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ABSTRACT

With the phenomenal growth of IoT devices at the network edge,

many new applications have emerged, including remote health

monitoring, augmented reality, and video analytics. However, se-

curing these devices from different network attacks has remained

a major challenge. To enable more secure services for IoT devices,

threats must be discovered quickly in the network edge and effi-

ciently dealt with within device resource constraints. Deep Neural

Networks (DNN) have emerged as solution to provide both security

and high performance. However, existing edge-based IoT DNN clas-

sifiers are neither lightweight nor flexible to perform conditional

computation based on device types to save edge resources. Dynamic

deep neural networks have recently emerged as a technique that

can accelerate inference by performing conditional computation

and, therefore, save computational resources. In this work, we de-

sign and develop an accelerated IoT classifier iBranchy based on

a dynamic neural network that can perform quick inference with

fewer edge resources while also providing flexibility to adapt to

different hardware and network conditions.
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• Security andprivacy→Mobile andwireless security; •Com-
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1 INTRODUCTION

In recent years there has been significant growth in the number

of IoT devices. These devices are deployed in proximity to the

data sources at the network edge and support various machine

learning-based applications, including remote health monitoring,

augmented reality, and video analytics. To secure these devices from

different types of network attacks [1, 2], the IoT/edge applications

typically exploit machine learning models such as Deep Neural

Network (DNN) models for different security functionalities such

as traffic classification, device identification, and anomaly detection.

However, the performance of these models when running on edge-

based IoT devices will be significantly impacted by the limitations

of the device resources which will reflect on the performance of

these devices. Therefore, it is highly desirable to develop techniques

to optimally accelerate the inference computations of DNN models

in order to enable real-time applications and conserve energy for

edge devices/IoT.

Very recently, different types of DNNs referred to as Dynamic

DNNs (𝐷2𝑁𝑁 ) have been proposed [7] to provide low-latency and

power-saving on IoT/edge devices. In contrast to traditional DNNs,

dynamic DNNs are capable of performing conditional computations

and selectively activate just sections of the network model, whereas

traditional DNNs use the entire network model in the computation

even when only a certain portion of the network is sufficient to

make the inference. For example, BranchyNet [17], one of the pop-

ular 𝐷2𝑁𝑁 models, terminates its computation and infers early if

the earlier layers of the network have sufficient confidence without

requiring all of the subsequent layers to participate in computation,

thus reducing inference latency and power consumption. The typi-

cal architecture of BranchyNet model consists of a network with

multiple layers and different branches. Every branch of the network

is followed a classification output component known as exit point.

During inference, the early termination at a branch happens only

if the exit point has adequate confidence to make the inference. Re-

cent research has demonstrated that for the vast majority of inputs,

the model will exit at the early exit point of the network during

inference without requiring computation from the rest of the net-

work [17]. These 𝐷2𝑁𝑁 models, which offer characteristics like

on-demand computing, hardware adaptability, and fewer resource

constraints, are therefore gaining popularity for constructing and

developing high-performance IoT/edge applications [5, 13].

Motivated by the above observations, in this paper, we design and

develop a dynamicDNN (𝐷2𝑁𝑁 ) IoT classifier based on BranchyNet

as a model classifier to classify actual IoT and non-IoT devices and

evaluate the model with edge-based constraints such as inference

time and power consumption. We summarize the contributions of

this paper as follows:
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• We design and develop iBranchy, a dynamic early exit multi-

class classifier for classifying IoT devices based on their net-

work traffic.

• We evaluate the features of iBranchy using both real IoT and

non-IoT devices.

2 BACKGROUND

2.1 Static Compression vs Dynamic DNNS
(𝐷2𝑁𝑁 )

In recent years there has been significant research over accelerating

machine learning models for edge deployments using different ap-

proaches [3] such as compression [4, 6] and knowledge distillation

[8]. In compression-based techniques, the original DNN network

may be pruned in different ways to remove any insignificant parts

of the network. For example, in [6] authors compress the network

using quantization method while authors in [4] compress the con-

volutional layers through a redundancy approach. However, in

knowledge distillation technique [8], instead of compressing the

neurons or weights of an existing complex DNN network model,

a new lightweight network called student model is designed with

very few layers and is trained to learn from the knowledge repre-

sentations outputs of the pre-trained complex teacher model. This

method has shown to be very effective with high performance for

resource constraints and an insignificant drop in accuracy.

