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Abstract—Data Prefetching is a technique that can hide mem-
ory latency by fetching data before it is needed by a program.
Prefetching relies on accurate memory access prediction, to which
task machine learning based methods are increasingly applied.
Unlike previous approaches that learn from deltas or offsets and
perform one access prediction, we develop TransforMAP, based
on the powerful Transformer model, that can learn from the
whole address space and perform multiple cache line predictions.
We propose to use the binary of memory addresses as model
input, which avoids information loss and saves a token table in
hardware. We design a block index bitmap to collect unordered
future page offsets under the current page address as learning
labels. As a result, our model can learn temporal patterns as well
as spatial patterns within a page. In a practical implementation,
this approach has the potential to hide prediction latency because
it prefetches multiple cache lines likely to be used in a long
horizon. We show that our approach achieves 35.67% MPKI
improvement and 20.55% IPC improvement in simulation, higher
than state-of-the-art Best-Offset prefetcher and ISB prefetcher.

I. INTRODUCTION

Memory access prediction is a very important task for
data prefetching, which is a widely used technique for hiding
memory latency and improving instructions per cycle (IPC).
A prefetching process is a form of speculation that aims to
predict the future data addresses and fetch the data before
it is needed. Hardware prefetchers usually exploit obvious
memory access patterns, such as the adjacent spatial locality
and constant stride. For example, spatial Memory Streaming
(SMS) [12] prefetcher identifies code-correlated spatial pat-
terns and streams at run time and predicts future accesses us-
ing these patterns. Best-Offset prefetching approach proposed
in [7] predict offsets while taking into account of prefetching
timeliness. Irregular Stream Buffer (ISB) [5] learns temporally
correlated memory accesses based on PC-localized stream.

However, hardware prefetchers are incapable of learning la-
tent trace patterns or providing generalized inference. Machine
learning has provided insights into data prefetching. In [10],
the authors propose to use logistic regression and decision
tree models to maximize the effectiveness of existing hardware
prefetchers in a system. [4] presents an extensive evaluation of
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recurrent neural networks in learning memory access patterns
and demonstrates high performance in precision and recall.
Some other works [1], [9], [16] also demonstrate the effective-
ness of LSTM in memory access prediction. [13], [14], [17]
use compact LSTM and meta-model techniques to reduce the
model size pursuing to build a practical prefetcher. In [8], the
authors first propose using Seq2seq modeling, based on LSTM
Encoder-Decoder structure, to predict the future characteristics
of an object for content caching and significantly boosts the
number of cache hits.

Due to the underlying grammar similarity between mem-
ory accesses and natural language, natural language pro-
cessing (NLP) models are naturally applicable to learning
accesses [14], [18]. The Transformer [15], a sequence model
based on multi-head self-attention initially proposed for ma-
chine translation, has achieved huge success for sequence
modeling tasks in many fields compared to traditional re-
current models. This suggests that self-attention might also
well-suited to modeling memory access patterns. Our target is
to bring the paradigm of memory access prediction for data
prefetching under the Transformer architecture. Unlike most
NLP problems that usually have clear labels and reasonable
corpus size for learning, the data prefetching task is presenting
two challenges we need to tackle: unfixed labeling, class
explosion [11], and latency of prediction. Unfixed labeling
indicates that there is no ground truth that a prefetcher should
prefetch a certain memory address because any address fol-
lowing the current access could be the labels. Class explosion
indicates that the class space would be the same as the address
space if the model input/output uses absolute memory address
and the problem is formulated as classification. A 64-bit
address space requires a model to predict one class out of
tens of millions of classes. Latency of prediction indicates that
the inference latency of ML-based prefetchers can be larger
than traditional rule-based prefetchers, which can cause late
prefetches and make the prefetching useless even for accurate
predictions.

