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Abstract

The problem of long-tailed recognition, where the num-

ber of examples per class is highly unbalanced, is consid-

ered. It is hypothesized that the well known tendency of

standard classifier training to overfit to popular classes can

be exploited for effective transfer learning. Rather than

eliminating this overfitting, e.g. by adopting popular class-

balanced sampling methods, the learning algorithm should

instead leverage this overfitting to transfer geometric in-

formation from popular to low-shot classes. A new classi-

fier architecture, GistNet, is proposed to support this goal,

using constellations of classifier parameters to encode the

class geometry. A new learning algorithm is then proposed

for GeometrIc Structure Transfer (GIST), with resort to a

combination of loss functions that combine class-balanced

and random sampling to guarantee that, while overfitting

to the popular classes is restricted to geometric parame-

ters, it is leveraged to transfer class geometry from popular

to few-shot classes. This enables better generalization for

few-shot classes without the need for the manual specifica-

tion of class weights, or even the explicit grouping of classes

into different types. Experiments on two popular long-tailed

recognition datasets show that GistNet outperforms existing

solutions to this problem.

1. Introduction

The availability of large-scale datasets, with large num-

bers of images per class [3], has been a major factor in the

success of deep learning for tasks such as object recogni-

tion. However, these datasets are manually curated and ar-

tificially balanced. This is unlike most real world appli-

cations, where the frequencies of examples from different

classes can be highly unbalanced, leading to skewed distri-

butions with long tails.

This has motivated recent interest in the problem of long-

tailed recognition [13], where the training data is highly un-

balanced but the test set is kept balanced, so that equally

good performance on all classes is crucial to achieve high

overall accuracy.

Success in the long-tailed recognition setting requires

specific handling of class imbalance during training, since

a classifier trained with the standard cross-entropy loss will

overfit to highly populated classes and perform poorly on

low-shot classes. This has motivated several works to fight

class overfitting with methods, like data re-sampling [27] or

cost-sensitive losses [10], that place more training emphasis

on the examples of lower populated classes.

It is, however, difficult to design augmentation or

class weighting schemes that do not either under or over-

emphasize the few-shot classes. In this work, we seek an

approach that is fully data driven and leverages overfitting

to the popular classes, rather than combat it. The idea is

to transfer some properties of these classes, which are well

learned by the standard classifier, to the classes with insuf-

ficient data, where this is not possible.

For this, we leverage the interpretation of a deep clas-

sifier as the composition of an embedding, or feature ex-

tractor, implemented with several neural network layers and

a parametric classifier, implemented with a logistic regres-

sion layer, at the top of the network. While the embedding

is shared by all classes, the classifier parameters are class-

specific, namely a weight-vector per class, as shown in Fig-

ure 1.

We exploit the fact that the configuration of these weight

vectors determines the geometry of the embedding. This

consists of the class-conditional distribution, and associated

metric, of the feature vectors of each class, which define the

class boundaries. For a well learned network, this geometry

is identical for all classes. In the long-tailed setting, the

geometry is usually well learned for many-shot classes, but

not for classes with insufficient training samples, as shown

in the left of Figure 1.
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Figure 1. Left: in long-tailed recognition, the small number of samples from medium- and few-shot classes make it difficult to learn

their geometry, leading to inaccurate class boundaries. This is unlike many-shot classes, whose natural geometry can usually be learned.

Middle: the boundaries are corrected by transferring the geometric structure of the many-shot classes to the classes with few examples.

Right: GistNet implements geometric structure transfer by implementing constellations of classification parameters. These consist of a

class-specific center and a set of displacements shared by all classes. Under GIST training, these tend to follow the natural geometry of the

many-shot classes, which is transferred to the medium- and few-shot classes.

The goal is to transfer the geometric structure of the

many-shot classes to the classes with few examples, as

shown in the middle of the figure, to eliminate this prob-

lem. The challenge is to implement this transfer using only

the available training data, i.e. without manual specification

of class-weights or heuristic recipes, such as equating these

weights to class frequency.

We address this challenge with a combination of con-

tributions. First, we enforce a globally learned geometric

structure, which is shared by all classes. To avoid the com-

plexity of learning a full-blown distance function, which

frequently requires a large covariance matrix, we propose

a structure composed by a constellation of classifier param-

eters, as shown on the right of Figure 1. This consists of

a class-specific center, which encodes the location of the

class, and a set of displacements, which are shared by all

classes and encode the class geometry.

