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Abstract
This work considers the problem of learning the Markov parameters of a linear system from ob-
served data. Recent non-asymptotic system identification results have characterized the sample
complexity of this problem in the single and multi-rollout setting. In both instances, the number of
samples required in order to obtain acceptable estimates can produce optimization problems with
an intractably large number of decision variables for a second-order algorithm. We show that a
randomized and distributed Newton algorithm based on Hessian-sketching can produce ✏-optimal
solutions and converges geometrically. Moreover, the algorithm is trivially parallelizable. Our re-
sults hold for a variety of sketching matrices and we illustrate the theory with numerical examples.
Keywords: Distributed optimization; System identification; Sketching; Randomized algorithms

1. Introduction

Obtaining a dynamic model of a system or process is fundamental to most of science and engi-
neering. As the systems we study become increasingly complex, data-driven modeling has become
the de facto framework for obtaining accurate models (Brunton and Kutz, 2019). Fortunately, as
systems become more interconnected and sensors become smaller and cheaper, there is no shortage
of data to work with. Indeed, the volume of data available can overwhelm the (often limited) com-
putational resources at our disposal, forcing us to consider data versus resource trade-offs (Chan-
drasekaran and Jordan, 2013).

There has recently been considerable interest in applying machine learning techniques to the
problem of controlling a dynamical system. Two paradigms have emerged; model-based control, in
which a model is first learnt from data and then a classical controller is synthesized from the model.
In the model-free setting the control action is learnt directly from data without ever constructing an
explicit model, see for example Fazel et al. (2018). Our work is motivated by two observations;
i) the asymptotic sample complexity of a model-based solution outperforms that of a model-free
Least-Squares Temporal Difference Learning (Boyan, 1999) approach Tu and Recht (2019); ii) the
recent body of work characterizing the sample complexity of learning linear system models from
data, shows that for systems with a large number of inputs and outputs, the resulting optimization
problems are intractable as they require a large number of rollouts or long trajectory horizon lengths
in order to produce accurate estimates Oymak and Ozay (2019); Zheng and Li (2020); Tsiamis and
Pappas (2019); Dean et al. (2020). The goal of this work is to construct and solve approximations
of these optimization problems that are consistent with the sample complexity results, provide prov-
ably good solutions, and do so in an algorithmically tractable manner. Our approach is based on the
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concept of “sketching” (Drineas and Mahoney, 2016). Broadly speaking, a “sketch” is an approx-
imation of a large matrix by a smaller or more “simple” matrix. For a sketch to be useful, it must
retain certain properties of the original matrix that allow it to be used for computation in place of the
original. What is perhaps surprising, is that randomization is the enabling force used to construct
sketches (Woodruff, 2014; Martinsson and Tropp, 2020; Mahoney, 2011). Moreover, numerical
linear algebra routines based on randomization (and sketching) can outperform their deterministic
counterparts (Avron et al., 2010), and are more suited to distributed computing archtectures.

1.1. Problem Setting

Notation: Given a matrix A 2 Rm⇥n
, we use kAkF to denote its Frobenius norm. The multi-

variate normal distribution with mean µ and covariance matrix ⌃ is denoted by N (µ,⌃) . For two
functions f(x) and g(x), the notation f(x) = O(g(x)) or f(x) . g(x) implies that there exists a
universal constant C < 1 satisfying f(x)  Cg(x). For an event X , P(X ) refers to its probability
of occurrence.

Let us assume that we have a stable and minimal, linear time-invariant (LTI) system given by

xt+1 = Axt +But + wt, x0 = 0

yt = Cxt +Dut + vt
(1)

where xt 2 Rn
, yt 2 Rp

, and ut 2 Rm denote the system state, output, and input at time t,
respectively, and wt 2 Rn

, vt 2 Rp denote the process and measurement noises. We assume
that ut ⇠ N

�
0,�2

uIm
�
, wt ⇠ N

�
0,�2

wIn
�
, and vt ⇠ N

�
0,�2

vIp
�
. Our goal is to learn the system

parameters A,B,C and D from a single input and output trajectory {yt, ut}N̄t=1. We are particularly
interested in the scenario of “large” m and p, and where sample complexity results show that N̄ must
be huge in order to achieve accurate estimates. In this parameter regime many optimization methods
are intractable and even routine matrix factorizations become problematic.

To achieve this goal, we begin by estimating the first T Markov parameters G, which are defined
as:

G =
⇥
D CB CAB · · · CA

T�2
B

⇤
2 Rp⇥mT

.

