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Abstract. Consider a round-robin tournament on n teams, where a
winner must be (possibly randomly) selected as a function of the results
from the (g) pairwise matches. A tournament rule is said to be k-SNM-
« if no set of k£ teams can ever manipulate the (];) pairwise matches
between them to improve the joint probability that one of these k teams
wins by more than «. Prior work identifies multiple simple tournament
rules that are 2-SNM-1/3 (Randomized Single Elimination Bracket [17],
Randomized King of the Hill [18], Randomized Death Match [6]), which
is optimal for £k = 2 among all Condorcet-consistent rules (that is, rules
that select an undefeated team with probability 1).

Our main result establishes that Randomized Death Match is 3-SNM-
(31/60), which is tight (for Randomized Death Match). This is the first
tight analysis of any Condorcet-consistent tournament rule and at least
three manipulating teams. Our proof approach is novel in this domain:
we explicitly find the most-manipulable tournament, and directly show
that no other tournament can be more manipulable.

In addition to our main result, we establish that Randomized Death
Match disincentivizes Sybil attacks (where a team enters multiple copies
of themselves into the tournament, and arbitrarily manipulates the out-
comes of matches between their copies). Specifically, for any tournament,
and any team u that is not a Condorcet winner, the probability that «
or one of its Sybils wins in Randomized Death Match approaches 0 as
the number of Sybils approaches co.

1 Introduction

Consider a tournament on n teams competing to win a single prize via (g)
pairwise matches. A tournament rule is a (possibly randomized) map from these
(72’) matches to a single winner. In line with several recent works [1,2,6,17,18|,
we study rules that satisfy some notion of fairness (that is, “better” teams should
be more likely to win), and non-manipulability (that is, teams have no incentive
to manipulate the matches).

More specifically, prior work identifies Condorcet-consistence (Definition 4)
as one desirable property of tournament rules: whenever an undefeated team
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exists, a Condorcet-consistent rule selects that team as the winner with proba-
bility 1. Another desirable property is monotonicity (Definition 6): no team can
unilaterally increase the probability that it wins by throwing a single match.
Arguably, any sensible tournament rule should at minimum satisfy these two
basic properties, and numerous such simple rules exist.

[1,2] further considered the following type of deviation: what if the same
company sponsors multiple teams in an eSports tournament, and wants to max-
imize the probability that one of them wins the top prize?! In principle, these
teams might manipulate the outcomes of the matches they play amongst them-
selves in order to achieve this outcome. Specifically, they call a tournament rule
k-Strongly-Non-Manipulable (k-SNM, Definition 5), if no set of &k teams can suc-
cessfully manipulate the (’2“) pairwise matches amongst themselves to improve the
probability that one of these k teams wins the tournament. Unfortunately, even
for k = 2, [1,2] establish that no tournament rule is both Condorcet-consistent
and 2-SNM.

This motivated recent work in [6,17,18] to design tournament rules which are
Condorcet-consistent as non-manipulable as possible. Specifically, [17] defines a
tournament rule to be k-SNM-« if no set of k£ teams can manipulate the (’2“)
pairwise matches amongst themselves to increase total probability that any of
these k teams wins by more than « (see Definition 5). These works design several
simple Condorcet-consistent and 2-SNM-1/3 tournament rules, which is optimal
for k = 2 (see [17]). In fact, the state of affairs is now fairly advanced for k = 2:
each of [6,17,18] proposes a new 2-SNM-1/3 tournament rule. [18] considers
a stronger fairness notion that they term Cover-consistent, and [6] considers
probabilistic tournaments (see Sect. 1.3 for further discussion).

However, significantly less is known for k& > 2. Indeed, only [18] analyzes
manipulability for k& > 2. They design a rule that is k-SNM-2/3 for all k, but
that rule is non-monotone, and it is unknown whether their analysis of that rule
is tight. Our main result provides a tight analysis of the manipulability of Ran-
domized Death Match (first defined in [6]) when k = 3. We remark that this is:
a) the first tight analysis of the manipulability of any Condorcet-consistent tour-
nament rule for k£ > 2, b) the first analysis establishing a monotone tournament
rule that is k-SNM-« for any k¥ > 2 and « < 1, and c¢) the strongest analysis
to-date of any tournament rule (monotone or not) for k = 3. We overview our
main result in more detail in Sect. 1.1 below.

