MirageNet - Towards a GAN-based Framework for
Synthetic Network Traffic Generation

Santosh Kumar Nukavarapu, Mohammed Ayyat, and Tamer Nadeem
Department of Computer Science
Virginia Commonwealth University
Richmond, VA 23220, USA
{nukavarapuskk, ayyatma, tnadeem}@vcu.edu

Abstract—With the emergence of machine learning technology
that supports the development of synthetic models, many new
use cases and challenges are emerging in the fields of computer
vision and security. The main model behind this technology is
Generative Adversarial Networks (GANs), with their ability to
model unknown distributions accurately and perform well in
generating synthetic data such as images and videos. However,
the application of this technology by the networking community
has been lacking. Given this motivation, we introduce MirageNet;
our vision for a GAN-based synthetic network traffic generation
framework, which can automatically create synthetic network
models of protocols, applications, and devices. With the potential
to build many applications for privacy, security, and network
optimization. In this paper, we present MiragePkt; the first com-
ponent of MirageNet. It is a GAN-based model to synthetically
generate network packets. We describe the different challenges,
limitations, and solutions for generating synthetic network pack-
ets. Finally, we validate and evaluate the performance of our
framework with the synthesizing DNS packets.

I. INTRODUCTION

The emergence of Generative Adversarial Networks
(GANS) [9] - an advanced machine learning technology that
can build synthetic models for audio and video - is creating
new opportunities and as well as challenges in the field of
computer vision and security. With more than 14,698 deep fake
videos found on the internet, which is a significant increase of
84% from the last year [22], it highlights the rapid growth and
excellent abilities of this technology to model very complex
tasks and problems. The generated deep fakes are difficult to
identify and pose a significant security risk for businesses and
governments.

This emerging growth of synthetic machine learning tech-
nology, its use cases, and security challenges still needs to
be explored by the systems and networking community. For
example, the application of GAN technology to automatically
comprehend and reverse engineer the grammar of networking
protocols such as TCP and UDP, or to automatically create
a network traffic model of devices and mobile applications,
remains to be investigated.

The development of such synthetic network models might
have several applications in privacy, security, and network

This material is based upon work partially supported by the US National
Science Foundation under Grants No. CNS-1764185 & OAC-2212424.

978-1-6654-3540-6/22 © 2022 IEEE

optimization. In terms of privacy, synthetic network models of
apps and devices, for example, can generate fake user activities
in smart homes, reducing the accuracy of side-channel attacks
for user activity inference. In security research, the synthesized
network data from these models could augment training data
to build effective intrusion detection systems. Moreover, real-
world honeypots may be constructed utilizing fictitious devices
and applications in order to better understand the attacker’s
behavior and interactions with these apps and devices. Further-
more, application and device synthetic network models might
be utilized to replicate numerous testing scenarios for analyz-
ing performance concerns such as load balancing, predicting
network conditions, and diagnosing network difficulties.

Creating synthetic network models of real-world devices

and applications is challenging, given the black-box nature
of their proprietary protocols and application logic. Therefore,
to automatically reconstruct an application or device’s network
model, it is necessary to automatically understand the network
model’s syntax and semantics and reverse engineer them with-
out the use of manual coding. While the syntax part consists of
the protocol, flow, and packet structures, the semantics consists
of meaningful network activity. For example, a synthetic
network model for an IoT device should first generate network
traffic for the ON user event before generating the network
traffic for the OFF event. Thus, an efficient synthetic network
model of a device or application should learn the syntax,
semantics, and interdependencies among them automatically.

Given this motivation, in this paper, we design, evaluate

and discuss the challenges of a network packet generation
framework MiragePkt that can automatically understand the
syntax of the network packets from the raw network packets.
This framework is the first step towards realizing our vision
of creating a GAN-based synthetic Network traffic generation
framework, MirageNet, that can automatically create synthetic
network models of protocols, applications, and devices. We
summarize the contributions of our paper as follows:

o We design and develop MiragePkt; a synthetic Network
Packet Generator framework, as the initial component of
MirageNet.

o« We present a sequential byte modeling approach for
network packet generation using GANS.

e« We describe the challenges, limitations, and solutions
towards generating synthetic network packets.

