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ABSTRACT 1 INTRODUCTION

With the phenomenal growth of IoT devices at the network edge,
many new applications have emerged, including remote health
monitoring, augmented reality, and video analytics. However, se-
curing these devices from different network attacks has remained
a major challenge. To enable more secure services for IoT devices,
threats must be discovered quickly in the network edge and effi-
ciently dealt with within device resource constraints. Deep Neural
Networks (DNN) have emerged as solution to provide both security
and high performance. However, existing edge-based IoT DNN clas-
sifiers are neither lightweight nor flexible to perform conditional
computation based on device types to save edge resources. Dynamic
deep neural networks have recently emerged as a technique that
can accelerate inference by performing conditional computation
and, therefore, save computational resources. In this work, we de-
sign and develop an accelerated IoT classifier iBranchy based on
a dynamic neural network that can perform quick inference with
fewer edge resources while also providing flexibility to adapt to
different hardware and network conditions.
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In recent years there has been significant growth in the number
of IoT devices. These devices are deployed in proximity to the
data sources at the network edge and support various machine
learning-based applications, including remote health monitoring,
augmented reality, and video analytics. To secure these devices from
different types of network attacks [1, 2], the IoT/edge applications
typically exploit machine learning models such as Deep Neural
Network (DNN) models for different security functionalities such
as traffic classification, device identification, and anomaly detection.
However, the performance of these models when running on edge-
based IoT devices will be significantly impacted by the limitations
of the device resources which will reflect on the performance of
these devices. Therefore, it is highly desirable to develop techniques
to optimally accelerate the inference computations of DNN models
in order to enable real-time applications and conserve energy for
edge devices/IoT.

Very recently, different types of DNNs referred to as Dynamic
DNNs (D?NN) have been proposed [7] to provide low-latency and
power-saving on IoT/edge devices. In contrast to traditional DNNs,
dynamic DNNs are capable of performing conditional computations
and selectively activate just sections of the network model, whereas
traditional DNNs use the entire network model in the computation
even when only a certain portion of the network is sufficient to
make the inference. For example, BranchyNet [17], one of the pop-
ular D2NN models, terminates its computation and infers early if
the earlier layers of the network have sufficient confidence without
requiring all of the subsequent layers to participate in computation,
thus reducing inference latency and power consumption. The typi-
cal architecture of BranchyNet model consists of a network with
multiple layers and different branches. Every branch of the network
is followed a classification output component known as exit point.
During inference, the early termination at a branch happens only
if the exit point has adequate confidence to make the inference. Re-
cent research has demonstrated that for the vast majority of inputs,
the model will exit at the early exit point of the network during
inference without requiring computation from the rest of the net-
work [17]. These D2NN models, which offer characteristics like
on-demand computing, hardware adaptability, and fewer resource
constraints, are therefore gaining popularity for constructing and
developing high-performance IoT/edge applications [5, 13].

Motivated by the above observations, in this paper, we design and
develop a dynamic DNN (D?NN) IoT classifier based on BranchyNet
as a model classifier to classify actual IoT and non-IoT devices and
evaluate the model with edge-based constraints such as inference
time and power consumption. We summarize the contributions of
this paper as follows:
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e We design and develop iBranchy, a dynamic early exit multi-
class classifier for classifying IoT devices based on their net-
work traffic.

e We evaluate the features of iBranchy using both real IoT and
non-IoT devices.

2 BACKGROUND
2.1 Static Compression vs Dynamic DNNS
(D*NN)

In recent years there has been significant research over accelerating
machine learning models for edge deployments using different ap-
proaches [3] such as compression [4, 6] and knowledge distillation
[8]. In compression-based techniques, the original DNN network
may be pruned in different ways to remove any insignificant parts
of the network. For example, in [6] authors compress the network
using quantization method while authors in [4] compress the con-
volutional layers through a redundancy approach. However, in
knowledge distillation technique [8], instead of compressing the
neurons or weights of an existing complex DNN network model,
a new lightweight network called student model is designed with
very few layers and is trained to learn from the knowledge repre-
sentations outputs of the pre-trained complex teacher model. This
method has shown to be very effective with high performance for
resource constraints and an insignificant drop in accuracy.

