
Credible, Strategyproof, Optimal, and Bounded

Expected-Round Single-Item Auctions for All

Distributions

Meryem Essaidi # Ñ

Computer Science, Princeton University, NJ, USA

Matheus V. X. Ferreira # Ñ

Computer Science, Harvard University, MA, USA

S. Matthew Weinberg # Ñ

Computer Science, Princeton University, NJ, USA

Abstract

We consider a revenue-maximizing seller with a single item for sale to multiple buyers with in-

dependent and identically distributed valuations. Akbarpour and Li (2020) show that the only

optimal, credible, strategyproof auction is the ascending price auction with reserves which has

unbounded communication complexity. Recent work of Ferreira and Weinberg (2020) circumvents

their impossibility result assuming the existence of cryptographically secure commitment schemes,

and designs a two-round credible, strategyproof, optimal auction. However, their auction is only

credible when buyers’ valuations are MHR or α-strongly regular: they show their auction might not

be credible even when there is a single buyer drawn from a non-MHR distribution. In this work,

under the same cryptographic assumptions, we identify a new single-item auction that is credible,

strategyproof, revenue optimal, and terminates in constant rounds in expectation for all distributions

with finite monopoly price.
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1 Introduction

We consider a revenue-maximizing seller with a single item for sale to multiple buyers. Each

buyer i has value vi for the item, drawn from some distribution Di known to the seller.

Our goal is to find an optimal auction among all credible auctions that are strategyproof.

Informally, an auction is credible if the auctioneer has the incentive to execute the auction in

earnest, even when permitted to cheat in ways that are undetectable to bidders. An auction

is strategyproof/truthful if bidders have the incentive to bid their valuation vi.

Akbarpour and Li [1] introduced a trilemma for single-item auctions: (1) the second-price

auction with optimal reserve is the unique truthful, one-round, revenue-maximizing auction,

but is not credible; (2) the Ascending Price Auction (APA) with optimal reserve is the

unique truthful, revenue-maximizing, credible auction, but requires an unbounded number

of rounds of communication between the auctioneer and bidders; (3) the first-price auction

with optimal reserve is the unique revenue-maximizing, credible, one-round auction, but is

not truthful.

Ferreira and Weinberg [12] circumvent their trilemma and show that assuming the auction-

eer is computationally bounded and the existence of cryptographically secure commitment

schemes suffices for an optimal, strategyproof, and credible auction that terminates in two
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rounds – the Deferred Revelation Action (DRA). DRA derives from a simple modification of

the second-price auction: initially, the auctioneer requests all bidders to cryptographically

commit to their bid and submit a deposit. Later, the auctioneer requests all bidders to

reveal their bids. If a bidder refuses to reveal their bid (thus aborting from the auction),

their deposit is forfeit and paid to the winner of the auction. When buyers’ valuations

satisfy the Monotone Hazard Rate (MHR) condition, they showed that a deposit equal

to the optimal reserve price suffices to remove any incentive for the auctioneer to cheat.

They also extend their analysis to ³-strongly regular valuations if one is willing to consider

ε-credibility – the auctioneer is allowed to improve their revenue by at most an ε fraction.

However, the scheme doesn’t extend to even a single buyer with valuation drawn from the

equal revenue distribution: a cheating auctioneer can obtain infinite revenue even when the

optimal auction has constant revenue! Our work proposes the Ascending Deferred Revelation

Auction (ADRA) which, using dynamic deposits, extends their results to all distributions

and has constant communication complexity – defined as the expected maximum number of

times any bidder communicates with the auctioneer.

The communication complexity for ADRA is a random variable that depends on a

positive parameter ε. In the ascending price auction, while the auction has not yet ended,

the auctioneer invites bidders to raise their bid in additive steps of ε > 0. Bidders have

the option to raise their bids or drop out. The auction ends when there is a single bidder

left who, in turn, pays their most recent bid. Our mechanism improves over this by using

multiplicative value increments of 1 + ε (starting from a positive reserve price r), which leads

to an exponentially smaller communication complexity compared to APA. While APA is

only approximately revenue optimal with respect to ε, ADRA’s revenue, credibility, and

strategyproofness are independent of ε. Thus, we can let ε depend on the value distribution

so that the communication complexity is constant.

Informally, our main results are (under the existence of cryptographic commitments):

under the assumption bidders are drawn i.i.d. from distribution D with finite monopoly

price – arg maxp pPrv←D [v g p] < ∞ – , there is a truthful, revenue-maximizing, credible

auction with constant communication complexity.

Technical Overview

Our auctions require basic cryptographic commitments. Initially, any bidder i sends a

cryptographic commitment ci to a bid bi, without revealing any information about their bid.

The auction proceeds in rounds and in each round, we have as invariant that all bidders that

have not yet quit promised that bi g q where q is the current bid lower bound. To ensure

no bidder lies (claim bi g q when in fact bi < q), they are required to deposit a quantity

f(q) > q that is forfeit if they lie.

Then, in each round, the auctioneer asks each remaining bidder if bi g f(q) > q. A bidder

quits if bi < f(q), otherwise they remain in the auction. If two or more bidders raise their

bid, the auction proceeds to the next round and asks bidders to increase their deposit to

f(f(q)). Else, the auction ends and the auctioneer asks all bidders (including the ones that

quit in previous rounds) to reveal their bid. The auctioneer forwards these revealed bids

to all other bidders before awarding the item to the winner. If, however, a bidder does not

reveal their bid or is found to have cheated in a prior round – claimed bi g f(q) when, in

fact, bi < f(q) – they lose their deposit which is paid to the winner of the auction.

Bidders’ deposits have a positive externality of removing any incentive for the auctioneer

to cheat in ways that bidders cannot detect. And so, the auctioneer faces a tradeoff: they can

commit fake bids and selectively reveal them, but they pay a fine for every bid they choose

to conceal. While a significant technical portion of [12] deals with finding a sufficiently large
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deposit to incentivize credibility, our work uses adaptive deposits that increase the longer

a bidder remains in the auction. Furthermore, our mechanism requires constant rounds in

expectation to terminate and is credible for a larger class of bidder valuations.

Roadmap

Section 2 introduces notations and definitions. Section 3 defines the ascending deferred

revelation auction and proves it is revenue optimal, strategyproof, and credible. Section 4

compares the communication complexity of the ascending price auction with that of our

ascending deferred revelation auction.

1.1 Related work

We contribute to a growing literature on credible auctions with the closest work to ours

described in the previous section [1, 12]. Daskalakis et al. [9] proposes multi-item additive

credible and approximately optimal auctions. Pycia and Raghavan [18] show that the first-

price auction with no reserve price is the unique mechanism that is credible, individually

rational, and that always awards the object to the highest bidder.

