Introducing a Query Acceleration Path for Analytics in SQLite3

Martin Prammer, Suryadev Sahadevan Rajesh, Junda Chen, Jignesh M. Patel
Department of Computer Sciences
University of Wisconsin - Madison
Madison, W1, USA
{prammer,jignesh}@cs.wisc.edu,{sahadevanraj,jchen693}@wisc.edu

ABSTRACT

As large scale data processing becomes an ever more prominent
component of modern computing tasks, databases now exist as a
fundamental necessity of most computational platforms. However,
in many cases there exists a disparity between the specializations
of database management systems and the needs of the applications
that run on them. The distinction between transactional and analyt-
ical workloads for databases has been well established, but not fully
addressed within the space of the most widely used embedded data-
base system, namely SQLite3. To overcome this shortcoming, we
implement SQLite3/HE, an analytical database engine implemented
as an alternative execution path for SQLite. Through the utilization
of an additional, complementary storage layer, SQLite3/HE trans-
forms SQLite into a hybrid database system, able to fully leverage
the benefits of both row and columnar storage layouts. SQLite3/HE
improves the performance of analytical queries in the 100x-1000x
speedup range, at no cost to the existing transactional query perfor-
mance. These results validate the decision to implement SQLite3/HE
as an alternative execution path, enabling it to serve as a drop-in
replacement for SQLite3 in existing systems.

1 INTRODUCTION

SQLite [5], a monumentally successful relational database manage-
ment system (DBMS), serves as the database of choice for embedded
systems. SQLite’s high performance on these systems is driven by
a number of deliberate design decisions, which together emphasize
hardware compatibility and low software overhead. However, these
decisions come at a significant cost: while SQLite functions well
for transaction-focused workloads in a lightweight environment,
these same optimizations significantly impede its analytical query
performance.

One can imagine a small computer placed inside a wind turbine
generator (“windmill”), connected to an array of sensors that moni-
tor performance, maintenance, and other concerns. Similar to many
other real world applications that benefit from the local availability
of compute resources, this example of a windmill is a member of a
broad class of edge devices applications [13]. Naturally, the sensor
data would benefit from being stored in a query-accessible format,
allowing seamless integration of both the recording of sensor read-
ings and metadata. This in turn would facilitate real-time analysis of
the data, enabling the tracking of long-term electricity generation

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well as allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2022.

12th Annual Conference on Innovative Data Systems Research.

CIDR °22, January 9-12, 2022, Chaminade CA, USA

trends. However, edge computing cases have three key differences
when compared to traditional SQLite-powered embedded systems.

First, the data analysis tasks in the edge computing domain
require highly efficient performance for both transaction- and
analytics-focused workloads, as the data logging and analysis tasks
are usually performed concurrently. This change in use case re-
flects a significant divergence from the historical needs of embedded
systems: edge devices usually need to perform a number of concur-
rent tasks, usually through the cooperation of an operating system
scheduler and hardware parallelism.

Next, the compute resources available to the devices in this do-
main have grown significantly over the last decade, blurring the
boundary between a small personal computer and a traditional
embedded device. These devices are now regularly equipped with
multiple processing cores and relatively large amounts of mem-
ory. Likewise, each of these cores comes equipped with hardware
support for vectorized instructions. Together, these advancements
have drastically improved the computing power available to even
the smallest of devices in this domain.

Finally, many edge devices are powered by a traditional com-
putational stack, complete with an operating system and utility
software. While these devices do share many constraints with the
older class of traditional embedded devices, other factors such as
executable image size are significantly less of a problem. These
edge devices demonstrate the shifting of computational paradigms;
for example, they prioritize portability and maintainability, to the
point where a performance benefit may not be worth the cost of
sacrificing either.