Beyond our main result, we further consider manipulations through a Sybil
attack (Definition 9). As a motivating example, imagine that a tournament rule
is used as a proxy for a voting rule to select a proposal (voters compare each
pair of proposals head-to-head, and this constitutes the pairwise matches input
to a tournament rule). A proposer may attempt to manipulate the protocol
with a Sybil attack, by submitting numerous nearly-identical clones of the same
proposal. This manipulates the original tournament, with a single node u; corre-
sponding to the proposal, into a new one with additional nodes uso, . .., u,, cor-

! Similarly, perhaps there are multiple athletes representing the same country or uni-
versity in a traditional sports tournament.
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responding to the Sybils. Each node v ¢ {uq,...,un} either beats all the Sybils,
or none of them (because the Sybil proposals are essentially identical to the
original). The questions then become: Can the proposer profitably manipulate
the matches within the Sybils? Is it beneficial for a proposer to submit as many
Sybils as possible? We first show that, when participating in Randomized Death
Match, the Sybils can’t gain anything by manipulating the matches between
them. Perhaps more surprisingly, we show that Randomized Death Match is
Asymptotically Strongly Sybil-Proof: as the number of Sybils approaches oo, the
collective probability that a Sybil wins RDM approaches zero (unless the orig-
inal proposal is a Condorcet winner, in which case the probability that a Sybil
wins is equal to 1, for any number of Sybils > 0).

1.1 Our Results

As previously noted, our main result is a tight analysis of the manipulability of
Randomized Death Match (RDM) for coalitions of size 3. Randomized Death
Match is the following simple rule: pick two uniformly random teams who have
not yet been eliminated, and eliminate the loser of their head-to-head match.

Informal Theorem 1 (See Theorem 6). RDM is 3-SNM-3L. RDM 'is not 3-
SNM-« for a < %,

Recall that this is the first tight analysis of any Condorcet-consistent tour-
nament rule for any & > 2 and the first analysis establishing a monotone,
Condorcet-consistent tournament rule that is k-SNM-« for any £ > 2, a < 1.
Recall also that previously the smallest « for which a 3-SNM-a (non-monotone)
Condorcet-consistent tournament rule is known is 2/3.

Our second result concerns manipulation by Sybil attacks. A Sybil attack is
where one team starts from a base tournament 7', and adds some number m—1 of
clones of their team to create a new tournament 7" (they can arbitrarily control
the matches within their Sybils, but each Sybil beats exactly the same set of
teams as the cloned team) (See Definition 9). We say that a tournament rule r is
Asymptotically Strongly Sybil-Proof (Definition 10) if for any tournament 7" and
team w1 € T that is not a Condorcet winner, the maximum collective probability
that a Sybil wins (under ) over all of u;’s Sybil attacks with m Sybils goes to
0 as m goes to infinity. See Sect. 2 for a formal definition.

Informal Theorem 2 (See Theorem 8). RDM is Asymptotically Strongly
Sybil-Proof.

1.2 Technical Highlight

All prior work establishing that a particular tournament rule is 2-SNM-1/3 fol-
lows a similar outline: for any 7T, cases where manipulating the {u,v} match
could potentially improve the chances of winning are coupled with two cases
where manipulation cannot help. By using such a coupling argument, it is plau-
sible that one can show that RDM is 3-SNM-(3 + ¢) for a small constant c.
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However, given that Theorem 6 establishes that RDM is 3-SNM-31/60, it is
hard to imagine that this coupling approach will be tractable to obtain the
exact answer.

Our approach is instead drastically different: we find a particular 5-team
tournament, and a manipulation by 3 teams that gains 31/60, and directly prove
that this must be the worst case. We implement our approach using a first-step
analysis, thinking of the first match played in RDM on an n-team tournament
as producing a distribution over (n — 1)-team tournaments.

The complete analysis inevitably requires some careful case analysis, but is
tractable to execute fully by hand. Although this may no longer be the case for
future work that considers larger k or more sophisticated tournament rules, our
approach will still be useful to limit the space of potential worst-case examples.

1.3 Related Work

There is a vast literature on tournament rules, both within Social Choice Theory,
and within the broad CS community [3,8-12,14,19]. The Handbook of Compu-
tational Social Choice provides an excellent survey of this broad field, which we
cannot overview in its entirety [15]. Our work considers the model initially posed
in [1,2], and continued in [6,17,18], which we overview in more detail below.

[1,2] were the first to consider Tournament rules that are both Condorcet-
consistent and 2-SNM, and proved that no such rules exist. They further
considered tournament rules that are 2-SNM and approximately Condorcet-
consistent. [17] first proposed to consider tournament rules that are instead
Condorcet-consistent and approximately 2-SNM. Their work establishes that
Randomized Single Elimination Bracket is 2-SNM-1/3, and that this is tight.?
[18] establish that Randomized King of the Hill (RKotH) is 2-SNM-1/3,% and [6]
establish that Randomized Death Match is 2-SNM-1/3. [18] show further that
RKotH satisfies a stronger fairness notion called Cover-consistence, and [6]
extends their analysis to probabilistic tournaments. In summary, the state of
affairs for k = 2 is quite established: multiple 2-SNM-1/3 tournament rules are
known, and multiple different extensions beyond the initial model of [17] are
known.