Second, we rely on a mix of randomly sampled and

class-balanced mini-batches to define two losses that are

used to learn the different classifier parameters. Class-

balanced sampling is used to learn the class-specific cen-

ter parameters. This guarantees that the learning is based

on the same number of examples for all classes, avoiding

a bias towards larger classes. Random sampling is used to

learn the shared geometry parameters (displacements). This

leverages the tendency of the standard classifier to overfit to

the popular classes, making them dominant for the learning

of class geometry, and thus allowing the transfer of geomet-

ric structure from these to the few-shot classes. In result, the

few shot classes are learned equally to the popular classes

with respect to location but inherit their geometric structure,

which enables better generalization.

We propose a new learning algorithm, denoted Geomet-

rIc Structure Transfer (GIST), that combines the two types

of sampling, so as to naturally account for all the data in the

training set, without the need for the manual specification of

class weights, or even the explicit grouping of classes into

Class geometry

Constellation

Class boundary

Figure 2. GistNet approximates the shared geometry by a constel-

lation (mixture) of spherical Gaussians.

different types. While we adopt the standard division into

many-, medium-, and few-shot classes for evaluation, this

is not necessary for training.

A deep network that implements the parameter constel-

lations of Figure 1 and GIST training is then introduced and

denoted as the GistNet. Experiments on two popular long-

tailed recognition datasets show that it outperforms previ-

ous approaches to long-tailed recognition.

Overall, this work makes several contributions to long-

tailed recognition. First, we point out that the tendency of

the standard classifier to overfit to popular classes can be ad-

vantageous for transfer learning. The goal should not be to

eliminate this overfitting, e.g. by uniquely adopting the now

popular class-balanced sampling, but leverage it to trans-

fer geometric information from the popular to the low-shot

classes.

Second, we propose a new GistNet classifier architecture

to support this goal, using constellations of classifier param-

eters to encode the class geometry.

Third, we introduce a new learning algorithm, GIST, that

combines class-balanced and random sampling to leverage

overfitting to the popular classes and enable the transfer of

class geometry from popular to few-shot classes.
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Figure 3. t-SNE visualization of 3 few-shot classes on ImageNet-

LT test set, together with the constellations wkj .

2. Related Work

Long-tailed recognition has received increased attention in

the recent past [25, 15, 10, 27, 13, 24]. Several approaches

have been proposed, including metric learning [15, 27],

hard negative mining [10], or meta-learning [24]. Some of

these rely on novel loss functions, such as the lift loss [15],

which introduces margins between many training samples,

the range loss [27], which encourages data in the same

class (different classes) to be close (far away), or the fo-

cal loss [10], which conducts online hard negative mining.

These methods tend to improve performance on the few-

shot end at the cost of many-shot accuracy.

Other methods, e.g. class-balanced experts [18] and

knowledge distill [26], try to avoid this problem by man-

ually dividing the training data into subsets, based on the

number of examples, and training an expert per subset.

However, experts learned from arbitrary data divisions can

be sub-optimal, especially for few-shot classes.

Kang et al. [9] tackles the data-imbalance problem by

decoupling the training feature embedding and classifier.

Zhou et al. [28] also shows the effectiveness by using differ-

ent training strategies on feature embedding and classifier,

and achieves this by cumulative learning. These methods,

however, do not discuss the class geometry problem. In face

recognition, Liu et al. [12] explores the long-tailed problem

by knowledge transfer. The idea is similar to ours. But they

achieve this by data synthesis, while we rely on model de-

sign and training strategy.

GistNet is closest to the OLTR approach of [13], which

uses a visual memory and attention to propagate informa-

tion between classes. This, however, is insufficient to guar-

antee the transfer of geometric class structure, as intended

by GIST.

Few-shot learning is a well-researched problem. A popular

group of approaches is based on meta-learning, using gradi-

ent based methods such as MAML and its variants [4, 5], or

LEO [17]. These methods take advantage of second deriva-

tives to update the model from few-shot samples. Alterna-

tively, the problem has been addressed with metric based

solutions, such as the matching [22], prototypical [19], and

relation [20] networks. These approaches learn metric em-

beddings that are transferable across classes.

There have also been proposals for feature augmenta-

tion, aimed to augment the data available for training, e.g.

by combining GANs with meta-learning [23], synthesizing

features across object views [11] or other forms of data hal-

lucination [7]. All these methods are designed specifically

for few-shot classes and often under-perform for many-shot

classes.

