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Abstract—Data prefetching hides memory latency by predict-
ing and loading necessary data into cache beforehand. Most
prefetchers in the literature are efficient for specific memory
address patterns thereby restricting their utility to specialized
applications—they do not perform well on hybrid applications
with multifarious access patterns. Therefore we propose ReSem-
ble: a Reinforcement Learning (RL) based adaptive enSemble
framework that enables multiple prefetchers to complement each
other on hybrid applications. Our RL trained ensemble con-
troller takes prefetch suggestions from all prefetchers as input,
selects the best suggestion dynamically, and learns online toward
getting higher cumulative rewards, which are collected from
prefetch hits/misses. Our ensemble framework using a simple
multilayer perceptron as the controller achieves on the average
85.27% (accuracy) and 44.22% (coverage), leading to 31.02%
IPC improvement, which outperforms state-of-the-art individual
prefetchers by 8.35%-26.11%, while also outperforming SBP, a
state-of-the-art (non-RL) ensemble prefetcher by 5.69%.

Index Terms—reinforcement learning, ensemble, prefetching

I. INTRODUCTION

Memory latency is a major bottleneck in computer perfor-
mance [1], [2], more so given recent advances in Al acceler-
ators and data intensive workloads. Hardware prefetching is
an effective way to hide memory latency and improve IPC
(instructions per cycle). A prefetcher anticipates future cache
misses and fetches data from the memory hierarchy before a
processor requests the data [3]. Existing prefetchers [4]-[21],
usually exploiting spatial or temporal localities [22], efficient
for specific access patterns but cannot adapt to multiple appli-
cations with various patterns. Crucially, different applications
may benefit from different prefetchers at different phases (see
Section II).

Ensemble prefetching can overcome the limitations of single
prefetchers. Existing ensemble prefetching methods rely on
the classification of memory access patterns [23]-[25] or
the evaluation of recent history performance among multiple
prefetchers [26], [27]. However, both methods have important
limitations. Classification methods perform offline training of
models, thereby assuming consistency between offline training
and online testing memory access patterns. In fact, training
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memory traces are usually sampled rather than inclusive,
which can cause low accuracy when a trained model encoun-
ters inconsistent patterns. In addition, classification methods
ignore the interaction between the prefetcher and the caches,
which leads to low adaptability in dynamic scenarios. In
contrast, performance evaluation methods, such as Sandbox
Prefetcher (SBP) [26], involve online cache feedback but are
limited by response lag: a picked prefetcher works for a
period until the average performance of another prefetcher
surpasses it. The sub-optimal prefetcher has worked for a
number of accesses before being replaced, which can lead to
low prefetching performance for interleaving patterns.

Our goal is to train an ensemble prefetching controller that
dynamically selects the prefetching suggestion from multiple
prefetchers. The controller should be able to 1) train and
update online, 2) learn from the interaction between prefetcher
and cache, and 3) respond at the level of each access instead
of an access sequence (thereby avoiding response lag).

Reinforcement learning (RL) [28] is a machine learning
technique that enables an intelligent agent to learn optimal
actions that maximize a cumulative reward by interacting
with the environment. While RL for prefetching has been
explored in the literature, prior work has been limited to
designing single prefetchers based on heuristic locality as-
sumptions, such as spatial range [29] or semantic locality [30].
In contrast, we propose to use RL for ensemble prefetching.
Compared with supervised and unsupervised machine learning
algorithms [31], RL fits better to our problem due to several
advantages: 1) There is no need for offline training—an RL
agent continuously learns online. 2) By defining the ensemble
controller as the RL agent and the memory hierarchy equipped
with multiple prefetchers as the environment, an ensemble
controller can interact with the memory and learn from cache
feedback, i.e., prefetch hit/miss. 3) The RL agent takes action
by observing the current environment state instead of perfor-
mance history, which can lead to accurate and quick responses.

Applying RL to ensemble prefetching is challenging. The
first challenge is to design the input for the ensemble



prefetcher (known as observation in the RL context). Typical
applications of RL, such as robotics and Atari games in
OpenAl [32], use image pixel data as observation. However,
there is no such straightforward observation for an ensemble
prefetching controller. Second, the memory address space is
both vast and sparse — memory traces can contain millions
of unique addresses under 32 or 64 bit addressing. Whether
viewed as numerical values or classes, this creates computa-
tional challenges in processing (known as the class explosion
problem in prefetching [33]). Third, the cache feedback for a
given prefetch is not instantaneous. The ensemble controller
has to wait a number of accesses to know if a prefetch is
useful, i.e. the prefetch is requested before being replaced.
Therefore, an asynchronous learning scheme is essential.

In this paper, we propose ReSemble, a Q-learning [34],
[35] based RL framework to train an ensemble prefetching
controller. We develop three novel methods to overcome the
challenges described above. First, we define the prefetching
predictions from multiple sources as the observation from the
controller. Second, to address the class explosion problem, we
use hash functions to preprocess the observation and generate
state vectors, which can serve as indexes if using tabular
models. However, the state space can still be quite large for
a table-based predictor straining storage resources. Therefore,
we apply hash and norm for state vector generation, and use
a simple and compact multilayer perceptron (MLP) as the Q-
network, which outputs the selection of the best prefetching
suggestion. Third, to address the lag of feedback, we propose a
lazy sampling mechanism that separates the collection of state
transitions and the rewards feedback, sampling only from the
rewarded transitions for model training. Furthermore, for the
ease of hardware implementation, we also develop a tabular
variant of ReSemble that uses a table-based controller to
select the best prediction and uses tokenization to compress
the model size. Using both state-of-the-art individual and
ensemble prefetchers as baselines, we evaluate our method
through simulation experiments.

We summarize our main contributions below:

o We propose ReSemble, an ensemble prefetching frame-
work based on reinforcement learning that takes predic-
tion from multiple prefetchers as input and selects the
best prediction driven by rewards from future prefetch
hits/misses. It uses hash and norm for preprocessing to
solve the class explosion problem in memory address,
uses MLP as the ensemble controller to make prefetching
decisions, and uses lazy sampling mechanism for online
training to address the lag of cache feedback.

o We present a compact tabular variant of ReSemble, using
a simple table-based controller to select the best predic-
tion. We reduce the address space using hash functions
and reduce table size using tokenization, which largely
compresses the model and makes it feasible for hardware
implementation.

o We evaluate the learning performance of ReSemble and
the tabular variant. Results show that ReSemble with an
MLP-based controller achieves higher average rewards,
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Fig. 1: Different patterns of memory traces and the perfor-

mance improvement gained from different prefetchers.

better adaptability, and quicker response with a smaller
model size compared with the tabular variant.

o We conduct a comprehensive comparison among ReSem-
ble, its tabular variant, individual prefetchers, and a state-
of-the-art ensemble prefetcher SBP (Sandbox prefetcher).
Results show that the MLP-based ReSemble achieves an
average of 85.27% in accuracy and 44.22% in cover-
age, leading to 31.02% IPC improvement, outperforms
state-of-the-art individual prefetchers by 8.35%—-26.11%,
outperforms SBP by 5.69%. Tabular variant achieves
83.94% accuracy, 42.15% coverage, and 29.26% IPC
improvement, outperforming individual prefetchers by
6.59%-24.35% and outperforming SBP by 3.93%.

