brain Functional Networks, Data28

Augmentation, Interpretability.29

I. INTRODUCTION30

UNDERSTANDING brain organizations and their rela-31

tionship to phenotypes (e.g., clinical outcomes, behav-32

ioral or demographical variables, etc.) are of prime impor-33

tance in the modern neuroscience field. One of important34

research directions is to use non-invasive neuroimaging data35

(e.g., functional magnetic resonance imaging or fMRI) to36

identify potential imaging biomarkers for clinical purposes.37

Most previous studies focus on voxel-wise and region-of-38

interests (ROIs) imaging features [1]–[3]. However, evidences39

show that the brain is a complex system whose function40

relies on a diverse set of interactions among brain regions.41

These brain functions will further determine human clinical42

or behavioral phenotypes [4]–[13]. Therefore, more and more43
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studies have been conducted to predict those phenotypes 44

using the brain network as the delegate of interactions among 45

brain regions [14]–[16]. Additionally, compared to traditional 46

neuroimaging features, brain network has more potential to 47

gain interpretable and system-level insights into phenotype- 48

induced brain dynamics [17]. A brain network is a 3D brain 49

graph model, where graph nodes represent the attributes of 50

brain regions and graph edges represent the connections (or 51

interactions) among these regions. 52

Many studies have been conducted to analyze brain net- 53

works based on the graph theory, however, most of these 54

studies focus on pre-defined network features, such as cluster- 55

ing coefficient, small-worldness [18]–[22]. This may be sub- 56

optimal since these pre-defined network features may not be 57

able to capture the characteristics of the whole brain network. 58

However, the whole brain network is difficult to be analyzed 59

due to the high dimensionality. To tackle this issue, Graph 60

Neural Network (GNN), as one of embedding techniques, has 61

gained increasing attentions to explore biological characteris- 62

tics of brain network-phenotype associations in recent years 63

[23]–[25]. GNN is a class of deep neural networks that can 64

embed the high-dimensional graph topological structures with 65

graph node features into low dimensional latent space based on 66

the information passing mechanism [26]–[28]. A few studies 67

proposed different GNNs to embed the nodes in brain networks 68

and applied a global readout operation (e.g., global mean or 69

sum) to summarize all latent node features as the whole brain 70

network representation for downstream tasks (e.g., behavioral 71

score regression, clinical disease classification) [4], [24], [25], 72

[29]. However, the message passing of GNNs is inherently 73

‘flat’ which only propagates information across graph edges 74

and is unable to capture hierarchical structures rooted in graphs 75

which are crucial in brain functional organizations [30]–[33]. 76

To address this issue, many recent studies introduce hierarchi- 77

cal GNNs, including node embedding and hierarchical graph 78

pooling strategies, to embed the whole brain network in a 79

hierarchical manner [30], [34]–[37]. 80

Although GNNs have achieved great progresses on brain 81

network mining, several issues should be addressed. First, 82

most existing GNNs are designed for unsigned graphs in which 83

all graph nodes are connected via non-negative edges (i.e., 84

edge weights are in the range of [0,∞)). However, signed 85

graphs are very common in brain research (e.g., functional 86

MRI-derived brain networks or brain functional networks), 87

which leads to a demand of signed graph embedding models. 88

To tackle this issue, a few recent studies proposed signed 89

graph embedding models based on the balance-theory [38]– 90
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[41]. The balance-theory, motivated by human attitudes in91