Learning without forgetting aims to train a model se-

quentially on new tasks without forgetting the ones already

learned. This problem has been recently considered in the

few-shot setting [6], where the sequence of tasks includes a

mix of many-shot and few-shot classes.

Proposed solutions [6, 16] attempt to deal with this

by training on many-shots first, using the many-shot class

weights to generate few-shot class weights, and combining

them together. These techniques are difficult to generalize

to long-tailed recognition, where the transition from many-

to few- shot classes is continuous and includes a large num-

ber of medium-shot classes.

3. Geometric Structure Transfer

In this section, we introduce the proposed solution of

the long-tailed recognition problem by geometric structure

transfer and the GistNet architecture.

3.1. Regularization by Geometric Structure Trans-
fer

A popular architecture for classification is the softmax

classifier. This consists of an embedding that maps images

x ∈ X into feature vectors fφ(x) ∈ F , implemented by

multiple neural network layers, and a softmax layer that es-

timates class posterior probabilities according to

p(y = k|x;ϕ,wk) =
exp[wT

k fφ(x)]∑
k′ exp[wT

k′fφ(x)]
(1)

where ϕ denotes the embedding parameters and wk is the

weight vector of the kth class.

The model is learned with a training set S =
{(xi, yi)}

ns

i=1 of ns examples, by minimizing the cross en-

tropy loss

LCE =
∑

(xi,yi)∈S

− log p(yi|xi). (2)

Recognition performance is evaluated on a test set T =
{(xi, yi)}

nt

i=1, of nt examples.
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Figure 4. GIST training. Solid arrows represent feed-forward and dashed ones back-propagation. Class-balanced mini-batches are used

for the green connections, to guarantee that the parameters wk are class-specific. Random sampling mini-batches are used for the red

connections, enabling the displacements δj to be learned predominantly from many-shot classes. Note that the shape parameters δj receive

no gradient from the class-balanced loss Lc and the constellation centers wk receive no gradient from the random sampling loss Lr .

Learning with (2) produces a particular data-driven em-

bedding geometry, which we denote the natural geometry

for the training data. While parameters wk of the classi-

fier is class-specific and describes class centers, it is usually

impossible to determine this geometry from the learned net-

work parameters.1

This is not a problem in regular large-scale recognition.

In such a case, each class has enough training data and

the natural geometry is successfully learned under cross-

entropy loss without further regulations. For long-tailed

recognition problems the situation is different. As in few-

shot learning, the limited training data of few-shot classes

leads to weakly defined class-conditional distributions and

embedding geometry. However, this is not the case for

classes with many samples, whose natural geometry can be

learned from the data. In result, as illustrated in the left

of Figure 1, the true class boundaries are usually not well

learned for the few-shot classes.

In this work, we seek to leverage geometric regulariza-

tion to improve the learning of the few-shot classes without

sacrificing performance for the populated classes.

One possibility would be to enforce a pre-defined geom-

etry for all classes, e.g. by adopting Mahalanobis distance

d(fφ(x), µ) = (fφ(x) − µ)TΣ−1(fφ(x) − µ) associated

with Gaussian class conditionals of covariance Σ, or by as-

suming Gaussian class-conditionals and regularizing the co-

variance to be close to a pre-defined Σ.

This has several problems. First, it is not clear what the

covariance Σ should be. Second, it ignores the natural ge-

ometry of the popular classes, which is well learned by the

classifier of (1). Third, given the large dimensionality of

fφ(x), covariance regularization is difficult to implement,

even for classes with many examples.

To avoid these problems, we seek a learning-based solu-

tion that does not require covariance estimation and lever-

ages the natural geometry of the popular classes to regular-

ize the geometry of the few-shot classes. Rather than forc-

ing geometry through a distance function, which is hard to

learn and implement, we pursue an alternative approach to

1See supplementary material for detail.

guarantee that all classes have a shared geometric structure.