II. MOTIVATION

In this section, we analyze the memory trace patterns of sev-
eral applications and show how different prefetchers perform
differently, which motivates us to develop ensemble methods
for higher prefetching performance. We use SimPoint [36] to
generate the memory miss traces under 20 million instruction
of the last level cache (LLC) from four applications: 433.milc
and 471.wrf from benchmark SPEC 2006 [37]; 621.wrf and
623.xalancbmk from benchmark SPEC 2017 [38].

Figure la shows the autocorrelation plots for the generated
traces. An autocorrelation plot reveals the periodicity or re-
peating patterns of a time-series data sequence by computing



the autocorrelation coefficients (ACs) at varying time lags.
From Figure 1a we can observe that 433.milc shows significant
positive spikes at various lags that is evidence of autocorre-
lation. The decay of ACs indicates the higher independence
of memory accesses to longer distance history. While 621.wrf
also shows high positive spikes, it reveals longer lag depen-
dencies from the observation of slower decay of ACs. The
autocorrelation of 433.milc and 621.wrf indicates that they are
amenable to prefetchers detecting memory access deltas, e.g.
spatial prefetchers BO and SPP. In contrast, 471.omnetpp and
623.xalancbmk show insignificant spikes of ACs, indicating
low periodicity. Therefore, the trace patterns are difficult to
learn and temporal prefetchers may perform better.

Figure 1b shows the autocorrelation plots for the traces that
are grouped by PC (program counters). We group the memory
accesses by PC while keeping the access order within each
PC. In this way, we explore whether the traces show different
ACs getting rid of the influence of interleaved PCs. 433.milc
shows a faster decay of ACs after removing the interleaved
PCs, which means patterns per PC can reduce its long-distance
dependence. 471.omnetpp, 621.wrf, and 623.xalancbmk all
show increased ACs after the traces are grouped by PC, which
indicates that PC information can help a prefetcher to better
detect trace patterns. Most notably, the PC grouped 471.om-
netpp and 623.xalancbmk show significant autocorrelations
with small lags comparing to the original traces. This means
that prefetchers tracking the sequence per PC tend to perform
better for these two applications.

Figure 1c shows the performance of two prefetchers, BO [6]
and ISB [8], applied to the applications discussed above. BO
is a spatial prefetcher that scores the deltas in an offset list by
checking whether the delta has made a hit in recently requested
accesses. The prediction of BO is constrained within a page.
ISB is a temporal prefetcher that tracks the memory access
sequence per PC and predicts the future accesses by replaying
the recorded memory access sequences. We can observe how
the features of BO and ISB influence their performance in
Figure 1c. BO provides higher coverage, MPKI (miss per kilo
instructions) reduction and IPC improvement for application
433.milc and 621.wrf, and shows low contribution to the per-
formance improvement of 471.omnetpp and 623.xalancbmk,
which matches our analysis regarding the autocorrelation
coefficients. In contrast, ISB contributes more performance
improvement for 471.omnetpp and 623.xalancbmk. Notably,
ISB shows higher accuracy when applied to 621.wrf though it
shows lower coverage and contributes less to the application
performance improvement, which demonstrates the character-
istic of temporal prefetchers.

The analysis above demonstrates that it is difficult for a
single prefetcher to outperform other prefetchers dealing with
various memory access sequences. Consequently, we seek to
leverage the benefits from multiple prefetchers and use a
general and adaptable ensemble framework to select from the
prefetching suggestions predicted from multiple prefetchers.

III. BACKGROUND
A. A Taxonomy of Hardware Prefetchers

Hardware prefetching techniques have been evolved from
simple rule-based stride and stream prefetching to adaptive
table-based methods learning from memory address corre-
lations. There are different taxonomies for prefetchers. In
the concern of pattern localities [39], prefetchers can be
classified as spatial prefetchers, temporal prefetchers, and
spatio-temporal prefetchers [40]-[42], as is shown in Table L.
Different memory access sequences benefit the best from
different prefetchers as is illustrated in Figure 2.

Memory —» Access sequence 1:
amenable to spatial prefetchers
<A ‘/:‘ A+l r‘A*—Z r“A+3 __, Access sequence 2:
{ BJ‘ ‘B 1 B+2 B43 amenable to temporal prefetchers
.| + }?’ + + — Access sequence 3:
\ C J C+1 —\C+2 f\c+3 amenable to spatio-temporal prefetchers

Fig. 2: Types of memory access sequences and prefetchers.

Spatial prefetchers rely on the spatial locality of memory
reference streams, i.e. the property that an access to a memory
location indicates that a physically nearby location will be
accessed with high probability in the near future [39]. Spatial
locality gives insight that prefetching strategies can perform
well even focusing only on a small fixed-size section, referred
to as Spatial Regions [42], typically the size of a page. Spatial
prefetchers such as BO [6], VLDP [7], and SPP [43], learn
from history access page offsets or access deltas, then predict
future accesses within a fixed spatial region. Though spatial
prefetchers work effectively for programs with spatial locali-
ties, such as list traversing, they can not track long-distance
dependencies beyond the spatial region, such as traversing a
large graph that nodes are stored in multiple pages.

Temporal prefetchers rely on the temporal locality of mem-
ory reference streams, which means that the same location
as the current memory access will very likely be accessed
again in the near future [39]. A typical strategy for temporal
prefetchers, such as STMS [12], ISB [8], and Donimo [14], is
to record a history access sequences and replay the sequence
as predictions when there is a match. For the above temporal
prefetchers, while STMS and Donimo track global temporal
patterns, ISB exploits the temporal locality for each program
counter (PC). Though PC information benefits patterns like
loop and self increments, constraining sequences for one in-
struction can damage the global patterns. Shortcomings of the
temporal prefetching strategy are notable. Temporal prefetch-
ers highly rely on the repetitive appearance of sequences and
cannot provide a reasonable prediction for compulsory misses.
Spatio-temporal prefetchers try to utilize both spatial and
temporal localities. The most well-known spatio-temporal
prefetcher is STeMS [9]. STeMS records the temporal history
accesses for each PC as well as the access offsets within the
located spatial region. When a sequence trigger is encountered,
the prefetcher reconstructs the memory access sequence using
stored offsets and deltas based on spatial locality. It has been



TABLE I: A Taxonomy of Prefetchers Based on Address Correlations

Types Examples General Mechanisms Main Shortcomings

Spatial prefetcher BO, VLDP, SPP Predict offsets within a spatial region Long distance dependencies

Temporal prefetcher ISB, STMS, Domino | Rrecord and replay history misses in order | Compulsory misses

Spatio-temporal prefetcher | STeMS Capture temporal patterns and predict Low coverage and high
misses within a spatial region start-up latency

proved that the performance of STeMS varies dramatically for
different applications. It suffers from low prefetching coverage
and high start-up latency, making STeMS ineffective [42].
Due to the high complexity and low efficiency, few recent
prefetchers were developed under this track.