social networks, is used to describe the node relationship in92

signed graphs, where nodes connected by positive edges are93

considered as ‘friends’, otherwise are considered as ‘oppo-94

nents’. In the realm of brain functional networks, the positive95

edge means co-activation and the negative edge indicates96

anti-activation between those connected nodes. Meanwhile,97

the balance-theory defines 4 higher-order relationships among98

graph nodes: (1) the ‘friend’ of ‘friend’ is ‘friend’, (2) the ‘op-99

ponent’ of ‘friend’ is ‘opponent’, (3) the ‘friend’ of ‘opponent’100

is ‘opponent’, and (4) the ‘opponent’ of ‘opponent’ is ‘friend’.101

These definitions are accorded with nodal relationships in the102

functional brain network, which indicates that the balance103

theory is applicable in brain functional network embedding.104

In this study, we adopt the balance theory to co-embed the105

positive and negative edges as well as local brain nodes.106

Therefore, generated latent node features include balanced107

and unbalanced feature components. Beyond focusing on local108

structures, we also consider the hierarchical structure in graphs109

as one of global graph features. As suggested by literature110

[30], [42]–[44], graph hierarchical structure can facilitates to111

yield whole graph representations and to enable the graph-112

level tasks (i.e., clinical disease classification based on whole113

brain networks). Particularly, we proposal a new hierarchical114

pooling module for signed graphs based on the information115

theory and extend current methods on signed graph from the116

local embedding to the global embedding.117

The second issue is that most of current GNNs on brain118

network studies are not interpretable, and thus are incapable119

to provide biological explanations or heuristic insights for120

model outcomes. This is mainly due to the black-box nature121

of neural networks. To address this issue, we propose a signed122

graph learning model with an interpretable graph pooling123

module. Previous studies indicated that brain networks are124

hierarchically organized by some regions as neuro-information125

hubs and peripheral regions, respectively [45]–[48]. In our126

graph pooling module, we compute an information score to127

measure the information gain for each brain node and choose128

top-K nodes with high information gains as information hubs.129

And the information of other peripheral brain nodes will be130

aggregated onto these hubs. Hence, the proposed pooling mod-131

ule can be interpreted as a brain information hub generator.132

Apparently, the outcome of this pooling module is a subgraph133

of the original brain network without creating any new nodes.134

Therefore, yielded subgraph nodes can be regarded as potential135

biomarkers to provide heuristic biological explanations for136

tasks.137

To further boost the proposed model performance on pre-138

diction tasks, we introduce graph contrastive learning into139

our proposed hierarchical signed graph representation learning140

(HSGRL) model. A data augmentation strategy to generate141

contrastive brain functional network samples is necessary to142

achieve graph contrastive learning. The data augmentation for143

contrastive learning aims at creating reasonable data sam-144

ples, by applying certain transformations, which are similar145

to original data samples. For example, image rotation and146

cropping are common transformations to generate new samples147

in image classification tasks [49]–[53]. In graph structural148

data, a few studies proposed to utilize graph perturbations 149

(i.e., add/drop graph nodes, manipulate graph edges) and 150

graph view augmentation (e.g., graph diffusion) to generate 151

contrastive graph samples from different views [54]–[58]. 152

These strategies, although boosting the model performance 153

on large-scale benchmark datasets (e.g., CORA, CITESEER, 154

etc.), may not be suitable to generate contrastive brain network 155

samples. On the one hand, each node in brain networks 156

represents a defined brain region with specific brain activity 157

information so that the brain node can not be arbitrarily 158

removed or added. On the other hand, add/drop operations 159

on brain network may lead to unexpected model outcomes 160

which are difficult to explain and understand from biological 161

views. Motivated by [59], [60], we generate contrastive brain 162

functional network samples directly from fMRI BOLD signals, 163

where the generated contrastive samples are similar to the 164

original ones, and the internal biological structure is therefore 165

maintained. Our main contributions are summarized as follow: 166

• We propose a hierarchical signed graph representation 167

learning (HSGRL) model to embed brain functional net- 168

works and we apply the proposed model on multiple 169

phenotype prediction tasks. 170

• We propose a contrastive learning architecture with our 171

proposed HSGRL model to boost the model performance 172

on several prediction tasks. A graph augmentation strat- 173

egy is proposed to generate contrastive samples for fMRI- 174

derived brain network data. 175

• The proposed HSGPL model is interpretable which yields 176

heuristic biological explanations. 177

• Extensive experiments are conducted to demonstrate the 178

superiority of our method. Moreover, we draw graph 179

saliency maps for clinical tasks, to enable interpretable 180

identifications of phenotype biomarkers. 181

II. RELATED WORKS 182

A. Graph Neural Networks and Brain Network Embedding 183

GNNs are generalized deep learning architectures which 184

are broadly utilized for graph representation learning in many 185

fields (e.g., social network mining [61], [62], molecule studies 186

[63], [64] and brain network analysis [65]). Most existing 187

GNN models (e.g., GCN [26], GAT [27], GraphSage [66]) 188

focus on node-level representation learning and only propagate 189

information across edges of the graph in a flat way. When 190

deploying these models on graph-level tasks (e.g., graph 191

classification, graph similarity learning, [42]–[44], [67]), the 192

whole graph representations are obtained by a naive global 193

readout operation (e.g., sum or average all node feature 194

vectors). However, this may lead to poor performance and low 195

efficiency in graph-level tasks since the hierarchical structure, 196

an important property that existed in graphs, is ignored in 197

these models. To explore and capture hierarchical structures 198

in graphs, a few hierarchical graph pooling strategies are 199

proposed to learn representations for the whole graph in a 200

hierarchical manner [30], [34], [35], [68], [69]. Traditional 201

methods to extract brain network patterns are based on graph 202

theory [18]–[22] or geometric network optimization [70]–[73]. 203

A few recent studies [24], [25], [74] introduce GNNs to 204
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discover brain patterns for phenotypes predictions. However,205

