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Abstract— Distributionally robust optimization (DRO) is a
powerful tool for decision making under uncertainty. It is
particularly appealing because of its ability to leverage existing
data. However, many practical problems call for decision-
making with some auxiliary information, and DRO in the
context of conditional distributions is not straightforward. We
propose a conditional kernel distributionally robust optimiza-
tion (CKDRO) method that enables robust decision making
under conditional distributions through kernel DRO and the
conditional mean operator in the reproducing kernel Hilbert
space (RKHS). In particular, we consider problems where
there is a correlation between the unknown variable y and
an auxiliary observable variable x. Given past data of the two
variables and a queried auxiliary variable, CKDRO represents
the conditional distribution P(y|x) as the conditional mean
operator in the RKHS space and quantifies the ambiguity set
in the RKHS as well, which depends on the size of the dataset
as well as the query point. To justify the use of RKHS, we
demonstrate that the ambiguity set defined in RKHS can be
viewed as a ball under a metric that is similar to the Wasserstein
metric. The DRO is then dualized and solved via a finite
dimensional convex program. The proposed CKDRO approach
is applied to a generation scheduling problem and shows that
the result of CKDRO is superior to common benchmarks in
terms of quality and robustness.

I. INTRODUCTION

Distributionally robust optimization (DRO) has attracted
great attention recently as a framework for decision making
under uncertainty. Under a classic stochastic decision making
setup, the goal is to minimize the expected cost given a
distribution of the uncertainty. In practice, this might be
overly restrictive as the uncertainty distribution is often not
fully known. This concern motivates DRO, which seeks to
minimize the worst case expected cost (maximize reward)
under a set of distributions referred to as the ambiguity
set. If the ambiguity set is large enough to contain the true
distribution, the resulting decision provides an upper bound
on achievable real-world performance. The simplest (and
most conservative) ambiguity set contains any distribution on
the support of the uncertainty; in which case DRO reduces
to a robust optimization [1]. Several popular constructions
of the ambiguity set are based on metrics that measure
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the difference between probability distributions, such as the
Wasserstein metric [2], [3], �-divergence [4], and moments
[5]. See the review paper [6] for a comprehensive summary.
DRO is also closely related to risk-averse optimization and
planning [7] as all coherent risk measures have a dual form
that is a DRO problem over the corresponding ambiguity set.

Depending on the probability space, a DRO problem
can be discrete (the random variable has discrete support),
or continuous (the support is continuous). Computationally,
the continuous problem is much more complex, and many
methods rely on sampling to gain computation tractability
[2], [3], [8]. Most existing data-driven methods assume i.i.d.
sampling from the unknown distribution and establish the
ambiguity set based on the empirical distribution of the
samples. An i.i.d. assumption then provides a probabilistic
guarantee that the true distribution will be contained inside
an ambiguity set with high probability via concentration
inequalities [9], [10].

Unfortunately, the i.i.d. condition does not hold for deci-
sion making tasks with conditional distributions. To motivate
this formulation, consider the following two examples:

• Generation scheduling [11], [12]: to provide electric-
ity at a minimal cost, generation scheduling needs to
be robustified against uncertainties in power demand,
which is dominated by ambient factors such as weather
conditions. A power system operator can exploit histor-
ical data and account for the correlation between the
electricity demand and weather forecast to make more
reliable and cost-efficient generation scheduling.

• Autonomous driving [13], [14], [15]: to plan safe mo-
tions for the autonomous vehicle, we need to reason
about the surrounding human drivers’ actions, which
strongly depend on the scenario. Given past data of how
drivers react to different scenarios, for a particular sce-
nario, the motion planning of the autonomous vehicle
needs to leverage the distribution of possible actions of
surrounding human drivers conditioned on the scenario.

Such problems can be formulated as DRO under ambiguity
sets defined on some conditional distributions, yet it is un-
clear how to quantify the ambiguity set about the conditional
distribution and how to leverage past data as the i.i.d. con-
dition does not hold. In such problems, both the conditional
mean and uncertainty characterization is critical, motivating
methods like quantile regression [16]. A two step process
can be applied where the first step uses existing regression
tools to predict the distribution of the uncertainty given
the auxiliary variables, followed by a subsequent stochastic
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optimization step given the prediction [17]. The difficulties
of DRO with conditional distributions are: (i) The conditional
distribution is hard to characterize from data, especially in
continuous domains, (ii) It is difficult to determine the size
of the ambiguity set for conditional distributions.