Still, SQLite has demonstrated that it deserves a place in modern
DBMS offerings, usually as the database of choice for transactional
workloads run on embedded devices. Thus, we find it highly rele-
vant to provide a mechanism for SQLite to perform comparably to
the state-of-the-art when processing analytical queries. To this end,
we have developed SQLite3 Hustle Edition (SQLite3/HE), a query
acceleration path that is able to maximize machine resource uti-
lization leading to significant improvements in SQLite’s analytical
query processing performance [15]. This performance improve-
ment is driven by the usage of both an in-memory, column-store
and a set of analytics-optimized query operators. Most notably,
the analytical query acceleration path is only taken by queries that
benefit from such acceleration. Thus, SQLite3/HE is able to function
as a drop-in augmentation for SQLite3 without fear of performance
degradation in existing workloads.

In this paper, we make the following contributions:

(1) An analysis of the technical behavior of SQLite3. This analy-
sis explores the deliberate design decisions that, while ap-
propriate for the older class of traditional embedded devices,
have created the need for SQLite3/HE.

CIDR 22, January 9-12, 2022, Chaminade CA, USA

Martin Prammer, Suryadev Sahadevan Rajesh, Junda Chen, Jignesh M. Patel

0 T 2
| SQLite3 l
[J Ipterface SQLite3 i
: »-| Sqlite3_exec() Parse Tree |
I I
1 1
1 1
1 1
5 SQL Command Processor Virtual Machine Storage Interface E
i | query tokenizer, parser, and »| VDBE and query | B-tree, pager, and !
! planner optimization OS interface |
| I
L J
- R N }

! ite ! '

- -? ______ 7 In-Memory Storage :

! Memlo) . '

! Select | | Query g Apache Arrow interface | !

. Resolver Execution > X

e e —,—— e y

Figure 1: The SQLite3/HE Acceleration Path. After SQLite3 has generated the query parse tree, analytical queries are branched
off from the existing SQLite3 execution path while transactional queries continue to be executed by SQLite3.

(2) An exploration into the implementation of SQLite3/HE, de-
tailing the mechanisms that support both its in-memory
database and its analytics-optimized query operators.

(3) An analysis of SQLite3/HE’s performance, both in analyt-
ical and transactional workloads, which demonstrates its
effectiveness as a drop-in add-on for existing SQLite3 imple-
mentations.

2 BACKGROUND

SQLite3/HE utilizes many existing, state-of-the-art techniques to
improve analytical query performance. Most notably is its usage of
a secondary storage layer, facilitating a fundamentally different set
of performance behaviors than that of SQLite. We explore this and
related topics in this section.

The practice of optimizing a database for read-focused queries
has been well established in recent years [7, 14]. One of the most
prominent mechanisms to achieve high read performance is to
“transpose” the database, a process in which fields of a single column
are placed adjacent in the storage layer instead of preserving locality
within a single record. This storage format provides two major
optimizations:

(1) The tuple members that are unrelated to the current query
are not accessed (which would be the case if an entire row
needs to be read, e.g., due to hardware limitations).

(2) The tuple members that are related to the current query are
placed consecutively in storage, naturally aligning their se-
quential access with existing hardware-based optimizations.

Given these advantages, this storage format is more amenable to-
wards calculating aggregate values from a subset of the data. Like-
wise, this storage format is also highly compatible with machine
specific optimizations, such as vector instructions and hardware
prefetching.

However, the two previously mentioned optimizations are in-
verted when discussing either writes or accessing entire tuples. Fur-
ther, when considering the writing of tuples, we find that we achieve

these optimizations by utilizing a row-based storage method, al-
lowing for a write to act similarly to a simple append operation.
Thus, we realize that for our particular windmill example, there is
a need for both kinds of storage formats. To this end, and as part
of a larger body of research, we see the benefit of, broadly, “hybrid
stores” [10]. Of course, preserving the benefits of each storage so-
lution simultaneously is both a difficult and an application-specific
feat, especially without causing a significant amount of software-
related overhead. To this end, only recently have these systems
begun to enter the embedded device space, which imposes not
only the aforementioned limitations but also further restrictions by
nature of limited machine resources.

3 SQLITE

In order to fully explore the purpose of specific design choices
within SQLite3/HE, we must first examine SQLite.

3.1 SQLite3 Implementation

As SQLite3/HE is implemented as an acceleration path for specific
queries, it is important to understand the behavior of SQLite and
how SQLite3/HE fits into the existing query processing pipeline. To
accomplish this, we explore specific SQLite3 components related
to SQLite3/HE’s acceleration path.