Back Propagation: Maximize

Genuine |
Sample

Discriminator Error

Generated
Sample

350N wopuey
[

Back Propagation: Minimize Generator Error

Fig. 1: Overview of the base architecture of GAN

o We validate and evaluate the performance of our frame-
work using synthesized DNS packets.

II. BACKGROUND

For many complex generative tasks, such as image gener-
ation, estimating the probability distribution of the different
features of images (i.e., pixel intensity values) is difficult.
Generative adversarial networks (GANs) are known to model
unknown complex distributions and have performed well on
such complex generative tasks [9]. The GAN model consists
of two neural networks, discriminator and generator, that form
a two-player min-max game where the generator tries to
generate fake samples and the discriminator tries to identify
if the samples are from the training data (real) or generated
by the Generator (fake). As shown in Figure 1, the generator
model accepts as an input a random noise and then transforms
this noise into a fake sample as an output. The min-max
game forces the generator to approximate the true distribution.
Moreover, the training process reaches an optimum solution
when the min-max game reaches Nash Equilibrium, where the
fake samples from the generator are predicted as fake by the
discriminator with 50% probability.

The GAN training consists of simultaneously training the
generator and the discriminator models on small batches of
data known as mini-batch with a fixed size. Each iteration
will train the GAN model with this fixed mini-batch of data
points. For a training iteration, the generator is given a batch
of random points from the latent space to output a batch
of fake samples. This batch of fake samples is given to the
discriminator to predict if they are real or fake. This process
updates the weights of the discriminator. Similarly, next, a
batch of samples from the training data is given as input to the
discriminator, which again updates the discriminator’s weights.
This process forces the discriminator to learn the features of
real and fake data. Moreover, the loss of discriminator for
predicting fake samples is sent as feedback to the generator,
which updates its weights accordingly to generate better
realistic samples. The generator training is called unsupervised
training as the generator model is never exposed to real data
during training. After training, the generator can be detached
from the GAN model and independently used for generative
tasks. Recently, GAN-based generative models are used for
disruptive technologies such as deep fakes to generate fake

Synthesized IoT Network models

Privacy Privacy-conscious Federated
Learning
Traffic Anomaly detection
SEYnthesliS Security Protocol Stack Validation
xample
Applications AerEpet
Network Network Diagnostics
Optimization Assist ML Models

Fig. 2: Different research and engineering domains where synthetic
network traffic would have significant impact

content (videos, audio, images) [1] [23] [12] that is indis-
tinguishable from real content. Similarly, the discriminator
model can be used for many image classification tasks [16]
[20]. Recently, image-based anomaly detection using a GAN
discriminator has been proposed [14].

III. MIRAGENET APPLICATIONS

Synthetic data generation is an emerging research topic in
the machine learning domain. As it can boost the performance
of various machine learning algorithms [11], solve class imbal-
ance issues when there is insufficient data for certain classes
[21], and most importantly, the ability to model any unknown
distribution [9]. Similarly, we believe synthetic network traffic
data can enable new different applications in the network
domain and support existing ones. Figure 2 shows the three
areas of applications that we envision for synthetic network
traffic: privacy, security, and network optimization.

Starting with privacy, we see multiple use cases for synthe-
sizing network traffic such as generating traffic simulating real
IoT devices and using it to counter side-channel attacks to pre-
vent the leakage of user activities in sensitive applications such
as healthcare [2]. Another use case is developing a privacy-
conscious federated learning model where instead of using real
data to build network models which can lead to information
leakage [8], we can train the federated learning models using
synthetic data with similar data distribution.However, it is to
be noted tha that preserving privacy is only possible if the
GAN training is stable and the generator is not overfitted to the
training data as that can lead to memorization and information
leakage.