Then system matrices A,B,C and D can be realized via the Ho-Kalman algorithm (Ho and Kálmán
(1966)). In recent work we applied similar ideas based on randomized methods to implement a
stochastic version of the Ho-Kalman algorithm suitable for masive-scale problems (Wang and An-
derson, 2021a). We thus narrow our attention in this work to the task of providing an estimate Ĝ of
G.

As described in Oymak and Ozay (2019), we first generate a trajectory of length N̄ . The tra-
jectory is then spliced and written into two matrices corresponding to the control and output signal.
Define N̄ = T +N � 1 with N � 1, let

Y =
⇥
yT yT+1 · · · yN̄

⇤T 2 RN⇥p and U =
⇥
ūT ūT+1 · · · ūN̄

⇤T 2 RN⇥mT
,

with ūi denoting ūt =
⇥
u
T
i , u

T
i�1, · · · , uTi�T+1

⇤T 2 RmT . Then the Markov parameters G can be
learned by solving the following unconstrained least-squares problem:

X
LS = argmin

X2RmT⇥p

kY � UXk2F . (2)
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The estimate is obtained from Ĝ = (XLS)T . Oymak and Ozay (2019) provided the following
non-asymptotic sample complexity bound:

kĜ�GkF 
(�v + �e)

p
p+ �wkFk2
�u

s
Tq log2(Tq) log2(Nq)

N
(3)

holds with high probability, as long as N & Tq log2(Tq) log2(Nq), where q = m + p + n is
the aggregated system dimension. The matrix F =

⇥
0 C CA · · · CA

T�2
⇤
2 Rp⇥Tn is

the concatenated matrix and �
2
e is the variance of the linearly transformed state at time i � T + 1.

Interested readers can refer to Oymak and Ozay (2019) for more details.

1.2. Motivation

From (3), it is clear that increasing the sample size N can make the estimated Markov parame-
ters more reliable. To achieve better identification performance, N needs to be large, i.e., N �
Tq log2(Tq) log2(Nq). In other words, we need to solve the least square problem described by
Eq (2) with N � mT (The number of rows is significantly larger than the number of columns).

To solve problem (2), Oymak and Ozay (2019); Zheng and Li (2020); Tsiamis and Pappas
(2019); Dean et al. (2020) adopted the pseudo-inverse method. However, the complexity of com-
puting the pseudo-inverse method requires O((mT )2N) flops, which is costly for large systems.
Moreover, for truly huge-scale systems, the memory cost for storing the sample trajectories (U and
Y ) will likely exceed the storage capacity of a single machine. Therefore, there is a strong desire
to put forward a tractable algorithm, which can take advantage of modern distributed computing
architectures. In this paper, we consider the setting where there are r worker machines operat-
ing independently in parallel and a single central node that computes the averaged solution. No
communication between workers is permitted as it is likely that communication time dominates
local computation time in the distributed algorithms. We only allow the communications between
worker and the central node. Overall, we aim to provide a communication & computation-efficient
algorithm to solve the large-scale system identification problems defined by Eq (2).

1.3. Related work

System identification: Estimating a linear dynamical system from input/output observations has
a long history, which can date back to the 1960s. Prior to the 2000s, most identification methods
for linear systems either focus on the prediction error approach Ljung (1999) or subspace meth-
ods Van Overschee and De Moor (2012); Verhaegen and Verdult (2007). In contrast, with the ad-
vances in high-dimensional statistics Vershynin (2018), contemporary research shifts from asymp-
totic analysis with infinite data assumptions to finite time analysis and finite data rates. Over the past
several years, there have been significant advances in studying the finite sample properties, when
the system state is fully observed Simchowitz et al. (2018); Sarkar and Rakhlin (2019); Faradonbeh
et al. (2018). When the system is partially observed, we can find the finite sample analysis in Oymak
and Ozay (2019); Sarkar et al. (2019); Simchowitz et al. (2019); Tsiamis and Pappas (2019); Lee
and Lamperski (2020); Zheng and Li (2020); Lee (2020); Lale et al. (2020); Kozdoba et al. (2019).
However, there are only a few papers Sznaier (2020); Reyhanian and Haupt (2021) that consider the
computational complexity and memory issues of system identification, which become prohibitively
large and incompatible with on-board resources when system dimension increases. There is thus a
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great need to provide scalable algorithms which can efficiently solve the system identification prob-
lem.