The proposed CKDRO method is inspired by two existing
tools. First, the kernel embedding method in a reproducing
kernel Hilbert space (RKHS) provides a convenient char-
acterization of the conditional distribution with conditional
mean operators, and its empirical version can be computed
directly from data samples. For reference, see the papers
by Song et al. [18], Fukumizu et al. [19], and the review
paper [20]. On a different front, DRO with an RKHS
was recently studied in [21] where the authors propose to
represent ambiguity sets with mean operator norms defined
on an RKHS. Based on these ideas, we propose conditional
kernel distributionally robust optimization (CKDRO) with
the following contributions: (i) We extend kernel DRO to
problems with conditional distributions for data-driven robust
conditional decision making, (ii) We establish connections
between ambiguity set in RKHS and the Wasserstein metric
providing a better understanding the kernel DRO setup,
(iii) We propose criteria to determine the ambiguity set for
conditional DRO, (iv) We apply the CKDRO method on an
optimal power flow (OPF) problem and showcase its benefit
over benchmarks.

Section II reviews some key concepts and tools, section III
presents the CKDRO method and establishes the connection
to DRO through the Wasserstein metric, and section IV
presents the application of CKDRO on an OPF problem.

Nomenclature: R+ denotes the non-negative real line, h·, ·i
denotes the inner product of two vectors (hx, yi = x|y)
or two functions (hf, gi =

R
f(x)g(x)dx). For a random

variable X , we use the calligraphic X denote its domain,
EQ[f(X)] denotes the expectation of a function f : X ! Rn

under the probability distribution Q. When X has a fixed
distribution, e.g., it’s sampled from a given distribution, we
simply write EX for the expectation. M(X ) denotes the
space of all probability distributions Q supported on X
with EQ[||X||] < 1. All vector norms are `2-norms unless
otherwise specified.

II. PRELIMINARIES

A. Hilbert space embedding

Consider a random variable X 2 X . X is endowed with
some �-algebra A, and P denotes the space of probability
distributions over X . A reproducing kernel Hilbert space
(RKHS) F on X with a symmetric kernel k : X ⇥ X ! R
is a Hilbert space of functions f : X ! R whose inner
product h·, ·iF satisfies the reproducing property:

hf(·), k(x, ·)iF = f(x),

hk(x, ·), k(x0, ·)iF = k(x, x0
).

The feature map k(x, ·) is also denoted as '(x). A kernel
k is positive definite if 8x1, ...xN 2 X , 8c1, ...cN 2 R,PN

i,j=1 cicjk(xi, xj) � 0, or in matrix form, K ⌫ 0, where

Kij = k(xi, xj). Common choice of kernels include the
polynomial kernel k(x, x0

) = (x|x0
)
d, the Gaussian RBF

kernel k(x, x0
) = exp(��||x � x0||2), and the Laplacian

kernel k(x, x0
) = exp(��||x � x0||1). For every positive

definite kernel k, there exists a unique RKHS with k as
its kernel up to isometry, and conversely, for every RKHS,
its kernel is unique and positive definite [20]. A kernel
is called translation invariant if 8x1, x2, x0

1, x
0
2 2 X with

x1�x2 = x0
1�x0

2, k(x1, x2) = k(x0
1, x

0
2). Both the Gaussian

kernel and the Laplacian kernel are translation invariant,
while the polynomial kernel is not.

The distance between points in an RKHS is also defined
via the kernel: d(x, x0

) =
p

k(x, x)� 2k(x, x0) + k(x0, x0).
So far, an RKHS is not related to any probability dis-

tribution. The central concept of kernel embedding is the
expectation operator; µQ := EQ['(X)], which defines the
expectation of the feature map under distribution Q. When
the context is clear, we also use µX to denote the expectation
operator when X follows a fixed distribution. Assuming
EX [k(X, X)] < 1, µX is itself an element of F . Given
the reproducing property, we have 8f 2 F , hµX , fiF =

EX [h'(X), f(X)iF ] = EX [f(X)]. Its empirical estimate
given a set of samples is simply

µ̂X :=
1

N

NX

i=1

'(xi),

where {xi}N
i=1 is the sample set, assumed to have been drawn

i.i.d. from P . The norm on F is defined as:

||f ||2F = hf, fiF .

If f has a discrete representation: f =
PN

i ↵i'(xi), then
by the reproducing property,

||f ||2F =

NX

i,j=1

↵i↵jk(xi, xj) = ↵|K↵.