Another major area that can utilize synthetic network data
is the security domain. For example, data augmentation using
synthetic network traffic can be used to train anomaly detection
systems with a low number of labeled malware samples by
generating synthetic malware samples and adding them to
the training data. Additionally, traffic synthesis can be used
to generate packets with a wide range of characteristics to
test protocol vulnerabilities in the device network stack. For
example, a malformed packet can cause certain target device
functionalities to fail and cause a denial of service. Building
synthesized malware is another interesting application where
attack patterns can be recorded by deploying "Honeypots™ to

Tokenize
data

Synthetic
Packets

Packets

Fig. 3: Packet generation pipeline of MiragePkt

capture real malware traffic and learn its properties and use
the synthesized malware to build defense mechanisms that can
defend against large-scale IoT-based attacks such as Mirai [6].

Finally, we also consider the area of network optimization,
where synthetic network traffic simulating certain network
conditions such as high congestion can be used to measure
network performance. Moreover, generating scenario-specific
synthetic network data can help improve the efficiency of
many ML-based network optimization tools. For example,
the efficiency of reinforcement learning-based models can
be improved by training them under an extensive range of
network conditions using GANs [11]. Given the above inter-
esting applications, in the below section, we will discuss our
framework for generating synthetic network packets as a first
step towards building a complete flow generation framework.

IV. MIRAGEPKT - PACKET GENERATION FRAMEWORK

In this paper, our focus is to build a packet generation
framework that can synthesize network packets whose protocol
is unknown. We chose this objective given the significance
of generating synthetic data for proprietary protocols where
traditional network parsing tools such as scapy and traffic
generators cannot be utilized as they fail to automatically un-
derstand the syntax of the network packet with multiple fields,
values, and their corresponding correlations. Specifically, we
focus on building the synthetic packet generation model using
the raw data collected using tools such as TCP dump, which
consists of a binary stream and does not give information about
the structure of the packet. In this paper, we pre-collect only
the raw binary stream of the network packets as the training
data and do not consider any metadata information about the
structure or field values to build our protocol-agnostic packet
generation framework. With this motivation, we designed our
packet generation, which is depicted in Figure 3, as a multi-
component system with each component described in more
detail in the following subsections

A. Raw Packet Stream Data Collection

This is the first step of our framework pipeline that performs
two significant tasks, collecting the network packets and
extracting raw byte streams from the network packets. The
collection of network packets from online or LAN networks
that follow proprietary protocols is challenging, given that
traditional network parsing tools such as scapy cannot identify
similar packets belonging to a specific proprietary protocol.
For example, collecting DNS packets without knowing any
information about the DNS protocol is difficult. Therefore, in
this component, we use Natural Language Processing (NLP)
and byte similarity-based calculations between packets to
identify and filter the required raw packets by using the byte
stream. However, for this paper, we generate DNS packets

based on a scapy script and use this component only to extract
the hex stream from the packets. Designing a sub-component
to filter and collect data streams of network packets of a
specific protocol is out of the scope of this paper.

B. Data Tokenization

Tokenization is an NLP-based text pre-processing scheme
that is used to divide the text into different tokens where
each token can be a word within the text, a group of words,
characters, or sentences. Similarly, tokenization for packet-
based byte data consists of dividing the bytes either into
individual tokens or groups of bytes within different packet
headers. In this paper, we transform the network byte stream
data into sequences of tokens where each token represents
the byte of the packet. Our intuition here is to model the
packets as sequences of bytes and use GANs to understand
the conditional distribution of bytes in a sequence of packets.
In this paper, we first tokenize the data and perform one-
hot encoding on each byte in a sequence for creating the
training data for GAN. However, our goal is to later extend
this in future work with different data pre-processing methods
from NLP such as word-bag, word embedding, or building a
word2vec model for bytes of network packets that can better
understand the correlations between the bytes of network data.