For k > 2, however, significantly less is known. [17] gives a simple example
establishing that no rule is k-SNM-%-1=€ for any & > 0, but no rules are known
to match this bound for any k£ > 2. Indeed, [18] shows that this bound is not
tight, and proves a stronger lower bound for & — oco. For example, a corollary
of their main result is that no 939-SNM-1/2 tournament rule exists. They also
design a non-monotone tournament rule that is k-SNM-2/3 for all k. Other
than these results, there is no prior work for manipulating sets of size k > 2.

2 Randomized Single Elimination Bracket iteratively places the teams, randomly, into
a single-elimination bracket, and then ‘plays’ all matches that would occur in this
bracket to determine a winner.

3 Randomized King of the Hill iteratively picks a ‘prince’, and eliminates all teams
beaten by the prince, until only one team remains.
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In comparison, our work is the first to give a tight analysis of any Condorcet-
consistent tournament rule for k£ > 2, and is the first proof that any monotone,
Condorcet-consistent tournament rule is k-SNM-« for any & > 2, a0 < 1.

Regarding our study of Sybil attacks, similar clone manipulations have
been considered prior in Social Choice Theory under the name of composition-
consistency. [13] introduces the notion of a decomposition of the teams in a tour-
nament into components, where all the teams in a component are clones of each
other with respect to the teams not in the component. [13] defines a deterministic
tournament rule to be composition-consistent if it chooses the best teams from
the best components?. In particular, composition-consistency implies that a los-
ing team cannot win by introducing clones of itself or any other team. [13] shows
that the tournament rules Banks, Uncovered Set, TEQ, and Minimal Covering
Set are composition-consistent, while Top Cycle, the Slater, and the Copeland
are not. Both computational and axiomatic aspects of composition-consistency
have been explored ever since. [7] studies the structural properties of clone sets
and their computational aspects in the context of voting preferences. In the con-
text of probabilistic social choice, [4] gives probabilistic extensions of the axioms
composition-consistency and population-consistency and uniquely characterize
the probabilistic social choice rules, which satisfy both. In the context of scor-
ing rules, [16] studies the incompatibility of composition-consistency and rein-
forcement (stronger than population-consistency) and decomposes composition-
consistency into four weaker axioms. In this work, we consider Sybil attacks on
Randomized Death Match. Our study of Sybil attacks differs from prior work
on the relevant notion of composition-consistency in the following ways: (i) We
focus on a randomized tournament rule (RDM), (ii) We study settings where
the manipulator creates clones of themselves (i.e. not of other teams), (iii) We
explore the asymptotic behavior of such manipulations (Definition 10, Theorem
8).

1.4 Roadmap

Section 2 follows with definitions and preliminaries, and formally defines Ran-
domized Death Match (RDM). Section 3 introduces some basic properties and
examples for the RDM rule as well as a recap of previous work for two manipu-
lators. Section4 consists of a proof that the manipulability of 3 teams in RDM
is at most 21 and that this bound is tight. Section 5 consists of our main results

60
regarding Sybil attacks on a tournament. Section 6 concludes.

2 Preliminaries

In this section we introduce notation that we will use throughout the paper
consistent with prior work in [6,17,18].

* For a full rigorous mathematical definition see Definition 10, [13].
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Definition 1 (Tournament). A (round robin) tournament T on n teams is
a complete, directed graph on n vertices whose edges denote the outcome of a
match between two teams. Team i beats team j if the edge between them points
from i to j.

Definition 2 (Tournament Rule). 4 tournament rule r is a function that
maps tournaments T to a distribution over teams, where r;(T) := Pr(r(T) = i)
denotes the probability that team i is declared the winner of tournament T under
rule r. Let S be a set of teams. We use the shorthand rs(T) := Y, g7:(T) to
denote the probability that a team in S is declared the winner of tournament T
under rule r.

Definition 3 (S-adjacent). Let S be a set of teams. Two tournaments T, T’
are S-adjacent if for all i,j such that {i,j} € S, i beats j in T if and only if i
beats j in T".

In other words, two tournaments T,7" are S-adjacent if the teams from S
can manipulate the outcomes of the matches between them in order to obtain a
new tournament 7”.

Definition 4 (Condorcet-Consistent). Team i is a Condorcet winner of
a tournament T if © beats every other team (under T). A tournament rule r
is Condorcet-consistent if for every tournament T with a Condorcet winner i,
r;(T) =1 (whenever T has a Condorcet winner, that team wins with probability

1),

Definition 5 (Manipulating a Tournament). For a set S of teams, a tour-
nament T and a tournament rule r, we define a'y(T) be the mazimum winning
probability that S can possibly gain by manipulating T to an S-adjacent T'. That

T(T) = T —rg(T
OéS( ) T’:T’isSI-I;?iJ;izcenttoT{rS( ) TS( )}
For a tournament rule v, define oy, = Supp g sj=k,r|=nis(T)}. Finally,
define
ap =supag, = sup {ag(T)}

neN T,S:|S|=k

If af, < o, we say that v is k-Strongly-Non-Manipulable at probability o or k-
SNM-«.

