
TransforMAP: Transformer for Memory Access

Prediction

Pengmiao Zhang

University of Southern California

Los Angeles, USA

pengmiao@usc.edu

Anant V. Nori

Processor Architecture Research Lab, Intel Labs

Bangalore, India

anant.v.nori@intel.com

Ajitesh Srivastava

University of Southern California

Los Angeles, USA

ajiteshs@usc.edu

Rajgopal Kannan

US Army Research Lab

Los Angeles, USA

rajgopal.kannan.civ@mail.mil

Viktor K. Prasanna

University of Southern California

Los Angeles, USA

prasanna@usc.edu

Abstract—Data Prefetching is a technique that can hide mem-
ory latency by fetching data before it is needed by a program.
Prefetching relies on accurate memory access prediction, to which
task machine learning based methods are increasingly applied.
Unlike previous approaches that learn from deltas or offsets and
perform one access prediction, we develop TransforMAP, based
on the powerful Transformer model, that can learn from the
whole address space and perform multiple cache line predictions.
We propose to use the binary of memory addresses as model
input, which avoids information loss and saves a token table in
hardware. We design a block index bitmap to collect unordered
future page offsets under the current page address as learning
labels. As a result, our model can learn temporal patterns as well
as spatial patterns within a page. In a practical implementation,
this approach has the potential to hide prediction latency because
it prefetches multiple cache lines likely to be used in a long
horizon. We show that our approach achieves 35.67% MPKI
improvement and 20.55% IPC improvement in simulation, higher
than state-of-the-art Best-Offset prefetcher and ISB prefetcher.

I. INTRODUCTION

Memory access prediction is a very important task for

data prefetching, which is a widely used technique for hiding

memory latency and improving instructions per cycle (IPC).

A prefetching process is a form of speculation that aims to

predict the future data addresses and fetch the data before

it is needed. Hardware prefetchers usually exploit obvious

memory access patterns, such as the adjacent spatial locality

and constant stride. For example, spatial Memory Streaming

(SMS) [12] prefetcher identifies code-correlated spatial pat-

terns and streams at run time and predicts future accesses us-

ing these patterns. Best-Offset prefetching approach proposed

in [7] predict offsets while taking into account of prefetching

timeliness. Irregular Stream Buffer (ISB) [5] learns temporally

correlated memory accesses based on PC-localized stream.

However, hardware prefetchers are incapable of learning la-

tent trace patterns or providing generalized inference. Machine

learning has provided insights into data prefetching. In [10],

the authors propose to use logistic regression and decision

tree models to maximize the effectiveness of existing hardware

prefetchers in a system. [4] presents an extensive evaluation of

recurrent neural networks in learning memory access patterns

and demonstrates high performance in precision and recall.

Some other works [1], [9], [16] also demonstrate the effective-

ness of LSTM in memory access prediction. [13], [14], [17]

use compact LSTM and meta-model techniques to reduce the

model size pursuing to build a practical prefetcher. In [8], the

authors first propose using Seq2seq modeling, based on LSTM

Encoder-Decoder structure, to predict the future characteristics

of an object for content caching and significantly boosts the

number of cache hits.

Due to the underlying grammar similarity between mem-

ory accesses and natural language, natural language pro-

cessing (NLP) models are naturally applicable to learning

accesses [14], [18]. The Transformer [15], a sequence model

based on multi-head self-attention initially proposed for ma-

chine translation, has achieved huge success for sequence

modeling tasks in many fields compared to traditional re-

current models. This suggests that self-attention might also

well-suited to modeling memory access patterns. Our target is

to bring the paradigm of memory access prediction for data

prefetching under the Transformer architecture. Unlike most

NLP problems that usually have clear labels and reasonable

corpus size for learning, the data prefetching task is presenting

two challenges we need to tackle: unfixed labeling, class

explosion [11], and latency of prediction. Unfixed labeling

indicates that there is no ground truth that a prefetcher should

prefetch a certain memory address because any address fol-

lowing the current access could be the labels. Class explosion

indicates that the class space would be the same as the address

space if the model input/output uses absolute memory address

and the problem is formulated as classification. A 64-bit

address space requires a model to predict one class out of

tens of millions of classes. Latency of prediction indicates that

the inference latency of ML-based prefetchers can be larger

than traditional rule-based prefetchers, which can cause late

prefetches and make the prefetching useless even for accurate

predictions.