Distributed optimization: In recent years, a lot of effort has been devoted to designing distributed
first-order methods (Mahajan et al., 2013; Shamir and Srebro, 2014; Lee et al., 2017; Fercoq and
Richtárik, 2016; Liu et al., 2014; Necoara and Clipici, 2016; Richtárik and Takáč, 2016; Liu et al.,
2020), which only rely on gradient information of the objective function. However, first-order meth-
ods suffer from: (i) a dependence on a suitably defined condition number; (ii) spending more time
on communication than on computation. To overcome these drawbacks, second-order methods have
received more attention recently, since they enjoy superior convergence rates which are independent
of the condition number and thereby require fewer rounds of communication to achieve high accu-
racy solutions.

The trade-off is that most second-order algorithms based on Newton’s method require forming
and then computing the inverse of Hessian matrix at each iteration. For large problem instances
this is overly time consuming. Quasi-Newton methods have been developed that approximate the
Hessian, however the convergence analysis is weaker than the full method (Dennis and Moré, 1977).
There are a lots of works in the field of distributed second order optimization such as Zhang and Lin
(2015), Smith et al. (2018), Wang et al. (2017b) and Crane and Roosta (2019). In this work we take
an alternative approach that retains the linear-quadratic convergence of Newton’s method (Pilanci
and Wainwright, 2017) and adapt it to the distributed, which was first introduced in Bartan and
Pilanci (2020), but communication efficient setting. The key idea is to “sketch” the Hessian at each
iteration.

1.4. Contribution

In this paper, we use the distributed iterative Hessian sketch algorithm (DIHS) which was introduced
by Bartan and Pilanci (2020) to solve the large-scale system identification problems in a more
scalable manner. Specifically, our contributions are:

• We give a new proof and a different convergence rate from Bartan and Pilanci (2020); Wang
et al. (2017b) for the DIHS algorithm.

• We provide a convergence guarantee for the DIHS algorithm with various sketching schemes
on the matrix least square problems, not limited to Gaussian sketches mentioned in Bartan
and Pilanci (2020).

• We show that DIHS algorithm is consistent with the non-asymptotic sample complexity
bound O( 1p

N
) for learning the Markov parameters.

2. Background

Sketching has become a popular method for scientific computing workflows that deal with massive
data sets; or more precisely, massive matrices (Drineas and Mahoney, 2016). We develop an itera-
tive, distributed sketching algorithm for solving system identification problems that are formulated
as least-squares problems of the form (2). Consider the overdetermined least-squares problem with
problem data A 2 Rn⇥d, b 2 Rn, where n � d:

minimize
x2Rd

kAx� bk22,
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and let x? denote an optimal solution.1 Assuming A is dense and has no discernible structure,
factorization-based approaches solve the problem in O(nd2) arithmetic operations. The sketch-
and-solve approach constructs a matrix S of dimension m⇥ n (where m ⌧ n) and solves

x
] 2 argmin

x2Rd

kS(Ax� b)k22,

instead of the original problem. The driving idea is that if m is small, then solving this problem is
easier than solving the original problem. Amazingly, letting S be a random matrix chosen from an
appropriate distribution (to be defined later) will suffice. The matrix SA is called the the sketch of
A and S is the sketching matrix or embedding matrix. If S is chosen as a subspace embedding of
Range([A b]) then the action of S preserves geometry and one can show that the residuals satisfy
kAx] � bk2  (1 + ✏)kAx? � bk2, with high probability, where ✏ > 0 is the distortion of the
embedding. In practice, even when the residuals are close, there is no guarantee that kx] � x

?k2
will be small. This problem will be alleviated by iterative-sketching methods derived by Pilanci and
Wainwright (2016) described later. However, the sketch-and solve framework highlights several
important points: How do we choose the random embedding (the matrix S)? How is the projection
dimension m chosen? Indeed, for the bound above to hold we require m ⇠ d log(d)/✏2 (Sarlos,
2006). A geometric-type bound by Pilanci and Wainwright (2015) showed that when entries of S
are sub-Gaussian, one requires m � c

�2W(AK) to obtain similar quality bounds in residual, where
W(AK) is the Gaussian width (Vershynin, 2018) of the cone AK. Clearly there is tension between
making m small (improved computation) and obtaining an accurate solution.

When S is selected to be a dense matrix, the cost of forming SA is O(mnd) and no compu-
tational saving is achieved. However, there exist families of randomized matrices that admit a fast
matrix-vector multiply which reduce the cost of forming the product to O(nd log(m)) thus provid-
ing significant savings. In addition to the dense sub-Gaussian case, we will consider randomized
embeddings defined by; randomized orthogonal systems (ROS) Ailon and Chazelle (2009), Sparse
Johnson-Lindenstrauss Transforms (SJLTs) (Kane and Nelson, 2014), and uniform sampling.