Intuitively, aj , is the maximum increase in collective winning probability
that a group of k teams can achieve by manipulating the matches between them
over tournaments with n teams. And aj is the maximum increase in winning
probability that a group of k teams can achieve by manipulating the matches
between them over all tournaments.

Two other naturally desirable properties of a tournament rule are monotonic-
ity and anonymity.

Definition 6 (Monotone). A tournament rule v is monotone if T, T’ are
{u,v}-adjacent and u beats v in T, then r,(T) > r,(T")
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Definition 7 (Anonymous). A tournament rule r is anonymous if for every
tournament T, and every permutation o, and all i, v, (0(T)) = r:(T)

Below we define the tournament rule that is the focus of this work.

Definition 8 (Randomized Death Match). Given a tournament T on n
teams the Randomized Death Match Rule (RDM) picks two uniformly random
teams (without replacement) and plays their match. Then, eliminates the loser
and recurses on the remaining teams for a total of n — 1 rounds until a single
team remains, who is declared the winner.

Below we define the notions of Sybil Attack on a tournament 7', and the
property of Asymptotically Strongly Sybil-Proof (ASSP) for a tournament rule
7, both of which will be relevant in our discussion in Sect. 5.

Definition 9 (Sybil Attack). Given a tournament T, a team u; € T and an
integer m, define Syb(T,u1,m) to be the set of tournaments T' satisfying the
following properties:

1. The set of teams in T’ consists of us ..., Uy, and all teams in T

2. If a,b are teams in T, then a beats b in T" if and only if a beats b in T.

3. If a # uy is a team in T and i € [m)], then u; beats a in T" if and only if uy
beats a in T

4. The match between u; and u; can be arbitrary for each i # j

Intuitively, Syb(T,u1,m) is the set of all Sybil attacks of uy at T with m
Sybils. Each Sybil attack is a tournament 77 € Syb(T, u;, m) obtained by start-
ing from T and creating m Sybils of u; (while counting u; as a Sybil of itself).
Each Sybil beats the same set of teams from T\u; and the matches between
the Sybils w1, ..., u,, can be arbitrary. Every possible realization of the matches
between the Sybils gives rise to new tournament 7" € Syb(T,u;, m) (implying
Syb(T,uy, m) contains 2(%) tournaments).

Definition 10 (Asymptotically Strongly Sybil-Proof). A tournament
rule r is Asymptotically Strongly Sybil-Proof (ASSP) if for any tournament T,
team uy € T which is not a Condorcet winner,

lim max Tarooun, (T7) =0
m—0o0 T’ €Syb(T,uy,m)

Informally speaking, Definition 10 claims that r is ASSP if the probability that
a Sybil wins in the most profitable Sybil attack on T with m Sybils, goes to zero
as m goes to oo.

3 Basic Properties of RDM and Examples

In this section we consider a few basic properties of RDM and several exam-
ples on small tournaments. We will refer to those examples in our analysis later.
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Throughout the paper we will denote RDM by r and it will be the only tour-
nament rule we consider. We next state the first-step analysis observation that
will be central to our analysis throughout the paper. For the remainder of the
section let for a match e denote by T'|. the tournament obtained from 7' by
eliminating the loser in e. Let S|, = S\z, where « is the loser in e. Let d, denote
the number of teams x loses to and T\ the tournament obtained after removing
team z from 7.

Observation 3 (First-step analysis). Let S be a subset of teams in a tour-
nament T. Then

rs(T) = (1) S v (7)) = (1) S drsis (T\2)

(if S = {v}, then we define rs\,(T\v) =0, and if x ¢ S, then S\z = S)

Proof. The first equality follows from the fact that after we play e we are left
with the tournament T'|, and we sum over all possible e in the first round. To
prove the second equality, notice that for any z the term rg\,(7\z) appears
exactly d, times in ) rg| (T|c) because x loses exactly d, matches.

This first-step analysis observation can be used to show that adding teams that
lose to every other team does not change the probability distribution of the
winner.

Lemma 1. Let T be a tournament and v € T loses to everyone. Then for all
v #£ u, we have r,(T) = ry(T\u).

Proof. See full version [5] for a proof.

As a natural consequence of Lemma 1 we show that the most manipulable
tournament on n + 1 teams is at least as manipulable as the most manipulable
tournament on n teams.

Lemma 2. ozzm < O‘Z,n+1
Proof. See Appendix A.1 of [5] for a proof.

We now show another natural property of RDM, which is a generalization of
Condorcet-consistent (Definition 4), namely that if a group of teams S wins all
its matches against the rest of teams, then a team from S will always win.

Lemma 3. Let T be a tournament and S C T a group of teams such that every
team in S beats every team in T\S. Then, rg(T) = 1.

Proof. See Appendix A.1 of [5] for a proof.

As a result of Lemma 3 RDM is Condorcet-Consistent. As expected, RDM
is also monotone (See Definition 6).

Lemma 4. RDM is monotone.
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Proof. See Appendix A.1 of [5] for a proof.

