
Dynamic Deep Neural Network Adversarial Attacks
for Edge-based IoT Devices

Mohammed Ayyat, Santosh Kumar Nukavarapu, and Tamer Nadeem
Department of Computer Science
Virginia Commonwealth University

Richmond, VA 23220, USA
{ayyatma, nukavarapuskk, tnadeem}@vcu.edu

Abstract—Edge-based IoT devices have experienced phenom-
enal growth in recent years due to rapidly increasing demand
in various emerging applications which typically utilize machine
learning (ML) models such as Deep Neural Network (DNN) and
demand low latency and low power consumption. To support
the edge requirements, ML models have to support faster
inference and less computation. Dynamic DNNs (D2NN) have
been proposed to support low-latency and power-saving on
edge devices by enabling conditional computations and context
dependant activation of the network model for inference; saving
computational time and edge resources, hence they are becoming
popular for edge applications. In this paper, we show that D2NN
are vulnerable to our novel adversarial attack, Dynamic DNN
Adversarial attacks (DDAS). Unlike conventional adversarial
attacks that target classification accuracy, DDAS targets the IoT
device resources such as the battery, latency, and so on. We show
that our attack is effective under various attack scenarios with
a high attack success rate. We also provide a retraining scheme
as a countermeasure to DDAS and show its effectiveness.

Index Terms—Adversarial Attack, Classification, IoT

I. INTRODUCTION

With the phenomenal growth of IoT devices at the edge,
many applications are being enabled, such as remote health
care, augmented reality, and video analytics. These appli-
cations demand low latency, privacy, and security, necessi-
tating the employment of supporting features such as on-
device computations, privacy-preserving data analytics, and
anomaly detection. Therefore, IoT devices typically host on-
device machine learning models such as DNNs to support
these applications. However, the performance of DNNs when
running on edge-based IoT devices is significantly influenced
by device resource constraints. As a result, developing tech-
niques to optimally accelerate the inference computations of
DNN models in order to achieve real-time applications while
conserving energy for edge devices/IoT is very desirable.

Some popular accelerating techniques for model inference
include designing lightweight DNNs with fewer layers [1] or
pruning an existing DNNs by removing parts of the neural
network that have minimal impact on the inference process [2].
While these models showed relatively faster inference and less
resource-constrained performance during inference, they are
not flexible enough to be further optimized or to be adaptable
to the conditions of the environment. For example, these

This material is based upon work partially supported by the US National
Science Foundation under Grants No. CNS-1764185 & OAC-2212424.
⋆All authors have contributed equally.

models do not have the ability to terminate the inference early
if the model has sufficient confidence to infer the outcome.

Recently, different type of DNNs referred to as Dynamic
DNNs (D2NNs) have been proposed [3] to enable low latency
and power savings on IoT devices. In contrast to traditional
DNNs, dynamic DNNs are capable of performing conditional
computations and selectively activating context dependant
portions of the network model. This includes the ability to
terminate computation and infer early when the earlier layers
of the network have sufficient confidence without requiring all
subsequent layers to participate in computation [4], or skipping
the input space models [5], [6], which conditionally scan only
the sufficient spatial or temporal input space for inference
and thus reduce the network’s unnecessary processing and
computation time. These D2NN models, which support charac-
teristics like on-demand computing, hardware adaptability, and
fewer resource constraints, are therefore gaining popularity
for constructing and developing high-performance IoT/edge
applications such as low-latency edge analytics [7] and real-
time object detection [5].

Adversarial attacks on machine learning DNN models have
increased significantly, and have become a challenge given
their realistic and dangerous attack scenarios. In an adversarial
attack, the attacker performs perturbations to the input or en-
vironmental conditions in order to target the model’s accuracy.
Given that D2NN models are expected to be heavily exploited
and utilized in many edge-based scenarios, understanding the
vulnerabilities of these dynamic models to adversarial attacks
is very critical. Furthermore, techniques for improving the
robustness of the D2NN models to counter these adversarial
attacks must also be explored.