hierarchical structures in brain networks are not considered in206

these models, which limits the model performance in a way.207

Recently, a few hierarchical brain network embedding models208

are proposed [36], [75].209

However, all the aforementioned GNNs are designed for210

unsigned graph representation learning. A few recent studies211

are proposed to handle the signed graphs, however, they only212

consider the node-level representation learning [39], [41], [76],213

[77]. In this work, we design a signed graph hierarchical214

pooling strategy to extract graph-level representations from215

brain functional networks.216

B. Interpretable Graph Learning Model217

Generally, the mechanism about how GNNs embed the218

graph nodes can be explained as a message passing process,219

which includes message aggregations from neighbor nodes220

and message (non-linear) transformations [28], [36], [78].221

However, most current hierarchical pooling strategies are not222

interpretable [30], [34], [35]. A few recent studies try to223

propose interpretable graph pooling strategies to make the224

pooling module intelligible to the model users. Most of these225

pooling strategies down-sample graphs relying on network226

communities which are one of the important hierarchical227

structures that can be interpreted [36], [37], [79]. For example,228

[36] proposed a hierarchical graph pooling neural network229

relying on brain network community to yield interpretable230

biomarkers. The hierarchical pooling strategy proposed in this231

work relies on the network information hub which is another232

important hierarchical structure in brain networks.233

C. Data Augmentation for Graph Contrastive Learning234

Most current graph contrastive learning methods augment235

graph contrastive samples by manipulating graph topological236

structures. For example, [55], [56] generate the contrastive237

graph samples by dropping nodes and perturbing edges. Other238

studies generate contrastive samples by changing the graph239

local receptive field, which is named as the graph view240

augmentation [54], [80]. In this work, we introduce the graph241

contrastive learning into brain functional network analysis and242

generate contrastive samples from the fMRI BOLD signals.243

III. PRELIMINARIES OF BRAIN FUNCTIONAL NETWORKS244

We denote a brain functional network with N nodes as245

G = {V,E} = (A,H). V is the graph node set where each246

node (i.e., vi, i = 1, ..., N ) represents a brain region. E is247

the graph edge set where each edge (i.e., ei,j) describes the248

connection between node vi and vj . A ∈ RN×N is the graph249

adjacency matrix where each element, ai,j ∈ A, is the weight250

of edge ei,j . H ∈ RN×C is the node feature matrix where251

Hi ∈ H is the i − th row of H representing the feature252

vector of vi. Let B ∈ RN×D be the fMRI BOLD signal253

matrix, where D is the signal length. Generally, the edge254

weight in the brain functional network can be computed from255

the fMRI BOLD signal by ai,j = corr(bi, bj), where bi is256

the i− th row of B representing the BOLD signal of vi and257

corr(·) is the correlation coefficient operator. Note that ai,j 258

can be either positive or negative value so that brain functional 259

network is a signed graph. For each subject, we useˆandˇ to 260

denote a functional brain network contrastive sample pair (i.e., 261

Ĝ = (Â, Ĥ) and Ǧ = (Ǎ, Ȟ)). 262

IV. METHODOLOGY 263

In this section, we first propose a data augmentation strategy 264

to generate contrastive samples for brain functional networks. 265

Secondly, we introduce our proposed hierarchical signed graph 266

representation learning (HSGRL) model with node embedding 267

and hierarchical graph pooling modules. Finally, we deploy 268

the contrastive learning framework on our proposed HSGRL 269

model to yield the representations for the whole graph, which 270

can be applied to downstream prediction tasks. 271

A. Contrastive Samples of Brain Functional Networks 272

The generation of contrastive samples aims at creating rea- 273

sonable and similar functional brain network pairs by applying 274

certain transformations. Here we propose a new strategy to 275

generate the brain functional network contrastive samples from 276

fMRI BOLD signals. For each node vi, we generate two sub- 277

BOLD-signals (b̂i and b̌i) by manipulating its original bold 278

signal bi. Specifically, we use a window (size = d) to clamp 279

the bi from the signal head and tail, respectively: 280

b̂i = bi[d+ 1, d+ 2, ..., D]

b̌i = bi[1, 2, ..., D − d] (1)

Obviously, bi ∈ R1×D, b̂i and b̌i ∈ R1×(D−d). To keep 281

the similarity between Ĝ and Ǧ, we set the window size 282

d ≪ D. After we generate a pair of sub-bold-signals, we 283

can compute edge weights of the pairwise contrastive brain 284

functional network samples by: 285

âi,j = corr(b̂i, b̂j)

ǎi,j = corr(b̌i, b̌j), (2)

where âi,j ∈ Â and ǎi,j ∈ Ǎ are the weights of ei,j in 286

two contrastive samples. We do not consider the contrastive 287

node features in this work, therefore X̂ = X̌ = X . The 288

generated contrastive sample pairs are similar with same node 289

features and slightly different edge weights. We will show this 290

similarity in section V-C. 291

B. Hierarchical Signed Graph Representation Learning Model 292

We present our Hierarchical Signed Graph Representation 293

Learning (HSGRL) model in Figure 1. The HSGRL model 294

includes Balanced and Unbalanced Embedding (BUE) module 295

and Hierarchical Graph Pooling (HGP) module. 296

1) BUE module: The balance theory is broadly used to 297

analyze the node relationships in signed graphs. The theory 298

states that given a node vi in a signed graph, any other node 299

(i.e., vj) can be assigned into either balanced node set or 300

unbalanced node set to vi regarding to a path between vi and 301

vj . Specifically, if the number of negative edges are even in 302

the path between vi and vj , then vj belongs to the balanced 303
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Fig. 1. Diagram of the proposed contrastive graph learning framework (in the bottom black box) with hierarchical signed graph representation learning
(HSGRL) model (in the top black box) for functional brain network embedding and downstream tasks (i.e., phenotype classification or regression). The
HSGRL model consists of cascaded BUE and HGP modules to extract graph-level representations of contrastive brain functional network pairs (i.e., X̂G

and X̌G) in a hierarchical manner. The X̂G and X̌G participate to build up the contrastive loss for graph constrastive learning. Meanwhile, a concatenate
operation is utilized to generate the fused graph feature by XG = [X̂G∥X̌G]). The fused graph feature XG is utilized for downstream prediction tasks (i.e.,
graph classification and regression).