Lemma 1 tells us that adding a team which loses to all other teams does not

change the probability distribution of the other teams winning. Lemmas 1, 2, 3,
4 will be useful in our later analysis in Sects.4 and 5. Now we consider a few
examples of tournaments and illustrate the use of first-step analysis (Observation
3) to compute the probability distribution of the winner in them.

1.

Let T = {a,b,c}, where a beats b, b beats ¢ and ¢ beats a. By symmetry of
RDM, we have ro(T) = ry(T) = r(T) = 3.

. Let T'= {a, b, c} where a beats b and c. Then clearly, r,(T") = 1 and r,(T) =

ro(T) = 0.

By Lemma 1, it follows that the only tournament on 4 teams whose prob-
ability distribution cannot be reduced to a distribution on 3 teams is the
following one T' = {a1, as, as, as}, where a; beats a;41 for i = 1,2, 3, a4 beats
a1, a1 beats a3z and az beats a4. By using what we computed in (1) and (2)
combined with Lemma 1 we get by first step analysis

s (T) = 5 (ray (T\a2) + 2rg, (T\as) + 27, (T\as)) = (5 + 2 +2) = 5
aa(T) = £ (raa(T\ar) + 27y (T\as) + 20 (T\aa) = (14 3) = %
Fao(T) = 5 (ray (T\ar) + 72y (T\a2) + 21, (T\aa)) = 5(3) = 12

as(T) = (e, (T\ar) + 7, (T\az) + 270, (T\ag)) = (5 +2) = <

The above examples are really important in our analysis because: a) we will

use them in later for our lower bound example in Sect.4.1, and b) they are a
short illustration of first-step analysis.

In the following subsection, we review prior results for 2-team manipulations

in RDM, which will also be useful for our treatment of the main result in Sect. 4.

3.1 Recap: Tight Bounds on 2-Team Manipulations in RDM

[6] (Theorem 5.2) proves that RDM is 2-SNM-% and that this bound is tight,

namely «

RDM % We will rely on this result in Sect. 4.

Theorem 4 (Theorem 5.2 in [6]). afPM =

[17] (Theorem 3.1) proves that the bound of % is the best one can hope to

achieve for a Condorcet-consistent rule.

Theorem 5 (Theorem 3.1 in [17]). There is no Condorcet-consistent tourna-
ment rule on n players (for n > 3) that is 2-SNM-« for a < %

We prove the following useful corollary, which will be useful in Sect. 4.
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Corollary 1. Let T be a tournament and u,v € T two teams such that there is
at most one match in which a team in {u,v} loses to a team in T\{u,v}. Then

2
uszf
ruall) > 3

Proof. See full version [5] for proof.

4 Main Result: of’M = 31/60

The goal of this section is to prove that no 3 teams can improve their probability
of winning by more than % and that this bound is tight. We prove the following
theorem

Theorem 6. ofPM = %

Our proof consists of two parts:

— Lower bound: afPM > 3L for which we provide a tournament 7" and a set
S of size 3, which can manipulate to increase their probability by 2—(1)

— Upper bound: afPM < %, for which we provide a proof that for any tourna-

ment 7" no set S of size 3 can increase their probability of winning by more

than %, i.e. RDM is 3—SNM—%

4.1 Lower Bound

Let r denote RDM. Denote by B, the set of teams which team z beats. Consider
the following tournament T' = {u, v, w, a, b}:

B, = {U,U,b},Bb = {U,U},Bu = {va}an = {w}an = {aab}

Let S = {u, v, w}. By first-step analysis (Observation 3) and by using our knowl-
edge in Sect.3 for tournaments on 4 teams we can show that ry ., (1) = %
(see full version [5] for full analysis) Let w and v throw their matches with
w. ie. T' is S-adjacent to T, where in T’, w beats u and v and all other
matches have the same outcomes as in T. Then, since w is a Condorcet win-

ner, ’ru,v,w(Tl) = Tw(TI> =1. Therefore7

29 31

O‘z};DM > Tu,v,w (T,) - Tu,v,w(T) =1- @ = @

Thus, affDM > % as desired.

4.2 Upper Bound

Suppose we have a tournament 7" on n > 3 vertices and S = {u, v, w} is a set of
3 (distinct) teams, where S will be the set of manipulator teams. Let I be the
set of matches in which a team from S loses to a team from T\S. Our proof for
akRD M < % will use the following strategy
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— In the following section we introduce the first-step analysis framework by
considering possible cases for the first played match. In each of these cases
the loser of the match is eliminated and we are left with a tournament with
one less team. We pair each match in T with its corresponding match in
T’ and we bound the gains of manipulation in each of the following cases
separately (these correspond to each of the terms A, B, and C respectively in
the analysis in the next section).

e The first match is between two teams in S (there are 3 such matches).
e The first match is between a team in S and a team in T\ S and the team
from S loses in the match (there are |I| such matches).