We also contribute to a growing literature on mechanisms with imperfect commitment

in multi-period auctions. Works such as [15] and [21] model settings where the auctioneer

is sequentially rational and cannot commit to her future behavior. In [15], the auctioneer

commits to an auction with a reserve price in each period but cannot commit to her future

reserve prices. In [21], the auctioneer updates her information about the buyers’ values after

each unsuccessful attempt to sell the item. Here, we consider an auctioneer that is unable to

commit even in a single shot auction.

The use of fines to disincentivize participants from aborting a protocol is not unprecedented

[3, 4], and there are known impossibility results when participants can abort [8] absent

monetary incentives.

There is significant interest in using mechanism design techniques to design secure

blockchains [2, 6, 13, 11, 20]. In this front, credible auction design is closely related to

designing transaction fee mechanisms for blockchain where miners auction block space and

(similar to here) are unable to commit to an auction format [11, 20].

In its inception, Bitcoin implemented a (credible) first-price auction as its transaction

fee mechanism [17]; however, in attempting to make transaction fees more predictable, the

Ethereum Improvement Proposal (EIP) 1559 [5] replaces the first-price auction with an

adaptive posted-price mechanism.1 Roughgarden [20] provides a formal analysis of EIP-1559.

Ferreira et al. [11] propose an improvement on the pricing update rule that results in higher

stability and welfare guarantees. Collusion between miners and bidders is an important

concern in blockchain transaction fee mechanisms considered by [20, 7]. In that regard, Chung

and Shi [7] show that any strategyproof and collusion-resistant transaction fee mechanism

must obtain zero revenue – the mechanism must burn all payments from bidders.

2 Notation and Preliminaries

The auctioneer has a single indivisible item to sell to n bidders. Bidder i ∈ [n] = {1, 2, . . . , n}

has private value vi drawn from distribution Di independently of the values of other bidders.

We assume bidders have quasilinear utility: the utility of a bidder is their value (if they receive

1 EIP-1559 went live in the Ethereum blockchain in the London hard fork on August 5th, 2021 [19].

ITCS 2022
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the item) minus any payments. The value profile of all bidders is the vector v = (v1, v2, . . . , vn)

and we let D = D1 × . . . × Dn denote the product distribution of bidder valuations. To

be concrete: each bidder i knows only their value vi and type distribution Di, but not

the value of other bidders v−i = (v1, . . . , vi−1, vi+1, . . . , vn) nor their type distributions

D−i = ×j ̸=iDj . When the distributions are i.i.d., we use D = D × . . . × D to denote the

product distribution of bidder valuations. The auctioneer knows the type distributions D,

but not the realization of bids v. To sell the item, the auctioneer implements a mechanism

which is a communication game between the auctioneer and the bidders. It will be convenient

to refer to the communication game in its extensive form as follows.

Extensive-Form Game

An extensive-form game is represented by a directed rooted tree where each node is owned

by a player. We refer to the auctioneer as player 0 and bidder i ∈ [n] as player i. Each

node has a set of available auctions for its owner. The owner of that node chooses one

action. Upon taking this action, the game moves to the next node associated with the action

taken. The game ends when the game reaches a terminal node. An information set is a

collection of nodes owned by one player that are indistinguishable to that player (given all

the communication up to that point).2

The Communication Game

We consider games that proceed as follows. In each round, the auctioneer sends a private

request to each bidder which in turn sends a private reply. Whenever the auctioneer makes

a request, the bidder always has the option to ignore the request and abort and leave the

auction. If a bidder aborts before termination, the bidder might be required to pay a fine.

To enforce fines, the auctioneer must request a bidder to make a prior deposit, and fines

cannot exceed that deposit. Importantly, each bidder communicates only with the auctioneer,

and upon termination learns only whether they win the item and how much they pay. The

auctioneer cannot force bidders to participate honestly (or participate at all), but might use

fines as described to penalize a bidder for taking certain actions.

Strategies

An interim strategy si for bidder i at game G is a mapping from an information set Ii owned by

bidder i to an action si(Ii) available at Ii. A strategy Si for bidder i is a mapping from value

vi to an interim strategy svi

i . Given a mechanism G and strategy profile S = (S1, S2, . . . , Sn)

for G, we refer to (G, S) as a protocol. (G, S) induces an outcome characterized by an

allocation and payment rules. An allocation rule xG is a vector valued function from interim

strategy profile s to an indicator xG
i (s) ∈ {0, 1} for each bidder i ∈ [n]. The indicator is 1 if

and only if bidder i receives the item. A payment rule pG is a vector valued function from

interim strategy profile s to the payment pG
i (s) for each bidder i ∈ [n]. Then, the utility of

bidder i is

uG
i (s) := vi · xG

i (s) − pG
i (s).

2 For example, if the auction is a sealed-bid auction with two bidders, then the extensive form would
have two levels. In the first level, Bidder 1 submits a bid b and we move to state b where bidder 2 is
invited to submit a bid. Since bidder 2 does not know b, all states b are in the same information set.
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When (G, S) is clear from context, we write x, p, u to denote the allocation, payment

rule, and utility respectively. The payoff the auctioneer derives from (G, S) is the revenue:

Rev(G,S)(D) = Ev←D

[

n
∑

i=1

pi(s)

]

.

Equilibrium

An interim strategy Si(vi) is a best response to interim strategy S−i(v−i) of everyone else if

bidder i (weakly) maximizes their utility by following strategy Si(vi) (over any other strategy

S′i(vi)). Our first desiderata is to design mechanisms that have an ex-post Nash Equilibrium.

Formally, (G, S) forms an ex-post Nash equilibrium if for all i ∈ [n] and for all v, Si(vi) is a

best response to S−i(v−i).

▶ Definition 1 (Strategyproof/IC). Mechanism G is ex-post Incentive Compatible (IC) if

there is a strategy profile S such that (G, S) forms an ex-post Nash equilibrium.

The existence of a Bayesian Nash equilibrium is weaker than that of an ex-post Nash

equilibrium. The seminal work of Myerson [16] characterizes the expected revenue of any

mechanism at a Bayesian equilibrium.

▶ Definition 2. (G, S) forms a Bayesian Nash equilibrium if for all i ∈ [n], for all vi,

Si(vi) ∈ arg max
S′

i
(vi)

Ev
−i←D

−i
[ui(vi, S′i(vi), S−i(v−i))] .

Moreover, G is Bayesian Incentive compatible (BIC) if there is a strategy profile S such that

(G, S) forms a Bayesian Nash equilibrium.

▶ Definition 3 (Virtual Value). The Cumulative Density Function (CDF) of distribution

D is F (x) = Prv←D [v f x] and the Probability Density Function (PDF) of D is f(x) :=

dF (x)/dx. The virtual value function of D is the real-valued function φD(x) = x − 1−F (x)
f(x) .

The ironed virtual value φ̄ of D is the upper concave envelope of φ (see [16]). We will often

abuse notation and use φi(x) := φDi(x) and φ̄i(x) := φ̄Di(x).

▶ Theorem 4 (Myerson’81 [16]). Assume G is BIC and bidders follow Bayesian equilibrium

S. Then

Rev(G,S)(D) = Ev←D

[

n
∑

i=1

φ̄i(vi) · xi(s)

]

.