Ideally, this structure should be learned from data, so as

to 1) follow the natural geometry of the highly populated

classes, and 2) allow the transfer of that geometry to the

classes of few examples. It should also be encoded in a

relatively small number of parameters, which at most grows

linearly with the dimension of fφ(x).
To achieve these goals, we continue to rely on the soft-

max classifier of (1) and the cross-entropy loss of (2), but

use an alternative implementation of the softmax layer

pφ(y = k|x) =
exp[maxj w

T
kjfφ(x)]∑

k′ exp[maxj wT
k′jfφ(x)]

,

wkj = g(wk, δj),

(3)

where the canonical parameter vector wk is replaced by a

constellation of parameter vectors wkj , which are a func-

tion of wk and a set of structure parameters δj shared by

all classes. Under the simplest implementation of this idea,

g(wk, δj) = wk + δj and the structure parameters are a set

of displacement vectors, as shown in the right of Figure 1.

Since these displacements are shared by all classes, the

constellation is simply replicated around each wk, which is

learned per class. Because, under the loss of (2), the highly

populated classes tend to dominate the optimization of the

shared parameters, the displacements δj tend to follow the

natural geometry of these classes, which is thus transferred

to the few-shot classes. This regularizes the learning of

these classes, enabling the recovery of the true classifica-

tion boundaries, as shown in the right of Figure 1.

The displacements δj are the parameters that contain

geometry information. They transfer the geometry from

highly populated classes to few-shot classes. With the help

of geometry transfer, the model learns a better geometry for

few-shot classes.

As shown in Figure 2, (3) is equivalent to replacing the

natural geometry by several spherical Gaussians of means

wkj and choosing the one closest to the feature. This ap-

proximates the non-regulated geometry by a constellation of

5 spherical Gaussians, one per wkj . This geometry is visu-

alized in Figure 3, where features from different classes are
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regulated by class specific constellations respectively. The

constellation can be regarded as an umbrella. The model

can learn the shape of the umbrella and where to place the

umbrella for each class.

We denote the approach as GeometrIc Structure Transfer

(GIST), to capture the fact that it transfers the essence, or

gist, of the class geometry from popular to few-shot classes.

Note that the classifier in (3) is different from that in (1).

There is an additional constraint: that the displacements δj
are constant across classes. To avoid the model learns wk

to fit one of the constellations and ignore others. We first

train the classifier from (1) to get a stable initialization of

wk, and then the whole classifier is trained to get the class-

agnostic displacements. In such a case, the model will have

to fit all available constellations to get lower loss instead of

fitting one of them. Empirical examination in Section 4.3

shows the actual usage of {δj} is decent, and supports this

assumption.

3.2. Normalization

Recent works [6, 13] have shown that better few-shot or

long-tailed classification accuracies are frequently obtained

by performing the classification on the unit sphere, i.e. nor-

malizing both embedding and classifier parameters to have

unit norm. We follow this practice and adopt the weighted

cosine classifier [6], replacing (3) with

pφ(y = k|x) =
exp[maxj sτ (fφ(x),wkj)]∑
k′ exp[maxj sτ (fφ(x),wk′j ]

,

sτ (fφ(x),w) = τ
w

T fφ(x)

||w||||fφ(x)||

(4)

where τ is a parameter that controls the smoothness of the

posterior distribution. This architecture is denoted as Gist-

Net. In our implementation, τ is randomly initialized and

learned end-to-end.

3.3. GIST Training

Deep networks are trained by stochastic gradient descent

(SGD). This randomly samples mini-batches of b samples,

and iterates across the training set. Due to the extreme class

imbalance of long-tailed recognition, SGD tends to bias the

model towards the classes with more samples.

In the literature, this problem is usually addressed by

class-balanced sampling [27]. This first randomly samples

bc classes with equal probability, and draws bn samples per

class, producing a mini-batch of b = bc × bn samples. By

iterating through all classes, the model is trained with an

overall equal number of examples per class. For the classi-

fier of (1), class-balanced sampling can significantly outper-

form regular sampling on few-shot classes. This also makes

it a good solution for learning the class specific parameters

{wk} of GistNet.

However, the bias of regular sampling towards the highly

populated classes is an advantage for the learning of the

structure parameters {δj}. After all, the point is exactly

to learn these parameters from classes with substantial data

and transfer them to the few-shot classes, where they cannot

be learned accurately. Since the parameters are shared, both

goals are accomplished if the learning procedure empha-

sizes the highly populated classes, as is the case for regular

sampling. This implies that GIST training should include

a mix of regular sampling (for shared structure parameters)

and class-balanced sampling (for class specific parameters).