B. Reinforcement Learning and Q-Function

Reinforcement Learning (RL) concerns how intelligent
agents ought to take actions in an environment in order
to maximize the cumulative reward [44], which is typically
formulated as a Markov Decision Process (MDP) [45] with
unknown dynamics [46]. An MDP is defined as a five-tuple
(S, A, T,R,v) [47]; S is the state space of an agent; A is
the agent’s action space; T (s,a,s’) : S x A x S — [0,1]
defines the transition dynamics, which returns the probability
that the agent transits from state s to s’ by taking action a;
R (s,a,s8") : SX AxS — R is the reward function that defines
the intermediate reward received when the agent transits from
state s to s’ by taking action a; v € [0,1) determines
the reward discount factor per time-step, which decreases
the importance of distant future rewards. The objective of
reinforcement learning is to find a policy 7 : S — A such that
the expected future discounted reward is maximized. Formally,
a Q-function, Q@™ : S x A — R, is defined to express the
expected future discounted reward as:

oo
Q" (s,a) :=E Zv 'R (styat,8¢+1) | S0 = s,a0 = a,m
t=0

(1
According to the Bellman equation [45], the Q-function for
the optimal policy Q* can be expressed recursively as:

Q*(s,0) = 3 T (s,0,8) [R(s.0,8) + ymaxQ* (s, )|

s'es
2
Given (*, the optimal policy 7* can be recovered by selecting
the action that provides the highest Q-value:

7 (s) = arg maaxQ*(s,a) 3)

A variety of learning algorithms seek to estimate Q* for
recovering the optimal policy 7* for an agent. Q-Learning [34]
and Deep Q-Network (DQN) [35] are two notable algorithms.
Q-Learning iteratively improve its approximation to the Q-
function by update a Q table.

While the tabular implementation of Q-function is simple
for implementation, it only works in environment with dis-
crete, finite, and small state space and action space. Practically,
for extremely large input space, like memory addresses space,
the tabular Q-learning is incapable to process directly. A

memory trace can have millions of unique addresses, whose
permutation as table index can be very storage consuming.
Deep Q-Network uses a convolutional neural network param-
eterized by weight 6 to approximation the Q-function. The
network parameters are updated by gradient descent. DQN
can handle large state space because it inferences through
computation instead of table look up.

To make the Q network feasible for hardware, we use a shal-
low Q-network, a simple multilayer perceptron (MLP) with
one hidden layer, to approximate the Q-function and handle the
large input space. Besides, we also develop a feasible tabular
Q-learning implementation with a simple structure. We show
that MLP-based model achieves better performance compared
to tabular model while using less space.

IV. OUR APPROACH: RESEMBLE

In this section we describe ReSemble, our ensemble frame-
work for adaptively leveraging the predictions from multiple
prefetchers. Figure 3 shows the integration of ReSemble into
hardware architecture for last level cache (LLC) prefetch-
ing. Multiple prefetchers read memory accesses of LLC and
provide suggestions to an ensemble controller. We formulate
ensemble prefetching as a reinforcement learning problem.
The learning relies on interactions between the environment
and an agent. As is shown in Figure 4, in ReSemble:

o environment is the hardware architecture, including the
memory hierarchy, the equipped multiple prefetchers,
the peripheral interfaces, and the accessory hardware for
prefetching;

o agent is the ensemble controller that aims to dynamically
manage the selection of prefetching suggestions from
multiple sources.

Multiple Prefetchers
4 Al ReSemble
- - Controller
1
L 2
CPU || L1 [ L2 ,J_,LastLeveI —!| DRAM
Core Cache Cache Cache

Fig. 3: Integrating ReSemble in hardware architecture.

Problem Formulation. Given states S acquired from an
architecture with multiple prefetchers working in parallel
(environment), we aim to train an ensemble controller (agent)
using samples of state transitions 7 that selects actions from
set A to maximize a long term reward R that reflects the
effectiveness of prefetches at a discount factor of ~.
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prefetchers), an MPL-based agent (ensemble controller) is
trained to maximize the long term reward, which reflects the
effectiveness of prefetches.

A. Overall Design and Workflow

Figure 4 shows the overview of ReSemble. First, multiple
prefetchers provide predicted addresses respectively according
to their own prefetching strategies. The predicted addresses
from prefetchers are preprocessed to a state vector (see Sec-
tion IV-B). Then, an MLP-based ensemble agent is designed to
approximate the Q-function, which can select the best action
given the current state vector (see Section IV-C). Meanwhile, a
replay memory is designed to collect state transitions consisted
of {state, action, prefetch, reward, future state} for model
training (see Section IV-D1), in which the reward is collected
from future prefetch hits/misses (see Section IV-D2). Due to
the asynchronism of action and reward, the transitions are
sampled using a lazy sampling mechanism for MLP training
(see Section IV-D3). Using the sampled transitions, the MLP-
based agent can be trained online, the training algorithm is
presented in Section IV-E. In addition, a tabular variant is
provided in Section IV-F with a simpler structure for the ease
of hardware implementation.

B. Preprocessing

The agent takes the memory address predictions from
prefetchers as observation from the environment. We classify
the prefetcher predictions to spatial predictions that are typi-
cally within a spatial region predicted by spatial prefetchers,
denoted as p(t), and temporal predictions that are in the
range of full memory address space and typically predicted
by temporal prefetchers, denoted as pZ (). The classification
is based on the output range rather than the constraints of
prefetcher taxonomy considering the emerging and future
prefetchers using hybrid address correlations. Formally, we
define the observation at time ¢ from the environment as o;:

or = [p1(t), p2(t), -.pn (t)]
= [p7 (1), -, pX (), 1 (1), - (1))

where N is the total predictions at time ¢, X is the number
of spatial predictions, and Y is the number of temporal

“)

predictions, N = X + Y. For the situation of no prediction or
variant degrees for multiple prefetchers, the observation uses
zero padding to fill and keep the size of the observation vector.

We need to preprocess observation oy to state vector s; that
can be used as the input of neural network, the state vector s,
is defined as:

St = fprep(ot)
= [S?(t), ) Si’(t)’ S?(t% ) Sg(t)]
where fy,p is the preprocessing function that maps elements
in observation vectors to elements in state vectors.

We design different preprocessing methods for the two types
of observations, p- and pl, as is shown in Equation 6.
Spatial predictions preprocessing. The spatial predictions are
within a range so we use the deltas, the difference between
the predicted address p3(t) to the current address Addr(t),
for model input. In practice, spatial prefetchers usually predict
deltas first then add to the current address. Thus, we simply
remove their post-processing step and output the deltas. We
use the spatial range 2P AGE-BITS to normalize the input.
Temporal predictions preprocessing. We use a hash and
norm approach to handle the large address space from tem-
poral predictions pl(t). We use a HASH_BITS bit length
folding method as the hash function to compress the absolute

predicted address. To normalize the result, the hashed values
are divided by 2HASH_BITS

&)

S(t) = st —Addr(t)

Sn = T9PAGE_BITS
(6)
T __ hash pf(t
Sn (t) = QHASE‘I#’I)“?S

There are several reasons that the observations are not
appropriate to be directly used as neural network inputs. For
one thing, due to the extremely large address space, the input
value can be very large and cannot be effectively processed
by MLP. For another, spatial prefetchers only predict in a
very small range while temporal prefetchers predict accesses
over the whole address space. Thus, larger input values would
dominate the learning and inference. Tokenizing the addresses
is a commonly used method to address the above problem [17],
[33], [48], [49], but it requires extra storage for millions of
mappings. Therefore, we design the hash and norm method for
preprocessing. Through a combination usage of delta, hashing,
and normalization, we convert observation vectors to state
vectors.