We refer to Rev(D) as the optimal revenue over all BIC mechanisms at a Bayesian equilibrium.

If the virtual value function φi(·) is monotone non-decreasing, we say the distribution Di is

regular:

▶ Definition 5 (³-strongly regular/Regular/MHR). A distribution D is ³-strongly regular if

for all v′ g v, φD(v′) − φD(v) g ³(v′ − v). Moreover, D is regular if D is 0-strongly regular

and D has Monotone Hazard Rate (MHR) if D is 1-strongly regular.

Thus if Di is regular, for all i, the optimal auction allocates the item to the bidder with

the highest virtual value, as long as their virtual value is non-negative. This defines an

optimal reserve price r(D) := (φ̄D)−1(0), commonly referred as the Myerson reserve for

distribution D. Note the ironed virtual value φ̄ function is non-decreasing. Moreover, we

will only consider distributions where the Myerson reserve is finite, which is equivalent to

the monopoly price arg maxp pPrv←D [v g p] being finite.

ITCS 2022
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Our second desiderata concerns credibility – the incentive for the auctioneer to implement

the promised auction. While the auctioneer promises to implement a mechanism G, we

assume the auctioneer might deviate as long as this deviation cannot be detected by bidders.

To be concrete: the auctioneer and bidders participate in a protocol (G, S) and a safe

deviation of the auctioneer’s strategy is another mechanism G′ such that no bidder can

distinguish the protocol (G′, S) from (G, S). This is because their personal communication

with the auctioneer is always consistent with the auctioneer implementing the intended

mechanism G to some set of ni bidders, who are using feasible strategies with some value

profile v1
i , v2

i , . . . , vni

i (we add the subscript i to denote that the set of bidders need not be

the same for all i, and the hypothetical strategies need not be the same either). Importantly,

because each bidder can only observe their own communication with the auctioneer, distinct

bidders can have inconsistent views of what the communication game is, depending on their

interaction with the auctioneer. Then, although the auctioneer is playing protocol (G′, S),

bidder i believes the auctioneer is playing the protocol (G, Si, (Si)−i) where (Si)−i is any

strategy profile for ni bidders.

Before we formally define credibility, we will require the same computational assumptions

from [12].

▶ Definition 6. A commitment scheme Commit with parameter ¼ is an algorithm that takes

a message m ∈ {0, 1}poly(λ) and a random string r ∈ {0, 1}poly(λ) and outputs a commitment

Commit(m, r) and satisfy the following conditions:

Efficiency. Evaluating Commit(m, r) takes time poly(¼).

Perfectly Hiding. The distributions of Commit(m, r) and Commit(m′, r′), when r and

r′ are uniformly random, are identical for any messages m and m′.

Computationally Binding. For any algorithm A that takes as parameter ¼, the

probability A outputs pairs (m, r) ̸= (m′, r′) such that Commit(m, r) = Commit(m′, r′) is

at most 1
2Ω(λ) .

Non-malleable. Formal definitions of malleability are involved (see [10]). At a high

level, a commitment scheme is non-malleable if given a commitment c = Commit(b, r)

and a non-identity function f and g : {0, 1}∗ → {0, 1}∗, it is not possible to compute a

commitment Commit(f(b), g(r)).

▶ Definition 7 (Reasonable deviation). A commitment c is explicitly tied to (b, r) if either

the auctioneer or a bidder computed c = Commit(b, r). A deviation for the auctioneer is

reasonable, if whenever the auctioneer opens a commitment c = Commit(b, r) – by revealing

(b, r) – then c was explicitly tied to (b, r).

Note the assumption that a commitment scheme is computationally binding implies a

commitment c is explicitly tied to at most one pair (b, r). Non-malleability is important to

motivate the restriction of the auctioneer to reasonable deviations only: if our commitment

scheme were malleable, it would be possible for the auctioneer to reveal a commitment

c = Commit(f(b), g(r)) without ever explicitly computing Commit(f(b), g(r)) – they would

observe Commit(b, r), indirectly compute a commitment Commit(f(b), g(r)) and reveal f(b)

once they learn (b, r).

▶ Definition 8 (Computationally Credible). For a mechanism G, assume bidders follow a

strategy profile S where (G, S) is a Bayesian Nash equilibrium. (G, S) is computationally

credible if implementing the communication game G maximizes the auctioneer’s expected

revenue over all safe and reasonable deviation where the expectation is taken over bidder

valuations.
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Our last desiderata concerns minimizing the number of times a bidder is required to commu-

nicate with the auctioneer.

▶ Definition 9 (Communication/Round Complexity). The communication/round complexity

of protocol (G, S) is the expected maximum number of times any bidder communicates with

the auctioneer.

As an example, the communication complexity for direct revelation auctions (like the first and

second price auctions) is 1; while the communication complexity for the Deferred Revelation

Auction (DRA) from [12] is 2.

3 Ascending Deferred Revelation Auction

Let’s first recall a formal definition of the Ascending Price Auction (APA).

▶ Definition 10 (Ascending Price Auction). The ascending price auction (APA) with reserve

price r and positive step size ε proceeds as follows:

1. Initially, bidder i bids bi = r; otherwise, they quit the auction.

2. While there are two or more bidders that did not quit:

a. The auctioneer visits the bidder with lowest bid. Let i be such bidder. The auctioneer

asks bidder i if they wish to raise their bid by ε. If they accept, update their bid to

bi = bi + ε. Else, bidder i quits the auction, does not receive the item, and pays 0.

3. Allocate the item to the (unique) bidder i∗ that did not quit. Bidder i∗ pays their bid bi∗ .

From [1], APA is the only optimal, credible, strategyproof mechanism; but its expected

number of rounds to terminate can be large:

▶ Lemma 11. Consider the ascending price auction with n bidders with valuations drawn

from distribution D where bidder i quits when asked to bid above vi. Then the communication

complexity for APA is Θ(1) + Rev
(G,S)(D)−rP r[maxi vigr]

ε .

We defer the proof to Appendix A. Intuitively, APA requests bidders to raise bids in additive

value increments until there is at most one bidder left. Note that the ascending price auction

with Myerson reserve is approximately revenue optimal: its revenue approximates the optimal

revenue as ε → 0, which, in turn, increases the communication complexity. The next example

provides an application of Lemma 11.

▶ Example 12. Consider APA with reserve price r = 1 and n bidders drawn from the equal

revenue distribution D with Prv←D [v g p] = 1
p . From Theorem 4, APA with reserve price

r = 1 is revenue optimal with Rev(Dn) = n (see Appendix A for a proof). Then Lemma 11

implies that the communication complexity on this instance is Θ( n
ε ).