One of the major disadvantages of the above accelerated meth-

ods based on compression or distillation is that they are static with

respect to computation and inference time as all the components of

the DNN network will participate in inference phase computation

irrespective of the type of input or environmental conditions. In

contrast to static networks, dynamic networks 𝐷2𝑁𝑁 can change

their internal structure or parameters during the inference phase,

giving them greater flexibility and better adaptability to the un-

derlying use case [7]. The 𝐷2𝑁𝑁 models accomplish this dynamic

flexibility and adaptability through a conditional computation ar-

chitecture that allows them to only selectively activate particular

sections of their network based on context, such as input data or

environmental conditions. Early-Exit-based models [7, 17] are one

of the most popular categories of the 𝐷2𝑁𝑁 networks that have a

multi-exit design where an exit is an early inference point attached

to selected components of the network and can be conditionally

activated based on the complexity of the input data. Therefore, in

this paper we use BranchyNet [17] a very well adapted Early-Exit-

based 𝐷2𝑁𝑁 model that is gaining popularity for edge scenarios

to implement our 𝐷2𝑁𝑁 based IoT network classifier.

2.2 BranchyNet

BranchyNet is an Early-Exit-based 𝐷2𝑁𝑁 model that supports an

early inference of certain input samples using multi-branch and

multi-exit design. Like a traditional DNN classifier, the BranchyNet

network architecture consists of a multi-layer network followed by

a softmax layer for output predictions. However, in addition to the

main network, a small network called branches are added to the

outputs of different layers of the main network. These branches,

similar to the main network are also followed by softmax layer.

The outputs from the different softmax of the different branches

and the main network are called as exits. The multi-exit approach

implemented in BranchyNet is based on the observation that the

earlier layers of the network can perform inference for most of the

input samples, thus allowing most of the inputs to exit early and

thus reducing the overall network computation and reducing the

average runtime and power computation.

In BranchyNet training a softmax cross entropy loss function is

used for minimizing the network misclassification rate similar to

traditional DNNs. However, the overall loss of the network is calcu-

lated using a weighted loss function consisting of losses at different

exits of the network. The choice of the weights for each exit-specific

loss is a hyper-parameter and impacts the model performance. Dur-

ing the inference phase, an input sample exits the network only if it

is predicted with a confidence that is within the confidence thresh-

old assigned to that particular exit. More specifically, BranchyNet

uses an entropy-based confidence threshold where a sample exits

from a particular exit only if it was predicted with entropy less

than the threshold assigned for that particular exit. If the entropy

of the input sample is larger than the given threshold, the sample

is sent to the next exit for inference and the process continues till

the sample reaches the final exit at the end of the main network.

The choice of thresholds at different exits is a run-time hyper-

parameter that impacts model inference phase performance. The

lesser threshold value at an exit will ensure the samples predicted

with high entropy to be pushed to later exits, thus improving the

model’s accuracy at the cost of early inference. Two approaches

are proposed in BranchyNet for threshold selection, in the first

approach, different threshold values could be tested in an iterative

method and finally choosing the best configuration based on user

requirements such as higher accuracy with an increase in inference

time or lower accuracy with a decrease in inference time. The

second approach is to use a neural network-based approach that

can automatically fine-tune the threshold values. In this paper, we

implement the first approach to pick the threshold values based on

performance requirements.

3 RELATEDWORK

Given the significance of IoT device classification, some of the

recent IoT network classifiers [15, 16] utilize either probabilistic

model [15] or traditional machine learning based unsupervised

model [16] for classifying network based IoT devices, but no deep

learning-based solutions. However, in this work, given the grow-

ing popularity of deep learning-based classifiers that provide the

features such as automatic feature extraction and better accuracy

from raw network data [9, 11, 12], we build 𝐷2𝑁𝑁 based model

for IoT classification that augments traditional DNN based features

with additional features that can support edge-based resource con-

straints. For example, existing IoT classifiers that use different deep

learning based approaches such as CNN-RNN [9], autoencoders-

bayesian modeling [12] and semi-supervised GAN [11] require all

of their DNN network entitiess to participate in computation for

realizing their system. In contrast, our approach can conditionally

activate only selected sections of the DNN network to save energy

and inference time.

Other 𝐷2𝑁𝑁 related advances include developing a partition

method [13] with BranchyNet and distributed DNN techniques [18]

across the cloud and the edge devices for better performance and

faster response times. Similarly, FlexDNN [5] - a Early-Exit based
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Table 1: The list of IoT and non-IoT devices used

Device Name Device Type

Smart Things Hub

Amazon Echo Speaker

iHome Speaker

Triby Speaker Speaker

Netatmo Welcome Camera

TP-Link Day Night Cloud Camera Camera

Samsung SmartCam Camera

Dropcam Camera

Insteon Camera Camera

Withings Smart Baby Monitor Camera

Nest Dropcam Camera

Belkin Wemo Switch Acutator

TP-Link Smart Plug Acutator

Light Bulbs LiFX Smart Bulb Acutator

NEST Protect Smoke Alarm Sensor

Netatmo Weather Station Sensor

Withings Smart Scale Sensor

Blipcare Blood Pressure Meter Sensor

Withings Aura Smart Sleep Sensor

Belkin Wemo Motion Sensor Sensor

PIX-Star Photo-frame Digital Frame

Laptop Non-IoT

Macbook Non-IoT

iPhone Non-IoT

Samsumg Galaxy Tab Non-IoT

model accelerates video analytics on resource-constrained devices.