C. Multilayer Perceptron

We use multilayer perceptron (MLP) networks to parame-
terize the Q-function in Equation 2. An MLP is a feedforward
artificial neural network that typically consists of only three
layers of nodes: an input layer, a hidden layer, and an output
layer. We choose MLP because of its simple and compact
structure that increases the feasibility of potential hardware
implementation. An MLP in the ensemble structure takes the
state vector as input and output the predicted Q-values of the
individual actions for the input state:

Q(st,at) = MLP (st,a4;0) (N



where a; € A = {1,2,...,n,..., N,NP} is the specific action
at time step ¢, n is the index of the predicted address p,,(t),
and NP means no prefetching.

To make a decision of action taking, we apply decaying e-
greedy algorithm that balances the exploration and exploitation
trade-off. The action at time ¢ is determined by:

Random selection from A if P<e @
a+r =
! argmax,e 4 MLP (s¢,a4;6) otherwise

where P is a probability, ¢ decays from €gtqr¢ toward €eng
with the number of steps and a decay factor: € = €gqrt +
(€start — eend)efﬂi:%y. The decaying e enables the model to
adapt fast to the memory access pattern.

D. Data Collection and Sampling

1) Replay memory: We implement a replay memory to
store the last N tuples of transitions (s, at, pe, 7ty St41)s
which form a dataset D with transitions {current state, action,
prefetch, reward, future state}. By sampling from D, the stored
transitions can be reused for model training.

2) Reward Feedback: Since the Q-function is optimized to
acquire the highest long-term reward, we need to define the
reward in a way to indicate the prefetching effectiveness. For a
coming access, the requested address Addr is compared to the
history prefetching addresses p; within a history window W.
If there is a match at time ¢ for p;, the prefetching hits and the
corresponding reward will be set to r; = 1, otherwise, if there
is no hit and the prefetching is beyond the history window W,
the reward will be set as ; = —1. The above scenario works
when the agent prefetches valid addresses. If the agent action
is NP, the reward can be set directly as 0 when the transition
tuple is pushed into the replay memory.

3) Lazy sampling: Considering the lag of cache feedback,
we develop a lazy sampling mechanism for online training.
At time step ¢, the current state s; and a; can be immediately
stored in the replay memory. At ¢ + 1, the state vector sy
updates the transition 7; stored in D at time step ¢ and fill in
the valid s;y; value. For future reward feedback, the current
prefetching address p; is also stored along with s; and ay.
Then using the reward rule in Section IV-D2, update 7; in
T¢ where there is a valid reward feedback. As a result, only
the transitions with valid reward can be sampled for model
training, and invalid transitions will be pended. This process
is referred to as lazy sampling.

E. Online Training

Algorithm 1 shows the complete process of the ReSemble
inference and online training. To approximate the Q-function,
two MLP networks are defined: one policy network denoted
as MLP,, and one target network denoted as M LPF,;. The
policy network M LP, is used for online training for each
1, steps. I, is small, which enables quick adaptation to the
observations from the environment. Instead, the target network
MLP; updates by loading weights from M LP, for each I;
steps, where I, > I,,. M LP; works for the inference of action
selection, the approximation of the future rewards, and the

Algorithm 1 ReSemble Inference and Online Training

. Initialize replay memory D to capacity N

: Initialize policy net M LP, with random weights 0

. Initialize target net M LP; with weights ¢’ = 6

: Initialize state vector sg

. Initialize transition vector T; = (8¢, Gt, Pt,Tt, St+1)

: Configure window W

: Configure M LP, update interval I, and M LP; update
interval I, where I, < I

8: for t =1,7T do

~N N R W N =

9: St < fprep(ot)

10: if P < € then > Decaying e-greedy
11: Select a random action a; from A

12: else:

13: Select a; = max, M LP; (s, a;6) > Inference
14: end if

15: if a; is NP then

16: Execute no operation

17: Set reward r; + 0

18: else

19: Prefetch predicted address p[ay]

20: end if

21 Update (s¢, ar,pt) in Ty > Lazy sampling
22: Push transition 7; to replay memory D

23: Update transition 7;_; with s; in D

24: for prefetching p; in D within window W do

25: if current address Addr = p; then

26: r; < 1 for J; within window W

27: end if

28: end for

29: r; < —1 for 7; beyond W without valid reward

30: Label 7; as valid

31 if kI, steps then > Policy net online training

32: Sample valid transitions from D

33: yj < 1; +ymaxe MLP; (sj41,a';6)

34 0 <0+ a(y; — MLP,(+;0)) VoM LP,(+;6)

35: end if

36: if kI, steps then

37: Swap (M LP;, MLP,) > Nets role switch
38: 0+ 0 > Target net updating
39: end if

40: end for

learning objective of M LP,. The training data for M LPFP, is
randomly selected using lazy sampling from the transitions
with valid rewards, (s;, at, pt, T+, St+1), in the replay memory
D. The loss function for optimizing the M L P, is:

L(8) = Eq o pisa) [(yi — MLP, (s, a; 9))2} 9)
yj =75 +ymax MLP; (sjy1,0;6") (10)

where p(s,a) is a probability distribution over sequence s
and action a, y; is the expected accumulative reward of next
step, which is inferenced from the target network M LP;.



Through one step of gradient descent on the loss function,
the parameters 6 in the policy network M L P, can be updated
as:

0« 60+a(y; — MLP,(sj,a5;0)) VeMLP,(sj,a;;0) (11)

After each I; steps, the target net M L P, will be updated by
loading the parameters from the policy net M LFP,. To avoid
pending, we propose using a simple switch to swap the role of
the M LP; and M LP,. That is, when the policy net is trained
for I; steps, the policy net will be switched on as the network
for inference, serve as the target net for the next I; steps, while
the target net will be switched off from inference, and will be
used for training as policy net for next I, steps. The networks
synchronization can start after a quick switch, which avoids
the latency of model weight loading.

F. Tabular Variant

For ease of hardware implementation, we develop a simple
tabular RL ensemble controller based on Q-learning, which
uses a Q-table to approximate the Q-function in Equation 2.
The challenge of tabular implementation is the vast state
space, which causes large Q-table size when using the states
as table index. We address this challenge by two steps of
compression: address compression using hash function and Q-
table compression using tokenization.