In this paper, we propose TransforMAP, a Transformer-



based memory access prediction framework, to tackle the

above challenges. We use the same Encoder-Decoder structure

as the Transformer model. On the encoder side, we propose

to use the sequence of addresses in binary as input. This input

format presents three advantages. First, comparing to deltas,

the binarized address only incorporates a vocabulary size at 2,

which largely reduces the input vocabulary space. Second, the

vocabulary is fixed and needs no tokenization since class itself

can be used as values in the computation, which avoids the

word-to-index table in hardware implementation. Third, there

is no information loss compared to using only deltas or offsets

as inputs. On the decoder side, we propose a bitmap labeling

technique to set the training label as unordered future k page

offsets under the same page as the current address. Since we

only consider the pattern within a page, the vocabulary for

the output is the offset space, e.g., 64 for a 12-bit page with a

6-bit block. TransforMAP can deal with an unfixed number of

multiple block predictions and bitmap labeling enhances the

model’s capacity in predicting longer patterns, thus, offsets the

computation latency.

Our contribution can be summarized as follows:

• We propose a Transformer-based framework for the task

of multiple memory access predictions.

• We propose to use the binary of addresses as model

inputs, which solves the problem of class explosion

without information loss compared to using deltas or

offsets as inputs. It also avoids extra token tables in

hardware implementation.

• We propose a bitmap labeling approach that collects un-

ordered future page offsets under the same page address

that avoids unnecessary repetitive prediction. It facilitates

long-horizon prediction that offsets the misses caused by

calculation latency from a practicality perspective.

• We evaluate our method using ChampSim simulator.

Results show that TransforMAP achieves 35.67% MPKI

improvement and 20.55% IPC improvement, outperforms

Best-Offset prefetcher and ISB prefetcher.

II. RELATED WORK

Several prior works have explored the application of ma-

chine learning algorithms on data prefetching and memory

access prediction. [13] proposed a compact LSTM based

prediction model and extensively studied the memory patterns,

LSTM prediction performance, and online learning strate-

gies. The authors train LSTM models with virtual mem-

ory access deltas and have achieved high accuracy. [17]

and [14] also leverages LSTM-based models and deals with

virtual addresses, focusing more on the practicality of model

implementation on hardware. However, consecutive virtual

memory accesses patterns are more notable than the translated

physical addresses, especially for the last-level caches where

the memory accesses have been filtered by lower-level caches.

Simple LSTM models may not be capable to learn the physical

pattern in LLC so we resort to a more powerful model to tackle

this challenge.

[11] proposes the Voyager model for memory access

prediction. This model predicts both page sequence and

page offsets. The Voyager model uses two LSTM models

to strengthen the model learning capacity. The authors use

a simplified dot-product attention mechanism without scale

factor to build a connection between input page embedding

and input offset embedding. In this work, we will explore how

a model with only attention mechanisms, without recurrent

network structure, performs on the memory access prediction

task.

III. APPROACH

A. Overview of TransforMAP

Figure 1 illustrates the overall architecture of the pro-

posed TransforMAP and how the model is applied in a

hardware system. We try to leverage a state-of-the-art machine

learning algorithm, the Transformer, to improve the cache hit.

We treat the prefetching problem as sequence prediction and

perform classification on page offsets. Because a prefetch must

be in the unit of a block (or cache line), we can increase

the granularity and consider only the block index space, the

configuration is shown in the left top of figure 1.