Now consider a second random variable Y with domain
Y , and let B and Q denote the �-algebra and the space of
all probability distributions over Y respectively. An RKHS
G is defined on Y , induced by the positive definite kernel
l : Y ⇥ Y ! R. Let �(y) = l(y, ·) be its feature map, the
(uncentered) covariance operator is defined as

CY X := EY X [�(Y )⌦ '(X)],

where ⌦ is the tensor product. CY X can be viewed as
an operator from F to G in the sense that for any f 2
F , 8g 2 G, hg, CY XfiG = Cov[f(X), g(Y )]. Given samples
{(xi, yi)}N

i=1, the empirical evaluation of the covariance
operator is

ĈY X =
1

N
⌥�

|

where ⌥ = ['(x1), '(x2)..., '(xN )] is the feature matrix for
X , � = [�(y1), �(y2)..., �(yN )] is the feature matrix for Y .

Lemma 1 ([19]). If EY X [g(Y )|X = ·] 2 G for any g 2 G,
then

CXXEY X [g(Y )|X = ·] = CY Xg.
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Consequently, [18] shows that if CXX is invertible, then
we can define an operator UY |X : F ! G where 8x 2 X ,
µY |x := UY |X'(x), and UY |X is defined as

UY |X = C�1
XXCY X .

Similar to the unconditioned expectation operator, µY |x can
be evaluated empirically with samples.

Lemma 2 ([18], Theorem 5). Let kx := ⌥
|'(x), then µ̂Y |x

is the empirical conditioned expectation operator, and is
estimated as µ̂Y |x = �(K + �NIN )

�1kx, where � > 0

is the regularization parameter that prevents overfitting.

B. Distributionally robust optimization
Distributionally robust optimization considers the follow-

ing problem:
min

⌘
max
Q2A

EQ[q(⌘, X)], (1)

where ⌘ 2 H is the decision variable, X is the random
variable, A ✓ P is the ambiguity set that contains all the
distribution Q over X under consideration. As mentioned
in the introduction, the ambiguity set is typically defined
with some metric that measures the difference between
distributions, such as the Wasserstein metric or �-divergence.
In particular, the Wasserstein metric is defined on M(X ) as
follows.

Definition 1 (Wasserstein metric). The Wasserstein metric
dW : M(X )⇥M(X ) ! R+ is defined as

dW (Q1, Q2) := inf
⇧

Z

X 2

||x1 � x2||⇧(x1, x2)dx1dx2

s.t.

Z

X
⇧(x1, x2)dx2 = Q1(x1),

Z

X
⇧(x1, x2)dx1 = Q2(x2).

The Wasserstein metric is essentially defined by the op-
timal transport problem, where ⇧ is a joint distribution
supported on X 2 with the two marginal distributions being
Q1 and Q2.

An important equivalent definition was proposed in [22],
which is used later in this paper.

Lemma 3 (Kantorovich-Rubinstein [22]).

dW (Q1, Q2) = sup

L(f)1

⇢Z

X
f(x)Q1(dx)�

Z

X
f(x)Q2(dx)

�
,

where L(f) denotes the Lipschitz constant of the function f .

Ambiguity sets can then be equivalently defined as A =

{Q | dW (Q0, Q) < ✏}, where Q0 is the nominal distribution,
which can be given, or estimated from data. Work in [2]
presented a convex program that solves the DRO with the
above ambiguity set where Q0 is the empirical distribution of
the samples Q0 =

1
N �(xi), where �(·) is the Dirac measure.

Kernel DRO was recently proposed in [21] as a convenient
data-driven DRO framework that leverages the RKHS. The
distributions are represented with kernel embeddings in an
RKHS, and the ambiguity set is typically chosen as an

RKHS ball: C := {µ | ||µ � µ0||F  ✏}. For clarity, we
use C to denote an ambiguity set defined with respect to
the expectation operator, and A to denote an ambiguity set
defined by a probability distribution. They are linked by:
A = {P 2 P |

R
X '(x)P (dx) 2 C}.

There are two common strategies for solving the DRO
problem (1); the cutting plane technique [23] and the dual
formulation, similar to the ones used in robust optimization
[1]. When the inner maximization problem is a concave
problem, the dual formulation offers a convex program for
the whole DRO.

For clarity, we shall leave the solution of the kernel
DRO to the next section, and present it together with the
conditional kernel DRO.

III. CONDITIONAL KERNEL DRO

In this section, we present the formulation of the condi-
tional kernel DRO.

A. Problem formulation
Suppose we are given a training data set {xi, yi}N

i=1

consisting of X,Y pairs, where X is an auxiliary variable
and the distribution of X and Y are correlated. The condi-
tional DRO problem then tries to minimize the worst case
expectation of the cost given an realization of X . In kernel
DRO, we are interested in an optimization problem where
the auxiliary variable X = x is given. The ambiguity set is
defined by the expectation operator µY |x, and the DRO is
defined as

min
⌘

max
µ2C[x]

hµ, q(⌘, ·)i,

where C[x] ✓ G is an ambiguity set on the conditional
expectation operator µY |X at X = x, and q : H ⇥ Y ! R
is the cost function.