e The first match is any other match not covered by the above two cases

— We prove that if |[I| < %71 then aZPM(T) < 2L (i.e. the set of manipulators

cannot gain more than &5 by manipulating).
— We prove that if T is the most manipulable tournament on n vertices (i.e.

ofPM(T) = aftDM), then afiPM(T) < 10
— We combine the above facts to finish the proof of Theorem 6

We first introduce some notation that we will use throughout this section.
Suppose that 7" and T are S-adjacent. Recall from Sect.3 that for a match
e = (i,7), T is the tournament obtained after eliminating the loser in e. Also
d, is the number of teams that a team x loses to in T'. For z € S, let £, denote
the number of matches x loses against a team in S when considered in T and
let ¢/, denote the number of matches that x loses against a team in S when
considered in T". Let d} denote the number of teams in T\S that x loses to.
Notice that since T and 7" are S-adjacent, x € S loses to exactly df teams in
T'\'S when considered in T”. Let G = I U {uv, vw, uw} be the set of matches in

which a team from S loses.

The First Step Analysis Framework. Notice that in the first round of RDM,
a uniformly random match e from the (g) matches is chosen. If e € G then we
are left with T\z where x loses in e for some z € S. If e & G, we are left with
T|. and all teams in S are still in the tournament. For x € S, there are ¢,
matches in which they lose to a team from S and d matches in which they lose
to a team from T\S. We consider each of these cases and use first-step analysis
(Observation 3) for both T and T” to obtain (see full version [5] for details)
FumanlT) — () = (A + B+ C) (1)

)
where

A= Z g;r{u,v,w}\x(T/\x) - ECCT{uﬂ},w}\LE(T\x)

ze{u,v,w}

B= Z d;(T{u,v,w}\w(T/\x) - T{u,v,w}\w(T\m))
zeS

C= Z ru7v,w(T/|e) — Tu,v,w (T|e)
e¢G
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Upper Bounds on A, B and C. We now prove some bounds on the terms A,
B and C (defined in Sect. 4.2) which will be useful later. Recall that I denotes
the set of matches in which a team from S loses from a team from T\S. We
begin with bounding A in the following lemma

Lemma 5. For all S-adjacent T and T', we have A < % Moreover, if |I| <1,
then A < 1.

Proof. See Appendix A.2 in [5] for a proof.

Next, we show the following bound on the term B.
Lemma 6. For all S-adjacent T,T' we have

di+di+di 1)

B <
- 3 3

Moreover, if |[I| <1, then B=0
Proof. See Appendix A.2 in [5] for a proof.

We introduce some more notation. For n € N, define M,, (a1, az, as) as the maxi-
mum winning probability gain that three teams {u, v, w} can achieve by manip-
ulation in a tournament T' of size n, in which there are exactly a; teams in T\ S
each of which beats exactly i teams of S. Formally,

M, (a1, az,a3) = max {Ts(T/) —rg(T)|T,T" are S-adjacent, |T| = n,|S| = 3,
a; teams in T\S beat exactly ¢ teams in S}

Additionally, let L; be the set of teams in T\\S each of which beats exactly i
teams in S. Let @ be the set of matches in which two teams from L; play against
each other or in which a team from L; loses to a team from S for i = 1,2, 3.
Notice that |Q| = 2a1 +az + (%) + (%) + (%) if there are a; teams in S\T each
of which beat ¢ teams from S.

With the new notation, we are now ready to prove a bound on the term C.
Recall that

C= Z Tu,v,w(T/|e) - Tu,v,w(T|e)
et G

where G = I U {uv,vw,uw} is the set of matches in which a team from S loses.
Then we have the following bound on C.

Lemma 7. For all S-adjacent T and T’ we have that C' is at most

a a
(2a1 + (21>)Mn1(a1 —1,a2,a3) + (a2 + (;))Mnl(ala as —1,a3)

a
+ (23) Mn(ala a2,a3 — ]-) + Z 7’u,v,w(jj/|e) - Tu,v,w(T|e)
e¢GUQ
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Proof. See Appendix A.2 in [5] for a proof.

The Case |I| < 4. We summarize our claim when |I| < 4 in the following
lemma

Lemma 8. Let T be a tournament, and S a set of 3 teams. Suppose that there
are at most 4 matches in which a team in S loses to a team in T\S (i.e. |I| < 4).
Then oZPM(T) < 31

Proof. We will show that M, (a1,a2,a3) < f(a1,as,a3) by induction on n € N
for the values of (a1, aq,a3) and f(a1,as,as) given in Table 1 below. Notice that
when there are at most 4 matches between a team in S and a team in 7\, in
which the teams from S loses, then we fall into one of the cases shown in the
table for (a1, az,as).

Table 1. Upper bounds on M, (a1,az,as)

ai1,a2,a3) | f(ai,az,as)

1. Base case. Our base case is when n = 3. If we are in the case of 3
teams then S wins with probability 1, so the maximum gain S can achieve by
manipulation is clearly 0, which satisfies all of the bounds in the table.