We propose to implement this with the hybrid training

scheme of Figure 4. In each iteration, two mini-batches

Sc, Sr are first sampled from the training set S by class-

balanced sampling and random sampling, respectively. Two

sets of class-specific parameters, {wk,νk} are then learned,

using the combination of (2), (3), and (4). The class-

balanced mini-batch Sc is used with the resulting loss

Lc =
∑

(xi,yi)∈Sc

{−max
j

s(fφ(xi),wyij)

+ log
∑

k

exp[max
j

s(fφ(xi),wkj)]},

wkj = g(wk, δj) (5)

to learn the parameters wk. The random mini-batch Sr is

used with the loss

Lr =
∑

(xi,yi)∈Sr

{−max
j

s(fφ(xi),νyij)

+ log
∑

k

exp[max
j

s(fφ(xi),νkj)]},

νkj = g(νk, δj) (6)

to learn the parameters νk. This results in the overall loss

L = Lr + λLc. (7)

The structure parameters δj are common to the two

losses. However, as shown in Figure 4, during back-

propagation only the gradient from Lr is used to update

these parameters. This guarantees that the geometric struc-

ture is learned with random sampling. This structure is,

however, propagated to the learning of the class specific pa-

rameters wk, which receive the gradient Lc. In this way,

the class specific parameters wk are learned with class-

balanced sampling, but this learning is informed by the

structure parameters δj learned with random sampling. This

leads to parameter constellations wkj that, while shared

across classes, are centered at class-specific locations.

Note that the displacements are forwarded together with

wk to calculate the class-balanced loss Lc. This makes the

two components {wj} and {δj} of the classifier matching

each other, although they are learned by different losses.
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Table 1. Results on ImageNet-LT and Places-LT. ResNet-10/152 are used for all methods. For many-shot t > 100, for medium-shot

t ∈ (20, 100], and for few-shot t ≤ 20, where t is the number of training samples.

ImageNet-LT Places-LT

Method Overall Many-Shot Medium-Shot Few-Shot Overall Many-Shot Medium-Shot Few-Shot

Plain Model 23.5 41.1 14.9 3.6 27.2 45.9 22.4 0.36

Lifted Loss [15] 30.8 35.8 30.4 17.9 35.2 41.1 35.4 24.0

Focal Loss [10] 30.5 36.4 29.9 16.0 34.6 41.1 34.8 22.4

Range Loss [27] 30.7 35.8 30.3 17.6 35.1 41.1 35.4 23.2

FSLwF [6] 28.4 40.9 22.1 15.0 34.9 43.9 29.9 29.5

OLTR [13] 35.6 43.2 35.1 18.5 35.9 44.7 37.0 25.3

Decoupling [9] 41.4 51.8 38.8 21.5 37.9 37.8 40.7 31.8

Distill [26] 38.8 47.0 37.9 19.2 36.2 39.3 39.6 24.2

GistNet 42.2 52.8 39.8 21.7 39.6 42.5 40.8 32.1

Table 2. Results on the iNaturalist 2018. All methods are imple-

mented with ResNet-50.

Method Accuracy

CB-Focal [2] 61.1

LDAM+DRW [1] 68.0

Decoupling [9] 69.5

GistNet 70.8

The parameters νk are only used at training time, to guar-

antee that the geometric parameters δj follow the natural ge-

ometry of the highly populated classes. They are discarded

after training.

In GIST training, the class-specific weights wk are

trained with class-balanced sampling, while the structure

parameters δj are trained with random sampling. This

forces the latter to predominantly represent the structure of

the popular classes and is what enables the geometric struc-

ture transfer of Figure 1.

4. Experiments

In this section, we discuss an evaluation of the long-

tailed recognition performance of the GistNet.

4.1. Experimental set-up

Datasets. We consider three long-tailed recognition

datasets, ImageNet-LT [13], Places-LT [13] and iNatrual-

ist18 [21]. ImageNet-LT is a long-tailed version of Ima-

geNet [3] by sampling a subset following the Pareto distri-

bution with power value α = 6. It contains 115.8K images

from 1000 categories, with class cardinality ranging from

5 to 1280. Places-LT is a long-tailed version of the Places

dataset [29]. It contains 184.5K images from 365 categories

with class cardinality ranging from 5 to 4980. iNatrual-

ist18 is a long-tailed dataset, which contains 437.5K images

from 8141 categories with class cardinality ranging from 2
to 1000.

Baselines. Following [13], we consider three metric-

learning baselines, based on the lifted [15], focal [10],

and range [27] losses, and one state-of-the-art method,

FSLwF [6], for learning without forgetting. We also in-

clude state-of-the-art long-tailed recognition methods de-

signed specifically for these two datasets: OLTR [13], De-

coupling [9], and Distill [26]. The classifier of (1) with

standard random sampling is denoted as the Plain Model

for comparison.