Problem Formulation In abstract, let At = {a1, a2, ..., at}
be the sequence of history block addresses at time t. Let

Xt = {x1, x2, ..., xt} be the binary representation of At,

where xt = {b1t , b2t , ..., bmt , ..., bm+n
t } represents the m-bit

binary values for page address and (m+ n)-bit binary values

for block address at time t. Let Yt = {y1, y2, ..., yk} be

the sequence of k outputs associated with the unordered

future k block index for the same page address. Our goal

is to construct meaningful Xt to Yt that are helpful in data

prefetching. The final address prediction Ỹt = {ỹ1, ỹ2, ..., ỹk}
is the concatenation of current page address, the predicted

block index, and the block offset.

B. Input Sequence

Memory data fetching is on the unit of cache lines or

blocks. Therefore, we only consider the address bits upper

than the block offset, referred to as block addresses. To deal

with the extremely large vocabulary of address space, 264

for a 64-bit address, we use a binary vector to represent the

absolute address value. There are three significant advantages

of using the binary vector as input. First, the vocabulary can

be largely reduced. For a l-bit physical address, while this

method increases the input sequence length to l×, it results

in a 2l−1× reduction of vocabulary. Second, the vocabulary is

fixed as two: 0 and 1, and they are numerical values. There

is no need for tokenization and the input can be directly used

for calculation. This is significant for hardware implementation

because it saves an extra table storing the token dictionary and

avoids the process of word-to-index conversion. Third, there

is no information loss compared to using only deltas or offsets

as inputs. Binary vector is equivalent to the absolute address

while deltas leverage the difference between memory accesses

and offsets only consider part of the address. An inference

from this advantage is that the model can learn from the whole

2



Fig. 1: Overall architecture of TransforMAP. We have an input sequence of history block addresses in binary Xt =
{x1, x2, ..., xt} and output sequence the desired block index Yt = {y1, y2, ..., yk} under the current page. The final address Ỹt

prediction is the concatenation of current page address, the predicted block index, and the block offset.

address space and can handle an address that has never ap-

peared before. The advantage is highly significant in memory

access prediction task because of orders of magnitudes larger

vocabulary size compared to natural language tasks.

C. Bitmap Labeling

We aim to predict unordered future block indexes under

the same page as the current memory address. The label is

collected from offline memory access traces. This labeling

method is based on the hypothesis that memory access pattern

within a page is more significant and easier to track.

As is shown in the bottom part of figure 1, we use a bitmap

at the length of block index space to store our labels. For

example, given a 3-bit block index, a bitmap at length 8 is

required. The index of a bitmap is equivalent to the block index

in the memory address. While the future block indexes appear

in order, we only record the appearance of the block indexes

in bitmap and ignore the order. The bitmap indexes with value

1 are set as model labels. From an algorithm perspective,

this method avoids repetitive prediction and decreases the

complexity of output space. From a hardware perspective, this

method facilitates the model to predict longer future accesses

and offsets the near future miss caused by computation latency.

D. Transformer Predicting Module

We use the state-of-the-art machine learning algorithm in

sequence modeling, the Transformer [15], to learn the mapping

between history address sequences in binary and the future

block indexes in decimal.

1) Transformer Layers: The right part of figure 1 shows

the architecture of the Transformer model we use. We employ

the model using an Encoder-Decoder structure similar to the

original architecture.

Self-attention. The scaled dot-product attention is defined as

follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where Q represents the queries, K the keys, and V the

values. The self-attention operations take the embedding of

items as input, and convert them to three matrices through

linear projection, and feeds them into an attention layer. d is

the dimension of the layer input.

Multi-headed attention. One self-attention operation can be

considered as one ”head”, we can apply multi-head attention

operation as follows:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O

where head i = Attention
(
QWQ

i ,KWK
i , V WV

i

)

(2)

where the projection matrics WQ
i ,WK

i ,WV
i ∈ R

d×d and h

is the number of heads.