In this paper, we present the Dynamic Deep neural network
Adversarial Attack (DDAS) for edge-based D2NN models that
aim to defeat their objective of early inference or conditional
computation. To the best of our knowledge, our work is the
first attempt at developing adversarial attacks and mitigation
techniques for D2NN models. More specifically, we design and
develop DDAS-EarlyExit attack for D2NN early-exit based
models such as BranchyNet [4] using a GAN-based approach.
We evaluate DDAS-EarlyExit using various attack metrics
under different attack scenarios. Moreover, we implement and
evaluate a robust incremental training approach for building
resilient D2NN using the adversarial samples generated from
our attack model.978-1-6654-3540-6/22 © 2022 IEEE



II. BACKGROUND

A. BranchyNet

BranchyNet is a dynamic DNN solution that allows input
samples to exit the network early by adding side branches
to the baseline network branch. This concept is based on the
observation that the earlier layers of the network can correctly
predict a large portion of the data population. Allowing these
data points to perform an early stopping and exit the network
early will reduce the network’s overall computations, bringing
down the average runtime and power consumption. We are
using a variation of BranchyNet termed iBranchy [8] that
is geared for IoT deployment scenarios. Figure 1 shows
an example of an iBranchy architecture exhibiting a model
augmented with two extra branches.

The training process of iBranchy is performed by solving
a joint optimization problem on the weighted sum of all the
classification loss functions associated with the individual exit
points. The loss function serves as a method of evaluating
how the model is performing given the input data, thus it is
used to guide the learning process. Each branch is assigned a
weight during training to control its relative importance. These
weights are used to direct the model into favoring specific
branches. During training, by default the samples pass through
all exits even if they would have terminated at an earlier exit.
However, the training process can be configured to prevent
the samples from passing over to latter exits if they are to
be terminated at earlier exits. We have chosen to use the first
approach in our implementation.

The inference process starts by passing the sample through
the initial block consisting of the internal layers of the network
up to the branch of the first exit producing a vector represent-
ing the classification likelihood of the sample, the vector is
then normalized using softmax function. The cross-entropy1

value of the normalized probability vector is then computed
at the exit point. If the value of the entropy is lower than
a predefined threshold, a label is attached to the sample and
the inference process terminates. Note that each of the exits is
assigned a threshold prior to the inference process that defines
its terminating condition. If the sample fails the exit check,
it is forwarded to the next block for further processing and
iteratively attempts to exit at each of the subsequent exit points.

B. Generative adversarial networks (GAN) overview

The GAN architecture consists of a generator and a dis-
criminator. The generator takes in random noise as input to
produce an adversarial sample mimicking the distributions
of real samples. The quality of the adversarial sample is
measured by the discriminator to decide whether the sample
is genuine or not. GAN adversarial training can be thought
of as a min-max problem to minimize the generator loss and
maximize the discriminator loss during training. In a recent

1The cross entropy is calculated as: entropy(X) = −
∑

i p(xi) ∗
log(p(xi)); where X represents the normalized probability vector of size
i.

Exit 3

Exit 2Exit 1

Branch 1 Branch 2

Block 1 Block 2 Block 3

Fig. 1: iBranchy model architecture showcasing a model
augmented with 2 extra branches

extension of the GAN for adversarial attacks on conventional
DNNs, the authors extended the GAN architecture with a feed-
forward network representing the target model to assist in
generating higher quality perturbations and an adversarial loss
to measure the ability of the generator to produce high-quality
perturbations [9]. As we describe later, we develop our DDAS-
EarlyExit on top of this extension.

III. DDAS ATTACK THREAT MODEL

The main objective of DDAS attacks is to compromise the
dynamic execution of the D2NN models during the inference
process by causing the activation of the longest execution path
which in turn causes the exhaustion of the highest computation
resources. Consequently, DDAS attacks result in increasing the
average inference time and power consumption of the target
D2NN model due to the extra computation needed by the
model to reach a classification decision.

DDAS attack can be a simple malware installed by the
attacker capable of intercepting the data feed sources such
as cameras that are used by the target classification model.
The malware will monitor and collect the inputs and the
corresponding outputs of the model. This data will be used to

(a) Normal scenario

(b) Adversarial scenario

Fig. 2: DDAS attack targeting obstacle avoidance system in
an autonomous vehicle slowing pedestrian detection below the
threshold needed for safely braking the car



train the DDAS attack to generate adversarial noise specifically
targeting the model that will be augmented to the data feed in
order to decrease its responsiveness. Autonomous vehicles are
an example target for this type of attacks, as they rely on fast
input processing to execute critical operations such as obstacle
avoidance and traffic mapping. A decreased responsiveness
to these functionalities can cause traffic accidents as shown
in Figure 2 that showcases a DDAS attack targeting an
emergency braking system in an autonomous vehicle.