In this paper, we propose TransforMAP, a Transformer-



based memory access prediction framework, to tackle the
above challenges. We use the same Encoder-Decoder structure
as the Transformer model. On the encoder side, we propose
to use the sequence of addresses in binary as input. This input
format presents three advantages. First, comparing to deltas,
the binarized address only incorporates a vocabulary size at 2,
which largely reduces the input vocabulary space. Second, the
vocabulary is fixed and needs no tokenization since class itself
can be used as values in the computation, which avoids the
word-to-index table in hardware implementation. Third, there
is no information loss compared to using only deltas or offsets
as inputs. On the decoder side, we propose a bitmap labeling
technique to set the training label as unordered future k page
offsets under the same page as the current address. Since we
only consider the pattern within a page, the vocabulary for
the output is the offset space, e.g., 64 for a 12-bit page with a
6-bit block. TransforMAP can deal with an unfixed number of
multiple block predictions and bitmap labeling enhances the
model’s capacity in predicting longer patterns, thus, offsets the
computation latency.
Our contribution can be summarized as follows:

o We propose a Transformer-based framework for the task
of multiple memory access predictions.

o« We propose to use the binary of addresses as model
inputs, which solves the problem of class explosion
without information loss compared to using deltas or
offsets as inputs. It also avoids extra token tables in
hardware implementation.

o We propose a bitmap labeling approach that collects un-
ordered future page offsets under the same page address
that avoids unnecessary repetitive prediction. It facilitates
long-horizon prediction that offsets the misses caused by
calculation latency from a practicality perspective.

o« We evaluate our method using ChampSim simulator.
Results show that TransforMAP achieves 35.67% MPKI
improvement and 20.55% IPC improvement, outperforms
Best-Offset prefetcher and ISB prefetcher.

II. RELATED WORK

Several prior works have explored the application of ma-
chine learning algorithms on data prefetching and memory
access prediction. [13] proposed a compact LSTM based
prediction model and extensively studied the memory patterns,
LSTM prediction performance, and online learning strate-
gies. The authors train LSTM models with virtual mem-
ory access deltas and have achieved high accuracy. [17]
and [14] also leverages LSTM-based models and deals with
virtual addresses, focusing more on the practicality of model
implementation on hardware. However, consecutive virtual
memory accesses patterns are more notable than the translated
physical addresses, especially for the last-level caches where
the memory accesses have been filtered by lower-level caches.
Simple LSTM models may not be capable to learn the physical
pattern in LLC so we resort to a more powerful model to tackle
this challenge.

[11] proposes the Voyager model for memory access
prediction. This model predicts both page sequence and
page offsets. The Voyager model uses two LSTM models
to strengthen the model learning capacity. The authors use
a simplified dot-product attention mechanism without scale
factor to build a connection between input page embedding
and input offset embedding. In this work, we will explore how
a model with only attention mechanisms, without recurrent
network structure, performs on the memory access prediction
task.

III. APPROACH
A. Overview of TransforMAP

Figure 1 illustrates the overall architecture of the pro-

posed TransforMAP and how the model is applied in a
hardware system. We try to leverage a state-of-the-art machine
learning algorithm, the Transformer, to improve the cache hit.
We treat the prefetching problem as sequence prediction and
perform classification on page offsets. Because a prefetch must
be in the unit of a block (or cache line), we can increase
the granularity and consider only the block index space, the
configuration is shown in the left top of figure 1.
Problem Formulation In abstract, let A; = {a1,as,...,a:}
be the sequence of history block addresses at time ¢. Let
X; = {x1,x9,...,24} be the binary representation of A,
where xz; = {b},b?,...b7",....,b"T™} represents the m-bit
binary values for page address and (m + n)-bit binary values
for block address at time t. Let Y; = {y1,v2,...,yx} be
the sequence of k outputs associated with the unordered
future £ block index for the same page address. Our goal
is to construct meaningful X; to Y; that are helpful in data
prefetching. The final address prediction Y; = {v1, v2, ..., Uk }
is the concatenation of current page address, the predicted
block index, and the block offset.