Point-wise feed-forward. Point-wise feed-forward network

(FFN) is defined as follows:

FFN(x) = max (0, xW1 + b1)W2 + b2 (3)

Position encoding Because there are no recurrent steps in the

self-attention layer, positional encodings are leveraged before

both encoder and decoder to inject the orders of elements in

3



a sequence to the model [3]. We use sine and cosine function

for positional encoding:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

) (4)

2) Loss Function: For our multi-class classification prob-

lem, we use cross-entropy loss defined as below:

Llog(Y, P ) = − 1

N

N−1∑

i=0

K−1∑

k=0

yi,k log pi,k (5)

where Y is the matrix of true labels, P is the matrix of

prediction probability, yi,k is the true value for the ith sample

at class k, pi,k is the probability for the ith sample to be class

k.

3) Training: We use the Adam optimizer [6] with β1 = 0.9,

β2 = 0.98 and ε = 10−9. Custom learning rate over the course

of training is used as follows with warmup steps = 2000:

lrate = d−0.5
model ·min(step num−0.5,

step num · warmup steps)
(6)

4) Inference: We use beam search with beam size = 2 to

find an output with a maximum likelihood. At time step 1,

we feed the output embedding with a < beginning > token

and conduct beam search until the appearance of < ending >
token or the inference achieves the maximum length of output

sequence.

E. Output Concatenation

The model output is only the predicted future block indexes,

we need to convert the prediction back to the absolute address

that can be used by a prefetching module. Let the current

address be at, one predicted block index yk, the final predicted

address for prefetching is:

ỹk = (at � log2 (page size) � block index+ yk)

� log2 (block size)

block index = log2 (page size)− log2 (block size)

(7)

IV. EVALUATION

This section evaluates our ideas by comparing Trans-

forMAP against state-of-the-art hardware prefetchers.

A. Methodology

1) Simulator: We evaluate our model using the simulation

framework released by ML Prefetching Competition based on

ChampSim [2]. We train the model with memory traces of the

last level cache(LLC) and test on LLC prefetcher by generating

prefetching entries and insert in LLC.

2) Benchmarks: We use SPEC06 and SPEC17 to evaluate

our model performance. For each application, we collect

memory requests in LLC within 25 million instructions, using

the first 20 million for training and the following 5 million for

testing.

(a) Accuracy

(b) Coverage

(c) MPKI improvement

(d) IPC improvement

Fig. 2: Simulation results

3) Baseline: We select state-of-the-art prefetchers: Best-

Offset prefetcher [7] and Irregular Stream Buffer (ISB)

prefetcher [5] as baselines to evaluate our model.

4) Metrics: We evaluate our model by comparing their

accuracy, coverage, MPKI (miss per kilo-instructions) im-

provement, and IPC (instructions per cycle) improvement.

B. Simulation Results

Figure 2 shows the simulation results on accuracy, coverage,

MPKI improvement, and IPC improvement comparing the

our TransforMAP and baselines. Applications with index 4xx

are from SPEC06 and those with index 6xx are from SPEC17.

TransforMAP achieves the highest average accuracy at

66.72% while BO achieves 41.29% and ISB achieves 61.79%.

Our model presents the highest coverage at 37.77% that

4



outperforms 30.58% from BO and 22.26% from ISB. Trans-

forMAP presents the highest MPKI improvement, which

means TransforMAP reduces 35.67% of the misses per kilo-

instructions, compared to 29.51% and 22.51% from BO and

ISB respectively. Overall, TransforMAP provides 20.55% IPC

improvement, which is higher than 19.07% provided by BO

prefetcher and 13.75% provided by ISB prefetcher.

V. DISCUSSION

Prefetcher Preference Different applications rely differently

on temporal or spatial localities. While BO tracks the spatial

correlation and ISB tracks the temporal correlation, Trans-

forMAP learns from temporal sequences and predicts future

accesses within a spatial range. This design makes Trans-

forMAP perform better for the average of all applications.