The impact of DDAS attacks on the classification accuracy
needs to be taken into consideration, as it might match with
the goals of the attack if a secondary goal of the attacker
is to decrease the classification accuracy. However, this might
increase the chance of detecting the attack due to performance
degradation. Therefore, it might be desirable to design the
attack to target specific performance metrics while minimizing
the impact on classification accuracy. In our view, designing
DDAS to accommodate variable impact on classification ac-
curacy is crucial to cover the requirements of many attack
scenarios.

In this study, we focus on attacking multiple early exit
dynamic models. For these models, the goal of DDAS attacks
is to target the ability of the models to perform early inference
and terminate at earlier layers by forcing them to bypass most
of the exit points till it reaches the natural endpoint of the
model. We refer to attacks that target this specific early exit
capability as DDAS-EarlyExit attacks.

IV. DDAS-EARLYEXIT DESIGN AND IMPLEMENTATION

At the most basic level, all DDAS-EarlyExit attacks function
by compromising the ability of multi-exit dynamic models
to perform early inference thus increasing the computation
needed to classify input samples. Depending on different
attack scenarios, the attacker may have to balance between
aggressively attacking the early exit capability and decreasing
classification accuracy, thus they need a method to tune the ag-
gressiveness of the attack. Furthermore, the DDAS-EarlyExit
attack should generate adversarial samples that maintain the
exterior similarity to the normal samples.

We designed the DDAS-EarlyExit attack model with the
following objectives 1) targeting the early exit ability of
dynamic models, 2) providing a method to control the impact
on classification accuracy, and 3)generating samples similar
to the original input. Given these objectives, we chose to
implement our attack model as an adversarial learning process
using GANs [10], given their ability to generate high-quality
synthetic data and preserve the original data’s properties.

A. DDAS-EarlyExit Attack Design

Fig. 3 shows the design of our attack model. We utilized
a GAN architecture consisting of a generator/discriminator
scheme similar to [9] but with a different type of feed-forward
network as a target - an iBranchy model. The training process
starts by using the generator to generate adversarial noise
mimicking the distributions of the real sample while using

the discriminator to decide whether the sample belongs to the
original distribution or not. The training process is guided
through the loss function which is crucial in training the
generator and the discriminator.

The choice of the loss function can be different based on the
problem. For example, the popular loss function C&W [11] is
chosen for a non-targeted adversarial attack that maximizes the
probability of any other class label prediction. Another popular
attack class is the targeted adversarial attack in which the
loss function is configured to minimize the distance between
the predicted class and the targeted class [9]. Unfortunately,
both of these functions, and the current existing loss function
designs in general, focus on decreasing accuracy which does
not match the objectives of our attack. Therefore we opted to
perform to design our custom function.

To design our loss function, we need to target a different
parameter other than classification confidence, a parameter that
reflects how iBranchy performs early exiting. Since iBranchy
utilizes cross-entropy to perform the check on whether to
perform early exiting on a specific branch. Our loss function
will utilize it and work towards maximizing its value. iBranchy
performs entropy calculations at each exit individually, produc-
ing multiple values for entropy. We can utilize this to target our
attack towards a specific branch or a combination of branches.

The attack model is trained to minimize the overall neural
network loss L, which is the combined loss of the generator
G and discriminator D LGAN , the adversarial loss Ladv rep-
resenting the target network, and the perturbation loss Lpert
shown in Equation 1. Each of these terms is multiplied by a
constant, and the set of constants α, β, γ are used to control
the importance of each term during the learning process.

L = αLadv + βLGAN + γLpert (1)

Starting with the last term; the perturbation loss Lpert is
calculated as shown in Equation 2. The goal of this term is to
bound the magnitude of the perturbation G(x), by adding a
soft hinge loss in case the euclidean norm of the perturbations
exceeds a certain threshold c. Hence, the objective of this loss
is to train the model to choose smaller perturbation values that
help maintain the original structure of the input sample. The
Ex operator in the following equation calculates the expected
value or mean over variable x.

Lpert = Exmax(0, ∥G(x)∥ − c) (2)

The middle term LGAN , which is calculated using Equation
3, represents the minimax game between the discriminator
D and the generator G, as D attempts to differentiate the
perturbed data x + G(x) from the original data while G
attempts to generate perturbations G(x) that can fool D.