B. Construction of the ambiguity set
We first discuss the construction of the ambiguity set C[x].

Two sources of uncertainty about µY |x are considered. The
first is due to the estimation of µY |x from data, the second
is due to unseen data.

Lemma 4 (Theorem 6 in [18]). Assuming '(x) is in the
range of CXX , ||µ̂Y |x � µY |x||G converges to zero with rate
Op(�

1
2 + (N�)�

1
2 ) where � is the regularization term for

RKHS norm. 1

Faster convergence rates are available under additional
assumptions about the underlying distribution in [24], but
for simplicity, we stick to the convergence rate provided in
Lemma 4. If we choose � ⇠ N� 1

4 , the convergence rate is
Op(N� 1

4 ).
Note that the above convergence result is on µY |X , not on

any particular µY |x, where the former is an average of the
later weighted by P , the distribution of X . A naive choice
of the ambiguity set would be A = {µ | ||µ � µ̂Y |x||G 
�N� 1

4 }, where µ̂Y |x is the empirical conditional expectation

1
Op stands for probabilistic convergence rate.
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operator evaluated at X = x, N is the number of data
points in the training set. However, note that the size of the
ambiguity set does not change with x, indicating that the
uncertainty on µY |x is the same whether the queried x is
close to the samples or far away from the samples.

To account for the difference in queried x, we propose
to use a fictitious sample at X = x to help measure the
uncertainty. Now suppose that a fictitious sample of Y drawn
from P(Y |X = x) is added to the samples, denoted as
[x, yx]. The empirical evaluation of the conditional mean
operator µY |x with the augmented sample set is then

µ̂Y |x = kA
x
|
(KA

+ �(N + 1)IN+1)
�1

�
A,

where A stands for “augmented”,

kA
x = [k(x1, x), . . . , k(xN , x), k(x, x)]|

�
A
= [�(y1), �(y2), . . . , �(yN ), �(yx)]

|

and KA
=


K kx

k|
x k(x, x)

�
. Let

� := kA
x
|
(KA

+ �(N + 1)IN+1)
�1, (2)

then µ̂Y |x =
PN

i=1 �i�(yi) + �N+1�(yx).

Proposition 1. Suppose for all y, y0 2 Y, l(y, y0
)  R, the

ambiguity set of µ̂Y |x can be written as C[x] = {µ | ||µ �PN
i=1 �i�(yi)||G  |�N+1|R+�(N +1)

� 1
4 } with � defined

in (2).

Proof. By the triangular inequality, ||µY |x �PN
i=1 �i�(yi)||G  ||µY |x � µ̂Y |x||G + ||�N+1�(yx)||G ,

where the first term is bounded by |�N+1|R, and the second
term is bounded by �(N +1)

� 1
4 according to Lemma 4.

The motivation for this formulation is to use the fictitious
sample as a probe to measure how a newly added sample
at X = x would change the conditional expectation. For a
queried x that is close to the samples (as measured by the
kernel), |�N+1| is small and the uncertainty is small; for
an x far away from the samples, the conditional expectation
depends heavily on the fictitious sample, which is unknown,
thus enlarging the ambiguity set.

C. Connection to Wasserstein ambiguity set

To better motivate the use of the RKHS norm as a metric
for the ambiguity set definition, we establish connections
between the ambiguity set defined with the RKHS norm
and the Wasserstein ball. Specifically, Lemma 3 shows that
the Wasserstein metric between two distributions can be
characterized by some test function f with Lipschitz constant
bounded by 1.

Lemma 5. Given a translation invariant kernel k, suppose
there exists a constant L such that 8x1, x2 2 X , d(x1, x2) 
L||x1 � x2||, then for any f 2 F with a bounded RKHS
norm, f is Lipschitz modulo L||f ||F .

Proof.

f(x1)� f(x2) = hf, k(·, x1)iF � hf, k(·, x2)iF
= hf, k(·, x1)� k(·, x2)iF
 ||f ||Fd(x1, x2)

 L||f ||F ||x1 � x2||.
where the first inequality is by the Cauchy-Schwartz.

The constant L varies with the kernel k, for a Gaussian
kernel k(x1, x2) = exp(� ||x1�x2||2

2�2 ), L is simply 1
� .

Proposition 2. Consider all distributions Q satisfying
EQ[k(x, x)] < 1 for all x 2 X , and the following two
ambiguity sets:

A1 = {Q | dW (Q, Q0)||  ✏}
A2 = {Q | ||µQ � µQ0 ||F  ✏L},

A2 ✓ A1.