3. Distributed Iterative Hessian Sketch

Consider the optimization problem (2). Applying Newton’s method with a variable step-size ↵t,
produces a sequence of iterates of the form:

Xt+1 = Xt � ↵t(U
T
U)�1

U
T (UXt � Y ), t = 1, 2, . . . (4)

where the Hessian is given by U
T
U and the gradient by U

T (UXt � Y ) c.f., (Boyd et al., 2004).
Given that the columns of U are made up from the control input which we assume to be random
Gaussian variables, U will be a dense matrix. Under the assumption that (N,m, T ) are large form-
ing the Hessian and the gradient will grind the Newton iterates to a halt.

Instead of computing the iterate (4) exactly, Pilanci and Wainwright (2016) introduced the iter-
ative Hessian sketch (IHS) to approximate the Hessian. The explicit update rule is given by:

Xt+1 = Xt � ↵t(U
T
S
T
t StU)�1

U
T (UXt � Y ), (5)

where St 2 Rs⇥N (s ⌧ N) denotes the embedding matrix at the tth iteration. The matrix U
T
S
T
SU

is called the the “sketched Hessian”. We will now introduce some specific classes of sketching
matrices.

1. Note that problem (2) is equivalent to this problem after vectorization.
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Definition 1 A random variable x such that Ex = 0 is said to be sub-Gaussian with variance
proxy �, if its moment generating function satisfies

E{exp(�x)}  exp

✓
�
2
�
2

2

◆
.

An equivalent characterization of a sub-Gaussian random variable obtained from Markov’s inequal-
ity is that P(|x| � �)  2 exp(�t

2
/4), where t = 2� and � = 1. We write x 2 subG(�2) to denote

that x is sub-Gaussian. Note that this notation is not precise in the sense that subG(�2) denotes a
family of distributions. The particular choice of distribution will be clear from context. We consider
the following families of random sketching matrices from which we draw S 2 Rs⇥N :

• Sub-Gaussian: Each element of S is drawn from a specific sub-Gaussian distribution, i.e.,
Sij

i.i.d.⇠ subG(�2) where the particular distribution is fixed for all entries. Examples of distribu-
tions that satisfy Definition 1 include Gaussian, Bernoulli, and more generally, any bounded
distribution. Note that the sub-class of Gaussian sketch matrices are almost surely dense, thus
they are often useful for proving results, and less useful for computation.

• Uniform: Let {pi}Ni=1 denote the uniform distribution over 1, . . . , N . Then the uniform
sketch samples the rows s times (with replacement). The j

th row of S is s
T
j = ej/

p
pj

with probability pj , where ej is the j
th standard basis vector. Other weights (probability

distributions ) have been studied, however we do not pursue these here.

• Random Orthogonal System (ROS)-based Sketch: This sketching matrix is based on a
unitary trigonometric transform F 2 FN⇥N (defined in the full online version (Wang and
Anderson, 2021b)). As our least-squares problem is defined over the reals we restrict our
attention to real transforms, and in particular the Walsh-Hadamard Transform. The matrix S

is then formed according to

S =

r
N

s
RFE,

where E = diag(⌫1, . . . , ⌫N ) with ⌫i drawn uniformly at random from {+1,�1}. The matrix
R is a s⇥N uniform sketching matrix defined above. The structure of an ROS matrix allows
for a fast matrix-vector multiply.

• Sparse Johnson-Lindenstrauss Transform (SJLT)-based Sketches. SJLT sketching matri-
ces are another structured random matrix family that offer fast matrix-vector multiplication
and are particularly suitable when the matrix to be sketched is sparse. Several constrictions
exist, we follow that of (Kane and Nelson, 2014). Each column of S has exactly l non-zero
entries at randomly chosen coordinates. The non-zero entries are chosen uniformly from
{+1/

p
l,�1/

p
l}. SJLT matrices also belong to the class of sub-Gaussian sketching matri-

ces.

Loosely speaking, ROS and SJLTs when applied to a vector attempt to evenly mix all the coordinates
and then randomly sample to obtain a lower dimensional vector with norm proportional to the
original vector. In contrast, uniform sampling simply selects a subset of rows of A chosen uniformly
at random. A dense sub-Gaussian sketching matrix extends uniform sampling by linearly weighting
the entries of each row.