Training Details. ResNet-10 and ResNet-152 [8] are used

on ImageNet-LT and Places-LT respectively, and ResNet-

50 is used on iNatrualist18. Unless otherwise noted, we

use four vectors δj of structure parameters, each with the

dimension of fθ(x). The class center wk completes a con-

stellation of five vectors. The number of structure parame-

ters is ablated in Section 4.3. In all experiments, λ = 0.5 is

used in (7).

The model is first pre-trained without structure parame-

ters, with 60 epochs of SGD, using momentum 0.9, weight

decay 0.0005, and a learning rate of 0.1 that decays by 10%
every 15 epochs. After this, the full model is subject to

GIST training with momentum 0.9, weight decay 0.0005
for 60 epochs, and learning rate 0.1 that decays by 10%
every 15 epochs. In this case, each iteration uses class-

balanced and random sampling mini-batches of size 128,

for an overall batch size of 256. One epoch is defined when

the random sampling iterates over the entire training data.

Codes are attached in supplementary.

4.2. Results

Table 1 present results on ImageNet-LT and Places-LT.

GistNet outperforms all other methods on the two datasets.

A further comparison is performed by splitting classes into

many shot (more than 100 training samples), medium shot

(between 20 and 100 training samples), and few shot (less

that 20 training samples). GistNet achieves the best per-

formance on 5 of the 6 partitions and is competitive on the

remaining one.

While on Places-LT the largest gains are for the few-

shot classes, in ImageNet-LT they hold for the medium- and

many-shot classes. This suggests that, in this dataset, the re-

maining methods overfit to the few-shot classes. The higher

robustness of GistNet to this overfitting can be explained
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Table 3. Ablation of GistNet components, on the ImageNet-LT validation set. For many-shot t > 100, for medium-shot t ∈ (20, 100], and

for few-shot t ≤ 20, where t is the number of training samples.

Method Overall Many-Shot Medium-Shot Few-Shot

Plain Model 25.1 42.9 16.6 0.43

COS+CB 37.6 49.4 34.8 14.7

COS+CS+CB 39.5 52.6 36.3 14.5

COS+CS+GIST (GistNet) 43.5 54.8 41.0 21.4

COS+GIST 40.2 51.4 37.4 19.0

COS+CS+GIST (wk and νk combined) 40.9 58.2 34.6 14.8

COS+CS+GIST (g rotation) 43.6 55.1 40.8 21.7

COS+CS+GIST (g MLP) 43.4 54.2 41.1 21.5
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Figure 5. Results on different size of structure parameters in few-shot, medium-shot, many-shot classes, and overall accuracy, searched on

validation set.

by the predominance of the many-shot classes in the train-

ing of the structure parameters δj . Results on iNaturalist18

dataset are shown in Table 2, ours also outperforms all other

methods.

4.3. Ablation Study

In this section, we discuss the effectiveness of the various

components of GistNet, the choice of constellation function

g, the number of structure parameters, and the actual usage

of constellations. All models are trained and evaluated on

the training and validation set of ImageNet-LT, respectively,

using a ResNet-10 backbone.

Component ablation. Starting from the plain model of (1),

we incrementally add the cosine classifier (COS) used

in (4), class-balanced sampling (CB), class structure pa-

rameters (CS), and GIST training (GIST). Table 3 shows

that the combination of cosine classifier and class-balanced

sampling (COS+CB) improves significantly on the plain

model. The simple addition of the class structure param-

eters (COS+CS+CB) further improves the overall perfor-

mance.

However, there is no significant improvement for few-

shot classes. This can be explained by the fact that,

with class-balanced sampling, the three class types are

equally predominant for the learning of the structure

parameters. Hence, there is no transfer of geometric

structure from many- to few-shot classes. This is con-

firmed by the fact that, when GIST training is added

(COS+CS+GIST), performance improves significantly for

the few-shot classes. When compared to COS+CB, the

GistNet model (COS+CS+GIST) has an overall gain of

about 6 points and better performance for all class types.

Among these, the gains are particularly large (around 6.5
points) for the few-shot classes.