Proof. By Lemma 3,
||µQ � µQ0 ||F = L sup

f2F,||f ||F 1
L

hµQ � µQ0 , fi

= L sup

f2F,||f ||F 1
L

{
Z

X
f(x)Q1(dx)�

Z

X
f(x)Q2(dx)}

 L sup

L(f)1
{
Z

X
f(x)Q1(dx)�

Z

X
f(x)Q2(dx)}

= LdW (Q, Q0).

For any Q 2 A1, we have ||µQ � µQ0 ||F  LdW (Q, Q0) 
L✏.

The ambiguity set defined with the RKHS norm can
be viewed as a subset of the ambiguity set defined via
the Wasserstein metric. In fact, A2 can be viewed as the
Wasserstein ball under a different distance measure.

Proposition 3. Suppose the Wasserstein metric is defined as

d̄W (Q1, Q2) := inf
⇧

Z

X 2

d(x1, x2)⇧(x1, x2)dx1dx2

s.t.

Z

X
⇧(x1, x2)dx2 = Q1(x1),

Z

X
⇧(x1, x2)dx1 = Q2(x2),

where d(x1, x2) is the distance metric in an RKHS F , then
the dual form of the Wasserstein metric is

d̄W (Q1, Q2) = sup

||f ||F1
{
Z

X
f(x)Q1(dx)�

Z

X
f(x)Q2(dx)}.

Proof. The proof follows exactly the Kantorovich Rubinstein
duality theorem [25] after replacing the Euclidean distance
with the RKHS distance metric d, and is omitted here.

By Proposition 3, the ambiguity set defined as an RKHS
norm ball is simply a Wasserstein ball with d as the distance
metric. For a Gaussian RBF kernel, the relationship between
d and the Euclidean distance is plotted in fig. 1. Comparing
to the original Wasserstein ball in 1, the RKHS distance
“saturates” at

p
2, which discounts the distance when two

points are far away.

5655



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

Gaussian RBF kernel

Fig. 1: RKHS distance v.s. Euclidean distance with Gaussian
RBF kernel

D. Solution to the conditional kernel DRO

For brevity of notation, given the samples {xi, yi}N
i=1 and

a particular x 2 X , let µ̂[x] :=
PN

i=1 �i�(yi) with � defined
in (2), and C[x] = {µ 2 G | ||µ � µ̂[x]||G  ✏x} be
the ambiguity set defined in Proposition 1. The conditional
kernel DRO is the following optimization:

min
⌘

max
Q2co(Q),µ2C[x]

Z

Y
q(⌘, y)Q(dy)

s.t.

Z

X
1Q(dy) = 1,

Z

X
�(y)Q(dy) = µ,

(3)
where co(·) is the conic hull, co(Q) is the cone of positive
measures. The inner maximization looks for a distribution Q
whose corresponding expectation operator µ lies inside C[x]
and maximizes the expected cost.

Theorem 1. Assuming q is convex in ⌘, , 8⌘ 2 H, q(⌘, ·) 2
G, the dual form of (3) is

min
⌘,f2G,f02R

f0 +

NX

i=1

�if(yi) + ✏x||f ||G

s.t. 8y 2 Y, q(⌘, y)  f(y) + f0.

(4)

Proof. The dual form was derived in [21], we extend it to
the conditional distribution case and present the derivation
for completeness. First focus on the inner maximization, the
Lagrangian of the of which is

L(µ, P, f, f0) =

Z

Y
q(⌘, y)Q(dy)� �C[x](µ)

+ hf, µ �
Z

Y
�(y)Q(dy)i+ f0(1�

Z

Y
1Q(dy))

= f0 + hf, µi � �C[x](µ) +

Z

Y
q(⌘, y)� f(y)� f0Q(dy),

where f0 2 R is the Lagrange multiplier of the first constraint
in (3) and f 2 G is the Lagrange multiplier of the second
constraint. �C[x] is the indicator function of C[x], which is 0
if µ 2 C[x], 1 otherwise. The only way to upper bound L is
to make q(⌘, y)� f(y)� f0  0 for all y 2 Y . With f0 and
f fixed that satisfy q(⌘, y)� f(y)� f0, the maximization is
only over µ 2 C[x] of the function hf, µi � �C[x](µ). Since
�C[x] is convex, by Fenchel duality,

max
µ2G

hf, µi � �C[x](µ) = �⇤C[x](f) = max
µ2C[x]

hf, µi,

where �⇤C[x] is the Fenchel dual of �C[x]. By the definition of
C[x] in Proposition 1,

�⇤C[x](f) = max
µ2C[x]

hf, µi = max
µ2C[x]

hf, µ̂[x]i+ hf, µ � µ̂[x]i

= hf, µ̂[x]i+ ✏x||f ||G .