C. MiragePkt - GAN Generation Model

Figure 4 shows the overall architecture of the MiragePkt
GAN model, which consists of two components; a generator
and a discriminator. The generator’s objective is to generate the
sequence of tokens representing the byte stream of a packet.
The discriminator’s objective is to extract the features from
the generated sequence and identify whether the generated
sequence belongs to the true distribution of the training data.

This model training process is similar to the vanilla GAN
training discussed in the background section. However, one
of the significant challenges in generating sequences of bytes
using vanilla GAN is its inefficiency in generating discrete
data. Many GAN architectures perform efficiently with contin-
uous data and have shown excellent performance with image
data. However, for the sequence generation tasks, GANs have
performed poorly in domains such as music and text.

In this paper, we use a combination of 1D CNN and Softmax
functions in the generator to predict each of the tokens to form
the byte sequence of a network packet. Generally, CNNs are
well known for extracting the raw features from the 2D image
data using the convolution operation. However, they have not
been that efficient with 1D dimensional data such as text.
Recently, 1D CNN [13], which is very similar to the 2D CNN
with convolutional operations but has one-dimensional filters
to extract the features from 1D data, has shown good per-
formance with text classification tasks. Therefore, this paper
uses the 1D CNN in the discriminator to extract the features
from the 1D byte sequences data to identify between real and
fake packets. It is to be noted that, unlike a simple RNN or
LSTM-based regression task that can predict a token based
on the previous tokens, this GAN architecture can generate

sequence

Generator

Feedback Loss to the generator

The Softmax function of the Generator
predicts each token of the packet

Sequence of bytes to form the complete DNS packet

Training Data

Discriminator

Fig. 4: MiragePKT generation framework

GAN has not learnt the packet byte sequence

Epoch 10 0 0 0 0 0 0
Epoch 20 1

B 0 0 0 0
Epoch 30, T-----

N /e
\/

GAN partially learns the packet byte sequence

AN completely learnt the packet byte sequence

Fig. 5: Byte sequence generation during MiragePKT training

all tokens of the sequence at once, which is closer to the true
distribution of the training data.

The generator and discriminator models consist of 1D CNN
layers and are built using the improved Wassertian model [10],
which has shown improved synthetic generation for images.
The improved Wassertian model has also shown significant
improvements in stable GAN training ,and therefore it is
adapted as our base model in this work. Figure 5 shows the
evolution in byte sequence generation of the MiragePkt where
in the early epochs, the generator model is producing random
sequences without any correlation. However, in the later
epochs, the generator learns the structure of the packet and
its order sequence and, therefore, can generate high-quality
sequences at later epochs. We discuss the improvement of the
packet generation during training by showing the verbose text
of network packets later in the evaluation section.

D. Post Processor

Finally, this last component of the framework pipeline
generates the hex stream of the packet from the output of
the MiragePkt that consists of a numerical representation of
a packet sequence and then identifies if the packet is of high
or low quality before sending it to the network. Determining
the quality of a network packet can be measured by looking
at metrics such as measuring its similarity to the training data,
and measuring the randomness of the data such that the packet
does not belong to the original training data or previously

[Domains

instagram.com
bing.com
google.co.uk
alibaba.com
google.com.br
google.co.in
wikipedia.org

TABLE I: Samples domains from the Alexa dataset

generated packets. We discuss some of these metrics in our
evaluation section that we discuss next.