The Deferred Revelation Auction (DRA) from [12] improves upon APA by requiring only

two rounds of communication between each bidder with the auctioneer. However, the DRA

is only credible when bidder valuations are drawn from an MHR distribution. This MHR

condition is not satisfied by the equal revenue distribution from Example 12: even if there is

a single bidder, for any positive M > 0 and any penalty P > 0, [12] showed a safe deviation

for that auctioneer that obtains revenue at least M despite the fact that the optimal auction

has revenue 1!

To circumvent the limitations of DRA and APA, we propose an intermediate mechanism,

the Ascending Deferred Revelation Auction (ADRA), that will combine properties from both

auctions. It proceeds in a similar fashion to APA. In each round, if a bidder is still in the

ITCS 2022
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auction and is bidding b, the auctioneer asks if that bidder wishes to increase their bid to

f(b) > b where f is any non-decreasing function. For APA, f(b) = b + ε. For ADRA, we

let f be an arbitrary increasing function and in particular, we study the communication

complexity when f(b) = (1 + ε) · b – bids increase in multiplicative rather than additive steps.

For ADRA, if a bidder refuses to raise their bid, they tentatively quit from the auction, but

they will still have the chance to receive the item. Note the distinction from APA: in APA,

whenever a bidder quits, they have no chance of receiving the item and pay nothing. This

ensures that APA is credible: if the auctioneer lies and attempts to make the highest bidder

increase their bid when they are the only bidder left, the auctioneer risks not allocating the

item to anyone.

For ADRA, all bidders are required to commit to their bid before the auction starts and

submit a deposit (just like in DRA), but the deposit increases the longer a bidder stays in

the auction (unlike DRA where the deposit is fixed). This allows ADRA to be credible in

instances where DRA is not. Also commitments schemes allows ADRA to be credible even if

a bidder have a second chance to receive the item (after they quit).

During the execution of the auction, bidders must behave according to their committed

bid. That is, if bidder i commits to bid bi, then they must raise their bid as long as their bid

does not exceed bi, and they must quit if their bid is about to exceed bi. Whenever a bidder

raises their bid, they also raise their deposit. If a bidder deviates (refuses to participate, or

raises their bid when f(b) > bi, or quits when f(b) < bi), they will forfeit their deposit to

the winner of the auction. In general, no honest bidder is required to deposit more than

f(bi) = O(bi). Next, we proceed with a formal definition of ADRA.

▶ Definition 13 (Levels). For each bid b, we assign an integer value g(b) where g is non-

decreasing – for two bids b ≠ b′, b > b′ if and only ifg(b) g g(b′). We refer to g as a level

function and g(b) as the level of b. We define the inverse function g−1(k) := sup{x : g(x) = k}.

Note g−1 is non-decreasing.

▶ Definition 14 (Ascending Deferred Revelation Auction). The Ascending Deferred Revelation

Auction (ADRA) with reserve price r and level function g, proceeds as follows:

1. We refer to di as the deposit of bidder i. Initially di = r. During execution of the auction,

we say a bidder aborts whenever they refuse to follow with the auctioneer’s request. Let

ℓi denote the level bidder i quits, aborts, or becomes the only remaining bidder. Let k be

the current level of the auction. Initialize k := g(r).

2. Request bidder i to commit to a bid bi – bidder i draws a uniformly random string ri and

sends ci = Commit(bi, ri) to the auctioneer.

3. The auctioneer forwards ci to bidder j ̸= i.

4. While there are two or more bidders that have neither quit nor aborted, for each bidder i

that is still active:

a. If g(bi) f k, request bidder i to quit.

b. If g(bi) > k, request bidder i to raise their deposit to di = g−1(k + 1).

c. Increment k = k + 1 and return to Step 4.

5. Request bidder i to reveal (ri, bi). The auctioneer forwards (ri, bi) to bidder j ̸= i.

6. The auctioneer aborts bidder i if:

a. Bidder i refuses to reveal (ri, bi), or

b. Bidder i sends a pair (r′i, b′i) such that ci ̸= Commit(r′i, b′i), or

c. Bidder i correctly sends a pair (ri, bi) such that ci = Commit(ri, bi), but, at Step 4a,

bidder i did not quit at the first level ℓi where g(bi) f ℓi.
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7. Let A denote the set of bidders that did not abort. Let i∗ = arg maxi∈A:bigr bi be the

highest such bidder (if one exist). Bidder i∗ receives the item and pays

pi∗ = max

{

r, max
j∈A\{i∗}

bj

}

.

8. Bidder i ∈ A receives di back. Bidder i∗ receives the deposit of bidder j ̸∈ A.

There are many safe and reasonable deviations that the auctioneer can implement:

At Step 2, commit to a bid b ̸= bj , for any j ∈ [n] to bidder i.

Commit to a bid b to bidder i once they learn about bid bj – b can depend on bj , but not

bi since the commitment scheme is non-malleable and perfectly hiding.

Commit to a bid b to bidder i, but not to bidder j.

Commit to a bid b to bidder i, but not reveal b at Step 5.

ADRA instructs bidders to follow the following strategy:

▶ Definition 15. Assume bidder i participates in the ascending deferred revelation auction

with reserve price r and level function g. Define SADRA
i (bi) as the suggested strategy for

bidder i where, given bid bi (not necessarily equals to vi), bidder i:

Commits to bid bi by forwarding ci = Commit(bi, ri) where ri is a uniformly random

string;

Quits at the first level k where k f g(bi) (recall k g g(r));

Reveals (bi, ri) once there is a single bidder left.

We say bidder i is truthful when they implement SADRA
i (vi).

Next, we observe that implementing the suggested strategy is a dominant strategy for bidders

(even when the auctioneer cheats); otherwise, that bidder loses their deposit.

▶ Observation 16. Assume the auctioneer implements any safe deviation from ADRA. Then

it is a best response for bidder i to implement the suggested SADRA
i (bi) for some bid bi f vi.

Proof. If bidder i deviates from SADRA
i , they abort from the auction, do not receive the

item, and have their deposit forfeit. By implementing SADRA
i (bi), bidder i either wins and

pay at most vi or loses and pay nothing. Thus, following SADRA
i (bi), for some bi f vi, weakly

dominates any other strategy. ◀

Next, we prove that the ADRA with optimal reserve price is credible. The proof follows a

similar format to that of the proof of credibility for the ascending price auction with optimal

reserve [1]. [1] observes the only safe deviation for the auctioneer is to force the highest bidder

to increase their bid even when they are the only bidder left in the auction. However, even if

the auctioneer cheats, it is a dominant strategy for the highest bidder to stay in the auction

as long as their bid does not exceed their value vi, since they receive nothing once they quit.

