l‘)

Check for
updates

Formal Barriers to Simple Algorithms
for the Matroid Secretary Problem

Maryam Bahrani!, Hedyeh Beyhaghi?(®) | Sahil Singla?,
and S. Matthew Weinberg?*

L Columbia University, New York, USA

m.bahrani@columbia.edu
2 Toyota Technological Institute at Chicago, Chicago, USA
hedyeh@ttic.edu
3 Georgia Institute of Technology, Atlanta, USA
ssingla@gatech.edu

4 Princeton University, Princeton, USA

smweinberg@princeton.edu

Abstract. Babaioff et al. [4] introduced the matroid secretary problem
in 2007, a natural extension of the classic single-choice secretary prob-
lem to matroids, and conjectured that a constant-competitive online algo-
rithm exists. The conjecture still remains open despite substantial partial
progress, including constant-competitive algorithms for numerous special
cases of matroids, and an O(log log rank)-competitive algorithm in the gen-
eral case.

Many of these algorithms follow principled frameworks. The limits of
these frameworks are previously unstudied, and prior work establishes only
that a handful of particular algorithms cannot resolve the matroid secre-
tary conjecture. We initiate the study of impossibility results for frame-
works to resolve this conjecture. We establish impossibility results for
a natural class of greedy algorithms and for randomized partition algo-
rithms, both of which contain known algorithms that resolve special cases.

Keywords: Secretary problem - Matroids - Optimal stopping theory -
Graph theory - Greedy algorithms

1 Introduction

The problem of finding a max-weight basis of a matroid M = (V,Z) is central in
the field of combinatorial optimization (see books [18,21,23]). More specifically,
each element e € V has a weight w(e) > 0, and the goal is to find the set S €
7 maximizing w(S) :=) .gw(e). Seminal works of Rado, Gale, and Edmonds
establish that the following simple greedy algorithm finds a max-weight basis of a

! Given a finite set V and a family of subsets of V called I, we say M = (V, T) is a matroid
if it satisfies (i) @ € Z, (ii) Hereditary Property (downwards closed): VT C S C V, set
S € T implies T € Z, and (iii) Ezchange Property: For any S, T € T where |S| > |T,
there exists some x € S such that T'U {z} € .

© Springer Nature Switzerland AG 2022

M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 280-298, 2022.
https://doi.org/10.1007/978-3-030-94676-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94676-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-94676-0_16

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 281

matroid (V,Z): Initialize A =), then process the elements of V' in decreasing order
of w(e), adding to A any element such that A U {e} € 7 [8,11,22]. In fact, if for
some (V,Z) this algorithm is optimal for all w(-), then (V,Z) must be a matroid.

While simple, this algorithm still requires knowledge of all weights up front.
Motivated by applications to mechanism design and other online problems [3,
13], recent work considered the problem in an online setting: elements are still
processed one at a time and are immediately and irrevocably accepted or rejected
upon processing, but an element’s weight remains unknown until the element is
processed. In particular, the algorithm does not have control over the order of
elements and therefore cannot run the simple greedy algorithm.

For a fully adversarial order, it’s folklore that the best algorithm can do no
better than simply selecting a random element. Babaioff et al. [4]? therefore
introduced the Matroid Secretary Problem (MSP), where elements arrive in a
uniformly random order (while the weight function is still adversarial). This
formulation extends the classic single-item secretary problem [7].

Consider an algorithm A for the matroid secretary problem on matroid M.
Let OPT be the max-weight basis of M under w(-), and let ALG be the set of ele-
ments chosen by A (under w(+)). The following notion of utility-competitiveness
for a matroid secretary algorithm was studied in Babaioff et al. [4].

Definition 1 (Utility-Competitive). An algorithm A is «-utility-
competitive if E[w(ALG)]/w(OPT) > «, where the expectation is over the ran-
dommess of the arrivals and any internal randomness of algorithm A.

In the same paper that introduced the matroid secretary problem, Babaioff
et al. [4] conjecture that there is a constant-utility-competitive algorithm. The
stronger form of the conjecture is that this constant is 1/e.

Conjecture 1 (Matroid Secretary). There is an (2(1)-utility-competitive algo-
rithm for the matroid secretary problem.

Despite extensive follow-up work, this conjecture still remains open. Many
constant-utility-competitive algorithms have been proposed for specific classes
of matroid (see related work in Sect.1.3). For general matroids, however, the
best known algorithms are 1/O(loglog r)-competitive [9,20] (here, r denotes the
rank of the matroid, which is the size of the largest set in 7).

As the only known lower bound, even for general matroids, is the same 1/e
from the classic single-item setting, and because Dynkin’s algorithm guarantees
a stronger property that the heaviest element is selected with probability 1/e,
the following stronger notion of probability-competitive algorithms has been also
studied [14,25].

Definition 2 (Probability-Competitive). An algorithm A is a-probability-
competitive if for all i € OPT it satisfies that Pli € ALG] > a.

Note that probability-competitiveness is a stronger notion than utility-
competitiveness, since the former implies the latter with the same competitive

2 Conference version [5] appeared in 2007.

282 M. Bahrani et al.

ratio. Soto et al. [25] showed that many (but not all) existing utility-competitive
algorithms can be extended to obtain probability-competitive algorithms. This
results in the following more ambitious conjecture. Again, the stronger version
conjectures that this constant is 1/e.

Conjecture 2. There is an §2(1)-probability-competitive algorithm for the
matroid secretary problem.