3.1.1 B-Tree Storage Format. SQLite primarily utilizes a single,
monolithic database file; while this approximation is not entirely
accurate, SQLite can be thought of as a sort of “SQL Interface”
for a flat file database. This design paradigm benefits resource-
constrained environments, allowing SQLite to fine-tune its data
storage mechanisms without placing a significant burden on the
operating system’s file management system. However, given the
unwieldiness of using a single file as a database, SQLite3 utilizes a
page-based, B-tree structure: rows are stored as individual pages at
the leaf level, which are then organized into a B-tree. This imple-
mentation functions incredibly well for the core set of applications
that SQLite targets. However, as scanning a column requires a large

Introducing a Query Acceleration Path for Analytics in SQLite3

SQLite3
Virtual
Machine

SQLite3
Front End

Transaction #1: Read

Transaction #2:Write

B

y

CIDR 22, January 9-12, 2022, Chaminade CA, USA

SQLite3/HE Memlog

|

Database
SQLite3 Storage Fie
Interface
—> manages locks Rollback
Journal
SQLite3/HE
mutation due to write transaction |n_Memory storage

Figure 2: Transaction Flow in SQLite3/HE, depicting the movement of data during the processing of multiple concurrent queries.

number of page walks, this fundamental design choice creates a sig-
nificant performance bottleneck for the analytical query execution
path.

3.1.2 The Query Pipeline. Similar to other DBMS solutions, SQLite
utilizes a query pipeline structure composed of a number of familiar
steps: specifically, the tokenizer, parser, planner, optimizer, and
executor. Internally, the Lemon parser generator [6] creates a parser
that performs both the parsing and the planning tasks, receiving
tokens from the tokenizer to construct a parse tree. However, the
query optimizer is heavily connected to the translation unit for
the Virtual Database Engine, and thus is discussed separately. In
general, this compartmentalization of work creates the opportunity
to intercept queries as they progress through the query processing
pipeline. SQLite3/HE intercepts queries once the parse tree has been
constructed and before they reach the optimization-translation unit.

3.1.3 Virtual Database Engine. SQLite transforms queries into a
format reminiscent of assembly instructions. Virtual Database En-
gine (VDBE) instructions consist of an opcode and a number of
operands (5 in SQLite3, though previous versions had fewer). These
VDBE instructions assist in maintaining a high degree of porta-
bility for SQLite, as a system-specific implementation need only
implement the machine instructions for each VDBE instruction.
Unfortunately, this design creates a number of problems when in-
tegrating modern high-performance query optimization methods
into SQLite3.

SQLite3 performs major query optimizations during the process
of query translation, as the “code generator” component handles
both tasks simultaneously. While the blurring of program responsi-
bilities usually does not present a problem, it prevents other compo-
nents from accessing the optimized query plan; the code generator
only outputs the optimized VDBE instructions, preventing access
to an optimized version of the input query plan. Thus, SQLite3’s
compartmentalization of query steps posed a significant design
challenge for SQLite3/HE, and was one of the most important con-
siderations for how SQLite3/HE works in tandem with SQLite3.
Furthermore, as the instructions have already broken down the
query plan into a number of discrete steps, it is difficult to recom-
bine these components into a less optimized query plan. There is
no feasible way to improve or reorient the existing level of query
optimization, which prevents the application of analytics targeted

optimizations after the query has been translated to VDBE instruc-
tions.

Additionally, optimizations are applied throughout the VDBE
instruction generation process. Traditional optimizations such as
constant propagation and push-down mechanisms are introduced
before and during the VDBE instruction translation process. How-
ever, index-based optimizations occur later on, after the VDBE
instructions are generated. Most notably is the usage of indices
during nested loop joins, the join algorithm of choice for SQLite3.
Of course, the decision to exclusively use nested loop joins cre-
ates additional problems for analytical queries. In general, while
SQLite’s optimizations are suitable for the general use case of em-
bedded applications and related systems, some decisions that SQLite
makes are contrary to the existing research involving high perfor-
mance analytical query optimizations. These optimizations gener-
ally favor columnar methods with access patterns that are amenable
to vectorization, further establishing the benefits of the presence
SQLite3/HE’s secondary columnar storage layer.