set of vi. Otherwise, vj belongs to the unbalanced set of vi.304

The balance theory indicates that:305

• Each graph node, vj , can belong to either the balanced306

or unbalanced node set of a given target node vi.307

• The path between vi and vj determines the balance308

attribute of vj .309

Motivated by this, we adopt the idea of signed graph attention310

networks from [41] to embed brain functional network nodes311

to generate latent node features with balanced and unbalanced312

components:313

XB , XU = Fsign(A,H) (3)

where Fsign(·) is the signed graph attention encoder [41]. XB
314

and XU are the node balanced and unbalanced components315

of node latent features, respectively. We fuse the two feature316

components as the node latent features by:317

X = [XB∥XU ], (4)

where [||] denotes concatenate operation.318

2) Hierarchical Signed Graph Pooling: As shown in Figure 319

1, the proposed Hierarchical Graph Pooling (HGP) module 320

consists of 4 steps including: (A) information scores com- 321

putation, (B) Top-K informative hubs selection, (C) features 322

aggregation and (D) graph pooling. 323

Information Score Computation: The information score 324

of each node is also considered to contain balanced and 325

unbalanced components to measure the information quantity 326

that each node gains from balanced node set and unbalanced 327

node set, respectively. We first split the signed graph (i.e., with 328

adjacency matrix as A) into positive sub-graph (with adjacency 329

matrix as A+) and negative one (with adjacency matrix as 330

A−). Then we utilize Laplace normalization to normalize these 331

two adjacency matrices as: 332

Ā+ = D
− 1

2
+ A+D

− 1
2

+

Ā− = D
− 1

2
− |A−|D

− 1
2

− , (5)

where Ā is the normalized adjacency matrix. D+ and D− 333

are degree matrices of A+ and |A−|, respectively. Note that 334
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the i-th line in Ā, denoted by Āi, represents the connectivity335

probability distribution between vi and any other nodes. For336

each node (i.e., vi), we respectively define the balanced and337

unbalanced components of information score (IS) by:338

ISB
i =

∥∥Ā⊤
+,i: ⊗XB

∥∥
L̃1

+
∥∥Ā⊤

−,i: ⊗XU
∥∥
L̃1

ISU
i =

∥∥Ā⊤
+,i: ⊗XU

∥∥
L̃1

+
∥∥Ā⊤

−,i: ⊗XB
∥∥
L̃1

, (6)

where ∥·∥L̃1
is line-wise L1 norm, and ⊗ is the scalar-339

multiplication between each line of two matrices. ⊤ represents340

transpose of vector. Then the IS of vi can be obtained by:341

ISi = ISB
i + ISU

i . (7)

Top-K Node Selection and Feature Aggregation: After342

we obtain the information score for each brain node, we rank343

the IS and select K brain nodes, with top-K IS values, as344

informative network hubs. For the other nodes, we aggregate345

their features on the selected K network hubs based on the346

feature attention. Particularly, the feature attention between347

vi and vj is computed by: xix
⊤
j . We weighted add (i.e., set348

feature attentions as weights) the feature of each unselected349

node to one of hub features, where the attention value between350

these two nodes is the biggest.351

Graph Pooling After the feature aggregation, we down-scale352

the graph node by removing all unselected nodes. In another353

word, only the selected top-K network hubs as well as the354

edges among them will be preserved after graph pooling. Since355

the functional brain network is a fully connected graph so that356

no isolated node is existed in the down-scaled graph.357

C. Contrastive Learning Framework with BUE and HGP358

The contrastive learning framework with HSGRL is pre-359

sented in Figure 1. Assume that we forward a pair of360

contrastive graph samples into the proposed HSGRL model,361

we will obtain two node latent features, X̂ and X̌ after362

the last pooling module. We first generate the graph-level363

representations of two functional brain networks based on the364

latent node features by a readout operator:365

X̂G =
N ′∑
i=1

x̂i, X̌G =
N ′∑
i=1

x̌i, (8)

where x̂i and x̌i are i− th row of X̂ and X̌ . N ′(< N) is the366

number of nodes in the down-scaled graph generated by the367

last pooling module.368

1) Contrastive Loss: The normalized temperature-scaled369

cross entropy loss [81]–[83] is utilized to construct the con-370

trastive loss. In the framework training stage, we randomly371

sample M pairs from the generated contrastive graph samples372

as a mini-batch and forward them to the proposed HSGRL373

model to generate contrastive graph representation pairs (i.e.,374

X̂G and X̌G). We use m ∈ {1, ...,M} to denote the ID of the375

sample pair. The contrastive loss of the m− th sample pair is376

fomulated as:377

ℓm = −log
exp(Φ(X̂m

G , X̌m
G )/α)∑M

t=1,t ̸=m exp(Φ(X̂m
G , X̌t

G)/α)
, (9)

where α is the temperature parameter. Φ(·) denotes a similarity 378

function that: 379

Φ(X̂m
G , X̌m

G ) = X̂m⊤
G X̌m

G /∥X̂m
G ∥∥X̌m

G ∥. (10)