2. Induction step. Assume that My (a1, az,a3) < f(a1,asz,a3) hold for all
k < n and ay, a9, as as in Table1. We will prove the statement for £k = n. By
using the upper bounds on A, B, C' in Lemmas 5—7 and the inductive hypothesis
we can show that (see [5] for full analysis)
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ai

1
M, (a1, az2,a3) < 7~ 5

(5)
+ (a2 + (a;>)f(a1,a2 —1,a3) + <a23)f(a1,a2,a3 —1)

+ ((Z) —3(1 4 ay + ag + as) — (C;l> - <a22> - <a23>)f(a1,a2,a3)

where A’ =1and B'=0if [I| <1and 4’ = % and B’ = |L3\ if |[I| > 2. Next, we
apply the formula (A) to each of the cases in Table 1, to obtain M, (a;,as,a3) <
f(a1,az,a3). We defer the reader to [5] for full details.

This finishes the induction and the proof for the bounds in Table 1. Note that
flay,a2,a3) < % for all aq,as,az in Table 1 and this bounds is achieved when
(a1,az2,a3) = (0,2,0) i.e. there are 2 teams that beat exactly two of S as is the
case in the optimal example in Sect.4.1. Thus,we get that if there are at most
4 matches that a team from S loses from a team in T\S, then ofPM(T) < 21

This finishes the proof of the lemma.

A+ B + (2@1 + ( ))f(al — l,ag,a3)

(4)

General Upper Bound for the Most Manipulable Tournament

Lemma 9. Suppose that «ZPM(T) = Ot:I;‘:’EM. Let I be the set of matches a team

of S loses to a team from T\S. Then

RDM RDM [+ 7
= 7)< T
O[3,7L Qg ( ) — 3(|I| + 3)

Proof. Let T and T’ be S-adjacent tournaments on n vertices such that S =
{u,v,w} and
aff DM = o §PM(T) = rg(T') — r(T)

Le. T is the “worst” example on n vertices. By (1) we have

iy _ 1 (A+B+0)

3, I
B
where A, B and C were defined in Sect. 4.2. By Lemma 5 we have

A<

Wl

and by Lemma 6
p<dutd +d _ Ul
- 3 3
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Let e ¢ G. Notice that both T"|, and T, are tournaments on n — 1 vertices
and by definition of G, u, v, w are not eliminated in both 7”|. and T'|.. Moreover,
T'|. and T|. are S-adjacent. Therefore, for every e ¢ G, we have by Lemma 2

Pusow(T'|e) = Tuww(Tle) < af 22 < aff PV

By using the above on each term in C and the fact that |G| = 3 + |I|, we get
that

c<((3) - @+ mage

By using the above 3 bounds we get

1 7 I
aro < 1T <(”) — (34 [])alDM)

AR
I +7
= (1) + gy < THT
RDM RDM ||+ 7
< « = < ———
3,n S ( )— 3(|I|+3)

as desired.

Proof of Theorem 6. Suppose that T is the most manipulable tournament on

n vertices ie. it satisfies afPM(T) = of'DM 1If |I| < 4, then by Lemma 8, we

have that N
RDM RDM

oz, =ag " (T) < 50

If |I| > 5, then by Lemma 9

=3(I+3) ~36+3) 2

Il +7 S5+7 1
aftDM — oBDM(T) < +7 _ 5+

x+7
3(xz+3)
bounds, we obtain aggM < % for all n € N. Therefore,

where above we used that is decreasing for x > 5. Combining the above

31
akRDM = maxoszgM < —
neN ’ 60

which proves the upper bound and finishes the proof of Theorem 6.

5 Sybil Attacks on Tournaments

5.1 Main Results on Sybil Attacks on Tournaments

Recall our motivation from the Introduction. Imagine that a tournament rule is
used as a proxy for a voting rule to select a proposal. The proposals are com-
pared head-to-head, and this constitutes the pairwise matches in the resulting
tournament. A proposer can try to manipulate the protocol with a Sybil attack
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and submit many nearly identical proposals with nearly equal strength relative
to the other proposals. The proposer can choose to manipulate the outcomes
of the head-to-head comparisons between two of his proposals in a way which
maximizes the probability that a proposal of his is selected. In the tournament T’
his proposal corresponds to a team uy, and the tournament 7" resulting from the
Sybil attack is a member of Syb(T,u1,m) (Recall Definition 9). The questions
that we want to answer in this section are: (1) Can the Sybils manipulate their
matches to successfully increase their collective probability of winning? and (2)
Is it beneficial for the proposer to create as many Sybils as possible?

The first question we are interested in is whether any group of Sybils can
manipulate successfully to increase their probability of winning. It turns out
that the answer is No. We first prove that the probability that a team that is
not a Sybil wins does not depend on the matches between the Sybils.