Progress on both conjectures has been slow. Indeed, even the strong version
of Conjecture 2 remains plausible, while the best utility-competitive algorithms
have stalled at 1/0(loglogr) [9,20]. One thesis motivating our work is that the
community currently lacks structure for narrowing a search among numerous
promising approaches. Existing algorithms for special cases indeed follow princi-
pled frameworks, but these frameworks are quite flexible and it remains unknown
which (if any) of them might produce a resolution to either conjecture.

One particularly enticing possibility is that a simple “greedy-like” algorithm
might even work. Note that such algorithms indeed work in the Free-Order
model [16], or for the related Matroid Prophet Inequality [17], or for special
cases of the Matroid Secretary Problem [2,7]. There are numerous variants of
“greedy” algorithms, though. While many particular variants are known to fail
on the same “hat graph” [4], there is previously no approach to quickly tell
whether a novel greedy variant is already known to fail.

In this work, we rigorously consider two general classes of algorithms, and
prove super-constant lower bounds on what they can achieve for the matroid
secretary problem. This both helps explain why these types of algorithms have
faced difficulty extending beyond the special cases for which they were originally
designed, and helps guide future work towards precisely the variants that merit
further exploration.

1.1 Greedy Algorithms

Since finding the max-weight basis of matroids without requiring irrevocable
commitments can be done exactly by the simple greedy algorithm, the class of
greedy algorithms is a very natural candidate for solving the Matroid Secre-
tary Problem. We consider a large family of “greedy-like” algorithms. We define
three natural properties that a greedy algorithm might have, and establish that
any algorithm satisfying these properties cannot be constant-utility-competitive
(Theorem 2). We postpone formal statements of the properties until Sect. 3, but
overview them here: (i) the algorithm should reject the first T' fraction of ele-
ments, (ii) the algorithm at all times stores an independent set I containing all
accepted elements and no elements rejected after T', (iii) an element is accepted
if and only if it improves the max-weight basis of I after contracting the accepted
elements.® Note that this a general framework rather than a fully-specified algo-

3 To rephrase (iii), an element e is accepted iff after contracting the accepted elements
(not including e), the max-weight basis of the restricted matroid to I U{e} is heavier
than the max-weight basis of the restricted matroid to I (the latter being exactly
the weight of I since I is independent).

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 283

rithm, since it allows for the algorithm to choose I (it need not be the max-weight
basis after contracting the accepted elements, just some independent set).

In Sect. 3 we overview several existing algorithms that fit this framework, and
Theorem 2 unifies a proof that none of these algorithms (or many hypothetical
ones) can be constant-utility-competitive. Our lower bound construction is a
variant of the well-known “hat graph”, which has been known since [4] to be
problematic for greedy-like algorithms. So our main contribution is not this
construction itself, but rather a formalization of precisely the class of greedy
algorithms for which this graph is problematic.

Main Result 1 (Informal, see Theorem 2). No Greedy algorithm (as per
Algorithm 1) is constant-utility-competitive.

We emphasize that while the hat graph itself is not a novel construction, our
proof is quite distinct (and more involved) from prior work as it must rule out
a broad class of algorithms rather than just a single one.

1.2 Randomized Partition Algorithms

Another class of particularly simple algorithms are randomized partition algo-
rithms:

1. Before looking at any weights, (perhaps randomly) partition all the elements*
into parts .S;.

2. Within each part, run Dynkin’s algorithm.

3. Output the union of the selected elements.

Note that these algorithms are allowed to use any randomized partition. The
elegant 1/(2¢)-approximation of Korula and Pal for graphic matroids® is a ran-
domized partition algorithm [19]. Their algorithm is utility-competitive, but not
probability-competitive. Soto et al. [25] recently designed a different constant
probability-competitive algorithm for graphic matroids. While their algorithm
is still quite elegant, it is perhaps not quite as simple as randomized parti-
tion algorithms. It is also worth noting that algorithms such as [9,20] follow a
more general framework, where the algorithm in step one looks at the weights
before partitioning and step two is not necessarily Dynkin’s single-choice algo-
rithm (but perhaps some simple greedy algorithm). This raises the question
whether the novel development beyond [19] is necessary to achieve probability-
competitive algorithms? Our second main result answers this question: no ran-
domized partition algorithm can be constant-probability-competitive (or even
w(n~1/8)-probability-competitive).

4 We consider the known matroid setting where the matroid is known but the weights
are revealed one-by-one.

5 Given a graph with edges F, a graphic matroid (E,T) is defined with Z consisting
of all subsets of edges that do not contain a cycle.

284 M. Bahrani et al.

Main Result 2 (Informal, see Theorem 4). No Randomized Partition algo-
rithm is constant-probability-competitive.

Our construction witnessing Theorem 4 is also a graphic matroid, although
it is unrelated to the hat graph (and to the best of our knowledge, novel). Note
that our proof cannot be extended to utility-competitive algorithms since we
know [19] is a constant-utility-competitive randomized partition algorithm for
graphic matroids.

1.3 Related Work and Brief Summary

There is a substantial body of work on random-order problems for matroids
(the Matroid Secretary Problem [4]) and for several other discrete optimization
problems; we will not attempt to overview it (e.g., see [6,12]). Here, we will
briefly repeat the most related works.

Our work takes first steps towards characterizing classes of algorithms which
might resolve the Matroid Secretary Problem. We focus on the simplest classes
of algorithms which previously succeeded in special cases or for related prob-
lems, Greedy [16,17] or Randomized Partition [19], and study the limits of
these classes. First, we consider extremely simple greedy algorithms. A specific
instantiation of this class of algorithms was shown to fail on a now-canonical
“hat graph” in [4], but related algorithms known to succeed in the Free-Order
Model [1,16], and in the related Matroid Prophet Inequality [17]. In addition,
Dynkin’s algorithm and the Optimistic algorithm for k-uniform matroids of [2]
fit this model. Our Theorem 2 shows that no Greedy algorithm is constant-
utility-competitive for all matroids. Second, we consider probability-competitive
algorithms, formally considered in [25], and related to the ordinal model consid-
ered in [14]. Soto et al. [25], in particular, develop several probability-competitive
algorithms for core settings such as graphic, transversal, and laminar matroids.
Our work asks whether the extremely simple algorithms previously developed
in [19] can match these stronger probability-competitive guarantees, and we show
in Theorem 4 that the answer is no.