The batch contrastive loss can be computed by: 380

Lcontrastive =
1

M

M∑
m=1

ℓm (11)

2) Downstream Task and Loss Functions: We use an MLP 381

to generate the framework prediction for both classification 382

and regression tasks. Specifically, the prediction can be gen- 383

erate by Ypred = MLP ([X̂G∥X̌G]). We use NLLLoss and 384

L1Loss as supervised loss functions (Lsupervised) of classifi- 385

cation and regression tasks, respectively. The whole framework 386

can be trained in an end-to-end manner by optimizing: 387

L = η1Lsupervised + η2Lcontrastive, (12)

where η1 and η2 are the loss weights. 388

V. EXPERIMENTS 389

A. Datasets and Data Preprocessing 390

Two publicly available datasets were used to evaluate our 391

framework. The first includes 1206 young healthy subjects 392

(mean age 28.19 ± 7.15, 657 women) from the Human 393

Connectome Project (HCP) [84]. The second includes 1326 394

subjects (mean age = 70.42 ± 8.95, 738 women) from the 395

Open Access Series of Imaging Studies (OASIS) dataset [85]. 396

Details of each dataset can be found on their official websites 397

1 2. CONN [86] were used to preprocess fMRI data and the 398

preprocessing pipeline follows our previous publications [87], 399

[88]. For HCP data, each subject’s network has a dimension of 400

82×82 based on 82 ROIs defined using FreeSurfer (V6.0) [89]. 401

For OASIS data, each subject’s network has a dimension of 402

132×132 based on the Harvard-Oxford Atlas and AAL Atlas. 403

We deliberately chose different network resolutions for HCP 404

and OASIS to evaluate whether the performance of our new 405

framework is affected by the network dimension or atlas. 406

B. Implementation Details 407

We randomly split the entire functional brain network 408

dataset into 5 disjoint subsets for 5-fold cross-validations in 409

our experiments. The values in the adjacency matrices (Â and 410

Ǎ) of brain functional networks are within range of [−1, 1]. We 411

compute the kurtosis and skewness values of the fMRI BOLD 412

signals as the node feature matrices (H). We use the Adam 413

optimizer [90] to optimize the loss functions in our model 414

with a batch size of 128. The initial learning rate is 1e−4
415

and decayed by (1 − current epoch
max epoch )0.9. We also regularized 416

the training with an L2 weight decay of 1e−5. We set the 417

maximum number of training epochs as 1000 and, following 418

the strategy in [34], [91], stop training if the validation 419

loss does not decrease for 50 epochs. The experiments were 420

deployed on one NVIDIA RTX A6000 GPU. 421

1https://www.oasis-brains.org
2https://wiki.humanconnectome.org

https://www.oasis-brains.org
https://wiki.humanconnectome.org
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Averaged Original Sample Averaged Contrastive Sample !𝑨Averaged Contrastive Sample #𝑨

(A).

(B).

Fig. 2. Visualization of the averaged adjacency matrices for original and contrastive samples on (A). HCP dataset and (B). OASIS dataset. The averaged
contrastive sample pair is generated by using a window size d = 10.