First, we use folding method hash function for both spatial
and temporal predictions without the step of normalization, as
is shown in Equation 12. Using n-bit hash function can map
the address space to the range of [0, 27).

s3(t) = hash(pS (t) — Addr(t))
(12)
sy (t) = hash(py, (t))

n
Though the address space has been reduced by hashing,
the theoretical storage is still very large if directly using state
vector as index: 2("%) A for state dimension S and action space
A. We observe that the state space is sparse. Therefore, we
tokenize the unique states and use the tokens instead of the
state vectors as the index to implement the Q-table.

g L M B B
o
0

i

u _— 1 236 21.7
T 2 0 24 294 25 0
2 16 212 11 % 3 0 1864 33 17 243

Fig. 5: Q-table for a tabular variant of ReSemble, using 8-
bit hash function to reduce address space and tokenization to
reduce table size.

Q-Value

Figure 5 shows the structure of the proposed Q-table in the
case of four source prefetchers. Given a state, the vector will
be mapped to a corresponding Q-table index. The Q-values
show how good each actions are for a certain state. Q-value
is updated online for each time step following Equation 13.

Q(s,a) « Q(s,a) + a[r + ymax Q' (s',+) — Q(s,a)] (13)

where (s, a) is the Q-value for the pair of state-action, r is
the reward for taking action a, s’ is the next state after taking
action a. Considering the lag of reward we apply the same lazy
sampling method similar as in Section IV-D. The Q-value is
updated only when a valid reward is available. Instead of a
replay memory, A small buffer to store pending transitions
is enough for the tabular variant, because the table use one
transition for a step of update instead of a batch of transitions.

V. EVALUATION

ReSemble is a versatile framework that is open to architec-
tures equipped with various numbers and types of prefetchers.
In this section, we implement an example framework for
evaluation, and compare the performance to state-of-the-art
individual and ensemble prefetchers.

A. Methodology

1) Configuration: We use four prefetchers as ReSemble
input, the budget of the input prefetchers are shown in Table II,
including two spatial prefetchers and two temporal prefetchers:

o Best-offset (BO) prefetcher [6] is a spatial prefetcher.
BO algorithm tries to find the optimal prefetching offset
by testing a list of deltas.

o Signature Path Prefetcher (SPP) [43] is also a spatial
prefetcher but it is able to detect when a data access pat-
tern crosses a page boundary. It also uses path confidence
to balance the aggressiveness of prefetching.

o Irregular Stream Buffer (ISB) prefetcher [8] is a tem-
poral prefetcher that learns temporally correlated memory
accesses based on PC-localized stream.

o Domino prefetcher (Domino) [14] is another temporal
prefetcher that concerns about the effectiveness prefetch-
ing, using only the history of both one and two last miss
addresses to find a match for prefetching.

TABLE II: Configuration of Input Prefetchers

Prefetchers Configuration Budget

BO [6] 1K entry RR table, 1Kb prefetch bits 4KB

SPP [43] 256 entry ST, 512 entry PT, 5.3KB
1024 entry PF, 8 entry GHR

ISB [8] 2K entries for SP-AMC and PS-AMC 8KB

Domino [14] | 2KB prefetch buffer, 256B PointBuf, 2.4KB
128B LogMiss, 64B FetchBuf

The framework configuration is shown in Table III. The left
column of Table III shows the parameters of the environment
and the preprocessing, which is determined by the architecture
configuration. The right column shows the hyperparameters for
training the agent and are acquired from grid search. They can
keep fixed if only replacing input prefetchers while keeping
the input dimension (number of input prefetchers).

We implemented ReSemble based on MLP and its tabular
variants based on 4-bit and 8-bit hashing. The comparison of
model size is shown in Table IV, where H is the hidden layer
dimension of MLP, B is number of bits used in hashing. In
MLP implementation, the model size is SH + HA+ H + A
considering both the model weight and bias. For table-based
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Fig. 7: Case study on the actions of MLP-based and tabular RL ensemble controllers.

TABLE III: Configuration of ReSemble Framework

theoretical storage requirement is too large (up to 21.5G), so

we tokenize the unique states and use the tokens instead of

the state vectors to implement table-based models.

2) Simulator: We evaluate our approach using Champ-

Sim [50]. The parameter is shown in Table V. We simulate

all prefetchers at the last-level cache (LLC). The replacement

policy is LRU (least recently used).

Configuration (env) | Info Configuration (agent) Info
Address bit 64 Replay memory R 2000
Block offset 6 Prefetch window size W 256
Page offset 12 Batch size for training 256
State dimension S 4 €start 0.95
Action dimension A 5 €ond 0.005
Hash bit (for MLP) 16 decay 80
Policy net update interval I, 1
Target net update interval /¢ 20

TABLE V: Simulation Parameters

TABLE 1V: Size of MLP-Based Model and Tabular Models Parameter | Value
CPU 4 GHz, 4 , 4-wide 000,

Model | Size Expression Configuration | #Param/Entries 256-erzltry (;)g];s 6 4\_Velnéy I(jSQ
MLP Si+ HA+H+A H =100 LOSK L1 I-cache 64 KB, 8-way, 8-entry MSHR, 4-cycle
Table 270 A B =4 328K L1 D-cache | 64 KB, 12-way, 16-entry MSHR, 5-cycle
(direct) _ B=8 21.5G L2 Cache 1 MB, 8-way, 32-entry MSHR, 10-cycle
Table | 2A(7funique states) B=4 37.3K LL Cache | 8 MB, 16-way, 64-entry MSHR, 20-cycle
(token) B=8 592K DRAM trp =trcDp =tcas = 12.5 ns

2 channels, 8 ranks, 8 banks

32K rows, 8GB/s bandwidth per core

model, the state is discrete and the state space is 25°. The
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Fig. 9: Prefetch coverage of ReSemble and state-of-the-art prefetchers.

3) Benchmarks: We evaluate ReSemble, its tabular variant,
and the baselines with benchmarks SPEC CPU 2006 [37],
SPEC CPU 2017 [38], and GAP [51]. For all the applications,
we simulate for 100M instructions, in which 20M instructions
are the warm-up and the next 80M are for measurement.

B. Model Learning Performance

We evaluate the model learning performance by studying
the average reward for each 1K access windows. Besides the
MLP-based ReSemble and its tabular variants, we also explore
the influence of incorporating program counters (PC). The
models we evaluated for learning performance include:

o Table-based model with 4-bit hashing and 8-bit hashing
for preprocessing, with and without PC as input.
o MLP-based model with and without PC as input.

1) Average Rewards: The evaluation results are shown
in Table VI. We have three observations from the results.
First, MLP-based model without incorporating PC achieves the
highest average reward for all the benchmarks. Second, while
smaller hash bit compresses the state space in a higher rate,
it causes notable performance drop. Third, the incorporation
of program counters does provide significant contribution to
the average rewards. Particularly, for SPEC06, PC impairs the
performance of MLP-based model.