2 Preliminaries

The Matroid Secretary Problem (MSP) is defined as:

1. There is a matroid M = (V,), and weight function w(-) : V' — Rx>(. Matroid
M is fully-known to the algorithm in advance.® Function w(-) is initially
completely unknown to the algorithm.

5 We are not concerned with computational efficiency of our algorithms in this work
(our lower bounds are unconditional), so we will not stress about the precise format
in which access to the matroid is given. To be concrete, one access model is that the
algorithm has oracle access to Z (query a set S and learn whether or not S € 7).
To the best of our knowledge, most algorithms previously considered for MSP are
polytime given oracle access to Z.

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 285

2. Initially, the set of accepted elements, A, is empty. Elements of V' arrive in
a uniformly random order. When an element ¢ € V arrives, the algorithm
learns its weight w(i), and must make an immediate and irrevocable decision
whether or not to accept it (adding it to A). The algorithm must maintain
A €T at all times.

3. If set A is selected, the algorithm achieves payoff), , w().

We will abuse notation and use w(S) := >, g w(i). Because w(-) is fixed,
the offline optimum is the max-weight basis: MWB(M) := arg maxgez{w(S)}.”
We will also use standard matroid notation such as restriction: the matroid M|g
is the matroid M restricted to S, and has ground set S and independent sets
Tls:={TNS | T € I}. We also discuss matroid contractions: the matroid M\ S
is the matroid M contracted by S, and has ground set V' \ S and independent
sets Z\ S :={T | TUS € I}. When M is clear from context, we will also
(slightly) abuse notation and write MWB(T') := MWB(M|r).

We will later reference Dynkin’s 1/e-probability-competitive algorithm for
selecting a single item, i.e., a l-uniform matroid: (1) Reject the first T =
Binom(n, 1/e) elements and call this the sampling stage. (2) Afterwards, accept
an element ¢ iff it is the heaviest element seen so far.

Theorem 1 [7]. Dynkin’s algorithm is 1/e-probability-competitive for 1-uniform
matroids, this is optimal.

3 Greedy Algorithms

Because matroids are exactly the constraints for which the simple greedy algo-
rithm is optimal, greedy-like algorithms are a natural family to consider as candi-
dates for resolving the Matroid Secretary Problem. Indeed greedy-like algorithms
solve the related Matroid Prophet Inequality [17], Matroid Secretary in the free-
order model [1,16], and special cases of Matroid Secretary [2,7]. In this section,
we give an impossibility result for certain greedy algorithms. This helps unify
counterexamples for related algorithms, and also helps narrow future research
towards algorithms which have hope of resolving the Matroid Secretary Problem.

3.1 A Class of Greedy Algorithms

We now define a natural framework of greedy algorithms for the Matroid Secre-
tary Problem (Algorithm 1). Without loss of generality, we consider the continu-
ous arrival setting, where each element e € V arrives at a time ¢(e) independently
and uniformly drawn from [0, 1]. We refer by V; to the set of elements that arrive
(strictly) before ¢, and by A; to the set of elements accepted by the algorithm
(strictly) before time ¢.

7 In this work, we assume for simplicity that the max-weight basis is unique. In case
of ties, we tie-break by choosing the lexicographically-earlier basis.

286 M. Bahrani et al.

Algorithm 1. Greedy Algorithm for the matroid secretary problem

(i

(i

We define a greedy algorithm as one that satisfies the following properties:

(i) Reject (but store) elements that arrive before T' (sampling stage). Denote S := Vr
to emphasize this.
ii) At all times ¢, maintain an independent set I; such that:
— I contains all accepted elements and no elements which were rejected after
T, i.e. At g [t g At us.
— At all times t, I; spans V4.
ii) Accept e if and only if e € MWB((M \ Ay(e))lr,(uier) (and t(e) > T). That is,
accept e if and only if it is in the max-weight basis of I;(.) U {e} after contracting
by At(e)~

is

Before getting into our results, it is helpful to understand why Algorithm 1
a class of algorithms (rather than a fully-specified algorithm). The reason is

that the algorithm has flexibility in which subset of S to include in I; (but it
must include A;, and must span V;). The restriction is that the algorithm does
not know which element might arrive at time ¢, nor its weight, when setting I;.
Furthermore, the algorithm can choose the length of the sampling stage T'.

It is also helpful to see how this framework captures (or doesn’t capture)

existing greedy-like algorithms:

Dynkin’s algorithm (with 7' = 1/e) fits this framework. But so do suboptimal
algorithms (e.g., accept the first element after 7" which exceeds the 5 -highest
sample. Or even accept an element which arrives at time ¢ > T iff it exceeds
the (|5t/T|)* -highest sample).

The Optimistic Algorithm for k-uniform matroids of [2] fits this framework.
The algorithm maintains a list U, initially the k heaviest elements of S. If e
exceeds the lightest element in U, it is accepted, and the lightest element of
U is removed. In our language, this has I; := A; UU at all times.

There is a natural extension of the Optimistic Algorithm to all matroids,
which was previously considered in [4].