Feasibility The transformer model is more feasible for parallel

computation in hardware implementation because there are

no recurrent loops like in LSTM. Therefore, the Transformer

inference latency is smaller comparing to LSTM in the same

size. Besides, the bitmap labeling method can achieve long-

horizon prefetching and can offset the latency of model

inference.

Online Retraining While TransforMAP shows a powerful

capacity in data prefetching, the performance relies on the size

of the training and testing dataset. Specifically, without online

updates, the prediction capacity will attenuate and both the

accuracy and coverage will decay with an increasing number

of testing instructions. To maintain the performance, online

model updates are necessary and we will study this field in

our future work.

VI. CONCLUSION

In this paper, we have created a Transformer-based model

for data prefetching. We use binary representation of absolute

address as model input that solves the class explosion problem.

We use the bitmap labeling method to collect unordered future

block indexes for the current page, which solves the labeling

problem and offsets computation latency for feasibility. The

simulation results show that the proposed TransforMAP model

achieves 35.67% MPKI improvement and 20.55% IPC im-

provement, higher than state-of-the-art BO prefetcher and ISB

prefetcher.

ACKNOWLEDGEMENTS

This work is supported by Air Force Research Laboratory

grant number FA8750-18-S-7001, and National Science Foun-

dation award number 1912680.

REFERENCES

[1] P. Braun and H. Litz, “Understanding memory access patterns for
prefetching,” in International Workshop on AI-assisted Design for Ar-

chitecture (AIDArc), held in conjunction with ISCA, 2019.

[2] ”ChampSim”, “https://github.com/champsim/champsim,” 2017.

[3] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Con-
volutional sequence to sequence learning,” in International Conference

on Machine Learning. PMLR, 2017, pp. 1243–1252.

[4] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning memory
access patterns,” CoRR, vol. abs/1803.02329, 2018. [Online]. Available:
http://arxiv.org/abs/1803.02329

[5] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, 2013, pp. 247–259.
[6] D. Kingman and J. Ba, “Adam: A method for stochastic optimization.

conference paper,” in 3rd International Conference for Learning Repre-

sentations, 2015.
[7] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 469–480.

[8] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,”
08 2018, pp. 48–53.

[9] L. Peled, U. Weiser, and Y. Etsion, “A neural network memory prefetcher
using semantic locality,” arXiv preprint arXiv:1804.00478, 2018.

[10] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing hard-
ware prefetch effectiveness with machine learning,” in 2015 IEEE 17th

International Conference on High Performance Computing and Com-

munications, 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security, and 2015 IEEE 12th International Conference on

Embedded Software and Systems, Aug. 2015, pp. 383–389.
[11] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,

“A hierarchical neural model of data prefetching,” in Proceedings of

the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2021, pp. 861–873.
[12] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Spatial memory streaming,” ACM SIGARCH Computer Architecture

News, vol. 34, no. 2, pp. 252–263, 2006.
[13] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,

“Predicting memory accesses: the road to compact ml-driven prefetcher,”
in Proceedings of the International Symposium on Memory Systems.
ACM, 2019, pp. 461–470.

[14] A. Srivastava, T.-Y. Wang, P. Zhang, C. A. F. De Rose, R. Kannan,
and V. K. Prasanna, “Memmap: Compact and generalizable meta-lstm
models for memory access prediction,” in Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Springer, 2020, pp. 57–68.
[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint

arXiv:1706.03762, 2017.
[16] Y. Zeng and X. Guo, “Long short term memory based hardware

prefetcher: a case study,” in Proceedings of the International Symposium

on Memory Systems, 2017, pp. 305–311.
[17] P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna,

“Raop: Recurrent neural network augmented offset prefetcher,” in The

International Symposium on Memory Systems (MEMSYS 2020), 2020.
[18] P. Zhang, A. Srivastava, T.-Y. Wang, C. A. De Rose, R. Kannan,

and V. K. Prasanna, “C-memmap: clustering-driven compact, adaptable,
and generalizable meta-lstm models for memory access prediction,”
International Journal of Data Science and Analytics, pp. 1–14, 2021.

5