LGAN = Ex(logD(x) + log(1−D(x+G(x)))) (3)

The first term, the adversarial loss Ladv , shown in Equation
4, represents the model we are trying to attack where ℑ(.) is
the corresponding normalized probability vector of the input
sample at this exit. This loss term is negative in order to train



DiscriminatorA
dv

er
sa

ria
l 

S
am

pl
e

Feed Forward Network - iBranchy

A
dv

er
sa

ria
l 

S
am

pl
e

IoT Data

Real Sample

Generator

Backpropagation

Fig. 3: DDAS-EarlyExit-GAN Attack Model

the attack model to produce perturbed images that maximize
the entropy values of the input sample, which causes the
perturbed image to have a higher likelihood of failing the
entropy check and pushes samples to latter exits in iBranchy
fast inference check.

Ladv = −Exentropy(ℑ(x+G(x))) (4)

This term can be used to attack a singular branch of
iBranchy, since entropy is calculated at each individually,
we can expand Ladv to target a specific branch or multiple
branches simultaneously. We accomplish this by multiplying
the entropy vector corresponding to all branches by the weight
vector w as shown in Equation 5. This weight vector allows
us to fine-tune the attack by selecting different weights for
branches.

Ladv = −Ex

N∑
i=1

wi ∗ entropy(ℑi(x+G(x))) (5)

where N is the number of exit points. This equation
provides us with the method to adjust the attack aggressiveness
and impact on classification accuracy, as by adjusting the
weight vector w we can choose to focus on maximizing
entropy over all exits producing a highly aggressive attack
or we can select the weights to have a more forgiving attack
with smaller impact but a higher chance of evading detection,
by selecting lower values for certain branches.

B. DDAS-EarlyExit Attack Implementation

As shown in Fig. 3, the DDAS attack consists of three com-
ponents: The generator, the discriminator, and the feed-forward
network. The generator uses an autoencoder architecture with
3 conv layers encoding followed by 4 Resnet blocks and 3
conv layers decoding. The discriminator is a sequential model
consisting of 3 conv layers. The feed-forward network is an
iBranchy model based on a ResNet32 classifier trained with
the CIFAR-10 dataset. Two extra exit points were added to it;
one after the first residual block and another after the third
block. The design of the exit branches is fairly simplistic with
a pooling layer followed by a flattening fully connected layer
and then a softmax layer to produce output probabilities to add
minimum overhead at run time to simulate edge deployments.

The generator is trained to perturb the clean images which
are then tested by the discriminator to differentiate between
perturbed and clean images, the entropy of the samples is
calculated across all exits of iBranchy and assigned weights
according to Equation 5. The combined loss is then calcu-
lated and used to train the network using Backpropagation.
Calculating the entropies across all exits requires access to the
normalized output probability vector at all different exit points.
However, access to the probability vector is only needed during
the training of the attack model, and after the attack model has
been trained, only an input sample is needed to generate an
opposite adversarial sample. Therefore, we consider this attack
to be a semi-whitebox attack [9]. We briefly discuss our plans
to extend it to a blackbox attack in Section VIII.

V. MITIGATING DDAS-EARLYEXIT ATTACK

The approach we have taken for mitigating the DDAS-
EarlyExit attack is an adversarial retraining approach similar
to [12]. Adversarial retraining generally works by generating
adversarial examples and then mixing them with clean ex-
amples and using both adversarial and clean data to retrain
the target model. This approach has shown to be relatively
effective for traditional misclassification adversarial attacks as
[13] shows the error rate on such images was seen to decrease
drastically after retraining the network. However, our attack
has different goals than misclassification and is measured
through different metrics. Therefore, we aimed to implement
an iterative robustness retraining scheme and evaluate its
effectiveness on our DDAS-EarlyExit. We outline the iterative
robustness process we implemented in Algorithm 1.

Algorithm 1: Implementation of robustness training
1 for i = 1..robustness iter do
2 for j = 1..num of data batches do
3 Obtain training samples from Mi training set
4 Use generator to generate adversarial noise
5 Combine adversarial noise to clean sample
6 Pass the adversarial sample by discriminator
7 Calculate loss and Update attack model Ai