A related Pessimistic Algorithm (similar to the rehearsal algorithm for the
related k-uniform prophet inequality of [1]) for k-uniform matroids fits this
framework. The algorithm also maintains a list U, initially the k£ heaviest
elements of S. If e exceeds the lightest element in U, it is accepted, but the
heaviest element of U lighter than e is removed. In our language, this again
has I; := A; UU at all times (but U is updated differently to the previous
bullet).

The Virtual Algorithm for k-uniform matroids of [2] does not fit this frame-
work. The algorithm accepts an element e if and only if e is one of the heaviest
k elements so far and the k*P-heaviest element of Vi(eyisin S (i.e., e is accepted
if and only if it “kicks out a sample” from the top k so far). This is because
the algorithm needs to remember rejected elements in order to properly keep
track of the k*P-heaviest element so far, and whether it was a sample.

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 287

Observe finally that all of the algorithms above (which fit the framework)
further have the following. First, if an element is rejected (after T'), it is forgotten
forever, and the algorithm proceeds as if the element had never existed in the
first place.® Similarly, once an element e is accepted, the algorithm updates M
by contracting by e, and then proceeds identically as if the true matroid had been
M\ {e} the whole time.” These attributes are shared by the matroid prophet
inequality of [17], and initially drove our formulation.

With an understanding of Greedy algorithms in hand, we now state our main
result.

Theorem 2. Any algorithm satisfying the 3 properties of Algorithm 1 cannot
be constant-utility-competitive.

3.2 Hard Instance: The Hat

In this section, we will study a hat graph which drives our impossibility result.
The hat has a special element which is significantly heavier than the sum of
all others, and thus any algorithm with a good utility-competitive ratio must
accept it. Furthermore, this special element appears in many small circuits, so
the algorithm must not accept the remaining elements of any of these circuits
prior to the arrival of the heavy element (otherwise, the heavy element cannot be
accepted when it arrives). The hat was used in [4] as a counterexample against
a particular greedy algorithm; and variants of the graph have been informally
known to be problematic for “greedy-like” algorithms. However, prior to our
work there was no formal classification of “greedy-like”.

The hat on n + 2 vertices is a collection of n triangles, all sharing the same
edge. Formally, an undirected graph (V, E) is a hat if V' = {a,b,vy,...,v,} for
some n > 0, and E = {{a,b}} U {e; = {a,v;} :i € [n]} U {e} = {b,v;} : i € [n]}.
Several weight assignments to the edges of the hat can serve as counterexamples
to the algorithms considered in this section, but we consider a particular weight
assignment for ease of exposition (as we only need one counterexample). We
define this weight function w : £ — R>(to maintain the following ordering of
the edge weights: w(ey) > ... > w(e,) > w(e}) > ... > w(e),). Furthermore,
w({a,b}) is much larger than the sum of the weights of all other edges. We will
refer to {a,b} as the infinity edge, and we refer to its arrival time as to, :=
t({a,b}) to emphasize this. Additionally, we consider the drawing of the hat in
the plane as shown in Fig. 1, where e; is to the left of e; for ¢ < j, and e; is above
e} for all 7. Accordingly, we will sometimes refer to the relative position of edges
to imply a relation between their relative weights.

8 But, the framework is rich enough to also allow for algorithms which update I; as
they reject an element. This makes impossibility results stronger.

9 The framework is rich enough to allow for algorithms which update I, based on A,
rather than just M \ {4}, which again just makes impossibility results stronger.

288 M. Bahrani et al.

- L] L]
Fig. 1. A hat on seven vertices. All purple edges (e1,...,es5) are heavier than all blue
edges (el,...,e5), and e is significantly heavier than all other edges. Within each

color, darker edges are heavier. (Color figure online)

We call the pair of edges (e;,e}) the i-th claw. Recall that any algorithm
satisfying the 3 properties listed in Sect.3.1 has memory limited to an inde-
pendent set I;. At any time ¢, given the history of arrivals and the algorithm’s
past decisions, we can classify the claws into one of 9 kinds in {—, 4, S}2. The
first character in the pair describes the state of the top edge e;, and the second
character describes the state of the bottom edge €. S refers to an edge that is in
I; and arrived in the sampling stage. A refers to an edge that has been accepted
by the algorithm (and is therefore in I;). — refers to any edge that is not in
I;. For example, if the i-th claw is of type (S —) at some time ¢, it means that
t(e;) < T, e; €I, and ¢} & I,. Figure 2 illustrates these claws.

(A4) (-4) , .
: ‘ (——) »
$8) » (59N (54) (-9) »

Fig. 2. All possible kinds of claws at any time ¢. S refers to sample edges in I; (drawn
in orange), A refers to an accepted edge in I; (drawn in green), and — refers to any
other edge (drawn in gray). (Color figure online)

We next state a few lemmas about different classes of claws and their impli-
cations about the performance of the algorithm. Since the infinity edge weighs
significantly more than other edges combined, we say the algorithm “loses” (i.e.,

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 289

fails to have a constant utility-competitive ratio) if it fails to accept the infinity
edge. Conversely, the algorithm “wins” if it accepts the infinity edge. Our first
observation characterizes the exact scenarios in which the algorithm loses. All
missing proofs can be found in the full version.

Observation 3 (Loss condition). The algorithm loses iff there is an (AA)
claw before too.'0

The next lemma specifies the unique blocking structure that would prevent
the loss-inducing (AA) claws from forming. Our analysis focuses on the case of
a (— A) claw becoming a (AA) claw, as these events are significantly more likely
than a (A —) claw turning into an (AA) claw, and suffice for our analysis.