Lemma 10. There exists a function q that takes in as input integer m, tourna-
ment T, team uy € T, and team v € T\uy with the following property. For all
T € Syb(T,uy,m), we have

TU(T/) = q(m7 T7 Uy, U)

where the dependence on uy is encoded as the outcomes of its matches with the
rest of T'.

Proof. See Appendix A.3 in [5] for a full proof.

Note that by Lemma 10 r,(T") = g(m,T,u;,v) does not depend on which
tournament 77 € Syb(T,u;,m) is chosen. Now, we prove our first promised
result. Namely, that no number of Sybils in a Sybil attack can manipulate the
matches between them to increase their probability of winning.

Theorem 7. Let T be a tournament, uy € T a team, and m and integer. Let
T] € Syb(T,u;,m). Let S = {uy,...,um}. Then

afiPM (1)) = 0

Proof. Let T| and T be S-adjacent. By Definition 9, T3 € Syb(T,u;, m). There-
fore by Lemma 10, r,(T7) = r,(T5) = q(m, T, u1,v) for all v € T\u;. Using this
we obtain

rs(T) =1= Y r(T))=1= Y r,(T3) =rs(Ty)
veT\uq veT\uq

Therefore, rg(T]) = rs(T3) for all S-adjacent T7, T4, which implies the desired
result.

We are now ready to prove our second main result. Namely, that RDM is
Asymptotically Strongly Sybil-Proof (Definition 10). Before we present the result
(Theorem 8) we will try to convey some intuition for why RDM should be ASSP.
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Let u; be a team to create Sybils of (u; is not Condorcet Winner). Let A be
the set of teams which u; beats and B the set of teams which wu; loses to in
T. Observe that the only way a Sybil can win is when all the teams from B
are eliminated before all the Sybils. The teams from B can only be eliminated
by teams from A. However, as m increases there are more Sybils and, thus, the
teams from A are intuitively more likely to all lose the tournament before the
teams from B. When there are no teams from A left and at least one team from
B left, no Sybil can win. In fact, this intuition implies something stronger than
RDM being ASSP: the collective winning probability of the Sybils and the teams
from A converges to 0 as m converges to co (or, equivalently, the probability that
a team from B wins goes to 1). This intuition indirectly lies behind the technical
details of the proof of Theorem 8. Let p(m,T,u1) be the collective probability
that any Sybil or a team in A wins. It is not hard to see that by Lemma 10 it
doesn’t depend on the matches between the Sybils (see [5] for full details). Then
we have the following theorem.

Theorem 8. Randomized Death Match is Asymptotically Strongly Sybil-Proof.
In fact a stronger statement holds, namely if uy € T is not a Condorcet winner,
then

lim p(m,T,u1) =0

m— 00

Proof. See Appendix A.3 in [5] for a full proof.

5.2 On a Counterexample to an Intuitive Claim

We will use Theorem 8 to prove that RDM does not satisfy a stronger version
of the monotonicity property in Definition 6. First, we give a generalization of
the definition for monotonicity given in Sect. 3

Definition 11 (Strongly monotone). Let r be a tournament rule. Let T and
let CUD be any partition of the teams in T into two disjoint sets. A tournament
rule r is strongly monotone for every (u,v) € C x D, if T' is {u,v}-adjacent to
T such that u beats v in T' we have re(T') > ro(T)

Intuitively, r is Strongly monotone if whenever flipping a match between a team
from C' and a team from D in favor of the team from C' makes C' better off. Notice
that if |C| = 1 this is the usual definition of monotonicity (Definition 6), which is
satisfied by RDM by Lemma 4. However, RDM is not strongly monotone, even
though strong monotonicity may seem like an intuitive property to have.

Theorem 9. RDM is not strongly monotone

Proof. See [5] for a proof.
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6 Conclusion and Future Work

We use a novel first-step analysis to nail down the minimal « such that RDM is
3-SNM-a. Specifically, our main result shows that ofPM = %. Recall that this
is the first tight analysis of any Condorcet-consistent tournament rule for any
k > 2, and also the first monotone, Condorcet-consistent tournament rule that
is k-SNM-« for any k > 2, < 1. We also initiate the study of manipulability
via Sybil attacks, and prove that RDM is Asymptotically Strongly Sybil-Proof.
Our technical approach opens up the possibility of analyzing the manip-
ulability of RDM (or other tournament rules) whose worst-case examples are
complicated-but-tractable. For example, it is unlikely that the elegant coupling
arguments that work for k£ = 2 will result in a tight bound of 31/60, but our app-
roach is able to drastically reduce the search space for a worst-case example, and
a tractable case analysis confirms that a specific 5-team tournament is tight. Our
approach can similarly be used to analyze the manipulability of RDM for k > 3,
or other tournament rules. However, there are still significant technical barriers
for future work to overcome in order to keep analysis tractable for large &, or for
tournament rules with a more complicated recursive step. Still, our techniques
provide a clear approach to such analyses that was previously non-existent.
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