V. EVALUATION

In this paper, we pick DNS packets as our use case for mod-
eling network packets using GANSs as they follow a complex
syntax grammar with multiple fields such as domain name,
questions, and answers. This complexity can provide better
insights into the challenges of synthetic packet generation.
This complexity can provide better insights into the challenges
of synthetic packet generation. Additionally, recent attacks
using malformed DNS packets [7] have further motivated
us to pick this use case from a security perspective, as
an attacker can generate malformed DNS packets to attack
devices, and thus, a GAN-based tool to generate DNS packets
can further help with the security research. It is noteworthy that
DNS packets contain variable length payloads because of the
domain names, and in our MiragePkt during the tokenization
step, we get the maximum length of byte streams among the
training data packets to create byte sequences with the max
length and append zeros to any packet with less than the
max length. Building packet generation system with dynamic
payloads and variable sizes or complex conditions is much
more challenging than simple deterministic network packets.
We discuss next some of these challenges below.

A. Datasets and Experiment Design

To train MiragePkt, we first generate DNS packets using
scapy and then use their hex stream as our raw training

0.10 {
| I.II
0.08 1 f\
II
) 006 1 | \
2 [
7] 1
© 004 1 .
I l.
, \
0.02 [
000 £ p— . . .
10 20 30 40 50 60
domain_length

Fig. 6: Domain length distribution in VarLen-AnyDom dataset

data. We create a python scapy based script that generates
DNS packets using real-world domain names as the payload.
Figure 6 shows the distribution of the domains with variable
length, and Table I shows some of the sample domains from
the dataset. The efficiency of the machine learning model
is highly dependent on data pre-processing and the final
input training data. Therefore, to understand the impact of
the training data on MiragePkt ability to reverse-engineer the
DNS network packets automatically, we created three different
training datasets with varying complexities, VarLen-AnyDom,
FixLen-OneDom, FixLen-TwoDom. In the VarLen-AnyDom,
we pick 50000 variable-length payloads with a distribution of
domain name lengths as shown in Figure 7. Next, we create the
second dataset FixLen-OneDom that consists of 50000 packets
with a fixed domain length domain and a sigle domain suffix
such as ”.com”. Finally, the FixLen-TwoDom dataset has 25000
domain names with two suffixes such as ”.com” and ”.org”.
The FixLen-TwoDom configuration is to understand the impact
of DNS packets with different domain suffixes on MiragePkt.
We implement MiragePkt using PyTorch [17] and Python and
train it on a GPU-enabled machine with 32 GB of memory.
In the following subsections, we analyze the training data and
discuss our model evaluation with different training dataset
configurations with different complexity levels.

B. Impact of Training Dataset Configurations

Using several metrics, such as correctness, fakeness, and
similarity, we validate various models of MiragePkt trained
on datasets of varying complexity, as discussed earlier, with
the intuition that model performance will increase with a
decrease in the mathematical dependencies of the training data.
We define Correctness as a measure of how many of the
synthetically generated packets are legitimate DNS network
packets. We also define Fakeness as a measure of percentage
of new valid DNS packets, and Similarity as a measure of
how similar the byte strings of the generated packets and the
training dataset packets are.

From Figure 7, we see that for VarLen-AnyDom config-
uration, MiragePkt performance is highly inefficient across
different metrics. The MiragePkt major failure for this training
dataset configuration is its inability to generate valid DNS

100

m Correctness
90

Fakeness
80 Similarity
70
60
50
40
30
20

10

VarLen-AnyDom FixLen-OneDom FixLen-TwoDom

Fig. 7: Performance of MiragePkt across different complexity of
datasets

packets. Table II shows the different packet errors found
while generating DNS packets, where most of the generated
packets have incorrect IP header length and UDP header length
field values. Therefore, MiragePkt needs to be improved to
understand unknown functions among different bytes of the
packet. However, designing such a network architecture or
supporting loss function is a very challenging task and needs
to be researched more.