3.2 SQLite Optimizations

In addition to the aforementioned design choices, SQLite3 also
utilizes a number of smaller optimizations that are relevant to
analytical query acceleration. For example, the “record format” used
to store each row makes a number of optimizations. One such
optimization involves the header specifying the most efficient type
possible for each value in the body of the record. Not only does
SQLite3 include 24-bit and 48-bit integer types to assist in saving
space, some types represent a field having an integer value of 1 or 0.
In the value-specified type case, the body does not contain a value;
thus, it is possible for some records to have a header and no body.

SQLite’s row format is part of a larger set of optimizations that
reduce the size of values stored. Another example is the usage of
variable sized integers elsewhere, encoded as the “varint” type. In
general, SQLite3 makes a significant effort towards compressing
the values it stores. This storage paradigm is effective in append-
only, transaction-recording workloads; however, the added levels of
interdiction and conversion causes significant amounts of overhead
for reads. Thus, a new storage mechanism must be introduced
to bypass this fundamental incompatibility with state-of-the-art
analytical query optimizations.

CIDR 22, January 9-12, 2022, Chaminade CA, USA

4 SQLITE3/HE ACCELERATION LAYER

Given the previous exploration of SQLite3’s design, we now have
the context to understand the existing obstacles towards using
SQLite3 as a high-performance database platform for analytical
queries.

4.1 SQLite3/HE Integration

SQLite3/HE is implemented as an alternate query execution path,
escaping the existing execution path between the SQLite3 Query
Planner and VDBE Code Generator (Figure 1). SQLite3/HE functions
primarily by providing an in-memory columnar database that is
used as the foundation for analytical query acceleration. Due to
this separate storage layer, a new set of operators were developed
to facilitate query execution on a secondary query execution path,
which we explore in detail in the following subsections.

4.1.1 Optional Acceleration Path. While Figure 1 depicts the accel-
eration path, the mechanisms that fully enable this behavior must be
detailed at a finer degree. The SQLite3 query parser and planner be-
have as expected, with the addition of a limited set of optimizations
that they apply such as nested sub-query flattening. These optimiza-
tions are all performed in-place on the parse tree, which can then
be intercepted by SQLite3/HE before it is transformed into VDBE
instructions. SQLite3/HE intercepts all queries before they are sent
to the SQLite3 code generator unit. If the query is determined to be
SQLite3/HE compatible (generally, a read/analytics-focused query),
the query will instead be routed through the SQLite3/HE query
acceleration path, and will no longer execute in SQLite3.

In particular, there are three rules that dictate if a query will be
accelerated by SQLite3/HE:

(1) The query is a supported SELECT or JOIN query.
(2) All source tables are present in memory.

(3) All operators used in the parse tree are supported by SQLite3/HE.

These rules allow for common analytical queries to be processed by
SQLite3/HE. Parser flags for the SELECT query and the structure of
the JOIN query determine if SQLite3/HE supports accelerating each
respective query type. Specifically, JOIN queries must fall under the
general structural archetypes of “star-join” or “chain-join” based
on how the tables are joined together. We utilize existing methods
to both categorize and optimize these kinds of joins [4]. Once a
JOIN query has been placed in the acceleration path, we utilize
Lookahead Information Passing (LIP) [16] to optimize the JOIN
query plan beyond the optimizations of SQLite3, resulting in a
more robust and efficient JOIN query implementation.

Write queries are not supported by the SQLite3/HE acceleration
path, and thereby fall back to the original SQLite3 query execution
path.

4.1.2 In-Memory Columnar Storage Layer. SQLite3/HE utilizes
Apache Arrow [3] as an in-memory columnar storage layer. This
external dependency enables future cross-application compatibility,
but is chiefly motivated due to Apache Arrow’s strong implementa-
tion of efficient memory access and vectorization-friendly compute
kernels. Thus, SQLite3/HE is able to focus on query optimization
while still preserving all the benefits of a machine-optimized set of
compute kernels.