One of the major disadvantages of the above accelerated meth-
ods based on compression or distillation is that they are static with
respect to computation and inference time as all the components of
the DNN network will participate in inference phase computation
irrespective of the type of input or environmental conditions. In
contrast to static networks, dynamic networks D2NN can change
their internal structure or parameters during the inference phase,
giving them greater flexibility and better adaptability to the un-
derlying use case [7]. The D2NN models accomplish this dynamic
flexibility and adaptability through a conditional computation ar-
chitecture that allows them to only selectively activate particular
sections of their network based on context, such as input data or
environmental conditions. Early-Exit-based models [7, 17] are one
of the most popular categories of the D2 NN networks that have a
multi-exit design where an exit is an early inference point attached
to selected components of the network and can be conditionally
activated based on the complexity of the input data. Therefore, in
this paper we use BranchyNet [17] a very well adapted Early-Exit-
based DZNN model that is gaining popularity for edge scenarios
to implement our D2NN based IoT network classifier.

2.2 BranchyNet

BranchyNet is an Early-Exit-based D’ NN model that supports an
early inference of certain input samples using multi-branch and
multi-exit design. Like a traditional DNN classifier, the BranchyNet
network architecture consists of a multi-layer network followed by
a softmax layer for output predictions. However, in addition to the
main network, a small network called branches are added to the
outputs of different layers of the main network. These branches,
similar to the main network are also followed by softmax layer.
The outputs from the different softmax of the different branches
and the main network are called as exits. The multi-exit approach
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implemented in BranchyNet is based on the observation that the
earlier layers of the network can perform inference for most of the
input samples, thus allowing most of the inputs to exit early and
thus reducing the overall network computation and reducing the
average runtime and power computation.

In BranchyNet training a softmax cross entropy loss function is
used for minimizing the network misclassification rate similar to
traditional DNNs. However, the overall loss of the network is calcu-
lated using a weighted loss function consisting of losses at different
exits of the network. The choice of the weights for each exit-specific
loss is a hyper-parameter and impacts the model performance. Dur-
ing the inference phase, an input sample exits the network only if it
is predicted with a confidence that is within the confidence thresh-
old assigned to that particular exit. More specifically, BranchyNet
uses an entropy-based confidence threshold where a sample exits
from a particular exit only if it was predicted with entropy less
than the threshold assigned for that particular exit. If the entropy
of the input sample is larger than the given threshold, the sample
is sent to the next exit for inference and the process continues till
the sample reaches the final exit at the end of the main network.

The choice of thresholds at different exits is a run-time hyper-
parameter that impacts model inference phase performance. The
lesser threshold value at an exit will ensure the samples predicted
with high entropy to be pushed to later exits, thus improving the
model’s accuracy at the cost of early inference. Two approaches
are proposed in BranchyNet for threshold selection, in the first
approach, different threshold values could be tested in an iterative
method and finally choosing the best configuration based on user
requirements such as higher accuracy with an increase in inference
time or lower accuracy with a decrease in inference time. The
second approach is to use a neural network-based approach that
can automatically fine-tune the threshold values. In this paper, we
implement the first approach to pick the threshold values based on
performance requirements.

3 RELATED WORK

Given the significance of IoT device classification, some of the
recent IoT network classifiers [15, 16] utilize either probabilistic
model [15] or traditional machine learning based unsupervised
model [16] for classifying network based IoT devices, but no deep
learning-based solutions. However, in this work, given the grow-
ing popularity of deep learning-based classifiers that provide the
features such as automatic feature extraction and better accuracy
from raw network data [9, 11, 12], we build D?NN based model
for IoT classification that augments traditional DNN based features
with additional features that can support edge-based resource con-
straints. For example, existing IoT classifiers that use different deep
learning based approaches such as CNN-RNN [9], autoencoders-
bayesian modeling [12] and semi-supervised GAN [11] require all
of their DNN network entitiess to participate in computation for
realizing their system. In contrast, our approach can conditionally
activate only selected sections of the DNN network to save energy
and inference time.

Other D?NN related advances include developing a partition
method [13] with BranchyNet and distributed DNN techniques [18]
across the cloud and the edge devices for better performance and
faster response times. Similarly, FlexDNN [5] - a Early-Exit based
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Table 1: The list of IoT and non-IoT devices used

[ Device Name [ Device Type ]
Smart Things Hub
Amazon Echo Speaker

iHome Speaker

Triby Speaker Speaker
Netatmo Welcome Camera
TP-Link Day Night Cloud Camera Camera
Samsung SmartCam Camera
Dropcam Camera

Insteon Camera Camera
Withings Smart Baby Monitor Camera
Nest Dropcam Camera

Belkin Wemo Switch Acutator

TP-Link Smart Plug Acutator

Light Bulbs LiFX Smart Bulb Acutator
NEST Protect Smoke Alarm Sensor
Netatmo Weather Station Sensor
Withings Smart Scale Sensor
Blipcare Blood Pressure Meter Sensor
Withings Aura Smart Sleep Sensor
Belkin Wemo Motion Sensor Sensor