The last equality comes from the fact that we can choose µ
such that µ� µ̂[x] = ✏x

f
||f ||G . The dual optimization is then

min
f2G,f02R

f0 + hf, µ̂[x]i+ ✏x||f ||G

s.t.8y 2 Y, q(⌘, y)  f0 + f(y).

Combining with the outer minimization, the dual form of
(3) is the optimization in (4). Since the inner optimization is
strictly feasible, strong duality holds, and there is no duality
gap.

Given an x 2 X , µ̂[x] =
PN

i=1 �i�(yi), by the re-
producing property, hf, µ̂[x]i =

PN
i=1 �if(yi). However,

the inequality constraint in (4) cannot be strictly enforced.
Instead, the condition is enforced on a finite certification set
of {yj}M

j=1. f is a function in RKHS, which is also finitely
parameterized by the certification set as f =

PM
j=1 ↵j�(yj).

The finite optimization we end up solving is then

min
⌘,↵2RM ,f02R

f0 +

NX

i=1

�if(yi) + ✏x||f ||G

s.t. q(⌘, yj)  f(yj) + f0, j = 1, ..., M,

(5)

where f(y) =
PM

j=1 ↵j l(yj , y), ||f ||G =
p

↵|L↵. Here L 2
RM⇥M is computed as Lij = l(yi, yj).

IV. APPLICATION TO GENERATION SCHEDULING

Ambient 
temperature

Wind 
speed

Humidity

Optimal 
Power 
Flow

Total 
cost

Line 
reactance

Line 
capacity

Electricity 
demand
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pg
j

Fig. 2: Causality map of the OPF problem

As an application of the conditional kernel DRO, we
consider the problem of scheduling power generation for
power grid. We formulate this via a DC optimal power flow
(DC-OPF) problem; a constrained optimization problem that
determines generation dispatch to serve electricity demand
in the transmission network at a minimal cost subject to
operational constraints.
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A. Background of DC-OPF

The DC-OPF problem is formulated as:

min
pg,✓

X

j2G

⇥
aj(p

g
j )

2
+ bjp

g
j + cj

⇤
(6a)

s.t.
X

j2Gi

pg
j � P d

i =

X

k2N

✓i � ✓k

Xik
, 8i 2 N , (6b)

P g
j  pg

j  P
g
j , 8j 2 G, (6c)

F ik  1

Xik
(✓i � ✓k)  F ik, 8i, k 2 N . (6d)

where the active power output of generator j 2 G is denoted
as pg

j and the nodal phase angle of bus i 2 N is denoted as ✓i.
Gi is the set of generators connected to bus i. The objective
function in (6a) minimizes the total quadratic generation
cost with parameters aj , bj and cj . Equation (6b), i.e. a
linear approximation of the power flow equation, enforces
the active nodal power balance where Xik is the reactance of
transmission line (i, k). Active power output of generators is
constrained in (6c) using their lower and upper bound limits
(P g

j , P
g
j ). Lastly, the power flow limits of each transmission

line are constrained with lower and upper bounds (F ik, F ik)
in (6d).
Remark 1. In practice, we add slack variables to relax the
equality constraint (6b) to improve feasibility, but we found
that the slack variable is always close to zero.

B. Conditional DC-OPF problem setup

Unfortunately, the power demand P d
i cannot be predicted

perfectly at the time of OPF. To robustify the OPF solu-
tion against the prediction error, we consider a two-stage
optimization where the decision variables are divided into
two groups, the here-and-now (HAN) variables and the wait-
and-see (WAS) variables [26], where the HAN variables
are determined in the first stage, the WAS variables can
be determined after an observation of the uncertain param-
eters is made. Similar formulations have been applied to
generation scheduling problems (c.f. [27], [28]), here we
consider a simplified two-stage DC-OPF problem. The first
stage determines the nominal generation dispatch pg,n, then
the second stage determine the actual generation by solving
the following optimization:

OPF(P d, pg,n
) =min

✓,pg
Jn(p

g
) + Ja(p

g,n, pg
)

s.t. pg 2 F(pg,n
)

X

j2Gi

pg
j � P d

i =

X

k2N

✓i � ✓k

Xik
, 8i 2 N ,

P g
j  pg

j  P
g
j , 8j 2 G,

F ik  1

Xik
(✓i � ✓k)  F ik, 8i, k 2 N ,

(7)
where pg is the actual power generation. Jn(pg

) =P
j2G aj(p

g
j )