C. Similarities of Contrastive Samples422

We utilize the L1 distance and Cosine Similarity to measure423

the similarities of the adjacency matrices of contrastive brain424

networks. Here, we set the window size d = 10 to generate425

the contrastive adjacency matrices. The inner-pair similarity426

is computed by 1
M

∑M
m=1 Ψ(Âm, Ǎm), and the inter-pair427

similarity is computed by 1
M2

∑M
m=1

∑M
t=1 Ψ(Âm, Ǎt), where428

Ψ(·) is the similarity function (i.e., L1 distance or Cosine Sim-429

ilarity). The inner-pair L1 distances on HCP and OASIS data430

are 0.1301 and 0.0915, respectively. The inner-pair Cosine431

Similarities on HCP and OASIS data are 0.9283 and 0.9466,432

respectively. The inter-pair L1 distances on HCP and OASIS433

data are 0.2925 and 0.3137, respectively. The inter-pair Cosine434

Similarities on HCP and OASIS data are 0.7311 and 0.7014,435

respectively. We visualize the averaged adjacency matrics on436

HCP and OASIS data in Figure 2 (A) and (B), respectively,437

to show their similarities. The original sample is generated by438

using the whole fMRI BOLD signal (i.e., d = 0).439

D. Classification Tasks440

1) Experiment Setup: For the comparison, we adopted441

seven baseline models, which include two traditional graph442

embedding models (t-BNE [72] and mCCA-ICA [73]), one443

basic graph neural network (i.e., GCN [26]), two deep graph444

representation learning models designed for brain network445

embedding (BrainChey [25] and BrainNet-CNN [24]), and 446

two hierarchical graph neural networks with graph pooling 447

strategies (DIFFPOOL [30] and SAGPOOL [34]). As afore- 448

mentioned, existing GNN-based models cannot directly take 449

signed graphs as the input, we therefore compute the absolute 450

values of graph adjacency matrices as the input for these base- 451

line models, which is consistent with previous studies [36], 452

[92]. Meanwhile, we compare our model with and without 453

optimizing contrastive loss to demonstrate the effectiveness of 454

contrastive learning in boosting the model performance. The 455

results for gender and Alzheimer Disease (AD) classification 456

are reported in accuracy, precision and F1-score with their 457

standard deviation (std). The results for zygosity classification 458

(i.e., 3 classes classification task with class labels as: not 459

twins, monozygotic twins and dizygotic twins) are reported in 460

accuracy and Macro-F1-score with their std. The number of 461

cascaded BUE and HGP modules are set to 3 and the number 462

of top-K nodes in the pooling module is 50% of the number 463

of nodes in the current graph. We search the loss weights η1 464

and η2 in range of [0.1, 1, 5] and [0.01, 0.1, 0.5, 1] respectively 465

and determine the loss weights as η1 = 1, η2 = 0.1. The 466

temperature parameter in contrastive loss is set as 0.2. Details 467

of the hyperparameters analysis are shown in section V-F. 468

2) Results: Table I shows the results of gender classifi- 469

cation, zygosity classification and AD classification. It shows 470

that our model achieves the best performance comparing to all 471
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TABLE I
CLASSIFICATION ACCURACY WITH S.T.D VALUES UNDER 5-FOLD CROSS-VALIDATION ON GENDER CLASSIFICATION, ZYGOSITY CLASSIFICATION AND

AD CLASSIFICATION TASKS. THE VALUES IN BOLD SHOW THE BEST RESULTS.

Method
HCP OASIS

Gender Zygosity AD
Acc. Pre. F1. Acc. Macro-F1. Acc. Pre. F1.

t-BNE 63.84(2.09) 64.17(1.90) 63.264(2.12) 37.19(2.65) 39.67(3.04) 61.26(2.31) 63.58(2.06) 62.05(1.97)
mCCA-ICA 61.21(4.03) 63.11(3.75) 62.20(3.59) 35.51(4.64) 38.71(3.34) 63.37(1.98) 62.06(2.12) 64.37(2.09)
GCN 66.76(2.22) 65.09(3.13) 67.58(2.84) 46.66(2.14) 47.21(2.51) 67.37(2.69) 69.21(2.00) 68.51(4.29)
SAGPOOL 68.12(3.07) 69.96(2.48) 67.51(2.65) 49.91(2.22) 51.07(2.31) 67.23(2.15) 68.83(1.13) 67.51(2.51)
DIFFPOOL 72.06(2.28) 74.05(1.90) 73.07(2.42) 53.37(1.88) 54.28(2.14) 72.79(1.66) 71.55(2.15) 70.83(2.01)
BrainCheby 75.08(1.98) 76.14(2.38) 74.09(1.84) 56.25(2.12) 57.37(2.05) 72.55(2.45) 73.36(1.88) 72.62(1.33)
BrainNet-CNN 74.09(2.49) 73.71(1.96) 73.27(2.21) 54.03(2.20) 55.25(2.46) 68.37(1.71) 69.97(1.30) 68.51(2.02)
Ours w/o Contrastive 78.86(2.18) 80.06(1.33) 77.52(1.69) 61.05(1.70) 63.24(2.51) 76.26(2.32) 75.42(1.62) 76.80(1.72)
Ours 81.51(1.14) 82.37(1.95) 80.69(2.03) 63.33(2.06) 64.51(1.74) 77.51(1.84) 78.83(1.78) 78.28(1.95)

TABLE II
REGRESSION MEAN ABSOLUTE ERROR (MAE) WITH S.T.D UNDER 5-FOLD CROSS-VALIDATION. THE VALUES IN BOLD SHOW THE BEST RESULTS.