Lemma 1 (Blockers and Protection). Suppose there is no (AA) claw yet.
Consider a (— A) claw whose upper edge is about to arrive. The upper edge is
accepted iff there is no (SA) claw to its left. For this reason, we will refer to
(SA) as the blocker. We say that the algorithm is protected at time t if there is
a blocker in I;.

Importantly, note that there can be at most one blocker in I;, as two block-
ers form a cycle. So we can unambiguously refer to the blocker at any time t.
A blocker’s effectiveness is a function of its location: Blockers far to the left
“protect” more claws and are therefore more effective.

With this language in mind, we can reframe the algorithm’s objective, while
working within the Greedy framework. The algorithm loses whenever the upper
edge of a (— A) claw arrives without a blocker to its left. So the algorithm would
like to maintain a blocker in I; as far to the left as possible.!! So the remainder of
this section studies decisions the algorithm can make (again, within the Greedy
framework) to include blockers far to the left. Lemma 2, however, establishes
that we cannot create a new blocker without destroying our old one first (thereby
going “unprotected” for some period).

Lemma 2. If the lower edge of an (S —) arrives at time t and I; has a blocker,
this edge will not be accepted.

Lemma 2 means that the algorithm faces a tradeoff. If I; has a blocker, it is
safe from accepting the upper edge of a (— A) claw to its right at time t. But, the
algorithm cannot move its blocker to the left, even if the lower edge of an (S —)
arrives during this interval. Alternatively, the algorithm may not have a blocker
during I;. In that case, the algorithm can possibly accept a good blocker, if one
happens to arrive at time ¢. But, the algorithm is at risk of accepting the upper
edge of a (— A) claw that arrives at time ¢ no matter its location, because I; has
no blockers at all.

10 Babaioff et al. [4] used the same graph as a counterexample to a special case of our
greedy algorithm, also relying on this observation. Our lemmas are otherwise new,
and necessary since we rule out a much larger class of greedy-like algorithms.

11 Note that an arbitrary algorithm can simply decide to violate the properties defining
Greedy. Our goal is to analyze Greedy algorithms, which must fit this framework.

290 M. Bahrani et al.

3.3 Main Result: Ruling out all Greedy Algorithms

Armed with a better understanding of some properties of the hat structure, we
are ready to prove Theorem 2, which states that greedy algorithms fail to be
a-utility-competitive for any constant a.

We give a detailed proof sketch below, and defer calculations to the full ver-
sion. We first repeat the main intuition: The algorithm’s goal is to not accept any
(AA) claw before to, (Observation 3). To do so, the algorithm must make sure
I; includes a blocker to the left of every (— A) whose upper edge arrives at time
t < te (Lemma 1). We can order potential blockers (S —) by the arrival times
of their lower edges, each of which is uniformly distributed in [T, 1]. Therefore,
it is unlikely that a blocker far to the left arrives very early.

The algorithm can try to start with a mediocre blocker and improve it over
time by accepting blockers further to the left as they arrive. The caveat is that
due to Lemma 2, blocker improvements are only possible in unprotected periods,
during which any arriving upper edge of (— A) claws is accepted. Therefore,
the algorithm faces a trade-off: Forming a more effective blocker costs more
unprotected time. Importantly, the algorithm does not know whether the next
arriving edge will be part of a potential blocker, or part of an (— A).

In order to show that the algorithm fails, we show that with high probability
there will be a (AA) claw before the arrival of the infinity edge. Specifically, we
show that with high probability, an (— A) claw becomes (AA) in an interval of
length ¢ = n=%"! after T, which is with high probability before the arrival of the
infinity edge.

We now get into details of our proof approach. We first choose a parameter
x € [n] (thinking of the claws as labeled 1 through n from left to right). We
will undercount the algorithm’s failure, noting that it fails whenever any of the
following happens:

— The upper edge of some (— A) to the left of x arrives during [T, T + ¢], and
I; does not include any blocker to the left of x for any ¢ € [T,T + 4.
— The upper edge of some (— A) arrives at an unprotected ¢t € [T, T +).

In other words, we are zeroing in on two potential sources of failure: the
upper edge of any (— A) claw could arrive during an unprotected time, or the
upper edge of an (— A) claw to the left of x could arrive before the algorithm
accepts a blocker to the left of x. Note that these are very narrow possibilities
for failure, but they suffice for our analysis.

So there are three probabilities to analyze. The first part of the first bullet
is independent of the algorithm,'? and simply considers the probability that the
upper edge of a (— A) to the left of z arrives during [T, T + /).

Lemma 3. With probability at least 1 — 2*4%/2, the upper edge of a (— A) claw
to the left of x arrives between T and T + £.

12 Recall that the first edge of a (— —) claw to arrive must always be accepted since I;
must span V;.

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 291

The next two probabilities are significantly more involved, as they consider
decisions made by the algorithm. Note that the algorithm can decide adaptively
when to go unprotected, based on the current ratio of (— A)s (potential (AA)s)
versus (S —)s (potential blockers) to the left of . To this end, we will let the algo-
rithm adaptively choose any (measurable) subset of [T, T+ /] to go unprotected,
and let y denote the total measure of this interval.!® y captures the aforemen-
tioned tradeoff: small y means that the algorithm is likely to fail bullet one, while
large y means the algorithm is likely to fail bullet two. Lemma 4 quantifies the
cost of keeping y small, lowerbounding the probability of the second part of the
first bullet.

Lemma 4. Conditioned on the upper edge of a (— A) claw to the left of © arriv-
ing between T and T + £ (i.e. Lemma 3 happening), any greedy algorithm which
goes unprotected for a total measure of y during [T, T +{] fails to accept a blocker
to the left of x with probability at least:

(1- —21}@6_%)(1 —y)t.