Figure 7 shows that changing configuration from FixLen-
OneDom to FixLen-TwoDom improves the performance of the
MiragePkt significantly, with an increase in the number of
correct packets from 25% to 95% and an increase in fakeness
from 25% to 94%. It is noteworthy that we measure the fake-
ness of the packets by searching for the fake byte stream string
in the corresponding training dataset configuration. Therefore,
MiragePkt does not overfit the training model by merely
memorizing the training data. On the contrary, it generates
high-quality synthetic content. Moreover, we observed that the
number of domains generated for FixLen-TwoDom contains
both ”.com” and .org” in the generated packets. Therefore
MiragePkt was able to capture the different modes of the
training data and does not fall into the mode collapse problem
where the GANs only generate one mode of the distribution.

From Figure 7, there is no significant increase in the
percentage of correctness or fakeness when switching from
FixLen-OneDom to FixLen-TwoDom, where both configura-
tions have the same fixed length of domains. Therefore,
variations in domain suffix structure do not affect MiragePkt
significantly as much as the mathematical dependencies intro-
duced by variable length domains.

Additionally, it is interesting to note that irrespective of the
different configurations, the similarity score of the bytes of the
synthetic content across all configurations remains very high.
Therefore, MiragePkt can generate a synthetic packet that is
very similar to the original training dataset. As for calculating
similarity, we performed a byte-level string-to-string similarity
to find the maximum similarity of each generated packet across
training dataset packets and then calculated the average of all
the similarity scores. Figure 8 compares the first and last bytes
of payloads created synthetically from MiragePkt versus actual

zg : Original Training Data

114 e MiragePkt Generated Data
Enl° .
F74] @ .
o
o 631 @
S 6c{ @ .
G64{ ®
g731 @
263 ®
Hes{ e
771 @ .

611 ®

Jaq{ @

66000 66002 66011 66010

Last three bytes of the payload

Fig. 8: The first and last three bytes of payload samples from original
training packets (red dots) and MiragePkt generated packets (blue
dots)

Packet Errors |

IPV4 header "IHL (Internet Header Length)” field value > Total
length of the IP Packet

UDP header "Length” field value > IP Payload length of the packet
IP header "Total Length” field value > IP Packet Length

Malformed Packet — due to invalid bytes for different fields

TABLE II: Examples of parsing errors in generated packets

payloads taken from the training dataset. The figure’s X axis
displays various combinations of the payload’s last three bytes
in hex, while the Y axis displays various combinations of the
first byte. The scatter figure demonstrates that the generated
payloads can completely recreate the last bytes of the payload,
which stand in for the suffix, as well as the majority of the
payload’s initial bytes.

C. Content Visualization

To inspect the synthetic packets visually in a process similar
to how the quality of synthetic images is assessed, we use
the scapy tool to output the verbose text of the generated
hex-byte stream. Figure 9 shows the improvement of packet
generation during training. At epoch 20, the network packet is
malformed, and scapy cannot construct a valid packet using the
generated hex stream. However, by epoch 50, scapy becomes
fully capable of reconstructing the network packet with all
the fields. Thus MiragePkt can learn the syntax of the DNS
packets with their correct field values.

VI. RELATED WORK

Some researchers have recently worked on using GANs
to build models that generate synthetic metadata of network
traffic where the metadata is the high-level parameters of a
network flow such as number of bytes, number of packets,
and flow duration [18] [19]. In [19] authors used a word2vec
embedding approach to generate the flow metadata parameters
of the traffic, given an embedding approach that can capture
the high-level relationships among different flow metadata
attributes in high dimensional space. However, their work
generates the flow metadata traffic and doesn’t generate the
network packets. We believe their work can be extended

Epoch 20

<bound method Packet.show of <Ether dst=00:de:fh:5b:61:42 src=18:3d:92:e3:77:0e type=0x900

|<Raw
load="E\x00\x00JI>@\x00@\x115\xfa\xac\x17\x11\x9c\xB0\xacZ\x0b\x96e\x005\x005\xdc\xbd/\x97\x0
1\x00\x00\x01\x00\x00\x00\x00\x00\x01\x04www3\x01/\x06google\x03co] \x00\x00\x01\x00\x01\x00
\x00)\x02\x00\x00\x00\x00\x00\x00\%00\x00\x00\x00\x00\x00\x00\x00\x00\X00\X00" | >>>