8 Calculate accuracy and sample distribution of Mi

9 Calculate robustness of Mi against Ai

10 if Mi passes robustness threshold T then
11 break

12 Use Ai to generate adversarial training samples S′
i from

clean samples Si

13 Use mix of S′
i and Si to retrain Mi to obtain Mi+1

It starts by training a DDAS-EarlyExit to target a model
M by iteratively providing it with batches of training samples
(line 3) and training the generator to generate the appropriate
adversarial noise (line 4). This noise is added to the clean
image (line 5), becoming the adversarial image. This image
passes by the discriminator to check whether it can be dif-
ferentiated from clean samples (line 6). The combined loss
is computed and used to update the attack model (line 7).
This operation continues until the attack model A is trained.
Afterward, we calculate the accuracy and the distribution of



the sample over exit points of Mi under the attack Ai (line 8),
which is used to calculate the robustness of the model (line 9).
If the model shows adequate robustness we stop the iterative
robustness process, otherwise, we continue the process of
robustness training (lines 10&11). Finally, we use the attack
model to generate adversarial training samples (line 12) and
shuffle them with clean samples from the original dataset and
use the combined dataset to obtain an updated model Mi+1

(line 13). This process is repeated for a predetermined number
of iterations or until the robustness goals have been met.

VI. PERFORMANCE EVALUATION

We evaluated the performance of our attack using the
CIFAR-10 dataset to train our iBranchy model and the DDAS
attack model. The dataset was partitioned and both the classi-
fication and the attack models were trained using disjointed
parts of the overall data. The experiments were run on a
local machine using AMD Ryzen 3800X CPU, Nvidia RTX
2080TI GPU, and 64GB RAM. In the following subsections,
we discuss the experiment design and our evaluation process.

A. Experiments Design

In our experiments, we manipulated the Ladv term defined
in Equation 5 by adjusting the vector w that is being multiplied
by the entropy calculated at each of the exit points. We
designed several scenarios using values of w to test the aggres-
siveness of the model. In addition, we designed two scenarios
to evaluate whether we could adjust w to minimize drops
in classification accuracy. All scenarios and their associated
weight vectors are listed in Table I. These values were simply
chosen to highlight disparate scenarios, however, more so-
phisticated parameter selection methods such as reinforcement
learning can be used to create more specialized attacks. Base
scenario refers to the base iBranchy model before any attacks.
C&W is the scenario representing an ordinary adversarial
attack that targets classification accuracy rather than early exit
capability, using C&W loss formula [11], this also serves
as another base case. L1, L2, and L3 scenarios focus on
targeting a specific exit (Exits 1, 2, & 3). L4 is a scenario
that aims to attack Exits 1&2. L5 aims at attacking all exits.
L6 scenario aims at attacking Exits 1&2, but includes a
regularizing term to penalize high entropy at Exit 3 to assist the
model in making more accurate predictions. This term utilizes
a min-max aspect to the overall loss function by requiring
the network to maximize entropy at Exits 1&2 while avoiding

(w0,w1,w2) Description
Base - Original iBranchy base model
C&W - Traditional adversarial attack using C&W
L1 (1, 0, 0) Ladv focused to target Exit 1
L2 (0, 1, 0) Ladv focused to target Exit 2
L3 (0, 0, 1) Ladv focused to target Exit 3
L4 (1, 1, 0) Ladv focused to target Exits 1&2
L5 (1, 1, 1) Ladv focused to target all exits
L6 (1, 1, -1) Ladv focused to target Exits 1&2, ignoring Exit 3
L7 (1, 1, -2) Same as L6 with more emphasis on ignoring Exit 3

TABLE I: Summary of the scenarios we experimented with, and the
weight vector associated with each scenario.

high values at Exit 3. Our intuition is that this will allow
the network to be more conservative in pushing samples from
Exits 1&2 in order to avoid a high penalty at Exit 3 and,
consequently, will help to maintain overall accuracy. L7 is the
same as L6 but with double the regularizing penalty that is
expected to make the network more conservative and, as a
result, improve overall accuracy.

Our attack contains several hyper-parameters mentioned in
Section IV-A that are used to tweak the learning process.
We set the values of the variables α, β, andγ, mentioned in
Equation 1, to 10, 2.5, and 1 respectively. The value of the
parameter c used to constrain the perturbations in Equation 2
is set to 0.3. These values were chosen through experimenting
with the training process to obtain optimal results. We evalu-
ated the performance of DDAS-EarlyExit using three different
metrics: overall accuracy of the model after the attack, average
inference time of the model, and output exit distribution over
the different branches.