Finally, we analyze the second bullet, lower bounding the probability that
the upper edge of a (— A) claw (anywhere) arrives during a period when the
algorithm is unprotected (while the precise form is complicated, recall the intu-
ition that as y gets larger, the probability of this particular bad event goes up,
and y is at most £):

Lemma 5. Any greedy algorithm which goes unprotected for a total measure of
y > n~%4/2 during [T, T + {] has the upper edge of a (— A) claw arrive during
an unprotected t with probability at least:

706 (40— n—0-4)

_npn—04 3262
Ly e
20

Finally, we just need to combine the three bounds in Lemmas 3, 4, 5. We
will choose a value of £ and « for the analysis, and then the algorithm (knowing
z) can adaptively allocate the unprotected intervals within [T, T + ¢] for a total

measure of y. More formally, we let f(y) = (1—2xle 5)(1—y)** (1 - (%)5%/2)

denote the lowerbound on failure probability derived in Lemma 4. Furthermore,

we let
n0-6(4p_pn—0.4y

2y—m 04 3202 0.4

o) = 41— (1 2=) Y2
0.4

07 y< n2 .

The first case follows from Lemma 5, and setting g to 0 elsewhere only strength-
ens our lower bound. Overall, the algorithm fails with probability at least min,,
{max{f(y),g(y)}}. The next lemma sets parameters to lower bound this expres-
sion.

13 The algorithm does not need to commit to the value of y in advance or choose it
deterministically.

292 M. Bahrani et al.

Lemma 6. When =n’3 and ¢ = n=%1, we have

lim min {f(y),9(y)} = 1.
n—00 y€[0,7)

The proof of Theorem 2 now follows from the four lemmas of this section.

4 Randomized Partition Algorithms

This section is devoted to a class of algorithms based on partition matroids.
These are generalizations of an algorithm by Korula and Pal [19] for the sec-
retary problem on graphic matroids. We show that this algorithm and natural
generalizations of it fail to provide good probability-competitive performance.

4.1 Defining Randomized Partition Algorithms

The algorithm by Korula and Pal [19] was phrased in the language of graphs.
Let us try to generalize it in a language applicable to all matroids. Before seeing
any weights, their algorithm restricts itself (potentially randomly) to accepting
only a subset of independent sets. More specifically, the algorithm will restrict its
attention to the disjoint union'* of solutions to simpler subproblems. The algo-
rithm must ensure that for all feasible solutions to the subproblems, their union is
a feasible solution to the main problem. In the case of the Korula-Pal algorithm,
the smaller subproblems are instances of 1-uniform matroid secretary problems.
(Several other algorithms for the Matroid Secretary Problem use similar high-
level techniques, where the “simpler” matroids are not 1-uniform [9,15,20,24],
and this idea is also used for the related prophet inequality [10].)

More concretely, we say that a partition is wvalid if the union of what is
accepted by the instances of Dynkin’s algorithm is an independent set (regardless
of the weights and order of arrivals). Now we consider the following class of
algorithms based on partition matroids:

Algorithm 2. Randomized Partition

1. Before looking at any weights, (perhaps randomly) validly partition the elements
into parts S;.

2. Within each part, run Dynkin’s algorithm, and output the union of the selected
elements.

One can ask whether any algorithm in this framework can be constant-
probability-competitive. Theorem 4 shows that the answer is ‘no’.

14 This disjointness is why we refer to these generalizations as algorithms based on
“partition matroids.”

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 293

4.2 Randomized Partitions

In this section, we will rule out all algorithms based on partition matroids as
candidates for achieving a constant probability-competitive ratio for the matroid
secretary problem.

For the algorithm to always output a feasible solution, any partition it uses
must be valid. Recall that a valid partition is one for which the union of what is
accepted by the instances of Dynkin’s algorithm is always independent. We say
a distribution over partitions is valid if every partition in its support is valid.

Without loss of generality, we can assume the input graph is always complete.
Otherwise, one can consider a modified weight-function that assigns a weight of
zero to every edge that is not present. Since the algorithm cannot see the weights
of the edges in advance, it will have to choose a partition of the complete graph
at the start.

Theorem 4. Any algorithm that draws a partition from a valid distribution D
in Algorithm 2 is not a-probability-competitive for any a = w(n=1/8).

The high-level plan in the proof of Theorem 4 is to plant a random broom,
illustrated in Fig.3, and show that with high probability, its handle is not
accepted. We will refer to the lone neutral edge {u,w} connecting the two stars
as the handle of the broom. Note that the edges of non-zero weight in the broom
form an acyclic subgraph and are therefore the unique max-weight basis of this
graphic matroid.

7

handle

Fig. 3. Two stars connected by an edge form a broom. We call the bridge between the
two stars the handle of the broom, and we the other edges of the broom as its legs.

Before proving this theorem, we characterize valid partitions.

Characterizing Valid Partitions. In this section we give a few characteriza-
tions of what valid partitions look like, which serve to provide intuition into why
validity is a strong enough condition that prevents partition-based algorithms
from probability-competitiveness.

We define a wvalid partition to be one where the union of what is accepted
by the instances of Dynkin’s algorithm is always an independent set, even
for adversarial weights and arrival orders. We first give several equivalent

294 M. Bahrani et al.

descriptions of what valid partitions should look like in the case of graphic
matroids, which provides certain structural properties enforced by validity. It
will be later used to prove our Theorem 4.

Lemma 7. Let {Sy,..., Sk} partition the edges of a complete graph K,,, and let
part(e) denote the S; containing edge e. The following are equivalent:

(a) Matroid condition: {Si,...,S;} is valid.

(b) Graph condition (i): Every cycle has at least two edges in the same part.