TABLE VI: Average Rewards of 1K Accesses Windows

Model Benchmarks

Configuration PC | SPEC 06 | SPEC 17 | GAP
Table: 4-bit hash X 437.97 440.42 19.93
Table: 8-bit hash X 430.49 457.08 28.21
MLP X 459.99 589.19 58.72
Table: 4-bit hash | v 404.88 452.68 19.72
Table: 8-bit hash | v 492.30 451.42 21.16
MLP v 348.35 535.60 55.29

2) Case Study: To better understand the online learning
process of ReSemble, we study the rewards and actions using
several cases: the same applications as in Fig 1. Fig 6 shows
the learning process of various models we implemented at
the first 400K accesses in the testing trace. The curves are
smoothed by a factor of 10. We can observe that MLP-
based model achieves notable higher rewards for 471.omnetpp
and 623.xalancbmk. For 433.lbm, MLP-based model shows
more stable performance than tabular models, 8-bit tabular
model shows higher rewards than the 4-bit tabular model.
For 621.wrf, MLP-based model without PC shows the highest
rewards, while introduction of PC harms the performance of
both MLP-based model and tabular model with 4-bit hash.

We show the actions of the best-performing MLP-based
model and tabular model to understand the performance differ-
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Fig. 10: IPC improvement using ReSemble and state-of-the-art prefetchers.

ence in Figure 7. First, MLP gives more frequent prefetching
switches among windows observed from the first 200K ac-
cesses of 433.Ibm and 621.wrf. This is a result of quicker
response of the MLP-based model. Second, in application
471.omnetpp and 623.xalancbmk, MLP-based model selects
the optimal prefetcher of a higher rate in a 1K window, while
tabular model usually involves the selection of sub-optimal
prefetchers. This is the result of better adaptability of the
MLP-based model. Overall, the quicker response and better
adaptability lead to higher performance of MLP-based model.

C. Ensemble Prefetch Performance

1) Baseline Prefetchers: We evaluate ReSemble and the
tabular variant with 8-bit hashing (ReSemble-T) using base-
lines including:

o Individual prefetchers for ReSemble input: BO, SPP,

ISB, and Domino, as described in Section V-Al.

o Sandbox Prefetcher (SBP) [26], a state-of-the-art non-
RL ensemble prefetcher. SBP uses a Bloom filter to
evaluate the accuracy of multiple offset prefetchers at
run-time, which can be considered as a generalization
of tournament branch predictor [52]. The greedy strategy
leads to the limitation of response lag (a sub-optimal
prefetcher works for a period until the average perfor-
mance of another prefetcher surpasses it).

SBP(E) is our implementation as an extended version of
SBP. First, we use a regular buffer to store the history
prefetches instead of a Bloom filter, which provides more
accurate filter matching. Second, we extend the constraint of
offset prefetchers to all types of prefetchers. Therefore, SBP(E)
is an adaptive prefetcher that selects the prefetcher with the
highest recent prefetching accuracy. We set the buffer size as
256, which is the same as a training batch in the example
ReSemble for evaluation.

2) Metrics: To evaluate the performance of ReSemble and
the baseline prefetchers, we use the following metrics:

o Prefetch accuracy as the ratio of useful prefetches to the
overall prefetches;

o Prefetch coverage as the ratio of useful prefetches to the
overall cache misses;

« IPC improvement as the percentage increase of instruc-
tions per cycle.

A useful prefetch is defined as the prefetched line being
referenced by the application before it is replaced.

3) Results: Figure 8 illustrates the comparison of prefetch
accuracy between ReSemble and state-of-the-art prefetchers.
On the average, ReSemble achieves the highest accuracy at
85.27%. ReSemble-T achieves 83.94%, higher than the base-
lines. SBP(E), as an ensemble prefetcher, achieves 82.05%,
notably higher than individual prefetchers: BO at 60.51%, SPP
at 77.9%, ISB at 71.07%, and Domino at 43.25%.

Figure 9 shows the comparison of prefetch coverage be-
tween ReSemble and state-of-the-art prefetchers. ReSemble
improves the coverage from 31.14% (SPP) to 41.02%, higher
than SBP(E) at 37.67%. ReSemble-T achieves 42.16% cover-
age, slightly lower than ReSemble. The coverages of other
baseline individual prefetchers are: BO at 27.04%, ISB at
20.36%, and Domino at 10.83%.

Figure 10 shows the IPC improvement contributed by
prefetching. ReSemble achieves the highest IPC improvement
at 29.52%, ReSemble-T achieves 29.26%, both are signifi-
cantly higher than the baselines. Specifically, BO achieves
20.93%, SPP achieves 22.67%. ISB achieves 12.36%, Domino
achieves 4.91%, and the ensemble baseline SBP(E) achieves
25.33%. Therefore, ReSemble outperforms the best individ-
ual prefetcher SPP by 8.35% and outperforms the ensemble
baseline SBP(E) by 5.69%. ReSemble-T outperforms the best
individual prefetcher SPP by 6.59%, SBP(E) by 3.93%.

VI. DISCUSSION

A. Overhead analysis

1) Latency: A hardware implementation will incur some
latency. In ReSemble, the policy net is trained online without
stalling the target net (Section IV-E). The role switch design
of the two MLPs also avoids the stalling of model update
(Figure 4). Thus, only the forward-path inference latency is
critical to prefetching. The MLP network is highly paralleliz-
able. The end-to-end inference under complete parallelization
can be estimated as:
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where T}, is the latency of hash function, 7}, is the normal-
ization latency, Ty, and T, are the matrix multiplication
latency of the MLP hidden and output layer, Ty, is the latency
of activation functions, Ty, is the latency of action selection
that finds the maximum Q value in an MLP output vector.

TABLE VII: Estimation of ReSemble Inference Latency

Phase Description Cycle
Prepossessing | o Tj, = [logy [ﬁjﬁ:g;:ﬂ 2

e T},: constant multiplication 1

® Tiumy, = |1+ 1ogy S| 5
MLP ® Tium, = [1+ logy H] 9

® Ty X 2: look up table 2
Action o Tyy = [logg A] 3
Total 22

The inference latency depends on the optimization of hard-
ware implementation. Under ideal parallel implementation, the
estimated latency T' ~ 22 cycles according to Equation 14
and Table III. The estimated latency for each component is
shown in Table VII. Recent works have explored more efficient
implementations of matrix multiplications by using lookup
tables [53] and combinational logic [54].

To evaluate the influence of prefetch latency to the perfor-
mance of prefetching, we introduce latency 7' varied from 0
to 40 cycles in simulations. The performance of prefetching
is shown in Figure 11. Considering the pipeline design in
hardware implementation, we evaluate the throughput (TP) in
two cases: 1/T (low TP) and 1 (high TP) inference per cycle.
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Fig. 11: ReSemble performance with prefetch latency intro-
duced in simulation. Implementations with high throughput
(High TP) and low throughput (Low TP) are evaluated.

Results show that the high throughput implementation has
notably higher performance than low throughput implemen-
tation. For latency of 20 cycles, ReSemble with high TP
achieves 83.66% accuracy, 42.56% coverage, and 29.19% IPC
improvement, which are 4.2% higher compared with SBP
in Figure 8 — 10. With higher latency, the performance of
ReSemble drops. When the latency is 40 cycles, ReSemble
with high TP achieves 78.64% accuracy, 39.34% coverage,
and 26.02% IPC improvement, which slightly outperforms
SBP which has 25.33% IPC improvement. In contrast, the

performance of the low TP implementation drops quickly
and shows lower IPC improvement than SBP when latency
is larger than 20 cycles. Overall, for a target under parallel
implementation and high-throughput pipeline with latency less
than 40 cycles, we can expect ReSemble to have higher
performance compared with SBP.