Martin Prammer, Suryadev Sahadevan Rajesh, Junda Chen, Jignesh M. Patel

Apache Arrow arrays are implemented as “chunked arrays,” —ar-
rays partitioned into a number of chunks of contiguous memory.
This design choice enables a fairly simple process for resizing, either
by deleting excess chunks or appending additional chunks. While
the chunking of an array is accompanied by additional overhead,
it also bolsters overall scalability and is an acceptable trade-off for
the robust set of features that Apache Arrow brings. In addition,
the chunked array approach facilitates an extra layer of parallelism
from the perspective of operators, as allocating work based on
chunks presents simple and efficient opportunities for parallelism.

4.1.3 Query Operators. SQLite3/HE’s utilization of Apache Ar-
row for its storage layer allows for a significantly expedited engi-
neering effort. Apache Arrow is primarily concerned with high-
performance data storage and retrieval, providing a number of per-
formant compute kernels. By utilizing these kernels and the Apache
Arrow API as a whole, SQLite3/HE capitalizes on the performance
and long term support guarantees that Apache Arrow provides.
Likewise, because of this existing body of work, the engineering
effort behind SQLite3/HE has been able to focus on optimizing
query operators, further improving SQLite3/HE as a whole.

4.2 Data Consistency

The implementation of a secondary storage layer requires mecha-
nisms to maintain coherence between the SQLite3 and SQLite3/HE
storage layers, especially in the case of the SQLite3 database receiv-
ing a write transaction. The primary mechanism in SQLite3/HE
that facilitates this behavior is the “memlog”

The memlog records the writes that are made to the SQLite
database file whenever transactions are committed by the SQLite3
query execution path. The memlog structure is depicted in Figure 2,
within the context of two concurrent queries being processed at
the same time. Note that due to SQLite3’s database file-locking
mechanisms, the memlog is presented with an ordered collection of
changes to propagate from SQLite3 to the SQLite3/HE storage layer.
Thus, SQLite3/HE is able to exploit the already existing ordering of
mutations as they are made to the SQLite3 database.

The memlog is constructed as a collection of ordered write logs
that must be propagated to SQLite3/HE columns, where each table
is linked with a queue-like structure to contain its write logs. Each
write log includes information regarding the particular mode of the
write (INSERT, UPDATE, or DELETE), the targeted row ID, and the
relevant data if appropriate. These writes are accumulated over time,
to eventually be processed in bulk depending on the mode of write
propagation used by SQLite3/HE. We define these modes as “eager,”
“lazy,” and “async background,” each of which behaves as follows:
eager writes perform updates during the transaction, lazy writes
only make changes when the table is next read by a query, and async
background writes use a secondary thread to perform a lazy write
(as the worker threads also process SQLite3 lock contention, these
background writes are considered asynchronous). We evaluate the
behavior of each respective write mode as part of the evaluation of
SQLite3/HE’s transactional performance.

In the case of a crash or some other failure, the SQLite3/HE
tables are regenerated from the SQLite3 database. This behavior
is unavoidable due to SQLite3/HE’s existence as an in-memory
storage layer. That said, the reliance on SQLite3’s error recovery

Introducing a Query Acceleration Path for Analytics in SQLite3

600000
I SQLite3/HE - 4 Threads
W sQLite3/HE - 8 Threads
500000 SQLite3/HE - 16 Threads -
N SQLite3

400000

300000

200000 I I I I I
4000

3000

2000

1000

Query Latency (in milliseconds)

ql.l ql.2 ql.3 g2.1 2.2 q23 @g3.1 @g3.2 3.3 q3.4 qg4.1 q4.2 g4.3
SSB Benchmark Queries

Figure 3: Analytical workload performance improvement
due to Hustle, as compared between different amounts of
thread-level parallelism.

mechanisms to regenerate data does provide the standard set of
benefits which accompany a well-supported library.

5 EVALUATION

Our evaluation of SQLite3/HE focuses on three primary questions:

(1) What is the performance gain of SQLite3/HE for analytical
queries?