B. Input Sequence

Memory data fetching is on the unit of cache lines or
blocks. Therefore, we only consider the address bits upper
than the block offset, referred to as block addresses. To deal
with the extremely large vocabulary of address space, 264
for a 64-bit address, we use a binary vector to represent the
absolute address value. There are three significant advantages
of using the binary vector as input. First, the vocabulary can
be largely reduced. For a [-bit physical address, while this
method increases the input sequence length to [x, it results
in a 2!71 x reduction of vocabulary. Second, the vocabulary is
fixed as two: 0 and 1, and they are numerical values. There
is no need for tokenization and the input can be directly used
for calculation. This is significant for hardware implementation
because it saves an extra table storing the token dictionary and
avoids the process of word-to-index conversion. Third, there
is no information loss compared to using only deltas or offsets
as inputs. Binary vector is equivalent to the absolute address
while deltas leverage the difference between memory accesses
and offsets only consider part of the address. An inference
from this advantage is that the model can learn from the whole
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Fig. 1: Overall architecture of TransforMAP. We have an input sequence of history block addresses in binary X; =

block addressesin binary for the current page in decimal

{1, 23, ..., ¢} and output sequence the desired block index Y; = {y1, 92, ..., yx } under the current page. The final address Y;
prediction is the concatenation of current page address, the predicted block index, and the block offset.

address space and can handle an address that has never ap-
peared before. The advantage is highly significant in memory
access prediction task because of orders of magnitudes larger
vocabulary size compared to natural language tasks.

C. Bitmap Labeling

We aim to predict unordered future block indexes under
the same page as the current memory address. The label is
collected from offline memory access traces. This labeling
method is based on the hypothesis that memory access pattern
within a page is more significant and easier to track.

As is shown in the bottom part of figure 1, we use a bitmap
at the length of block index space to store our labels. For
example, given a 3-bit block index, a bitmap at length 8 is
required. The index of a bitmap is equivalent to the block index
in the memory address. While the future block indexes appear
in order, we only record the appearance of the block indexes
in bitmap and ignore the order. The bitmap indexes with value
1 are set as model labels. From an algorithm perspective,
this method avoids repetitive prediction and decreases the
complexity of output space. From a hardware perspective, this
method facilitates the model to predict longer future accesses
and offsets the near future miss caused by computation latency.

D. Transformer Predicting Module

We use the state-of-the-art machine learning algorithm in
sequence modeling, the Transformer [15], to learn the mapping
between history address sequences in binary and the future
block indexes in decimal.

1) Transformer Layers: The right part of figure 1 shows
the architecture of the Transformer model we use. We employ

the model using an Encoder-Decoder structure similar to the

original architecture.

Self-attention. The scaled dot-product attention is defined as
QK

follows:
\% 1
T > (D

where @) represents the queries, K the keys, and V the
values. The self-attention operations take the embedding of
items as input, and convert them to three matrices through
linear projection, and feeds them into an attention layer. d is
the dimension of the layer input.
Multi-headed attention. One self-attention operation can be
considered as one “head”, we can apply multi-head attention
operation as follows:

T

Attention(Q, K, V') = softmax (

MultiHead(Q, K, V') = Concat (head, . . ., head,) W

Attention (QWiQ, KWK, VWiV)

2)

where the projection matrics WZQ, WE WY € R¥4 and h
is the number of heads.

Point-wise feed-forward. Point-wise feed-forward network
(FEN) is defined as follows:

where head ;

FFN(x) = max (O, Wy + bl) Wy + by 3)
Position encoding Because there are no recurrent steps in the
self-attention layer, positional encodings are leveraged before
both encoder and decoder to inject the orders of elements in



a sequence to the model [3]. We use sine and cosine function
for positional encoding:

PE(pos,Qi) = sin (pOS/lOOOOzi/dmodel )
; 4)
PE(pos,2i+1) = cos (pos/m()oo%/d.mdcl )

2) Loss Function: For our multi-class classification prob-
lem, we use cross-entropy loss defined as below:

| No1KE-1
Liog (Y, P) = N Z Z Yi,k 108 pi i &)
i=0 k=0
where Y is the matrix of true labels, P is the matrix of
prediction probability, y; . is the true value for the ith sample
at class k, p; ;. is the probability for the ith sample to be class
k.