6



SHORT TITLE

Compared to O((mT )2N) flops given by pseudo-inverse method, IHS with ROS or SJLT
sketches takes O((NmT log(mT )) log(1/✏)) flops, which is linear in NmT , to obtain an ✏-accurate
solution. Obviously, IHS has significantly lower complexity than direct method since we assume
N � mT .

Remark 2 IHS can also deal with the least square problem with N ⌧ mT. In this case, we just
need to sketch the column-space instead of the row-space. The constrained case is also easily
handled.

Just as with the Gaussian Newton Sketch, which produces unbiased estimates of the exact New-
ton step, many sketching matrices provide near-unbiased estimates of the Newton step (Derezinski
et al., 2021). This property is very important in distributed setting, where we can compute the it-
erate (5) multiple times in parallel. Averageing schemes can then be employed to achieve better
estimation performance (Dereziński and Mahoney, 2019; Wang et al., 2017b,a). Using this idea,
Bartan and Pilanci (2020) introduced the Distributed-IHS (DIHS) algorithm, which is described by
Algorithm 1.

Algorithm 1 Distributed Iterative Hessian Sketch (DIHS)
1: Inputs: Input matrix U 2 RN⇥mT , output matrix Y 2 RN⇥p, sketching size s ⌧ N .
2: Initialize: Initial iterate X0 2 RmT⇥p

3: for t = 0, 1, · · · ,M � 1 do
4: Central node: broadcasts Xt

5: for worker i = 1, 2, · · · , r do in parallel
6: Generate a sketching matrix S

t
i 2 Rs⇥N

7: Compute gradient gt = U
T (UXt � Y ).

8: X
t
i = argmin

X

n
1
2skS

t
iU(X �Xt)k22 + hgt, Xi

o

9: Send X
t
i to the central node

10: end for
11: Central node: Update Xt+1 =

1
r

Pr
i=1X

t
i

12: end for

At the tth iteration of Algorithm 1, each worker i only has a small sketch of the full data set and
computes the sketched version of Hessian matrix U

T (St
i )

T
S
t
iU and then computes the local update

direction using the sketched Hessian. They then send the updated states to the central node. The
central node averages all the states to update the new iteration Xt+1 and then broadcasts Xt+1 to
all the workers. Using Algorithm 1, the communication complexity decreases from O((mT )2) to
O(mT ) at each iteration since we don’t broadcast the Hessian to each worker, and only communi-
cate the update direction.

Remark 3 Note that the size of the sketching matrix can be different for each worker, i.e., s ! si in
line 6. This is particulary useful as it allows for the use of a heterogenous set of worker machines,
each with their own resource profile.

3.1. Convergence Analysis

We are now ready to state the main results of this work; the convergence analysis of the DIHS
algorithm in terms of the approximation error and the estimation quality.
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Theorem 4 Fix ⇢ 2 (0, 1/2). If the number of rollouts satisfies N � cTm log2(2Tm) log2(2N̄m)
and

1. S
t
i is a sub-Gaussian sketching matrix with a sketching size s � c0

⇢2mT, with probability at

least 1� (2N̄m)� log2(2Tm) log(2N̄m) � c1rte
�c2s⇢2

2. S
t
i is a randomized orthogonal system (ROS) sketching matrix with a sketching size s �

c0 log4(mTp)
⇢2 mT, with probability at least 1� (2N̄m)� log2(2Tm) log(2N̄m)� c1rte

�c2
s⇢2

log4(mTp)

then the output Xt given by the DIHS algorithm at the t-th iteration satisfies

kXt �X
LSkF  2

⇣
⇢p
r

⌘t
kXLSkF ,

where X
LS denotes the least square solution to problem (2), and c1 and c2 are absolute constants.

Proof See the full online version (Wang and Anderson, 2021b) with appendices for this and subse-
quent proofs.

Remark 5 The DIHS algorithm converges geometrically to the least-squares solution of (2). The
linear convergence rate is ⇢p

r
, which decreases when number of workers r increases. If we apply

the DIHS algorithm with O( log(1/✏)
log(

p
r/⇢)

) iterations and choose the sketching matrices to satisfy the

requirement of Theorem 4, then the output which we denote by X̂ satisfies:

kX̂ �X
LSkF

kXLSkF
 ✏

with high probability.

Next, we will describe the approximation quality in terms of the distance between the DIHS
solution and the ground-truth Markov parameters G in the following theorem.