Epoch 30

| <bound method Packet.show of <Ether dst=00:de:fb:5b:61:42 src=18:3d:a2:¢3:77:0e type=0x700 | <Raw
load="E\x00\x00JI>@\x00@\x115\xfa\xac\x17\x11\x9c\x80\xacZ\x0b\x96g\x005\x006\xd c\xbd/\xa 7\x0
1\x00\x00'x01\x00\x00\x00\x00\x00\x0 1\x04www 3\x011\x06g oogle\x03com \x00\x00'x0 1\x00\x01\x0
0\x00)\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" | >>>

Epoch 50

src=172.23.17.156 dst=128.172.90.11 |<UDP sport=38500 dport=53 len=54 chksum=0xdcbd |<DNS
id=12199 gr=0 opcode=QUERY aa=0 tc=0 rd=1 ra=0z=0 ad=0 cd=0 rcode=ck gdcount=1 ancount=0
nscount=0 arcount=1 qd=<DNSQR gname="www.google.com.’ gtype=A gclass=IN | > an=None ns=None
ar=<DNSRROPT rrname="" type=0PT rclass=512 extrcode=0 version=0 z=0 rdlen=None |> |<Padding
load="\x00\x00\x00\x00\x00\x00\x00\x00\X00\X00" | 5555>>

Fig. 9: Packet visualization of MiragePkt using scapy

and augmented to our packet generation model for building
an initial design of a complete network traffic generation
framework.

Recently, some researchers have used GANs to generate
the synthetic packets. In [4] they use CNN GANs and
a special encoding mechanism to generate different types
of network packets such as DNS, Ping, etc. However, our
work is significantly different, given we use different data
prepossessing modeling using a sequence-based approach to
model the bytes of a network packet. Moreover, unlike their
work which uses a GAN to generate continuous values and
then map them to discrete byte values, our model uses the
softmax in the generator to predict the byte sequences of
the packet. Furthermore, unlike their work, where the data
transformation is done by duplicating a byte value of a hex
stream packet multiple times to achieve high similarity at the
cost of increasing the dimensions of training data, our model
only requires the tokenized data, making it more scalable for
training and packets with large byte streams.

Recently authors in [5] used a sequence-based approach to
generate adversarial packets, which is similar to our sequence-
based modeling approach to packet generation. However,
MiragePkt significantly differs in the model design, frame-
work and our objective to show the challenges with packet
generation using DNS packets, unlike their focus on evading
IDS using adversarial packets. Moreover, MiragePkt is only
the first component of our larger vision of building MirageNet.

VII. CONCLUSION & FUTURE WORK

In this paper, we focused on the first step towards realizing
MirageNet by developing MiragePkt where we were able to
demonstrate the many intricacies in the packet generation
process, the impact of training data, and the limitations of
GANSs in comprehending some of the mathematical functions.
In our future work, we intend to develop a few components
that improve the packet generation model.

First, we want to investigate pre- and post-processing
components to aid in the preparation of better training data
and to automatically fix any malformed packets with minor

flaws. For example, as a pre-processing step, we can design
scripts to identify non-deterministic regions in the overall
training data, such as payload, and map them to any of their
correlated fields, such as header length, to provide metadata
that will support GAN in automatically understanding these
mappings. Similarly, a post-processing tool might be created
by employing a reinforcement learning (RL) agent [3] capable
of learning to repair any malformed packet based on replies
from a server or device that is processing the synthesized
packets.