However, our work significantly differs from other edge-based

𝐷2𝑁𝑁 models as we design, implement, and evaluate iBranchy

for IoT-based network devices which is more challenging due to

the fact that network data is not simple as traditional image or set

of frames based video data. Furthermore, we apply an encoding

scheme based on network flows based on our previous work [11]

to implement BranchyNet for IoT devices effectively. Very recently,

in [10] authors use a context-based approach that selects the most

appropriate anomaly detection model from the hierarchy of mod-

els deployed at the edge, cloud, and device to meet edge-based

resource constraints, and it is implemented using sensor and power

consumption datasets. However, unlike their work which use dis-

tributed models, we implement a single model classifier based on

BranchyNet that can uniquely identify IoT/Non-IoT devices using

IoT network traffic.

4 IBRANCHY FRAMEWORK

In this paper, we design and implement iBranchy, an IoT network

classifier for edge-based systems. Figure 1 shows an overview of the

iBranchy framework that consists of two components a network

flow encoding component and an accelerated device discovery

component. The new devices’ network flows are encoded through

the network encoding component and sent to the accelerated device

discovery component, a BranchyNet based Early-Exit multi-class

classifier, to identify the new device class (device name). We discuss

below implementation of each of these components in detail.

Network Flow Encoding: The network flow encoding compo-

nent encodes the network flows of the devices by mapping the raw

network packets of a flow into a three-dimensional array based

on our previous work [11]. This encoded flow array is given as an

input to the accelerated device discovery component to extract the

hidden features and uniquely identify the device. The flow encoding

is implemented in multiple steps, first, we take the raw byte streams

of the packets in a flow as the features and convert them into their

equivalent hexadecimal integer representation. Next, similar to the

three-dimensional encoding of a non-gray image with pixel intensi-

ties as features andmultiple channels represented as a 2D array used

for image classification, we create a three-dimensional encoding for

the hexadecimal representation of the flow. However, each channel

in this encoding is a 2D packet hex stream with a dimension of

56*56 to accommodate the maximum size of a MAC packet of 1500

bytes, and all packets are arranged in arrival sequence. The number

of packets in a flow is a configurable parameter and can be adjusted

based on the model’s performance. In our experiments, we take the

first 5 packets of the flow and append zeros if the flow has packets

shorter than that, an approach similar to [12]. It is to be noted that

for the flow encoding, we do not consider any network-dependent

header data such as IP address, etc. to enable network independent

model deployment. This flow-based encoding scheme using raw

packet streams is a more efficient solution for BranchyNet based

model, which uses CNN layers and can extract spatial features of

the network byte data much efficiently.

Accelerated Device Discovery: The iBranchy accelerated de-

vice discovery component uniquely identifies a device into its cor-

responding class. However, unlike other popular DNN based IoT

classifiers where all the layers participate in computation [9, 11, 12],

iBranchy may exit at different stages of the model with probable

very early exits that can significantly decrease the inference time

and consume less energy. To design the iBranchy model we first

design a baseline DNN IoT classifier and then, using the baseline

DNN, we build an IoT based BranchyNet version with newly added

branches where a branch is a set of layers or a very small DNN

with early exit point as discussed in section 2.

Figure 1 shows the overall architecture of the iBranchy model,

which consists of multiple convolutional layers followed by a linear

layer with final exit and two branch exits. In iBranchy, we try dif-

ferent design configurations and choose the early exits at Branch

#1 and Branch #2 at the CONV layer #1 and CONV layer #3, re-

spectively. At the inference stage, if the entropy for a branch of

a testing sample is less than the runtime threshold, the inference

can be made early without further computation from subsequent

layers. We chose a lightweight design for the branches with linear

layers to add less overhead at run time for edge deployments but

that could be further optimized. In iBranchy, the probability of a

network layer to participate in the inference computation is depen-

dent on the threshold values set for different exits. Therefore, at

run time, based on the environment requirements such as battery

power (low or high) or Wi-Fi signal strength iBranchy can be con-

figured dynamically to exit more samples at early layers to save

edge resources. However, choosing very low threshold values can

significantly impact the inference accuracy and therefore needs to

be optimized based on the operating constraints and is out of the

scope of this work. In the next section, we evaluate iBranchy for

edge based deployment requirements.