PIX-Star Photo-frame Digital Frame

Laptop Non-IoT

Macbook Non-IoT

iPhone Non-IoT

Samsumg Galaxy Tab Non-IoT

model accelerates video analytics on resource-constrained devices.
However, our work significantly differs from other edge-based
D?NN models as we design, implement, and evaluate iBranchy
for IoT-based network devices which is more challenging due to
the fact that network data is not simple as traditional image or set
of frames based video data. Furthermore, we apply an encoding
scheme based on network flows based on our previous work [11]
to implement BranchyNet for IoT devices effectively. Very recently,
in [10] authors use a context-based approach that selects the most
appropriate anomaly detection model from the hierarchy of mod-
els deployed at the edge, cloud, and device to meet edge-based
resource constraints, and it is implemented using sensor and power
consumption datasets. However, unlike their work which use dis-
tributed models, we implement a single model classifier based on
BranchyNet that can uniquely identify IoT/Non-IoT devices using
IoT network traffic.

4 IBRANCHY FRAMEWORK

In this paper, we design and implement iBranchy, an IoT network
classifier for edge-based systems. Figure 1 shows an overview of the
iBranchy framework that consists of two components a network
flow encoding component and an accelerated device discovery
component. The new devices’ network flows are encoded through
the network encoding component and sent to the accelerated device
discovery component, a BranchyNet based Early-Exit multi-class
classifier, to identify the new device class (device name). We discuss
below implementation of each of these components in detail.
Network Flow Encoding: The network flow encoding compo-
nent encodes the network flows of the devices by mapping the raw
network packets of a flow into a three-dimensional array based
on our previous work [11]. This encoded flow array is given as an
input to the accelerated device discovery component to extract the
hidden features and uniquely identify the device. The flow encoding
is implemented in multiple steps, first, we take the raw byte streams
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of the packets in a flow as the features and convert them into their
equivalent hexadecimal integer representation. Next, similar to the
three-dimensional encoding of a non-gray image with pixel intensi-
ties as features and multiple channels represented as a 2D array used
for image classification, we create a three-dimensional encoding for
the hexadecimal representation of the flow. However, each channel
in this encoding is a 2D packet hex stream with a dimension of
56*56 to accommodate the maximum size of a MAC packet of 1500
bytes, and all packets are arranged in arrival sequence. The number
of packets in a flow is a configurable parameter and can be adjusted
based on the model’s performance. In our experiments, we take the
first 5 packets of the flow and append zeros if the flow has packets
shorter than that, an approach similar to [12]. It is to be noted that
for the flow encoding, we do not consider any network-dependent
header data such as IP address, etc. to enable network independent
model deployment. This flow-based encoding scheme using raw
packet streams is a more efficient solution for BranchyNet based
model, which uses CNN layers and can extract spatial features of
the network byte data much efficiently.

Accelerated Device Discovery: The iBranchy accelerated de-
vice discovery component uniquely identifies a device into its cor-
responding class. However, unlike other popular DNN based IoT
classifiers where all the layers participate in computation [9, 11, 12],
iBranchy may exit at different stages of the model with probable
very early exits that can significantly decrease the inference time
and consume less energy. To design the iBranchy model we first
design a baseline DNN IoT classifier and then, using the baseline
DNN, we build an IoT based BranchyNet version with newly added
branches where a branch is a set of layers or a very small DNN
with early exit point as discussed in section 2.

Figure 1 shows the overall architecture of the iBranchy model,
which consists of multiple convolutional layers followed by a linear
layer with final exit and two branch exits. In iBranchy, we try dif-
ferent design configurations and choose the early exits at Branch
#1 and Branch #2 at the CONV layer #1 and CONV layer #3, re-
spectively. At the inference stage, if the entropy for a branch of
a testing sample is less than the runtime threshold, the inference
can be made early without further computation from subsequent
layers. We chose a lightweight design for the branches with linear
layers to add less overhead at run time for edge deployments but
that could be further optimized. In iBranchy, the probability of a
network layer to participate in the inference computation is depen-
dent on the threshold values set for different exits. Therefore, at
run time, based on the environment requirements such as battery
power (low or high) or Wi-Fi signal strength iBranchy can be con-
figured dynamically to exit more samples at early layers to save
edge resources. However, choosing very low threshold values can
significantly impact the inference accuracy and therefore needs to
be optimized based on the operating constraints and is out of the
scope of this work. In the next section, we evaluate iBranchy for
edge based deployment requirements.