(¢) Graph condition (ii): Every triangle has at least two edges in the same
part.

Proof of Theorem 4. We provide a counterexample in the case of graphic
matroids using the broom. Consider a partition S = {S1,..., Sk} of the edges
of the complete graph. We say an edge e € S; is “high-degree” if the sum of the
degrees of its endpoints within the same part S; is large. More concretely, we
define the part-i degree of a vertex v as deg,(v) = |{e = {a,b} € S; : v € {a,b}}|.
Given an edge e = {a,b} in part S;, its degree is given by deg(e) = deg;(a) +
deg,;(b) — 1, which intuitively means that we are counting all the incident edges
in that part and the edge itself. An edge e is said to be high-degree if deg(e) > C
for some C that we will choose later.

We will show that a 1 — o(1) fraction of the edges are high-degree for super-
constant C. Therefore, an adversary can plant a random broom by assigning
weights according to the following distribution: Pick a random edge {u,v} in
the graph, and randomly partition the vertices V\{u, v} into two parts X and
Y of equal size (we assume |V| is even). Assign a weight of 1 to every edge
{u,z} and {v,y} for all z € X,y € Y, and a weight of zero to everything else.
We will show that no matter what partition an algorithm chooses, the random
edge {u,v} will have a high-degree with high probability. The algorithm must
therefore choose at most one edge from at least C' elements of OPT. Hence, it
cannot be better than 1/C-probability-competitive.

It remains to show that a 1 — o(1) fraction of the edges are high-degree for
some super-constant C' in any valid partition S of the edges of the complete
graph. A partition of the edges of K, can be thought of as a coloring of its
adjacency matrix A € M™*™ (ignoring diagonal entries) in the obvious way
(i.e., assign a different color to each S;, and the color part(e) to the entry of
A corresponding to e). In this notation, an entry of A is low-degree if there
are fewer than C' entries of the same color in its row or column. Note that by
Lemma 7, a partition is valid iff every triangle has at least two edges in the
same part. In the matrix language, a partition is valid iff for every three row
indices u,v,w, at least two of A(u,v), A(u,w) and A(v,w) are the same color.
We will show using this interpretation of feasibility that each row and column
must mostly consist of high-degree entries. More specifically, we will fix a vertex
v, and consider any other two vertices v and w.

Proposition 1. Let C < (n—1)/2 and let T(n) be the mazimum possible number
of low-degree edges in any valid coloring of the complete graph on n vertices. For

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 295

any verter v, let x; denote the number of edges adjacent to v in partition i.
T'(n) <

max min { Z T(x;)+2C(n—1), Tln—1)4+2(n—1— mzax{xz})}

-1
xENgO E; Tr;=n,

Proof. There are two steps: for any @, we show that both the left term and the
right term are always upper bounds (and therefore their minimum is a valid
upper bound too).

Intuitively, the left term is better when max;{z;} is not too large. To see
that the left term is always an upper bound, consider the following cases. Below,
let X; denote the set of nodes z such that (z,v) is in partition i (and therefore
x; = | Xi]).

— First, consider each X;, and consider the induced subgraph on just these x;
nodes. The number of low-degree edges just counting those between two nodes
in X; is at most T'(x;), by definition of T'(-). Clearly, a node must be low-
degree in the induced subgraph to possibly be low-degree in the full graph.
This means there are at most >, T'(z;) low-degree edges between two nodes
in the same X;.

— Next, consider an edge between two nodes x,y both # v which are not in the
same X;. This means that the edges (v, z) and (v, y) are not colored the same,
and therefore the edge (z,y) must share a color with one of them for A to be
valid. Whichever edge shares its color, we will charge its non-v endpoint (e.g.
if (x,y) shares a color with (v, z), we charge x). Observe that once a vertex
is charged C' times, this means there are C + 1 edges adjacent to it which
share the color of (v, z). This means that none of these edges are low-degree.
Therefore, an edge can be low-degree only if its non-v endpoint is charged at
most C' times, and therefore there can be at most C'(n — 1) such low-degree
edges.

— Finally, consider an edge adjacent to v. We will lazily upper bound the number
of low-degree edges by just the total number of edges, n—1, and further upper
bound it by C'(n — 1) for cleanliness of the expression.

This establishes the left term, which holds for any . Now we establish the right
term. Intuitively, the right term is a better bound whenever max;{z;} is large.
Let j := argmax;{x;}. If z; > C, then there can be no low-degree edges adjacent
to v in X;. Therefore, there are at most (n—1—zx;) low-degree edges adjacent to
v. On the subgraph induced by the n — 1 nodes other than v, there are clearly at
most T'(n—1) low-degree edges by definition of T'(+), and again any edge which is
low-degree in the full graph must be low-degree in every induced subgraph. On
the other hand, if z; < C, then perhaps all edges adjacent to v are low-degree,
and we can only use this technique to give an upper bound of T'(n — 1) +n — 1.
In both cases, our bound is at most T'(n — 1) + 2(n — 1 — max;{z;}) as long as
C<(n—-1))2.

296 M. Bahrani et al.

We will show inductively in Lemma 8 that T'(n) < b-C - n'T® where a is

a constant, and b and C are super-constant in n, as long as a few conditions
hold. Corollary 1 lists values that satisfy these conditions, concluding that for
all 0 < € < 1/2, there are valid assignments to the variables that achieve T'(n) <
n3/2+¢ 15 Furthermore, Corollary 1 ensures that C' is super-constant (and in
(g)_ns/zﬂ

particular polynomial in n), implying that with probability at least

n)

2
the handle of the randomly planted broom will be high-degree for super-constant
C'. Tt can therefore only be selected with a sub-constant probability.