The middle of the table investigates other possible con-

figurations of the GistNet. Applying GIST training with-

out class structure parameters (COS+GIST), i.e. using the

combination of class balanced and random sampling only

to learn the embedding fφ(x), degrades performance for all

class partitions. This shows the importance of enforcing a

shared class structure among all classes.

Another variant is to remove the additional class centers

{νk} of Figure 4, using the centers {wk} for both losses,

i.e. replacing νk with wk in (6). This variant, denoted

COS+CS+GIST (wk and νk combined), eliminates all the

gains of GistNet for few-shot classes, while increasing the

recognition accuracy for those in the many-shot partition.

This is because the centers now receive gradient from the

random sampling loss and are predominantly trained with

many-shot data. The improved performance of GistNet over

this variant shows that it is important to maintain the class-

specificity of center training, while enforcing transfer of the

geometric structure parameters, as done by GIST.

Different choices of g. Beyond these variants, we have also

considered different choices for the function g that defines

the parameter constellations of (3). In addition to the default

addition function implemented by GistNet, we considered

two possibilities.

The first was a rotation. After the embedding and clas-

sifier parameters are normalized, we evaluate the distance

8215



Plain Model

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

COS+CB

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

GIST

many-1
many-2
many-3
many-4
many-5
few-1
few-2
few-3
few-4
few-5

Plain Model COS+CB GistNet

Figure 6. t-SNE visualizations of the embedding of test set images from 5 randomly chosen many- and few-shot ImageNet-LT classes, for

three models.

between them on the d-dimensional unit sphere (where d

is the dimension of fφ(x)). The structure parameters are

then d-dimensional rotation matrices, which encourage all

classes to have the same structure on the unit sphere. This

is implement the rotation matrix by a transformation of d-

dimensional displacement vector

R = I− uu
T − vv

T + [u,v]Rθ[u,v]
T , (8)

where u is a unit vector, v is the normalized vector of a

displacement vector δj , and Rθ is the 2D rotation matrix

between u and δ. Given a structure parameter vector δj , the

parameter constellations are implemented as

wkj = g(wk, δj) = Rwk (9)

Details are discussed in supplementary.

The second was a learned function g, implemented by a

two-layer MLP, and learned end-to-end.

Table 3 shows that the different implementations of g

have little impact on the recognition performance. This

suggests that the addition of global geometric constraints

is much more important than the specific implementation

details of these constraints.

Number of structure parameters. We next investigated

the influence of the number m of structure parameters

{δj}
m
j=1. As shown in Figure 5, none of the alternatives

tried (m ∈ {2, 8, 16}) outperformed the four parameters

used in GistNet. For overall, many-, and medium-shot

classes performance increases until m = 4 and then satu-

rates. For few-shot classes, there was a one-point gain in

using m = 8. This shows that this partition is the one that

most benefits from geometry transfer.

Overall, these results confirm that while geometric trans-

fer can produce significant gains, the GistNet architecture is

quite robust to variations of detail.

Actual usage of constellations. Cross-entropy minimiza-

tion encourages the use of more δj , since the coverage of

the class distributions is better. It would be a waste not to

use them all. In the test set of ImageNet-LT, the actual us-

age was {25%, 23%, 18%, 17%, 17%}. 792 of 1000 classes

chose each δj for at least 10% of test samples. This results

further support that the model does not collapse to tradi-

tional classifier by fitting to only one constellation and ig-

noring others.

4.4. Visualization

Figure 6 shows a t-SNE [14] visualization of the embed-

dings learned by the Plain Model, the COS+CB baseline,

and GistNet. For clarity, we randomly choose five classes

from the many- and few-shot splits in ImageNet-LT. The

figure shows the t-SNE projection of features of test sam-

ples from those classes. Compared to the two other models,

GistNet produces classes that are better separated and have

more consistent geometry. This is especially true for few-

shot classes.

5. Conclusion

This work addressed the long-tailed recognition prob-

lem. A new architecture, GistNet, and training scheme,

GIST, were proposed to enable transfer of geometric struc-

ture from highly populated to low-populated classes. This

leverages the tendency of SGD training to overfit to the pop-

ulated classes, rather than simply fighting this tendency.

GistNet was shown to achieve state-of-the-art perfor-

mance on two popular long-tailed datasets. Ablation stud-

ies have shown that, while geometric transfer enables sig-

nificant recognition gains, the architecture is quite robust

to variations of detail. This suggests that the addition of

global geometric constraints to long-tailed recognition is

more important than the specific implementation of these

constraints.
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