This argument implies any safe deviation from APA is itself a BIC mechanism – bidders

would not have the incentive to change their strategy even if they knew the auctioneer was

cheating. As a result, no safe deviation (which is a BIC mechanism) can provide higher

revenue than the ascending price auction with optimal reserve (which is a revenue optimal

BIC mechanism). This proves the ascending price auction with optimal reserve is credible.3

3 Credibility is a subtle property. An innocent modification of the ascending price auction (which is not
credible) is to allow the auctioneer to simultaneously request all bidders to raise their bid by ε. In
case all remaining bidders quit simultaneously, the auctioneer allocates the item to a random bidder
and charges their previous bid. Despite the similarities and the fact this auction implements the same
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To apply a similar argument to ADRA, we note that the strategy profile SADRA(v) =

(SADRA
1 (v1), SADRA

2 (v2), . . . , SADRA
n (vn)) for ADRA forms an ex post Nash equilibrium: it

results in the same allocation and payments as the second-price auction with reserve r. We

will show that SADRA(v) still forms an ex post Nash equilibrium even if the auctioneer

implements an optimal safe deviation. Note the distinction with Observation 16 which

doesn’t specify the value for bi, while here we will explicitly claim that setting bi = vi and

implementing SADRA
i (vi), for all i, forms an ex post Nash equilibrium.

As a result, any safe deviation of ADRA is a BIC mechanism – bidder i is better of

being truthful assuming bidder j ̸= i is truthful. Thus if ADRA is already revenue optimal

(among all BIC mechanisms), the auctioneer cannot improve revenue by implementing a safe

deviation (which is itself a BIC mechanism).

▶ Proposition 17. Assume bidder i implements SADRA
i (vi). If G′ is a safe deviation from

ADRA, then (G′, SADRA) forms an ex post Nash equilibrium.

We defer the proof to the appendix. For intuition, consider the ADRA with any level function

g, and a single bidder with value v drawn from the equal revenue distribution. The optimal

auction sets a reserve price r = 1 resulting in a revenue of 1. We argue that the auctioneer

cannot improve revenue by cheating – while the auctioneer could obtain infinite revenue

under DRA [12].

Informally, if the auctioneer deviates in the attempt to force the real bidder to pay more

than 1, they would impersonate fake bidders and choose which bids to reveal during the

execution of the auction. However, the auctioneer must abort any fake bidders that bid

above v; otherwise, the real bidder knows they are not the winner. The challenge (for the

auctioneer) is that the longer a fake bidder remains active in the auction, the more their

deposit increases (thus making it more expensive to abort). We argue that the real bidder

cannot improve their utility by bidding b ≠ v under this safe deviation. For simplicity,

consider the case where the auctioneer sends only one fake bid b′ independent of b (since our

commitment scheme is non-malleable and perfectly hiding).

The case where the real bidder bids b > v can only result in a higher payment than

v when b′ > v and the same outcome when b′ < v. For the case where the real bidder

bids b < v, if b′ ̸∈ (b, v), the outcome is the same regardless of the real bidder bidding b or

v. However, if b′ ∈ (b, v), the auctioneer could make the real bidder pay b′ when the real

bidder bids v. The catch is that the auctioneer cannot distinguish the cases where the real

bidder bids v or b until the real bidder quits at level g(b) – since our commitment scheme is

perfectly hiding. To be concrete: if the auctioneer aborts b′ by level g(b), they would have

done so before knowing if the real bidder bids b or v which also results in the same outcome

regardless of the real bidder bidding b or v. However, if the auctioneer does not abort b′ by

level g(b), they would not abort b′ once the real bidder quits at level g(b) since the payment

the auctioneer receives is at most b and their fines for aborting b′ is at least g−1(g(b)) g b.

Thus, the auctioneer reveals b′ > b and the real bidder does not receive the item. Informally,

this proves the real bidder is better off by bidding v even if the auctioneer cheats.

allocation and payment rules as the ascending price auction, this implementation is not credible since
there is a safe deviation which forces the highest bidder to quit when their bid would exceed max vi and
charge at least max vi − ε: the auctioneer claims there is another bidder in the auction until the highest
bidder quits, at which point, the auctioneer claims the other bidder left at the same time giving the
item to bidder i. This happens because (differently from the ascending price auction) a bidder can still
receive the item once they quit.
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▶ Theorem 18. For any reserve price r and level function g, ADRA is strategyproof.

Moreover, assume bidder valuations are drawn i.i.d. from distribution D. Then ADRA with

reserve price r(D) is revenue-optimal and computationally credible.

Proof. Strategyproofness follows directly from Proposition 17: if the auctioneer commits to

implement ADRA, the strategy profile SADRA(v) forms an ex post Nash equilibrium.

Let’s check that ADRA is revenue optimal. Observe that ADRA maximizes virtual

welfare, since it only allocates the item to the highest bidder if their ironed virtual value

is non-negative. Indeed, vi∗ g r(D) if and only if φ̄(vi∗) g φ̄(r(D)) = 0. From Theorem 4,

ADRA is revenue optimal.

To check that ADRA with Myerson reserve is computationally credible, recall that

Proposition 17 states that any safe deviation from ADRA is itself a BIC mechanism. Since

ADRA with reserve r(D) is a revenue optimal BIC mechanism, no safe deviation can provide

more revenue than honestly implementing ADRA. This proves that ADRA is computationally

credible as desired. ◀

3.0.0.1 Is ADRA DSIC?

One might wonder if truthful bidding – bidding bi = vi – is Dominant Strategy Incentive

Compatible (DSIC) – a stronger equilibrium guarantee than ex post IC. To be concrete, a

protocol (G, S) is DSIC if for all i ∈ [n], for all v, and for all S′−i,

Si(vi) ∈ arg max
s′

i

ui(vi, si, S′−i(v−i)).

That is, bidder i prefers to play Si regardless of the strategy of other bidders. Unfortunately,

that is not the case. The problem is that, during ADRA’s execution, bidder j ≠ i receives

information about bidder i’s strategy at every level – and bidder i must best-respond even to

unnatural strategies from bidder j. As an example, consider a strategy where bidder j ̸= i

implements SADRA
j (vj) unless bidder i quits at level g(r) in which case bidder j aborts at

level g(r). Thus for bidder i, it is optimal to bid bi = r and quit at level g(r) so they win

the item and pay r. The behavior of bidder j ≠ i is sub-optimal but highlights that DSIC is

a very strong condition for our setting.4

4 Communication Complexity

In this section, we study the improved communication complexity of the Ascending Deferred

Revelation Auction (ADRA) over the Ascending Price Auction (APA). When setting the

level function as g(b) = +log1+ε(b/r),, we obtain an exponential improvement on the commu-

nication complexity compared with APA for fixed ε. Moreover, by letting ε depend on the

distribution D, ADRA can have constant communication complexity.

▶ Theorem 19. Consider the ascending deferred revelation auction with reserve price r,

level function g(b) = +log1+ε(b/r),, and n bidders drawn from distribution D, where bidder i

bids vi and quits at the first level k where k g g(vi). Then the communication complexity is

O(
log1+ε(Rev

(G,S)(D))

r ).