2) Storage: Table VIII shows the storage overhead of
ReSemble using the configuration in Table III. There are two
MLP networks requiring 4.2KB for parameters. The replay
memory requires 34.8KB with a 256 entry buffer consisting
of recorded prefetch addresses. Replay memory is used for
training and does not require fast access. Hence, it is stored
in the main memory just like prior work STMS [12] and
Domino [14].

TABLE VIII: Estimation of ReSemble Storage Overhead

Structure Description Size
e # MLP =2

MLP e # parameters = 1.05K 4.2KB
e 16-bit fixed point
e Stored on chip
e # entries of transitions = 2K

Replay Memory | e Each entry: (s¢,at, ¢, St+1) 34.8KB
® 2 X 5¢(4 X 16b) + a(3b) + r¢(1b)
e Prefetch window: 256 X p¢(58b)
o Stored off chip in main memory

B. Incorporating NN-Based Prefetcher

Our ensemble framework is compatible with neural network
(NN) based prefetchers that have been increasingly studied
recently [15], [17], [33], [55]. We incorporate Voyager [33], an
NN-based prefetcher using LSTM (Long Short-Term Memory)
to predict memory accesses. Voyager learns from temporal
patterns and predicts without the constraint of spatial range.
Therefore, we replace Domino in previous experiments with
Voyager here.
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Fig. 12: Performance of ReSemble with Voyager input.

Figure 12 shows various cases and the average (geometric
mean) performance of ReSemble using Voyager as a input
prefetcher. It shows that Voyager cannot outperform all the
prefetchers (the 433.milc) though it is powerful. We also
observe that ReSemble benefits from the power of Voyager and
also makes use of other rule-based prefetchers, which leads
to 36.22% IPC improvement, 4.71% higher than individual
Voyager prefetcher, and 5.10% higher than the ReSemble
without Voyager in Section V.



VII. RELATED WORK

We have compared ReSemble with state-of-the-art prefetch-
ers [6], [8], [14], [43], an ensemble prefetcher SBP [26]
in Section V, and a state-of-the-art NN-based prefetcher in
Section VI-B.

Some prior works have explored the application of machine
learning algorithms to data prefetching techniques. One way
of using ML in prefetching is to directly learn and predict
the memory access addresses, using sequence models such as
LSTM [15], [16], [18], [55], [56] or attention mechanism [33],
[57], [58]. These prefetchers can serve as the input of ReSem-
ble, as discussed in Section VI-B.

Another way is to use ML algorithms to help existing
prefetchers, such as providing extra prefetching reference [17]
or deciding the configuration of a prefetcher or multiple
prefetchers [24], [25], [59]. In contrast to those techniques,
ReSemble trains an ensemble controller online without the
necessity of offline training. ReSemble model decision is based
on the current observation of all the prefetchers instead of the
history of one prefetcher, leading to more accurate prediction
and faster response.

VIII. CONCLUSION

We presented ReSemble, a general ensemble framework that
dynamically leverages predictions from multiple prefetchers
and updates online using reinforcement learning. The keys to
our approach are using hash and norm to reduce input memory
address space, using lazy sampling method to handle the lag of
cache feedback, and using simple MLP as the ensemble con-
troller, which outperforms table-based controller with smaller
model size. ReSemble shows 85.27% in accuracy and 44.22%
in coverage. It outperforms individual prefetchers and the base-
line state-of-the-art ensemble prefetcher. ReSemble contributes
31.02% improvement to IPC, which outperforms the best
individual prefetcher by 8.35%, and outperforms the ensemble
baseline SBP by 5.69%. In future work, we plan to explore
the optimization of ReSemble hardware implementation, its
sensitivity to varying budgets, and ensemble prefetching for
multi-core architectures.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
feedback. This work has been supported by the U.S. National
Science Foundation under grant numbers CCF-1912680 and
PPoSS-2119816.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20-24, 1995.

[2] C. Carvalho, “The gap between processor and memory speeds,” in Proc.
of IEEE International Conference on Control and Automation, 2002.

[3] S. P. Vander Wiel and D. J. Lilja, “When caches aren’t enough: Data
prefetching techniques,” Computer, vol. 30, no. 7, pp. 23-30, 1997.

[4] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
Proceedings of the 24th annual international symposium on Computer
architecture, 1997, pp. 252-263.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

[23]

[24]

K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in 10th International Symposium on High Performance
Computer Architecture (HPCA’04). 1EEE, 2004, pp. 96-96.

P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 469-480.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2015, pp. 141-152.

A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 247-259.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 3, pp. 69-80, 2009.

S. Somogyi, T. FE. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 2, pp. 252-263, 2006.

T. E. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal streams in commercial server applications,” in 2008 IEEE
International Symposium on Workload Characterization. 1EEE, 2008,
pp. 99-108.

——, “Practical off-chip meta-data for temporal memory streaming,”
in 2009 IEEE 15th International Symposium on High Performance
Computer Architecture, 2009, pp. 79-90.

H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin, “Tem-
poral prefetching without the off-chip metadata,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 996-1008.

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
131-142.

A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,
“Predicting memory accesses: the road to compact ml-driven prefetcher,”
in Proceedings of the International Symposium on Memory Systems,
2019, pp. 461-470.

A. Srivastava, T.-Y. Wang, P. Zhang, C. A. F. De Rose, R. Kannan,
and V. K. Prasanna, “Memmap: Compact and generalizable meta-lstm
models for memory access prediction,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2020, pp. 57-68.
P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna,
“Raop: Recurrent neural network augmented offset prefetcher,” in The
International Symposium on Memory Systems, 2020, pp. 352-362.

P. Zhang, A. Srivastava, T.-Y. Wang, C. A. De Rose, R. Kannan,
and V. K. Prasanna, “C-memmap: clustering-driven compact, adaptable,
and generalizable meta-lstm models for memory access prediction,”
International Journal of Data Science and Analytics, pp. 1-14, 2021.
X. Lu, R. Wang, and X.-H. Sun, “Apac: An accurate and adaptive
prefetch framework with concurrent memory access analysis,” in 2020
IEEE 38th International Conference on Computer Design (ICCD).
IEEE, 2020, pp. 222-229.

H. Devarajan, A. Kougkas, and X.-H. Sun, “Hfetch: Hierarchical data
prefetching for scientific workflows in multi-tiered storage environ-
ments,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 1EEE, 2020, pp. 62-72.

Y. Chen, H. Zhu, H. Jin, and X.-H. Sun, “Algorithm-level feedback-
controlled adaptive data prefetcher: Accelerating data access for high-
performance processors,” Parallel Computing, vol. 38, no. 10-11, pp.
533-551, 2012.

M. Snir and J. Yu, “On the theory of spatial and temporal locality,”
Tech. Rep., 2005.

C. D. Gracia et al., “Ensemble prefetching through classification us-
ing support vector machine,” in Intelligent Systems Technologies and
Applications.  Springer, 2016, pp. 261-273.

S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing hard-
ware prefetch effectiveness with machine learning,” in 2015 IEEE 17th
International Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, Aug. 2015, pp. 383-389.