5 EVALUATION

In our experiments, we extract 56,000 flows from the combined

network flows of twenty-one IoT devices and four non-IoT devices

as shown in Table 1 from the publicly available UNSW [15] dataset
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Figure 1: iBranchy Accelerated Edge Classifier

Figure 2: The change in iBranchy exits through training Figure 3: The percentage of exits of iBranchy for different

device types

to evaluate and validate iBranchy for different edge-based require-

ments. The raw pcap files are processed to create flows for encoding

with network-independent header fields and payload data similar

to our previous work [11]. We implement our model using PyTorch

[14] and also using code repositories [17, 19]. We use an NVIDIA-

based GPU Server with 32 GB RAM to perform our experiments, we

also use 80% of data for training and 20% for testing our model. For

evaluating iBranchy, we consider multiple performance metrics and

flexibility-based scenarios. First, we assess the ability of iBranchy

to exit in earlier exits for the majority of the testing data. Next,

we measure iBranchy in terms of resource utilization and power

consumption and finally assess its flexibility to provide a trade-off

between accuracy and edge resources based on the context. We

discuss each of these evaluations below.

5.1 Significance of Early Exit on IoT devices
Network Traffic

Figure 2 shows the percentage of exits from the different exits

of iBranchy during the training. The number of exits from Exit

#1 increases as the training progress, while the number of exits

from Exit #3 or the final exit of the network decreases. Therefore,

iBranchy, over time, learns to extract the significant features for

device type inference in the early layers of the DNN. Figure 3 shows

the percentage of exits for each device type. The number of exits

for device types from Exit #2 is not that significant compared to

the number of exists from Exit #1. The less significant exists from

Exit #2 could be either because of the choice of the network design

or the second branch has not captured enough features for the

remaining of the device type samples. Therefore, the distribution of

device exits across different branches is determined by the network

design and features of the IoT network dataset.
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5.2 Performance of iBranchy’s Edge
Deployment

Table 2 shows the runtime performance of iBranchy. The results

showcases that it performs significantly better with edge-based re-

quirements compared to our baseline DNN. The power consumption

of the iBranchy model layers decreases by 35.84% than the baseline

model layers. Therefore, iBranchy uses fewer network components

for computing the inference when compared to the baseline IoT

DNN model. Moreover, the run time for iBranchy model layers is

faster than the baseline model layers by about 34.79%. Furthermore,

the accuracy drop for the iBranchy model is not that significant,

as it only drops by about 2%. Therefore, iBranchy achieves efficient

accuracy with fewer resources and is more efficient for edge-based IoT

network classification.

Model Accuracy Power (%) Inference Time (s)

Baseline DNN 0.9303 100 0.0569

iBranchy 0.9146 64.16 0.0371

Table 2: Performance of edge deployment with 11000 samples

5.3 Flexibility and Adaptability of iBranchy to
Hardware and Network Conditions

Given that BranchyNet can be configured dynamically to increase

or decrease the entropy threshold values during runtime [17], a

similar threshold runtime setting can be used to dynamically config-

ure iBranchy for various efficiency schemes. For example, iBranchy

can change to a low-efficiency scheme with low power consump-

tion during low battery status and switch back to a high-efficiency

scheme when the battery is high later. Similarly, during low band-

width due to bad Wi-Fi, the iBranchy can change to a low-efficiency

scheme with low inference time at the cost of accuracy and switch

back to high efficiency with good Wi-Fi. Therefore, iBranchy is

flexible to adapt to different edge resource contexts and choose the

appropriate efficiency scheme. . However, testing different configura-

tions of the thresholds of iBranchy for efficiency and performance

trade-offs is out of the scope of this work.

6 DISCUSSION

In this paper, we design and implement an 𝐷2𝑁𝑁 based Early-Exit

classifier iBranchy that can do accelerated inference for edge-based

IoT and non-IoT device types with fewer resources. Our frame-

work is flexible enough to support a context-driven network traffic

classification system based on the edge environment state such as

battery status or network conditions given the conditional com-

putation capabilities of the 𝐷2𝑁𝑁 models. Moreover, since we

implement iBranchy using network encoding component that uses

raw network bytes of the device network traffic as input, iBranchy

can support various device categories from multiple vendors with-

out requiring manual feature engineering. Furthermore, given our

encoding process considers network header independent fields,

iBranchy can seamlessly integrate with different network environ-

ments. We believe that our results give some early insights on

applying 𝐷2𝑁𝑁 such as iBranchy for edge-based IoT classifiers.

For example, the significant number of IoT devices flowing from

Exit #1 shows that the later layers can be cumbersome, requiring a

better network design. In our future work, we plan to extend our

work to more significant device types with more complex features

such as devices from the same vendors and analyze the distribution

of these device types over the different exits.
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