4 The ascending price auction is not only DSIC, but it also satisfy an even stronger guarantee known as
obviously strategyproofness [14]: if your next bid is not going to exceed your value, the best outcome
for quitting is not better than the worst outcome for raising your bid and quitting next round (thus
there is no risk for raising your bid).
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We defer the proof to Appendix A. Intuitively, our choice for g provides multiplicative value

increments until there is at most one bidder left. This provides communication complexity

that is logarithmic with respect to the revenue of the auction. Differently from APA, our

communication complexity bounds are also scale-invariant – multiplying all values and the

reserve price by a constant c results in the same communication complexity. The following

example shows that Theorem 19 provides a tight bound:

▶ Example 20. Consider the ascending deferred revelation auction with reserve price r = 1,

level function g(b) = +log1+ε(b/r),, and n g 2 bidders drawn i.i.d. from the equal revenue

distribution D – Prv←D [v > x] = 1
x . From Example 12, the revenue for this auction

is Rev(D) = n and from Theorem 19, we find that the communication complexity for

ADRA is at most O(log1+ε(n)). Let x = inf{y : Prv←D [v > y] g 1
n }. Let u(v) be the

second highest bid among v1, v2, . . . , vn. Since (1 − 1
n )n f 1

e for any n g 1, we find that

Pr [u(v) > x] = 1 − Pr [u(v) f x] g 1 −
(

1 − 1
n

)n−1
g 1 −

(1− 1
n

)

e g 1 − 2
e . And so, with

constant probability, the second-highest bidder has value at least n which implies the auction

takes at least log1+ε n rounds to terminate. This shows that Theorem 19 is tight. Setting

ε = n results in an auction with constant communication complexity.

Next, we show the communication complexity explicitly in terms of the cumulative density

function; however, we will require the assumption values are drawn i.i.d. from a regular

distribution. Intuitively, we first define a value x large enough to exceed most bids with high

probability. As a consequence, most bidders drop out before level x, after which, only a

constant expected number of rounds is required until termination. If ADRA further sets its

multiplicative step size ε to be x, the auction has constant communication complexity.

▶ Theorem 21. Let D be a regular distribution. Consider the ADRA with optimal reserve

price r(D), level function g(b) = +log1+ε(b/r(D)),, and n bidders with valuations drawn i.i.d.

from D where bidder i bids vi and quits at the first level k where k g g(vi). Then the commu-

nication complexity is O(max{ 1+ε
ε , log1+ε

(

x
r(D)

)

}) where x := inf{p : Prv←D [v g p] f 1
n }.

Note that for some constant c > 0, setting ε = min{c, x} ensures the communication

complexity for ADRA is constant. Next, we consider an application of Theorem 21.

▶ Example 22. Consider ADRA with reserve price r = 1, level function g(b) =

+log1+ε(b/r),, and n bidders with valuations drawn i.i.d from the exponential distribution D

– Prv←D [v > p] = e−p. Because D is regular, Theorem 21 provides a direct route to see the

communication complexity is O(log log(n)). For that observe x = inf{p : Prv←D [v g p] f
1
n } = F−1(1 − 1

n ) = log(n). Consequently, from Theorem 21, the communication complexity

is O(log1+ε x) = O(log1+ε log(n)). Setting ε = log(n) results in an optimal, credible, truthful

auction with constant communication complexity.

5 Conclusion

We extend the work of Ferreira and Weinberg [12] on credibility for single-item auctions

in two ways: we introduce a mechanism that generalizes to any distribution D with finite

monopoly price. Our main technical result is that the Ascending Deferred Revelation Auction

(ADRA) is credible, strategyproof, revenue optimal, and terminates in constant rounds in

expectation.

For a fixed ε > 0, using multiplicative bid increments of (1 + ε), ADRA provides an

exponential improvement on the communication complexity of the Ascending Price Auction

(APA) which uses additive bid increments of ε. In particular, while APA has communication
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complexity proportional to the revenue Rev(D), ADRA has communication complexity

proportional to log
(

Rev(D)
r

)

where r is the reserve price. Setting ε = ε(n, D) as a direct

function of the number of bidders n and value distributions D, we identify an instance of

ADRA with constant communication complexity. For instances where bidder valuations

are drawn i.i.d. from a regular distribution D, we provide communication complexity

bounds that depend only on the cumulative density function of D. As an application, setting

ε = log log(n) and using Myerson reserve price results in a credible, truthful, (optimal) auction

that terminates in a constant number of rounds when valuations are drawn independently

from the exponential distribution.

To overcome the limitations of the Deferred Revelation Auction (DRA), ADRA combines

cryptographic commitments with dynamic deposits. Reducing the required deposits is an

interesting open question that has practical implications; although, ADRA requires no bidder

to deposit more than (1 + ε) fraction of their valuation. Another direction is to extend the

credibility of ADRA beyond the i.i.d. framework.
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A Omitted Proofs From Section 3

▷ Claim 23. Let (G, S) be the protocol resulting from the second-price auction with

reserve r where bidder i ∈ [n] bids bi = vi. Let u(v) be the second highest bid among

v = (v1, v2, . . . , vn). Then

Rev(G,S)(D) = E
[

u(v) · 1u(v)gr

]

+ E

[

r · 1maxi∈[n] vigr,u(v)<r

]

.

Proof. In the second-price auction with reserve r, the highest bidder pays the maximum

between r and the second highest bidder. Thus the revenue is

E
[

max{u(v), r} · 1maxi∈[n] vigr

]

= E

[

r · 1maxi∈[n] vigr,u(v)<r

]

+ E
[

u(v) · 1u(v)gr

]

◁

Proof of Lemma 11. Let u(v) denote the second-highest bid in bid profile v. Recall the

ascending price auction terminates once the second-highest bidder quits. Since bidders start

bidding the reserve price r, the expected number of rounds for the ascending price auction is

Θ(1) + E

[

u(v) − r

ε
· 1u(v)gr

]

= Θ(1) +
Rev(G,S)(D) − rPr

[

maxi∈[n] vi g r, u(v) < r
]

− rPr [u(v) g r]

ε

= Θ(1) +
Rev(G,S)(D) − rPr

[

maxi∈[n]vigr

]

ε

where the first equality is from Claim 23. The second equality observes u(v) g r implies

maxi∈[n] vi g r. ◀

Omitted proofs from Example 12. Consider n bidders with valuations drawn i.i.d. from

the equal revenue distribution where Pr [vi g x] = 1
x for all x g 1. Note the virtual value

of this distribution is φ(x) = 0 for all x. Thus the optimal auction sets a reserve price of

1, sells the item to the highest bidder and charges the second highest bid. To compute the

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
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revenue, note that for each fixed i, if we conditioned on vi being the highest bid, then the

payment of bidder i is the maximum value among bidders j ̸= i. Therefore,

Rev(D) = n · E

[

max
j ̸=i

{vj} · 1vi>maxj ̸=i{vj}

]

= nE

[

max
j ̸=i

{vj} · Pr

[

vi > max
j ̸=i

{vj}|v−i

]]

= nE

[

max
j ̸=i

{vj} ·
1

maxj ̸=i{vj}

]

= n

as desired. ◀

Proof of Proposition 17. We will require the following definition about the view of bidder

i during the execution of a safe deviation. We use a subscript i to denote the state of the

auction in the view of bidder i. For example, ni denotes the number of bidders bidder i

(believes) are in the auction. Then ni might be different from nj for bidder j ̸= i.