Method OASIS HCP
MMSE Flanker Card-Sort Aggressive Intrusive Rule-Break

t-BNE 2.02(0.36) 1.69(0.19) 1.58(0.22) 1.89(0.10) 1.84(0.22) 1.77(0.41)
mCCA-ICA 2.68(0.19) 1.82(0.21) 1.67(0.17) 1.47(0.26) 1.97(0.13) 1.61(0.29)
GCN 2.05(0.07) 1.67(0.15) 1.46(0.11) 1.59(0.32) 1.66(0.24) 1.69(0.08)
SAGPOOL 1.84(0.33) 1.55(0.06) 1.44(0.13) 1.52(0.18) 1.50(0.24) 1.74(0.23)
DIFFPOOL 1.27(0.20) 1.34(0.14) 1.16(0.30) 1.27(0.41) 1.25(0.07) 1.43(0.15)
Brain-Cheby 1.51(0.67) 1.17(0.26) 1.24(0.31) 0.79(0.06) 1.09(0.21) 1.58(0.41)
BrainNetCNN 1.26(0.19) 1.43(0.24) 0.91(0.11) 1.33(0.23) 1.14(0.13) 1.29(0.19)
Ours w/o Contrastive 1.02(0.11) 0.89(0.13) 0.97(0.20) 0.74(0.17) 0.96(0.15) 1.15(0.11)
Ours 0.83(0.24) 0.66(0.17) 0.69(0.14) 0.45(0.12) 0.73(0.08) 1.02(0.16)

baseline methods on three tasks. For example, in the gender472

classification, our model outperforms the baselines with at473

least 8.56%, 8.18% and 8.91% increases in accuracy, precision474

and F1 scores, respectively. In general, the deep graph neural475

networks are superior than the traditional graph embedding476

methods (i.e., t-BNE and mCCA-ICA). When we remove the477

supervision of the contrastive loss, the performance, though478

comparable to baselines, decreases in a way. This manifests479

the effectiveness of the contrastive learning which can sub-480

stantially boost the model performance.481

E. Regression tasks482

1) Experiment Setup: In the regression tasks, we use the483

same baselines for comparisons. The regression tasks include484

predicting MMSE scores on OASIS data, Flanker scores, Card-485

Sort scores, and 3 ASR scores (i.e., Aggressive, Intrusive and486

Rule-Break scores) on HCP data. Particularly, MMSE (Mini-487

Mental State Exam) test [93], Flanker test [94] and Wisconsin488

Card-Sort test [95]–[97] are 3 neuropsychological tests de-489

signed to measure the status and risks of human neurode-490

generative disease and mental illness. The ASR (Achenbach491

Adult Self-Report) is a life function which is used to measure492

the emotion and social support of adults. The structure of493

proposed model remains unchanged. The loss weights are set494

as η1 = 0.5 and η2 = 1. The regression results are reported495

in average Mean Absolute Errors (MAE) with its std under496

5-fold cross validations.497

2) Results: The regression results are presented in Table498

II. It shows that our model achieves the best MAE values499

comparing to all baseline methods. Similar to the classifica-500

tion tasks, the deep graph neural networks are superior than501

traditional graph embedding methods (i.e., t-BNE and mCCA- 502

ICA). Comparing our method with and without the supervision 503

of the contrastive loss, we can hold the conclusion that the 504

contrastive learning can further boost the model performance. 505

F. Ablation Studies 506

In this section, we investigate the effect of 4 hyperparam- 507

eters on our model performance, including (1) the window 508

size (d) which we used to clamp the fMRI BOLD signals 509

when generating contrastive functional brain network samples, 510

(2) temperature parameter (α) within contrastive loss, (3) the 511

number of BUE and HGP modules utilized in HSGRL model, 512

and (4) loss weights η1 and η2. First, we set the window size 513

as [0, 5, 10, 20, 30, 40, 50], respectively and generate different 514

contrastive samples as the input of our proposed model. The 515

first column in Figure 3 shows the analysis of the window size 516

parameter. It indicates that the best window size is around 517

d = 10. When the window size decreases to 0, the model 518

performance declines since the data is only duplicated without 519

any substantial new samples. It is interesting that the perfor- 520

mance when d = 0 is even worse than that obtained without 521

contrastive learning but with contrastive samples generated 522

with d = 10 (see Ours w/o Contrastive in Table I and II). The 523

reason is that data augmentation is introduced in the latter case 524

but not in the first case. Second, we increase the temperature α 525

from 0.1 to 1.0 with a step of 0.1. The second column in Figure 526

3 demonstrates the analysis of the temperature parameter. It 527

shows that the best temperature value for our framework is 528

α = 0.2. Moreover, we set the number of BUE and HGP 529

modules as [1, 2, 3, 4, 5], respectively for our framework. The 530

third column in Figure 3 shows the analysis of this parameter. 531
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Fig. 3. Parameter analysis. The model performance obtained with: contrastive samples generated by different window sizes (Column 1), different temperature
parameters in contrastive loss (Column 2), and different number of BUE and HGP modules (Column 3). (A) shows the analysis on classification tasks and
(B) shows the analysis on regression tasks.

(A) (B) (C)

Fig. 4. Loss weights analysis on classification tasks. (A) shows the analysis on gender classification, (B) shows the analysis on zygosity classification and
(C) shows the analysis on AD classification. The red points represent the best results, where η1 = 1 and η2 = 0.1.