Another MiragePkt enhancement would be conditional gen-
eration employing conditional GANs [15], where instead of
randomly generating any network packet ending in ”.com” or
”.org”, the MiragePkt may generate packets with a certain
domain suffix as requested by the user during the generation
stage. The next important component we intend to develop is
the MirageNet flow generation framework in its entirety. In
this framework, the model must be capable of capturing the
temporal dependencies between packets in a flow as well as
grasping the protocol syntax. For example, in a TCP flow, the
first three packets must be syn, syn-ack, and ack, in which case
the model must automatically capture these rules. This would
require combining two models; a flow metadata generator to
generate information about the packets and their sequences
in a flow, and the other model to generate actual packets.
We plan to use an LSTM-based model for generating the
metadata of the synthetic flow, which can be sent to MiragePkt
for generating the content of the packets conditioned on this
synthetic input metadata.

REFERENCES

[1] R. Aloufi, H. Haddadi, and D. Boyle. Emotion filtering at the edge,
2019.

[2] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster. Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic, 2017.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.
A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866, 2017.

[4] A. Cheng. Pac-gan: Packet generation of network traffic using generative
adversarial networks. In 2019 IEEE 10th Annual Information Tech-
nology, Electronics and Mobile Communication Conference (IEMCON),
pages 0728-0734, 2019.

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]
[15]
[16]

(17]

(18]

[19]

[20]
[21]

[22]

(23]

Q. Cheng, S. Zhou, Y. Shen, D. Kong, and C. Wu. Packet-level
adversarial network traffic crafting using sequence generative adversarial
networks. arXiv preprint arXiv:2103.04794, 2021.

T. N. J. Cybersecurity and C. I. C. (NJCCIC). “mirai botnet”. https:
//github.com/sdv-dev/CTGAN, December 2016. Accessed: 2020-15-08.
D. dos Santos, S. Dashevskyi, A. Amri, J. Wetzels, S. Oberman,
and M. Kol. Name:wreck, breaking and fixing dns implementa-
tions. https://www.forescout.com/resources/namewreck-breaking-and-
fixing-dns-implementations/.

J. Geng, Y. Mou, F. Li, Q. Li, O. Beyan, S. Decker, and C. Rong.
Towards general deep leakage in federated learning. arXiv preprint
arXiv:2110.09074, 2021.

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks,
2014.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein gans. Advances in neural information
processing systems, 30, 2017.

A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor. Experienced
deep reinforcement learning with generative adversarial networks (gans)
for model-free ultra reliable low latency communication. /EEE Trans-
actions on Communications, 69(2):884-899, 2020.

Y. Kataoka, T. Matsubara, and K. Uehara. Image generation using
generative adversarial networks and attention mechanism. In 2016
IEEE/ACIS 15th International Conference on Computer and Information
Science (ICIS), pages 1-6, 2016.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman. 1d convolutional neural networks and applications: A survey.
Mechanical systems and signal processing, 151:107398, 2021.

F. D. Mattia, P. Galeone, M. D. Simoni, and E. Ghelfi. A survey on
gans for anomaly detection, 2019.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

A. Odena. Semi-supervised learning with generative adversarial net-
works, 2016.

A. Paszke et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems,
pages 8024-8035. Curran Associates, Inc., 2019.

M. Rigaki and S. Garcia. Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection. In 2018 IEEE Security and
Privacy Workshops (SPW), pages 70-75, 2018.

M. Ring, D. Schlér, D. Landes, and A. Hotho. Flow-based network
traffic generation using generative adversarial networks. Computers &
Security, 82:156-172, May 2019.

T. Salimans et al. Improved techniques for training gans, 2016.

V. Sampath, I. Maurtua, J. J. Aguilar Martin, and A. Gutierrez. A survey
on generative adversarial networks for imbalance problems in computer
vision tasks. Journal of big Data, 8(1):1-59, 2021.

D. S. T. Times. Number of deepfake videos online rises 84 percent in
less than a year. https://www.techtimes.com/articles/245628/20191009/
number-of-deepfake- videos-online-rises- 84-percent-in-less-than-a-year.
htm. Accessed: 2020-15-08.

S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz. Mocogan: Decomposing
motion and content for video generation, 2017.