Theorem 6 Frame the hypotheses of Theorem 4. For all t � 1, the output Xt given by the DIHS
algorithm satisfies:

kXt �G
T kF  2

⇣
⇢p
r

⌘t
kXLSkF +

(�v + �e)
p
p+ �wkFk2
�u

s
Tq log2(Tq) log2(Nq)

N
(6)

with high probability.

Remark 7 Note that the first term of the RHS of (6) linearly converges to 0 when t ! 1. Therefore,
the estimation error kXt � G

T kF given by the DIHS algorithm still maintains the O( 1p
N
) sample

complexity when the number of iterations t becomes large.
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4. Numerical Simulations

We now demonstrate the performance of the DIHS algorithm on three randomly generated large-
scale dynamic systems described by (1). For each system, we choose the parameters (n,m, p,N, T )
as shown in the caption of Figures 1–3. To ensure a fair comparison, we fix a constant sketch dimen-
sion for all workers. Recall that theoretically this is unnecessary. We introduce two new sketching
matrices. Rademacher sketches are defined such that each entry of S is 1p

s
with probability 1/2 and

� 1p
s

otherwise. A two-stage uniform+SJLT sketch is produced from S(S1U) where S is an SJLT
sketching matrix with s rows and S1 is a uniform sketchimg matrix with s1 rows.

We generate the system matrices (A,B,C,D) through a uniform distribution over a range of
integers as follows; entries of the matrix A with random integers from 1 to 5, and matrices B,C,D

with random integers from �2 to 2. Then, we re-scale the matrix A to make it Schur-stable, i.e.,
|�max(A)| < 1. The standard deviations of the process and measurement noises are chosen to be
�w = 0.1 and �v = 0.1. We fix the input variance at �u = 1.

The left plot in each figure shows the normalized difference between the estimated solution at
each iteration and the optimal least square solution kXLSk, (i.e. kXt�XLSkF

kXLSkF
) versus time (seconds)

for the DIHS algorithm. In each system, we tested the performance of DIHS algorithm using the
uniform and SJLT sketch with r = 5 and r = 20 worker machines. The stopping criterion is that the
distance between two consequent outputs (i.e. kXt+1�XtkF ) is less than 10�3. As predicted by the
theoretical analysis, no matter what sketching matrix we use in the DIHS algorithm, the convergence
rate decays as the number of workers r increases. Compared to SJLT sketches, it seems that uniform
sketching matrices could speed up the convergence throughout these three system identification
examples. We note that in terms of computation speed, the uniform sketches should be fast as they
require fewer arithmetic operations to apply and less time to construct than every other sketch type.

The middle plot of each figure illustrates the relative error between the estimated solution at the
t
th iteration and the optimal least square solution (i.e. kXt�XLSkF

kXLSkF
) against iteration for the DIHS

algorithm with different sketching matrices for a fixed number of workers: r = 15. Finally, the
third column shows the relative error between the estimated solution and true Markov parameters
(i.e. kXt�GT kF

kGkF ) versus iteration with 15 workers. From the figures, we can easily observe that
DIHS algorithm with all these four sketching matrices converges geometrically to the least square
solution, which is consistent with the analysis derived from Theorem 4. For all sketching matrices
we tested, DIHS algorithm can sucessfully learn the true Markov parameter G, which is stated in
Theorem 6. The performance of different sketching matrices depends on the choice of sketching
size s and s1.

5. Conclusion

We have demonstrated that a randomized version of Newton’s algorithm can solve large-scale sys-
tem identification problems and is consistent with recent state-of-the art sample complexity results.
Geometric convergence was proven for all the standard sketching matrices and the dimension-
dependence of the sketching matrix was also derived. Future work will involve benchmarking this
second-order method against distributed first-order methods such as accelerated stochastic gradient
descent. We are currently integrating this work with our previous results which uses a random-
ized SVD to produce a system realization (Wang and Anderson, 2021a), with the goal of producing
end-to-end bounds.
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Figure 1: (n,m, p,N, T ) = (80, 60, 70, 29971, 30), s = 7200, s1 = 14400. The dimension of
matrix U is (29971, 1800) and matrix Y is (29971, 70)
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Figure 2: (n,m, p,N, T ) = (100, 80, 70, 49981, 20), s = 4800, s1 = 7200. The dimension of
matrix U is (49981, 1600) and matrix Y is (49981, 70)
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Figure 3: (n,m, p,N, T ) = (200, 150, 100, 59981, 20), s = 6000, s1 = 7200. The dimension of
matrix U is (59981, 3000) and matrix Y is (59981, 100)
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