B. Evaluation of DDAS-EarlyExit Attack

Starting with the standard adversarial attack using C&W ,
this attack aims to maximize the misclassification loss. The
results in Figure 4 show a high negative impact on accuracy,
and figure 6 shows an increasing percentage of samples
leaving from the first branch and decreasing from the second
and last branches which caused a decrease in inference time by
about 21% as seen in Figure 5. This shows that standard ad-
versarial attacks are incapable of achieving our goals of attack
as it decreases accuracy and inference time. We attribute this
ineffectiveness to the fact that maximizing misclassification
confidence does not contribute to entropy maximization and
can sometimes even lead to entropy minimization.

Now we analyze the different entropy-based adversarial loss
functions. Starting with L1 scenario, we notice a decrease in
the percentage of samples leaving the first branch from 59% to
21%, while the percentage of samples leaving the second and
the last branches increased from 27% to 37% and from 13%
to 40% respectively. This caused an increase in the inference
time by 26%. The impact on the model’s accuracy is also not
as large as the C&W based attack, it only dropped down to
54%, compared to the C&W based attack’s reduction to 29%.
In the L2 scenario, we notice a decrease in the exit percentage
of the first and second branches from 59% to 47% and from
27% to 15%, while the last branch increased from 13% to 34%.
Due to the fact L2 attack affected fewer samples to exit from
the first branch, inference time only increased by 16%. In the
L3 scenario, this attack seems less effective as maximizing the
entropy of the samples at the last exit has low impact because
that the samples will leave at this point anyway making this
attack relatively weak. A common observation in L2 and L3

is the drop in Exit 1 despite these scenarios targeting different
exits, we attribute this to the training method as samples are
fed to further exit even if they terminate at earlier creating a
correlative relation between the exits.

The L4 scenario which combines L1 and L2 shows more
success, with the distribution across branches changes from



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Base C&W L1 L2 L3 L4 L5 L6 L7
A

cc
u

ra
cy

 (
%

)

Fig. 4: Classification Accuracy across all
experimental scenarios.

-20%

-10%

0%

10%

20%

30%

40%

50%

60% C&W L1 L2 L3 L4 L5 L6 L7

In
fe

re
n

ce
 T

im
e 

(%
)

Fig. 5: Change in inference time com-
pared to Base Scenario.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Base C&W L1 L2 L3 L4 L5 L6 L7

S
a

m
p

le
s

 E
x

it
D

is
tr

ib
u

ti
o

n
 (

%
)

Exit 1 Exit 2 Exit 3

Fig. 6: The distribution of samples over all
3 exits different DDAS attacks

(a) Clean Images (b) With DDAS-EarlyExit

Fig. 7: An illustration of the impact of DDAS-EarlyExit attack
using L4 scenario on the original images.

59%, 27%, 14% to 19%, 34%, 47%, demonstrating a higher
increase in the load at the later exits. This continues with L5,
which adds L3 as well. This attack has slightly lower effect
on the sample distribution than L4 because maximizing the
entropy at the last exit is not really beneficiary as the samples
leave from that exit anyway. As a result, We conclude that
combining the entropies of the early exists as in L4 scenario
can be the effective strategy to increase the attack potency.

Our last two attacks aim at balancing attack aggression
and accuracy decline. The L6 scenario encourages maximum
entropy values at both the first and second branches while
penalizing high entropy values at the third one. The accuracy
drops to just 72% at the cost of a much less aggressive
attack as only 32% exit from the last branch. The results
validate our intuition that introducing the regularization term
provides a way to tune the aggressiveness of the attack and
its impact on accuracy. Finally, the L7 results demonstrate
that increasing the regularization term too much causes the
attack to become ineffective since the network becomes more
conservative and performs relatively similarly to the original
base model, cancelling out most of the attack’s effects.

Figure 7 depicts a subset of the images used in our ex-
periments, and the same subset of images augmented with
adversarial noises generated by our DDAS-EarlyExit attack

when using L4 scenario. As demonstrated, our attack has no
effect on the visual appearance of the images, implying that
this attack could go undetected.

C. Evaluation of Iterative Robustness Training

We evaluate the performance of our mitigation approach
assuming the most aggressive attack model L4. Table II shows
the performance of our iterative robustness training approach.
The different rows of the table II show the performance metrics
(accuracy and samples distribution) over the iterations of the
robustness training where every two rows represent an iteration
consisting of the model before and after the attack.