(2) Do any of the optimizations implemented carry over to trans-
actional workloads? In particular, does the write propagation
strategy have a significant impact on performance?

(3) The secondary acceleration path incurs additional data move-
ment costs when writing data to the SQLite3/HE columns
—-what is the overhead?

We utilized two different benchmarks as part of our evaluation:
TATP [8] for write-focused, transactional workloads, and SSB [9]
for read-focused, analytical workloads. All experiments were per-
formed using SQLite3’s default configuration parameters.

The experiments were run by a CloudLab “c220g5” machine [1].
This node consists of two Intel Xeon Silver 4114 processors each
with a clock speed of 2.2 GHz. Each processor has 10 cores with
two threads, for a total of 20 cores and 40 threads.

5.1 Analytical Workload Evaluation

We depict the SQLite3/HE results for each SSB query in Figure 3.
SQLite3/HE completes all SSB (scale factor 10) queries in under 4
seconds, as compared to SQLite3 which requires at least 250 seconds
at best. Query to query, SQLite3/HE boasts a speedup consistently
over 100x, though some queries are closer to a 1000x improvement.
The previously mentioned bottlenecks of SQLite3 have a signifi-
cant influence on the results. Likewise, these queries are where
SQLite3/HE is able to fully utilize the cutting edge of analytical
query optimization, such as its in-memory columnar store, oper-
ation vectorization, LIP, and intra-operator parallelism. As these

CIDR 22, January 9-12, 2022, Chaminade CA, USA

features are not supported by SQLite3, SQLite3/HE’s demonstrated
performance gain is a reflection of its employment of state-of-the-
art techniques. As SQLite3/HE supports thread-level parallelism,
we evaluate SSB performance using 4, 8, and 16 threads. Unsurpris-
ingly, the execution time of the queries is significantly reduced as
more threads are utilized, due to large amounts of intra-operator
parallelism. However, the speedup from additional threads has
diminishing returns. As the provisioned CloudLab machine is a
two-socket, 10 cores (20 threads) per socket system, we begin to see
the impact of increased coordination and data movement between
cores, exacerbated by the need for the CPUs to more regularly utilize
L3 cache coherence mechanisms. This performance behavior is per-
fectly reasonable, as using a fixed thread count to divide the work
into a number of partitions is expected to require some amount
of optimization specific to both the workload and the underlying
machine.

5.2 Transactional Workload Evaluation

To evaluate our integration with SQLite3 for transactional work-
loads, we use the TATP benchmark. In both TATP experiments,
we use a database containing 2 million subscriber records and the
recommended default parameters. We vary the percentage of write
transactions present to generate a read-heavy workload (80% reads,
20% writes) and a write-heavy workload (50% reads, 50% writes).
These results are depicted in Figures 4 and 5 respectively. Once
again, we use SQLite3’s query throughput as a performance base-
line. As previously mentioned, all write transactions primarily in-
teract with the SQLite DB file. After this initial write, we perform a
secondary write to the SQLite3/HE storage at some (write mode-
determined) point preceding the next read to the modified field. Due
to the secondary write being performed, we expected the writes to
have slightly higher latency compared to the naive SQLite3. How-
ever, given that reads in SQLite3/HE will be significantly faster than
that in SQLite3, overall performance is expected to increase.

These expectations were justified, as SQLite3/HE offers a reason-
able improvement over baseline SQLite3. While dependent on the
number of workers and the particular write mode used, an improve-
ment of up to 20% is possible. Most configuration and workload
combinations will experience a 5%-10% improvement. Due to signif-
icant lock contention issues inherent in the SQLite3 write process,
there is little room for performance gain in the presence of this
heavy bottleneck, and thus the proportion of reads to the overall
workload dictates the maximum expected performance improve-
ment.