Lemma 8. Consider the following recurrence when C < (n—1)/2. T(n) <

max min { Z T(x;))+2C(n—1), Tln—1)+2(n—1— mlax{xl-})

n—1
ZGNEO »Zi Ti=mn,

with a base case of T(n) = n(n—1)/2 when (n—1)/2 < C. For all N, T(N) <
b-C- N as long as

1. a €(0,1) is a constant;

2. C is a super-constant function of N;

3. b is a super-constant function of N such that b(N) > 1 for all N;
4. for alln < N, the following is satisfied: 20t < L+t

abnlta 2npl-a *

As an immediate corollary, we get the following.

Corollary 1. Let T(n) be defined as in Lemma 8. Then for all 0 < e < 1/2,
T(n) < n3/?te,

Now we can complete the proof of Theorem 4. Corollary 1 together with
Proposition 1 establishes that for any ¢ > 0, there are at most n®/?t¢ edges
with degree at most C' := n/3. This means that with probability 1 — n~1/2+¢
a randomly selected edge (u,v) of the complete graph has degree at least n®/3.
Conditioned on (u,v) having high-degree, we know that n°/3 edges of the max-
weight spanning tree are in the same partition as (u,v). Therefore, at least
one of them is selected with probability at most n~°/3. Setting ¢ = 3/8, we
conclude that except with probability n~1/%, there is some edge selected with
probability at most n~'/8, and therefore no randomized partition algorithm can
be w(n~—1/%)-probability-competitive.

References

1. Azar, P.D., Kleinberg, R., Weinberg, S.M.: Prophet inequalities with limited infor-
mation. In: Chekuri, C. (ed.) Proceedings of SODA, pp. 1358-1377. SIAM (2014)

2. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 16-28. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74208-1_2

15 Tt can be shown that this is in fact tight.

https://doi.org/10.1007/978-3-540-74208-1_2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Formal Barriers to Simple Algorithms for the Matroid Secretary Problem 297

Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and gen-
eralized secretary problems. SIGecom Exch. 7(2), 1-11 (2008)

Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary prob-
lems. J. ACM 65(6), 35:1-35:26 (2018)

Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and
online mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 434-443 (2007)

Dinitz, M.: Recent advances on the matroid secretary problem. ACM SIGACT
News 44(2), 126-142 (2013)

Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process.
Sov. Math. 4, 627-629 (1963)

Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127-136
(1971)

Feldman, M., Svensson, O., Zenklusen, R.: A simple O (log log (rank))-competitive
algorithm for the matroid secretary problem. In: Proceedings of SODA, pp. 1189—
1201 (2015)

Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes.
In: Proceedings of SODA, pp. 1014-1033 (2016)

Gale, D.: Optimal assignments in an ordered set: an application of matroid theory.
J. Comb. Theory 4(2), 176-180 (1968)

Gupta, A., Singla, S.: Random-order models. In: Roughgarden, T. (ed.) Beyond
the Worst-Case Analysis of Algorithms. Cambridge University Press (2020)
Hajiaghayi, M.T., Kleinberg, R.D., Parkes, D.C.: Adaptive limited-supply online
auctions. In: Proceedings 5th ACM Conference on Electronic Commerce (EC-
2004), 17-20 May 2004, pp. 71-80. ACM, New York (2004)

Hoefer, M., Kodric, B.: Combinatorial secretary problems with ordinal information.
In: Proceedings of ICALP, pp. 133:1-133:14 (2017)

Huynh, T., Nelson, P.: The matroid secretary problem for minor-closed classes and
random matroids. arXiv preprint arXiv:1603.06822 (2016)

Jaillet, P., Soto, J.A., Zenklusen, R.: Advances on matroid secretary problems:
free order model and laminar case. In: Goemans, M., Correa, J. (eds.) IPCO 2013.
LNCS, vol. 7801, pp. 254-265. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36694-9_22

Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proceedings of
the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 123—
136. ACM (2012)

Korte, B., Vygen, J.: Combinatorial Optimization, Volume 21 of Algorithms and
Combinatorics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-662-
56039-6

Korula, N., P4l, M.: Algorithms for secretary problems on graphs and hypergraphs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 508-520. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02930-1_42

Lachish, O.: O (log log rank) competitive ratio for the matroid secretary problem.
In: 2014 TEEE 55th Annual Symposium on Foundations of Computer Science, pp.
326-335. IEEE (2014)

Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, New York (2006)
Rado, R.: Note on independence functions. Proc. London Math. Soc. 3(1), 300-320
(1957)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

http://arxiv.org/abs/1603.06822
https://doi.org/10.1007/978-3-642-36694-9_22
https://doi.org/10.1007/978-3-642-36694-9_22
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-642-02930-1_42

298 M. Bahrani et al.

24. Soto, J.A.: A simple PTAS for weighted matroid matching on strongly base order-
able matroids. Electron. Notes Discrete Math. 37, 75-80 (2011)

25. Soto, J.A., Turkieltaub, A., Verdugo, V.: Strong algorithms for the ordinal matroid
secretary problem. In: Proceedings of SODA, pp. 715-734 (2018)

	Formal Barriers to Simple Algorithms for the Matroid Secretary Problem
	1 Introduction
	1.1 Greedy Algorithms
	1.2 Randomized Partition Algorithms
	1.3 Related Work and Brief Summary

	2 Preliminaries
	3 Greedy Algorithms
	3.1 A Class of Greedy Algorithms
	3.2 Hard Instance: The Hat
	3.3 Main Result: Ruling out all Greedy Algorithms

	4 Randomized Partition Algorithms
	4.1 Defining Randomized Partition Algorithms
	4.2 Randomized Partitions

	References