It manifests that the framework performance is consistent and532

steady when different number of BUE and HGP modules are533

deployed. The best number of the modules for almost all534

tasks are 3, except for the regression tasks on Flanker and535

Aggressive. Finally, we present the loss weights analysis (see536

Figure 4) on the 3 classification tasks and the best results are537

achieved when η1 = 1 and η2 = 0.1.538

G. Interpretation with Brain Saliency Map539

Within our new graph pooling module, an information score540

is designed to measure the information gain for each brain541

node and only top-K nodes with high information gains will542

be preserved as brain information hubs while the information543

of other peripheral nodes will be aggregated onto these hubs.544

These hubs, through the final pooling layer, will serve as the545

delegate of the whole brain network and then be linked to clin-546

ical phenotypes (e.g., clinical/behavior scores or diagnosis).547

Therefore, they can provide hints for further clinical analyses548

on how this phenotype is associated with brain functional 549

network from the global view. We utilize the Class Activation 550

Mapping (CAM) approach [98]–[100] to generate the brain 551

network saliency map, which indicates the top brain regions 552

associated with each prediction task. Figures 5 and 6 illustrate 553

Brain Saliency Maps for classification and regression tasks, 554

respectively. For example, in the classification task (AD vs. 555

NC), the saliency map for AD highlights multiple regions 556

(such as Planum Polare, Frontal Operculum cortex, Supracal- 557

carine Cortex, etc.) which are conventionally conceived as the 558

biomarkers of AD in medical imaging analysis [101]–[104]. 559

In the meantime, the saliency map for NC highlights many 560

regions in Cerebellum and Frontal lobe. These regions control 561

cognitive thinking, motor control, and social mentalizing as 562

well as emotional self-experiences [105]–[107], in which AD 563

patients typically show problems. Another example is the 564

classification of Male vs. Female on HCP data. Females are 565

more ”emotional” or ”sensitive”, suggested by the regions 566

such as isthmuscingulate and caudalanteriorcingulate while 567
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Fig. 5. Brain saliency maps for classification tasks. Here we identify: (1) top 15 regions associated with AD and NC from OASIS, (2) top 10 regions
associated with each sex and each zygosity from HCP.

males tend to be more competitive and dominant, manifested568

in regions such as lateralorbitofrontal and precuneus. These569

results are consistent with previous findings in the literature570

[108]–[111]. The details for all highlighted brain regions for571

each task are summarized in the Table III and Table IV a and572

b. These highlighted regions can help us locating brain regions573

associated with any phenotype, which provide clues for future574

clinical investigations.575

VI. CONCLUSION576

We propose a novel contrastive learning framework with an577

interpretable hierarchical signed graph representation learning578

model for brain functional network mining. Additionally, a579

new data augmentation strategy is designed to generate the580

contrastive samples for brain functional network data. Our new581

framework is capable of generating more accurate represen-582

tations for brain functional networks in compared with other583

state-of-the-art methods and these network representations can584

be used in various prediction tasks (e.g., classification and585

regression). Moreover, Brain saliency maps may assist with586

phenotypic biomarker identification and provide interpretable587

explanation on framework outcomes.588
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TABLE IV
THE LIST OF HIGHLIGHTED BRAIN REGIONS FOR HCP DATASET, WHERE (A) SHOWS THE RESULTS ON CLASSIFICATION TASKS AND (B) SHOWS THE

RESULTS ON REGRESSION TASKS.

Male Female Not Twins Monozygotic Dizygotic
ctx-lh-precuneus ctx-rh-superiorfrontal ctx-lh- lateraloccipital ctx-lh- isthmuscingulate ctx-lh-postcentral

ctx-rh- superiorparietal Right-Accumbens-area ctx-rh-bankssts ctx-rh-pericalcarine ctx-rh- transversetemporal
Right-Hippocampus ctx-rh- caudalmiddlefrontal ctx-lh-precentral ctx-rh-frontalpole ctx-rh- transversetemporal

ctx-rh- parahippocampal ctx-lh-parsorbitalis ctx-lh- parahippocampal ctx-lh-fusiform Paracingulate Gyrus
Right Paracingulate

Right-Amygdala Right-Amygdala ctx-lh-entorhinal ctx-lh-entorhinal ctx-lh-
caudalanteriorcingulate

ctx-lh-pericalcarine ctx-rh-paracentral Right-Pallidum ctx-lh- superiorfrontal ctx-rh-parsorbitalis
Right-Putamen

ctx-lh-
transversetemporal ctx-lh-precentral ctx-lh- superiortemporal ctx-lh- temporalpole ctx-rh-precentral

ctx-rh-
transversetemporal ctx-lh- isthmuscingulate ctx-rh-parsorbitalis ctx-lh- superiorparietal ctx-rh-

caudalmiddlefrontal
ctx-rh- lateralorbitofrontal ctx-rh- isthmuscingulate ctx-lh-superiorfrontal Left-Pallidum ctx-lh-precuneus

ctx-lh- temporalpole ctx-lh- caudalanteriorcingulate ctx-rh- caudalmiddlefrontal ctx-rh-parsorbitalis ctx-lh-temporalpole

(a)

Flanker Card-Sort Aggressive Intrusive Rule-Break
Left-Accumbens-area Left-Accumbens-area ctx-lh-bankssts ctx-lh-bankssts ctx-lh-precuneus
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