▶ Definition 24 (View of bidder i). Let (b1
i , . . . , bi−1

i , bi
i, bi+1

i , . . . , bni

i ) denote the bids com-

mitted to bidder i – bidder i believes there is ni bidders in the auction. Let ℓj
i , for j ∈ [ni],

be the level where, according to the auctioneer, bidder j quits, aborts or becomes the only

remaining bidder in the auction. Let bi = bi
i the bid of (real) bidder i and ℓi = ℓi

i the level

bidder i quits or become the only bidder left. Note that bi – the bids sent to bidder i – is a

function of all values except vi since bidder i has no yet revealed vi, but it is possible the

auctioneer learned v−i before first interacting with bidder i. However, the level bid bj
i quits –

ℓi – is a function of all values. We say bidder j ∈ [ni] aborts to bidder i ∈ [n] if, according

to the auctioneer, bidder j aborted the auction at level ℓj
i . We say the auctioneer aborts bid

bj
i if, according to the auctioneer, bidder j ∈ [ni] aborted from the auction, but bidder j is

not a real bidder that aborted from the auction

Note that if the auctioneer implements a safe deviation and allocates the item to bidder i,

but aborts bj
i at level ℓj

i , then bidder i expects to receive payment g−1(ℓj
i ) from bidder j’s

deposit which must come from the auctioneer himself. Moreover, if bidder i receives the

item, the auctioneer receives a payment of at most g−1(ℓi). This implies the auctioneer does

not benefit from aborting a fake bid bj
i when ℓj

i g ℓi:

▶ Proposition 25. There is an optimal safe deviation of ADRA where ℓj
i < ℓi whenever the

auctioneer aborts bj
i .

Proof. Consider a safe deviation (G′, SADRA) where the auctioneer aborts bj
i at level ℓj

i g ℓi.

The auctioneer only receives a payment from bidder i only if they win the item and pay at

most g−1(ℓi). However, the auctioneer pays g−1(ℓj
i ) g g−1(ℓi) to bidder i for aborting bj

i .

Thus the utility of the auctioneer is non-positive. At the time the auctioneer aborts bj
i , the

auctioneer had the option to not abort bj
i in the view of bidder i which weakly dominates

aborting bj
i . This proves there is a safe deviation (G′′, SADRA) that weakly dominates

(G′, SADRA) where the auctioneer does not abort bj
i as desired. ◀

Let G′ be a safe deviation from ADRA. To show (G′, SADRA(v)) is an ex post Nash

equilibrium, we will show that for all i ∈ [n], for all v, picking bi = vi weakly dominates any

other strategy. Observation 16 pins down most of the strategy space for bidder i: we only

need to consider the case where bidder i plays SADRA
i (bi) for some bi (not necessarily equal

to vi).
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Let ℓi(b) denote the highest level played by bidder i when bidder j ∈ [n] bids bj . For the

proof, we will analyse the following cases:

1. Consider the case where ℓi(bi, v−i) < ℓi(v). Note ℓi(bi, v−i) is the last level bidder i plays

either because bidder i quits or bidder i becomes the last bidder in the auction. However,

the fact ℓi(v) > ℓi(bi, v−i) implies bidder i quits at level ℓi(bi, v−i) since the auctioneer

could distinguish – provided our crytographic scheme is perfectly hiding – the case where

bidder i bids vi from the case where bidder i bids bi. To be concrete: the information set

Ii where bidder i quits at level ℓi(bi, v−i) is the first where the auctioneer can distinguish

the case where bidder i bids vi from bi (and all actions of the auctioneer and bidder j ̸= i

up to this point are identical). If the auctioneer did not end the auction at level ℓi(bi, v−i)

when bidder i bid vi (and choose not to quit), then in the view of bidder i, there is at

least another bid bj
i that also did not quit at level ℓi(bi, v−i). If j is real bidder, bidder j

never quits. If j was a fake bidder, from Proposition 25, the auctioneer does not quit

bj
i > bi once bidder i quits at level ℓi(bi, v−i). Therefore, bidder i does not receive the

item when they bid bi since the auctioneer later reveals a higher bid bj
i . This proves

bidding vi weakly dominates bidding bi.

2. Consider the case where ℓi(bi, v−i) = ℓi(v). The security of our cryptographic commitment

ensures the auctioneer cannot distinguish the case where bidder i bids bi from the case

where they bid vi until the bid is revealed. From Proposition 25, the auctioneer aborts no

bids to bidder i once bidder i quits. Therefore, the set of bids revealed to bidder i when

they bid bi is identical to the set of bids revealed when they bid vi. Since the auctioneer

allocates the item to the highest bidder which pays the second-highest bid, bidder i can

only improve their utility if they did not receive the item when they bid vi, but receive

the item when they bid bi. That implies bi > vi and bidder i pays more than they value

the item. This proves bidding vi weakly dominates bidding bi.

3. Consider the case ℓi(bi, v−i) > ℓi(v). Assuming our cryptographic scheme is perfectly

hiding, the auctioneer cannot distinguish the case where bidder i bids bi from the case

where bidder i bids vi, the fact ℓi(v) < ℓi(bi, v−i) implies bidder i tentatively quits at level

ℓi(v) when they bid vi – g(vi) = ℓi(v). By definition of SADRA
i , bidder i would quit at level

g(bi); therefore, ℓi(bi, v−i) f g(bi). Combined with the fact ℓi(bi, v−i) > ℓi(v) = g(vi),

we conclude g(bi) > g(vi). Thus bi > vi and if bidder i wins the item, they pay at least

g−1(bi) g vi resulting in nonpositive utility. Thus bidding vi weakly dominates bidding

bi.

This covers all the cases and proves the bidding vi weakly dominates bidding bi ≠ vi. Our

proof only assumes the auctioneer implements a safe deviation (or the honest auction) which

implies (G′, SADRA) forms an ex post Nash equilibrium as desired. ◀

B Omitted Proofs From Section 4

Proof of Theorem 19. Recall that there are n bidders drawn i.i.d. from D, the reserve price

is r, and the level function is

g(b) = +log1+ε

(

b

r

)

,.