The results show that with additional retraining iterations,
the robustness of the model improved against further attacks.
However, after a number of iterations, we observed that the
model’s robustness converged and became nearly constant. We
attribute this to the fact that there is a limit to the amount of
information that iterative robustness retraining can contribute
to the model, and after a certain number of iterations, there is
nothing to gain by performing further retraining of the model
as well as the DDAS attack model. This demonstrates that
adversarial samples of the DDAS attack are beneficial for
retraining and increasing the robustness of the model, but the
improvements cease after a certain number of repetitions.

Model Accuracy Exit #1 Exit #2 Exit #3
Base Model 88% 59% 27% 13%
Attack on Base 45% 19% 34% 47%
Retrained1 Model 85% 56% 26% 18%
Attack on Retrained1 62% 30% 26% 43%
Retrained2 Model 84% 56% 28% 15%
Attack on Retrained2 68% 35% 28% 37%
Retrained3 Model 83% 54% 25% 21%
Attack on Retrained3 72% 40% 27% 33%
Retrained4 Model 83% 55% 26% 19%
Attack on Retrained4 73% 41% 30% 29%

TABLE II: Performance of iterative robustness over 4 iterations

VII. RELATED WORK

Adversarial attacks on edge-based deep neural networks are
currently emerging and they are rapidly growing. In recent
work [15], authors classify the different types of possible
edge-based adversarial attacks based on the attacker objectives,



model access, attack targets, and defenses. The attacker’s goals
include disrupting functionality and inferring user, and model
privacy. Moreover, a summary of multiple recent edge-based
adversarial attack-based works has been described including
API attacks [16], side-channel attacks [6], and probing-based
attacks [17]. Unlike the existing adversarial attack works, we
design, develop, and evaluate adversarial attacks that impact
the computation, inference time, and power consumption of
the D2NN deployed hosting device/application in this work.
Recently, authors in [18] show adversarial attacks can impact
the computation of Reinforcement Learning (RL) based and
Markov decision models. However, our work differs substan-
tially from RL-based adversarial attacks in that we focus on
attacking the different activations/components of the D2NN
and not on perturbing the policies used by an RL-trained agent.

Recent works have demonstrated that the design of popular
conventional DNN models can be inferred using side-channel
attacks by measuring the time [19] and power consumption
[20]. We believe that these works give some insights for
fingerprinting conventional DNN models, which can help in
reverse-engineering the DNN network parameters. However,
unlike our work, the authors do not perform any adversarial
attacks on the accelerated/edge D2NN models for impacting
resource consumption or network latency. However, we note
that their work can expand the possibilities of building differ-
ent types of Black-Box attacks for D2NN models where the
confidence measures of the inference are unavailable. Another
related work is [25], Hong et el. propose an adversarial attack
on multi-exit models . However, unlike their work, we use
a GAN-based technique for generating adversarial samples in
our approach, given GANs have shown good performance with
the generation of adversarial samples for traditional adversarial
attacks.

VIII. CONCLUSION

In this paper, we developed DDAS-EarlyExit attack, a
GAN-based attack against dynamic deep learning networks
utilizing early exit models such as iBranchy. We showed that
our attack is capable of significantly impacting the perfor-
mance of D2NN models in terms of power consumption and
inference time for edge-based IoT applications/devices. We
explored various attack scenarios that make use of DDAS-
EarlyExit and we evaluated different entropy-based adversarial
loss functions and highlighted how they differ from misclas-
sification loss, and we showcased how they can be used to
design a flexible attack. We also implemented and evaluated
an incremental adversarial robustness retraining scheme for
building resilient early-exit D2NN models.

As for future works, we would like to extend our semi-
white box attack to become a black box attack. While our
DDAS-EarlyExit is capable of producing the appropriate ad-
versarial noise after training without requiring any underlying
information from the target model, it still needs access to the
output probability vector of all exit branches from the target
model for its training process. We believe this extension can be
accomplished using techniques such as knowledge distillation

[23] and surrogacy training [24] to produce a mirrored model
to the one we are aiming to attack and target our attacks
towards the generated model. Another area we would like to
explore is the mitigation techniques against adversarial attacks
as well detection mechanisms for these types of attacks.