2
+ bjp

g
j + cj is the generation cost, Ja is

the adjusting cost, which penalizes the difference between
pg,n and pg, and F(pg,n

) is the feasible set of the actual

generation given the nominal generation dispatch. The HAN
variable is the nominal generation dispatch pg,n, the WAS
variables are the actual generation dispatch pg and phase
angle ✓. The feasible set F is defined as F(pg,n

) = {p 2
R|G||8j 2 G\Gs, pj = pg,n

j }, where Gs is the set of flexibility
resources, i.e. the generation dispatch can be adjusted after
the nominal dispatch. Additional constraints can be added
such as ramping constraints on the change of power gener-
ation. The adjusting cost then penalizes the adjustment of
flexible generators j 2 Gs. In particular, we consider the
following adjusting cost function:

Ja(p
g,n, pg

) =

X

j2G\Gs

⇣+
j [pg,n

j � pg
j ]+ + ⇣�j [pg

j � pg,n
j ]+,

which is an asymmetric linear cost that penalizes genera-
tion surplus and generation deficiency differently. [·]+ =

max{·, 0}, and ⇣+ is chosen to be smaller than ⇣� so
that generation deficiency is more heavily penalized. Under
the piecewise linear Ja, the second stage is a convex
optimization problem. OPF(P d, pg,n

) denotes the optimal
cost function of (7) whenever (7) is strictly feasible,
and OPF(P d, pg,n

) = 1 if (7) is infeasible. Clearly,
OPF(P d, pg,n

) depends heavily on P d, which is unknown
at the first stage.

While the knowledge on P d is not perfect when de-
ciding pg,n in the first stage, there is a causal relation-
ship between the weather data and the electricity de-
mand as shown in fig. 2. Therefore, given historical data
{[weather,time], demand}N

i=1, we build a conditional Kernel
DRO for the DC-OPF problem to better capture the condi-
tional distribution of P d. The weather and time signal serves
as the random variable being conditioned on (X), P d is
the random variable whose conditional distribution we are
interested in (Y ). The first stage decision making is then
solved with the following DRO:

min
pg,n

max
Q2A⇠

EQ[OPF(P d, pg,n
)], (8)

where ⇠ is the auxiliary variable (weather, time, etc.), and
A⇠ is the ambiguity set over the conditional distribution of
P d given ⇠.

Following the conditional kernel DRO framework, the
ambiguity set on conditional distribution is turned into an
ambiguity set in the conditional mean operator in RKHS.
Given samples {⇠i, P d

i }N
i=1, we use Gaussian RBF kernel

for both ⇠ and P d. In particular, each dimension of ⇠ is
equipped with its own kernel and the distances are added to
form the total distance. For cyclic dimensions such as hour
in the day, the distance is wrapped around, i.e., the distance
between 23:00 and 1:00 is 2 hours, not 22 hours. We denote
the two kernel functions as k⇠ and kPd .

Given a particular auxiliary variable evaluation ⇠, the
conditional mean operator is computed as µ̂Pd|⇠ =PN

i=1 �i�(P d
i ) + �N+1�(P d

⇠ ) with � computed follow-
ing (2), where the last term is associated with the unknown
P d under the query point ⇠. The ambiguity set is defined
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following Proposition 1, and the conditional kernel DRO is
solved in the dual form (5).

min
pg,n,↵2RM ,f02R

f0 +

NX

i=1

�if(P
d
i ) + ✏x||f ||G

s.t. OPF(pg,n, P d
j )  f(P d

j ) + f0, j = 1, ..., M,
(9)

where f(P d
) =

PM
j=1 ↵j l(P d

j , P d
). Note that the objective

depends on f(P d
i ), which enumerates over the observation

dataset ⇠i, P d
i

N
i=1, whereas the constraints enumerates over

{P d
j }M

j=1, which is the certification set. The certification set’s
role is to approximate the support of P d, and we construct
it by random sampling P d from the observation dataset with
added Gaussian noise.

In practice, to reduce the computation complexity, we
only consider the closest m points in the observation dataset
measured by the kernel distance. This is because points with
a large distance to the query point in the RKHS will not
influence the result much, thus can be ignored. The choice
of m depends on the kernel, i.e., how fast does k(x, x0

)

decrease to near zero as x0 moves away from x.

C. Numerical experiments
The case study uses the 11-bus ERCOT transmission

system from [29] with the historical hourly demand pro-
file from ERCOT market information data hub [30]. The
corresponding historical weather data for the ERCOT zones
was obtained from the National Solar Radiation Database
[31]. All models in the case study are implemented using the
CVXPY package [32] and the code and data are available in
https://github.com/chenyx09/CKDRO.