6 DISCUSSION

Our evaluation demonstrates that SQLite3/HE accomplishes all
performance improvements set forth. SQLite3 is purpose-built to
handle transactional-query workloads in the resource constrained
environment of an embedded device, and the SQLite3/HE accelera-
tion path augments SQLite3 with state-of-the-art analytical query
processing capabilities. By relaxing many of SQLite3’s hardware-
related constraints, SQLite3/HE is able to fully leverage the under-
lying hardware capabilities. This hardware-conscious behavior has
become increasingly important as modern edge devices continue
to diverge from the older class of traditional embedded devices.

CIDR 22, January 9-12, 2022, Chaminade CA, USA

—— SQLite3/HE - Lazy --+- SQLite3/HE - Eager

60Throughput (Read Heavy Workload - 80% Read + 20% Write)

1501
1401
130 A
1201
1101
100 A

90 +

Throughput (Transactions per second)

80 1

70 T T T T T T T
1 2 3 5 8 10 12 15

Number of concurrent workers

Figure 4: Transactional workload performance improve-
ment due to Hustle, as compared between different write
modes. This experiment utilized TATP in the default con-
figuration.

A critical aspect of our design is the ability for SQLite3/HE to
function as a drop-in replacement for SQLite3. As demonstrated
by the TATP experiments, the combination of careful write man-
agement and significant read-performance improvements allow
SQLite3/HE to be used as an analytical query accelerator in ex-
isting SQLite3 implementations at no performance cost. Likewise,
SQLite3/HE’s impressive analytical workload performance facili-
tates a wider variety of database-driven applications, such as on-site,
live data analytics (as in the original windmill example).

Many modern databases have both transactional and analyt-
ical query processing needs. Significantly optimizing one cate-
gory “for free” by more efficiently leveraging existing machine
resources demonstrates SQLite3/HE’s widespread applicability. A
true cost that SQLite3/HE does impose on the host system is a
slightly larger executable image size. While this is a valid consid-
eration, the SQLite3/HE does not target applications and devices
where minimizing executable image size is a primary concern.

7 RELATED WORK

The use of secondary acceleration paths has become increasingly
relevant in recent years across the breadth of computing research.
These acceleration paths exist at all levels, driven by advancements
in both software and hardware [7, 11]. These paths consistently
demonstrate the benefits of acceleration add-ons for existing sys-
tems, leveraging specialization to improve performance.
Improving the performance of an existing database structure to
handle analytical queries has become a common “growing pain”
within the field of database research. Significant amounts of prior
work surround SQLite3/HE, each focusing on their own unique
innovations [7, 12, 14]. Within this broad space, DuckDB [12] and
SQLite3/HE target a similar need. While SQLite3/HE introduces
an alternate query execution path, DuckDB implements much of

- Naive SQLite3

Martin Prammer, Suryadev Sahadevan Rajesh, Junda Chen, Jignesh M. Patel

SQLite3/HE - Async Background

60Throughput (Write Heavy Workload - 50% Read + 50% Write)

1501
1401
130 A
1201
1101
100 A

90 +

Throughput (Transactions per second)

80+

70 - ‘ . . .
1 2 3 5 8 10 12 15
Number of concurrent workers

Figure 5: Transactional workload performance improve-
ment due to Hustle, as compared between different write
modes. This experiment altered the ratio of reads and
writes in TATP, increasing the number of writes per read.

the DBMS architecture “from scratch,” opting to recreate or rely on
external modules to facilitate their own query processing pipeline
(such as libpg_query [2], the PostgreSQL Parser). DuckDB is an
alternative approach to the overall problem that both SQLite3/HE
and DuckDB address.

8 FUTURE WORK

While the benchmarks presented demonstrate wide-spread feasi-
bility of SQLite3/HE, a larger discussion could be had on the inner
workings of the implementation of SQLite3/HE’s in-memory, colum-
nar database. An examination into the particulars of how data con-
sistency is achieved between the SQLite3 and SQLite3/HE databases
would provide a deeper understanding of the true performance char-
acteristics of SQLite3/HE’s acceleration path. Specifically, while
“write” and “read” are sufficient for the general case, evaluating the
differences between INSERT, UPDATE, and DELETE operations
would assist in the exploration of SQLite3/HE’s low-level behavior.