REFERENCES

[1] Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural
network. ArXiv Preprint ArXiv:1503.02531. (2015)

[2] Liu, J., Tripathi, S., Kurup, U. & Shah, M. Pruning algorithms to
accelerate convolutional neural networks for edge applications: A survey.
ArXiv Preprint ArXiv:2005.04275. (2020)

[3] Han, Y., Huang, G., Song, S., Yang, L., Wang, H. & Wang, Y. Dynamic
neural networks: A survey. ArXiv Preprint ArXiv:2102.04906. (2021)

[4] Teerapittayanon, S., McDanel, B. & Kung, H. Branchynet: Fast inference
via early exiting from deep neural networks. 2016 23rd International
Conference On Pattern Recognition (ICPR). pp. 2464-2469 (2016)

[5] Vaudaux-Ruth, G., Chan-Hon-Tong, A. & Achard, C. ActionSpotter:
Deep Reinforcement Learning Framework for Temporal Action Spotting
in Videos. 2020 25th International Conference On Pattern Recognition.

[6] Hua, W., Zhou, Y., De Sa, C., Zhang, Z. & Suh, G. Channel gating
neural networks. ArXiv Preprint ArXiv:1805.12549. (2018)

[7] Pachecom, R. & Couto, R. Inference time optimization using branchynet
partitioning. 2020 IEEE Symposium On Computers And Communica-
tions (ISCC). (2020,7), https://doi.org/10.1109

[8] Nukavarapu, S., Ayyat, M. & Nadeem, T. iBranchy: An Accelerated
Edge Inference Platform for IoT Devices. The Sixth ACM/IEEE Sympo-
sium On Edge Computing (SEC). pp. 392-396. (2021)

[9] Xiao, C., Li, B., Zhu, J., He, W., Liu, M. & Song, D. Generating
Adversarial Examples with Adversarial Networks. (2019)

[10] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A. & Bengio, Y. Generative adversarial networks.
Communications Of The ACM. 63, 139-144 (2020)

[11] Carlini, N. & Wagner, D. Towards evaluating the robustness of neural
networks. 2017 Ieee Symposium On Security And Privacy (sp). pp. 39-57

[12] Msika, S., Quintero, A. & Khomh, F. SIGMA: Strengthening IDS with
GAN and Metaheuristics Attacks. ArXiv Preprint ArXiv:1912.09303

[13] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfel-
low, I. & Fergus, R. Intriguing properties of neural networks. (2014)

[14] Krizhevsky, A., Nair, V. & Hinton, G. CIFAR-10 (Canadian Institute for
Advanced Research). (0), http://www.cs.toronto.edu/ kriz/cifar.html

[15] Isakov, M., Gadepally, V., Gettings, K. & Kinsy, M. Survey of attacks
and defenses on edge-deployed neural networks. 2019 IEEE High
Performance Extreme Computing Conference (HPEC). pp. 1-8 (2019)

[16] Tramèr, F., Zhang, F., Juels, A., Reiter, M. & Ristenpart, T. Stealing
machine learning models via prediction apis. 25th USENIX Security
Symposium (USENIX Security 16). pp. 601-618 (2016)

[17] Isakov, M., Bu, L., Cheng, H. & Kinsy, M. Preventing neural network
model exfiltration in machine learning hardware accelerators. 2018 Asian
Hardware Oriented Security And Trust Symposium (AsianHOST).

[18] Yekkehkhany, A., Feng, H. & Lavaei, J. Adversarial Attacks on Com-
putation of the Modified Policy Iteration Method.

[19] Won, Y., Chatterjee, S., Jap, D., Bhasin, S. & Basu, A. Time to Leak:
Cross-Device Timing Attack On Edge Deep Learning Accelerator. 2021
International Conference On Electronics, Information, And Communi-
cation (ICEIC). pp. 1-4 (2021)

[20] Zhao, M. & Suh, G. FPGA-based remote power side-channel attacks.
IEEE Symposium On Security And Privacy (SP). pp. 229-244 (2018)

[21] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. Proceedings Of The IEEE Conference On Computer Vision
And Pattern Recognition. pp. 770-778 (2016)

[22] Goodfellow, I., Shlens, J. & Szegedy, C. Explaining and Harnessing
Adversarial Examples. (2015)

[23] Gou, J., Yu, B., Maybank, S. & Tao, D. Knowledge Distillation: A
Survey. International Journal Of Computer Vision. 129, 1789-1819
(2021,3), http://dx.doi.org/10.1007/s11263-021-01453-z

[24] Qin, Y., Xiong, Y., Yi, J. & Hsieh, C. Training Meta-Surrogate Model
for Transferable Adversarial Attack. (2021)

[25] Hong, S., Kaya, Y., Modoranu, I. & Dumitraş, T. A Panda? No, It’s
a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural Network
Inference. ArXiv Preprint ArXiv:2010.02432. (2020)