We consider three benchmarks.
• The first one is the optimal cost, i.e., assuming that

P d is perfectly known in the first stage, which is not
realistic, yet it serves as the lower bound of the best
cost attainable.

• The second benchmark is to solve the first stage as an
OPF problem with the average P d in the dataset P d,
i.e., replacing the expectation in (8) with P d. This setup
ignores the auxiliary variable completely.

• The third benchmark is to perform a kernel interpolation
with the same kernels used in DRO and perform OPF
with the interpolated P d. To be specific, given the
auxiliary variable x, first compute � following (2), then
the interpolated P d

x is computed as P d
x =

PN
i=1

�i

�
P d

i

with � =
PN

i=1 �i, then pg,n is obtained by solving the
OPF with P d

x .
The auxiliary variable has 18 dimensions, consisting of

hours in the year (cyclic with period 8760, indicating the
time in the year), hours in the day (cyclic with period 24,
indicating time in the day), and temperature and precipitation
in 8 regions.

We sample 60 points from the history dataset and for each
data point [⇠i, P d

i ], the generation cost with the CKDRO
solution is compared with the three benchmarks. To be
specific, the CKDRO is solved with ⇠i, the two stage cost is
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Fig. 3: Comparison between CKDRO result and benchmarks
for sample data set (50 points sorted by the objective value).
The nominal cost of the CKDRO result is close to the optimal
value whereas its worst case cost is very close to the nominal
cost, showing greater robustness than the benchmarks.

then evaluated as OPF(pg,n, P d
i ), where pg,n is the solution

of the first stage CKDRO. For the three benchmarks, the
first stage is solved as an OPF problem with P d

i , P d and
P d

⇠i
, respectively, then the two stage cost is evaluated with

the solution from the first stage. Since the DRO setup aims
at optimizing over the worst performance over the ambiguity
set, in addition to the nominal two stage cost, we also plot
the worst case cost, where Gaussian noise w ⇠ N (0, �w)

is added to P d
i and the worst cost among m samples of

OPF(pg,n, P d
i + w) is recorded.

Figure 3 shows the cost comparison between the CKDRO
result and the benchmarks. The results are sorted with the
optimal cost in ascending order. The kernel interpolation cost
is almost identical to the optimal cost, showing that the kernel
interpolation is able to predict P i

d fairly accurately. However,
since it takes no uncertainty into account, its worst case cost
is worse than the CKDRO result. The cost with the mean load
profile P d is significantly higher than the CKDRO result, and
there is a big gap between its nominal cost and worst case
cost, indicating that it is not robust to uncertainty. CKDRO
is able to achieve close-to-optimal nominal cost while being
much more robust to uncertainty, which is demonstrated by
the little gap between its nominal cost and worst case cost.

As shown in (9), ✏ determines the level of robustness for
the CKDRO, and changes with the number of data points and
the location of the auxiliary variable. To showcase the effect
of ✏, fig. 4 shows the comparison of the CKDRO result with
the adaptive ✏ leveraging Proposition 1 and two benchmarks,
one fixing ✏ = 0.15, and the other fixing ✏ = 3. A smaller
✏ causes the DRO to consider distributions that are more
concentrated around the conditional mean, resulting in better
nominal cost, yet may struggle when P d deviates from the
conditional mean, which is shown in the worst case cost. A
large ✏, on the other hand, leads to a smaller gap between
the nominal and worst case cost, sometimes even 0 gap, yet
significantly hurt the nominal performance. The adaptive ✏
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Fig. 4: Influence of ✏ on the CKDRO result. A small ✏ results
in a smaller nominal cost, yet the worst case cost can be
huge; a large ✏ leads to a smaller gap between the nominal
and worst case cost, yet can significantly hurt the nominal
cost. The adaptive ✏ achieves the smallest worst case cost.

achieves the best worst case performance, as is the goal of
the DRO.

V. CONCLUSION

We proposed a conditional kernel DRO framework capable
of robust decision making that leverages the conditional
distribution of the unknown variable. The main application
of CKDRO is when an auxiliary variable is observable and
correlated with the unknown variable, and one needs to
make a decision after observing the auxiliary variable. The
key idea is to use the conditional mean operator in RKHS
space to define the ambiguity set, whose size depends on
the data volume as well as the query point position. We
draw connections between the ambiguity set used in CKDRO
and one defined with the Wasserstein distance and show
that they are related via the change of test function. The
CKDRO is solved in its dual form and approximated by a
finite-dimensional convex program. We show its application
on a optimal power flow problem and the results show that
CKDRO is able to outperform several common benchmarks
by leveraging the auxiliary variable and the uncertainty in
conditional distribution.
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