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Kondguli and M. Huang, “Division of labor: A more effective
approach to prefetching,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2018, pp. 83-95.
S. H. Pugsley, Z. Chishti, C. Wilkerson, P-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,” in 2074
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2014, pp. 626-637.

M. F. Uluat and V. Tsler, “Ensemble adaptive tile prefetching using
fuzzy logic,” International Journal of Geographical Information Science,
vol. 30, no. 6, pp. 1117-1136, 2016.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney,
and O. Mutlu, “Pythia: A customizable hardware prefetching frame-
work using online reinforcement learning,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1121-1137.

L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in 2015
ACM/IEEE 42nd Annual International Symposium on Computer Archi-
tecture (ISCA). 1IEEE, 2015, pp. 285-297.

M. Maas, “A taxonomy of ml for systems problems,” IEEE Micro,
vol. 40, no. 5, pp. 8-16, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861-873.
C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1-28, 2005.

A. Jaleel, “Memory characterization of
instrumentation-driven simulation,”
umd. edu/ajaleel/workload, 2010.

S. CPU2017”, “The standard performance evaluation corporation,”
https://www.spec.org/cpu2017/, 2017.

S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches
using spatial footprints,” in Proceedings. 25th Annual International
Symposium on Computer Architecture (Cat. No. 98CB36235). 1EEE,
1998, pp. 357-368.

S. Byna, Y. Chen, and X.-H. Sun, “Taxonomy of data prefetching for
multicore processors,” Journal of Computer Science and Technology,
vol. 24, no. 3, pp. 405-417, 2009.

S. Mittal, “A survey of recent prefetching techniques for processor
caches,” ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1-35,
2016.

M. Bakhshalipour, S. Tabaeiaghdaei, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Evaluation of hardware data prefetchers on server processors,”
ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1-29, 2019.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1-12.

J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 14413-14423, 2020.

R. Bellman, “A markovian decision process,” Journal of mathematics
and mechanics, vol. 6, no. 5, pp. 679-684, 1957.

C. Zhang, S. R. Kuppannagari, and V. K. Prasanna, “Maximum en-
tropy model rollouts: Fast model based policy optimization without
compounding errors,” arXiv preprint arXiv:2006.04802, 2020.

M. Roderick, J. MacGlashan, and S. Tellex, “Implementing the deep
g-network,” arXiv preprint arXiv:1711.07478, 2017.

workloads  using
Web Copy: http://www.  glue.

(48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

M. Shakerinava, M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Multi-lookahead offset prefetching,” The Third Data Prefetching
Championship, 2019.

P. Zhang, R. Kannan, A. Nori, and V. Prasanna, “A2p: Attention-based
memory access prediction for graph analytics,” 01 2022, pp. 135-145.
”ChampSim”, “https://github.com/champsim/champsim,” 2017.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

S. McFarling, “Combining branch predictors,” Citeseer, Tech. Rep.,
1993.

M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn:
Neural network with no multiplication,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. 1EEE, 2017, pp.
1775-1780.

M. Nazemi, A. Fayyazi, A. Esmaili, A. Khare, S. N. Shahsavani, and
M. Pedram, “Nullanet tiny: Ultra-low-latency dnn inference through
fixed-function combinational logic,” in 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2021, pp. 266-267.

M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
arXiv preprint arXiv:1803.02329, 2018.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222-2232, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree
prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, 2022, pp. 103-112.

S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Ma-
chine learning-based prefetch optimization for data center applications,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 1-10.



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We evaluate our method  using a  modified
ChampSim for ML Prefetching Competition
(https://github.com/Quangmire/ChampSim). ~ First, we use
the cache miss trace dataset provided in the artifact, in-
cluding SPEC 2006, SPEC 2017, and GAP. Then using the
modified ChampSim with four prefetchers implemented
(https://github.com/resemble1/ChampSim), we generate the
prefetching suggestions by all the prefetchers.

Using the above 1) cache miss trace and 2) generated
prefetching suggestions as input, we simulate the online
learning process with the proposed approach ReSemble
(https://doi.org/10.5281/zenodo.6462850). ReSemble will generate
the final prefetching address based on the prefetching suggestions
from all input prefetchers and the interactions with cache miss
trace.

Using the final prefetching address, we simulate the
prefetching performance with the modified ChampSim
(https://github.com/resemble1/ChampSim) and generate re-
ports including accuracy, recall, and IPC improvement.

We use a rule-based resemble method SBP as the baseline. There
is no open-source artifact for this method so we implemented our
version at: https://github.com/resemble1/SBP-E.git.

The cache miss traces are large, and the genera-
tion of prefetching files is time-consuming, so we pro-
vided a piece of sample data in the ReSemble Container
(https://hub.docker.com/r/resemblel/resemble) with all dependen-
cies installed.

The platform information we use:

(1) CPU: Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz.

(2) NVIDIA GP102 TITAN Xp.

(3) Operating systems and versions: Ubuntu 20.04.1 LTS.

(4) Compilers and versions: g++ 9.4.0; python 3.8.13

(5) Libraries and versions: pandas 1.4.1; numpy=1.21.5; py-

torch=1.10.2; tqdm=4.63.0

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1

Persistent ID: https://doi.org/10.5281/zenodo. 6462850
Artifact name: ReSemble Source Code

Artifact 2

Persistent ID:
resemble

Artifact name: ReSemble Container

https://hub.docker.com/r/resemblel/

Artifact 3

Persistent ID: https://github.com/resemblel/ChampSim
Artifact name: Modified ChampSim for ReSemble

Citation of artifact: https://github.com/Quangmire/ChampSim

Artifact 4

Persistent ID: https://github.com/resemblel/SBP-E.git
Artifact name: SBP-E

Reproduction of the artifact with container: Following the steps
below to run the ReSemble demo:

1) Download the container: docker pull resemble1/resemble:0415

2) Start the container: a) Run the contariner: docker run -itd
resemblel/resemble:0415 b) Check the container ID: docker ps ¢)
Execute the container: docker exec -it [CONTAINER ID] /bin/bash

3) Activate environment in container: conda activate sc22

4) Go to the working directory: cd /root/sc22/ReSemble/

5) We provide a generated sample prefetching data for running
the demo based on a short trace from 654.roms in SPEC 2017, stored
in /root/sc22/ReSemble/sample_data/

6) Run MLP-based ReSemble demo: cd
/root/sc22/ReSemble/ReSemble_MLP; ./run_demo.sh

7) Run tabular variant of ReSemble demo: cd
/root/sc22/ReSemble/ReSemble_Tab; ./run_demo.sh

8) Results of demos are stored in /root/sc22/ReSemble/results/,
where .pkl file is the models, .pref.txt file is the prefetch addresses for
simulation, .rewards.csv is the rewards and proportions of actions
for the demo prefetching process.

9) Check the ReSemble online learning records by print-
ing the .rewards.csv files on the screen. Specifically, "654.roms-
s0.mlp.rewards.csv" shows the MLP-based model results; "654.roms-
s0.tab-4.rewards.csv" shows the tabular variant using 4-bit hashing.