3) Training: We use the Adam optimizer [6] with 8; = 0.9,
B2 = 0.98 and € = 10~Y. Custom learning rate over the course

of training is used as follows with warmup_steps = 2000:

_ 405 . —0.5
lrate = d_ ;7 - min(step_num™"">,

(6)
step_num - warmup_steps)

4) Inference: We use beam search with beam size = 2 to
find an output with a maximum likelihood. At time step 1,
we feed the output embedding with a < beginning > token
and conduct beam search until the appearance of < ending >
token or the inference achieves the maximum length of output
sequence.

E. Output Concatenation

The model output is only the predicted future block indexes,
we need to convert the prediction back to the absolute address
that can be used by a prefetching module. Let the current
address be a., one predicted block index yy, the final predicted
address for prefetching is:

Uk = (ar > log, (page_size) < block_index + yy,)
< log, (block_size) (7)
block_index = log, (page_size) — log, (block_size)

IV. EVALUATION

This section evaluates our ideas by comparing Trans-
forMAP against state-of-the-art hardware prefetchers.

A. Methodology

1) Simulator: We evaluate our model using the simulation
framework released by ML Prefetching Competition based on
ChampSim [2]. We train the model with memory traces of the
last level cache(LLC) and test on LLC prefetcher by generating
prefetching entries and insert in LLC.

2) Benchmarks: We use SPEC06 and SPEC17 to evaluate
our model performance. For each application, we collect
memory requests in LLC within 25 million instructions, using
the first 20 million for training and the following 5 million for
testing.
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Fig. 2: Simulation results

3) Baseline: We select state-of-the-art prefetchers: Best-
Offset prefetcher [7] and Irregular Stream Buffer (ISB)
prefetcher [S5] as baselines to evaluate our model.

4) Metrics: We evaluate our model by comparing their
accuracy, coverage, MPKI (miss per kilo-instructions) im-
provement, and IPC (instructions per cycle) improvement.

B. Simulation Results

Figure 2 shows the simulation results on accuracy, coverage,
MPKI improvement, and IPC improvement comparing the
our TransforMAP and baselines. Applications with index 4xx
are from SPECO06 and those with index 6xx are from SPEC17.

TransforMAP achieves the highest average accuracy at
66.72% while BO achieves 41.29% and ISB achieves 61.79%.
Our model presents the highest coverage at 37.77% that



outperforms 30.58% from BO and 22.26% from ISB. Trans-
forMAP presents the highest MPKI improvement, which
means TransforMAP reduces 35.67% of the misses per kilo-
instructions, compared to 29.51% and 22.51% from BO and
ISB respectively. Overall, TransforMAP provides 20.55% IPC
improvement, which is higher than 19.07% provided by BO
prefetcher and 13.75% provided by ISB prefetcher.

V. DISCUSSION

Prefetcher Preference Different applications rely differently
on temporal or spatial localities. While BO tracks the spatial
correlation and ISB tracks the temporal correlation, Trans-
forMAP learns from temporal sequences and predicts future
accesses within a spatial range. This design makes Trans-
forMAP perform better for the average of all applications.
Feasibility The transformer model is more feasible for parallel
computation in hardware implementation because there are
no recurrent loops like in LSTM. Therefore, the Transformer
inference latency is smaller comparing to LSTM in the same
size. Besides, the bitmap labeling method can achieve long-
horizon prefetching and can offset the latency of model
inference.

Online Retraining While TransforMAP shows a powerful
capacity in data prefetching, the performance relies on the size
of the training and testing dataset. Specifically, without online
updates, the prediction capacity will attenuate and both the
accuracy and coverage will decay with an increasing number
of testing instructions. To maintain the performance, online
model updates are necessary and we will study this field in
our future work.

VI. CONCLUSION

In this paper, we have created a Transformer-based model
for data prefetching. We use binary representation of absolute
address as model input that solves the class explosion problem.
We use the bitmap labeling method to collect unordered future
block indexes for the current page, which solves the labeling
problem and offsets computation latency for feasibility. The
simulation results show that the proposed TransforMAP model
achieves 35.67% MPKI improvement and 20.55% IPC im-
provement, higher than state-of-the-art BO prefetcher and ISB
prefetcher.
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