9 CONCLUSION

Through the implementation of an alternative query execution
pathway, SQLite3/HE augments SQLite3 with state-of-the-art an-
alytical query processing capabilities, generating speedups at the
100x-1000x scale. These performance benefits come at no cost to the
transactional query performance, enabling SQLite3/HE to function
as a drop-in replacement for existing SQLite-powered applications.
We view SQLite3/HE as a strong candidate for consideration in ex-
isting database platforms. As the technological needs of computing
applications ever grows, so too do the performance demands placed
on the underlying database systems. SQLite3/HE’s implementation
of state-of-the-art techniques satisfies these demands, advancing
the ability for embedded systems to perform high-performance data
analytics.

Introducing a Query Acceleration Path for Analytics in SQLite3

ACKNOWLEDGMENTS

This work was supported in part by CRISP, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program, spon-
sored by MARCO and DARPA. Additional support was provided by
the National Science Foundation (NSF) under grant OAC-1835446.

The “CloudLab ¢220g5” machine utilized was provided as part
of the CloudLab service [1].

REFERENCES

[1] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19
Lukas Fittl. 2017. libpg_query. https://github.com/pganalyze/libpg_query.
Apache Software Foundation. 2019. Apache Arrow. https://arrow.apache.org.
Cesar A. Galindo-Legaria, Torsten Grabs, Sreenivas Gukal, Steve Herbert, Alek-
sandras Surna, Shirley Wang, Wei Yu, Peter Zabback, and Shin Zhang. 2008.
Optimizing Star Join Queries for Data Warehousing in Microsoft SQL Server.
2008 IEEE 24th International Conference on Data Engineering (2008), 1190-1199.
Richard D Hipp et al. 2021. SQLite. https://www.sqlite.org/index.html
Richard D Hipp et al. 2021. The Lemon LALR(1) Parser Generator. https:
//www.sglite.org/lemon.html
[7] Yinan Li and Jignesh M. Patel. 2014. WideTable. Proceedings of the VLDB Endow-
ment 7, 10 (June 2014), 907-918.

=S
At

=
S

(8]

[

[10]

(1]

(12]

[13

[14

CIDR 22, January 9-12, 2022, Chaminade CA, USA

Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. [n.d.].
Telecommunication Application Transaction Processing (TATP) Benchmark. http:
//tatpbenchmark.sourceforge.net/.

Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009. The
Star Schema Benchmark and Augmented Fact Table Indexing. Springer-Verlag,
Berlin, Heidelberg, 237-252. https://doi.org/10.1007/978-3-642-10424-4_17
Fatma Ozcan, Yuanyuan Tian, and Pinar Tézin. 2017. Hybrid Transac-
tional/Analytical Processing. In Proceedings of the 2017 ACM International Con-
ference on Management of Data. ACM.

Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A. Wood. 2015.
Toward GPUs being mainstream in analytic processing: An initial argument using
simple scan-aggregate queries. In Proceedings of the 11th International Workshop
on Data Management on New Hardware. ACM.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981-1984.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (Oct.
2016), 637-646.

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (Trondheim, Norway) (VLDB °05). VLDB Endowment, 553-564.

Hustle Development Team. 2021. Hustle. https://github.com/UWHustle/hustle/.
Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
ahead makes query plans robust. Proceedings of the VLDB Endowment 10, 8 (April
2017), 889-900.

https://www.flux.utah.edu/paper/duplyakin-atc19
https://github.com/pganalyze/libpg_query
https://arrow.apache.org
https://www.sqlite.org/index.html
https://www.sqlite.org/lemon.html
https://www.sqlite.org/lemon.html
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
https://doi.org/10.1007/978-3-642-10424-4_17
https://github.com/UWHustle/hustle/

	Abstract
	1 Introduction
	2 Background
	3 SQLite
	3.1 SQLite3 Implementation
	3.2 SQLite Optimizations

	4 SQLite3/HE Acceleration Layer
	4.1 SQLite3/HE Integration
	4.2 Data Consistency

	5 Evaluation
	5.1 Analytical Workload Evaluation
	5.2 Transactional Workload Evaluation

	6 Discussion
	7 Related Work
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