By assumption, bidder i follows the strategy SADRA
i (vi) which implies bidder i quits at the

first level k where k g g(vi). Let u(v) be the second-highest bid in the bid profile v. Then

the communication complexity is proportional to the number of rounds it takes until the

second-highest bidder quits:
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O(1) + E

[

log1+ε

(

u(v)

r

)

· 1u(v)gr

]

From Jensen’s inequality,

E

[

log1+ε

(

u(v)

r

)

· 1u(v)gr

]

f Pr [u(v) g r] log1+ε E

[

u(v)

r
|u(v) g r

]

= Pr [u(v) g r] log1+ε

E
[

u(v) · 1u(v)gr

]

r · Pr [u(v) g r]

= Pr [u(v) g r] log1+ε

E
[

u(v) · 1u(v)gr

]

r
+ Pr [u(v) g r] log

1

Pr [u(v) g r]

f log1+ε

E
[

u(v) · 1u(v)gr

]

r
+

1

e
max
x∈R

x log(1/x) f 1/e,

f log1+ε

Rev(G,S)(D)

r
+

1

e
From Claim 23.

The chain of inequalities witnesses that the communication complexity is at most O(1) +

log1+ε
Rev(G,S)(D)

r as desired. ◀

Proof of Theorem 21. Recall F is the cumulative density function of a regular distribution

D and x := inf{p : Prv←D [v g p] f 1
n }. We first define and prove the following four claims:

▷ Claim 26. If Myerson reserve r(D) g x, the communication complexity is at most 1+ε
2ε .

Proof of Claim 26. Let u(v) be the second highest bid in v and let k denote the level where

the second highest bidder quits. For any z g 0, k > z if and only if the second highest bidder

does not quit at level z which implies g(u(v)) > z. Thus

Pr [k > z] = Pr [u(v) > (1 + ε)z · r]

The event u(v) > (1 + ε)z · r(D) implies there are at least two bidders with value bigger than

(1 + ε)z · r(D). From union bound,

Pr [u(v) > (1 + ε)z · r(D)] f

(

n

2

)

Prv←D [v > (1 + ε)z · r(D)]
2

=

(

n

2

) (

(1 + ε)z · r(D)

(1 + ε)z · r(D)
· Prv←D [v > (1 + ε)z · r(D)]

)2

For Myerson reserve r(D), we have r(D)Prv←D [v g r(D)] g pPrv←D [v g p] for all p ∈ R.

Thus

Pr [k > z] f

(

n

2

) (

r(D)

(1 + ε)z · r(D)
· Prv←D [v g r(D)]

)2

=

(

n

2

)

Prv←D [v g r]
2

(1 + ε)2z

We now compute the expected number of rounds and find that:

E [k] =

∞
∑

z=0

Pr [k > z] f

∞
∑

z=0

(

n

2

)

Prv←D [v g r(D)]
2

(1 + ε)2z
.
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Recall that Pr [v g r(D)] f Pr [v g x] since r(D) g x, and Pr [v g x] f 1
n by definition of

x. Together with the fact that
(

n
2

)

= n(n−1)
2 f n2

2 , we have

E [k] f
n2

2
Pr [v g x]

∞
∑

z=0

1

(1 + ε)2z
f

(1 + ε)2

2ε(2 + ε)
f

1 + ε

2ε

as desired. ◁

The case where r(D) < x will require the following property for the revenue curve

pPrv←D [v g p] of regular distributions. It states that the revenue curve is decreasing for

p g r(D) where r(D) is the Myerson reserve.

▷ Claim 27. Let D be a regular distribution. For any p g r(D), the revenue curve

pPrv←D [v g p] is nonincreasing in p.

Proof. Recall that the virtual value function of D is ϕ(p) = p − 1−F (p)
f(p) , which is monotone

nondecreasing from the definition of regularity. Then

p g r(D) ⇐⇒ ϕ(p) g ϕ(r(D)) From regularity of D,

⇐⇒ ϕ(p) g 0 Since ϕ(r(D)) = 0,

⇐⇒ f(p) · ϕ(x) g 0

⇐⇒ −f(p) ·

(

p −
1 − F (p)

f(p)

)

f 0 From definition of ϕ(p),

⇐⇒ (1 − F (p)) + p(−f(p)) f 0

Note that (1 − F (p)) − pf(p) is the derivative of the revenue curve. The fact that the

derivative is nonpositive implies the revenue curve is nonincreasing for p g r(D) as desired.

◁

▷ Claim 28. Let D be regular and p g r(D). Then for any ¶ g 1, Prv←D [v > ¶p] f
P rv←D[v>p]

δ .

Proof. From Claim 27, pPrv←D [v > p] g p¶Prv←D [v > ¶p]. Rearranging the inequality

proves the claim. ◁

▷ Claim 29. If the Myerson reserve r(D) < x, then the communication complexity is

O(log1+ε(x/r(D))).

Proof. Let t = 2 log1+ε(x/r(D)) and note x = r(D)(1+ε)t/2. Define k to be level the auction

terminates. Let u(v) denote the second highest bid in v. Computing the expected value of k

gives:

E [k] =

∞
∑

z=0

Pr [k > z]

=

∞
∑

z=0

Pr [u(v) > (1 + ε)z · r]

=

t
∑

z=0

Pr [u(v) > (1 + ε)z · r] +

∞
∑

z=t+1

Pr [u(v) > (1 + ε)z · r]

The second line observes the auction terminates at a level above z if and only if the second

highest bidder quits at a level z. Next, we upper bound the two terms separately.
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For the first term,
∑t

z=0 Pr [u(v) > (1 + ε)z · r] f t + 1. For the second term, observe

that the fact the second highest bidder bids more than (1 + ε)zr(D) implies there is at least

two bidders that bid more than (1 + ε)zr(D). From union bound,

∞
∑

z=t+1

Pr [u(v) > (1 + ε)z · r(D)]

f

(

n

2

) ∞
∑

z=t+1

Prv←D [v > (1 + ε)z · r(D)]
2

From union bound,

f
n2

2

∞
∑

z=t+1

Prv←D

[

v > (1 + ε)z/2(1 + ε)z/2r(D)
]2

f
n2

2

∞
∑

z=t+1

Prv←D

[

v > (1 + ε)z/2(1 + ε)t/2r(D)
]2

Since t f z,

f
n2

2

∞
∑

z=t+1

Prv←D

[

v > (1 + ε)t/2r(D)
]2

(1 + ε)z
From Claim 28.

Next observe the geometric series
∑∞

z=t+1
1

(1+ε)z = 1
ε(1+ε)t f 1

ε . By definition, t/2 g g(x)

and (from definition of x) the probability that a bid exceeds x is at most 1
n . Therefore,

Prv←D

[

v > (1 + ε)t/2r(D)
]

f 1
n . This proves the second term is at most 1

2ε . Combining

both terms, we conclude E [k] f t + 1 + 1
2ε . This proves the communication complexity is

O
(

log1+ε

(

x
r(D)

))

as desired. ◁

We are ready to conclude the proof of Theorem 21. Recall that x is the smallest price

such that a value drawn from D exceeds x with probability at most 1/n. Claim 26 states

the communication complexity is at most O
(

1+ε
ε

)

when r(D) g x. Claim 29 states the

communication complexity is at most O
(

log1+ε

(

x
r(D)

))

when r(D) < x. Therefore, the

communication complexity for ADRA is at most the maximum among this two quantities as

desired. ◀
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