5 EVALUATION

In our experiments, we extract 56,000 flows from the combined
network flows of twenty-one IoT devices and four non-IoT devices
as shown in Table 1 from the publicly available UNSW [15] dataset
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Figure 2: The change in iBranchy exits through training

to evaluate and validate iBranchy for different edge-based require-
ments. The raw pcap files are processed to create flows for encoding
with network-independent header fields and payload data similar
to our previous work [11]. We implement our model using PyTorch
[14] and also using code repositories [17, 19]. We use an NVIDIA-
based GPU Server with 32 GB RAM to perform our experiments, we
also use 80% of data for training and 20% for testing our model. For
evaluating iBranchy, we consider multiple performance metrics and
flexibility-based scenarios. First, we assess the ability of iBranchy
to exit in earlier exits for the majority of the testing data. Next,
we measure iBranchy in terms of resource utilization and power
consumption and finally assess its flexibility to provide a trade-off
between accuracy and edge resources based on the context. We
discuss each of these evaluations below.
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Figure 3: The percentage of exits of iBranchy for different
device types

5.1 Significance of Early Exit on IoT devices
Network Traffic

Figure 2 shows the percentage of exits from the different exits
of iBranchy during the training. The number of exits from Exit
#1 increases as the training progress, while the number of exits
from Exit #3 or the final exit of the network decreases. Therefore,
iBranchy, over time, learns to extract the significant features for
device type inference in the early layers of the DNN. Figure 3 shows
the percentage of exits for each device type. The number of exits
for device types from Exit #2 is not that significant compared to
the number of exists from Exit #1. The less significant exists from
Exit #2 could be either because of the choice of the network design
or the second branch has not captured enough features for the
remaining of the device type samples. Therefore, the distribution of
device exits across different branches is determined by the network
design and features of the IoT network dataset.
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5.2 Performance of iBranchy’s Edge
Deployment

Table 2 shows the runtime performance of iBranchy. The results
showcases that it performs significantly better with edge-based re-
quirements compared to our baseline DNN. The power consumption
of the iBranchy model layers decreases by 35.84% than the baseline
model layers. Therefore, iBranchy uses fewer network components
for computing the inference when compared to the baseline IoT
DNN model. Moreover, the run time for iBranchy model layers is
faster than the baseline model layers by about 34.79%. Furthermore,
the accuracy drop for the iBranchy model is not that significant,
as it only drops by about 2%. Therefore, iBranchy achieves efficient
accuracy with fewer resources and is more efficient for edge-based IoT
network classification.

[ Model [ Accuracy [ Power (%) [ Inference Time (s) ]
[ Baseline DNN [ 0.9303 100 ] 0.0569 |
| iBranchy | 09146 | 6416 | 0.0371 |

Table 2: Performance of edge deployment with 11000 samples

5.3 Flexibility and Adaptability of iBranchy to
Hardware and Network Conditions

Given that BranchyNet can be configured dynamically to increase
or decrease the entropy threshold values during runtime [17], a
similar threshold runtime setting can be used to dynamically config-
ure iBranchy for various efficiency schemes. For example, iBranchy
can change to a low-efficiency scheme with low power consump-
tion during low battery status and switch back to a high-efficiency
scheme when the battery is high later. Similarly, during low band-
width due to bad Wi-Fi, the iBranchy can change to a low-efficiency
scheme with low inference time at the cost of accuracy and switch
back to high efficiency with good Wi-Fi. Therefore, iBranchy is
flexible to adapt to different edge resource contexts and choose the
appropriate efficiency scheme. . However, testing different configura-
tions of the thresholds of iBranchy for efficiency and performance
trade-offs is out of the scope of this work.

6 DISCUSSION

In this paper, we design and implement an D?NN based Early-Exit
classifier iBranchy that can do accelerated inference for edge-based
IoT and non-IoT device types with fewer resources. Our frame-
work is flexible enough to support a context-driven network traffic
classification system based on the edge environment state such as
battery status or network conditions given the conditional com-
putation capabilities of the D2NN models. Moreover, since we
implement iBranchy using network encoding component that uses
raw network bytes of the device network traffic as input, iBranchy
can support various device categories from multiple vendors with-
out requiring manual feature engineering. Furthermore, given our
encoding process considers network header independent fields,
iBranchy can seamlessly integrate with different network environ-
ments. We believe that our results give some early insights on
applying D?NN such as iBranchy for edge-based IoT classifiers.
For example, the significant number of IoT devices flowing from
Exit #1 shows that the later layers can be cumbersome, requiring a
better network design. In our future work, we plan to extend our
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work to more significant device types with more complex features
such as devices from the same vendors and analyze the distribution
of these device types over the different exits.
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