
Should All Proposals be Treated Equally in
Object Detection?

Yunsheng Li1,2, Yinpeng Chen1, Xiyang Dai1, Dongdong Chen1, Mengchen
Liu1, Pei Yu1, Ying Jin1, Lu Yuan1, Zicheng Liu1, and Nuno Vasconcelos2

1 Microsoft Corporation, Redmond WA 98052, USA
2 UC San Diego, La Jolla, CA 92093, USA

{yunshengli,yiche,xidai,dochen,mengcliu,pei.yu,
ying.jin,luyuan,zliu}@microsoft.com, nvasconcelos@ucsd.edu

Abstract. The complexity-precision trade-off of an object detector is
a critical problem for resource constrained vision tasks. Previous works
have emphasized detectors implemented with efficient backbones. The
impact on this trade-off of proposal processing by the detection head
is investigated in this work. It is hypothesized that improved detection
efficiency requires a paradigm shift, towards the unequal processing of
proposals, assigning more computation to good proposals than poor ones.
This results in better utilization of available computational budget, en-
abling higher accuracy for the same FLOPS. We formulate this as a
learning problem where the goal is to assign operators to proposals, in
the detection head, so that the total computational cost is constrained
and the precision is maximized. The key finding is that such match-
ing can be learned as a function that maps each proposal embedding
into a one-hot code over operators. While this function induces a com-
plex dynamic network routing mechanism, it can be implemented by
a simple MLP and learned end-to-end with off-the-shelf object detec-
tors. This dynamic proposal processing (DPP) is shown to outperform
state-of-the-art end-to-end object detectors (DETR, Sparse R-CNN) by
a clear margin for a given computational complexity. Source code is at
https://github.com/liyunsheng13/dpp

Keywords: object detection, proposal processing, dynamic network

1 Introduction

Object detection is a challenging but fundamental task in computer vision, which
aims to predict a bounding box and category label for each object instance in
an image. A popular strategy, introduced by the Faster RCNN [25], is to rely
on a backbone network to produce a relatively large set of object proposals
and a detection head to derive a final prediction from these. Since then, the
design trend for this two-stage detection framework, e.g. the path Faster RCNN
[25] → Cascade RCNN [2] → DETR [3] → Sparse RCNN [27], has been to
sparsify the proposal density. Recent approaches, such as the Sparse R-CNN [27],
successfully reduce the thousands of proposals of the Faster RCNN [25] to a few

https://github.com/liyunsheng13/dpp

2 Y. Li et al.

� � �� ��
���	
��
������������
����������������

��

��

 !

 �

 �

 �

 "

�
#�
�

$

��
���

%
�
�

Equally treated proposals Unequally treated proposals

Input Image

Complexity-Precision Curve

∙∙∙

proposals

constant operator

operator 1

operator 2

operator 3
∙∙∙

proposals

Unequally treated proposals

Equally treated proposals

Fig. 1: Existing object detectors treat proposals equally, applying the same oper-
ator to all proposals. Dynamic Proposal Processing (DPP) instead argues for an
unequal treatment, by learning to dynamically assign different proposals to op-
erators of different complexities. This enables the allocation of more (less) com-
putation to high (low) IoU proposals and enables improved complexity-precision
curves.

hundred. However, because the per proposal computation of the detection head is
substantially increased by the use of a much more complicated architecture, the
overall computational benefits of reducing the number of proposals are limited.
While the aggregate effect has been to make detectors more efficient, in general,
these approaches are still not suitable for use with lighter backbones, since the
head complexity becomes a larger fraction of the overall computation.

While efficient object detection is now an extensively researched problem in
computer vision, this literature has mostly focused on the design of computa-
tionally efficient backbones. The introduction of heavy detection heads would
reverse the computational gains that have been achieved with lightweight mod-
els [26,23,8]. For example, the detection head of the Sparse RCNN [27] with
300 proposals consumes 4× the computation of the entire MobileNetV2 [26] (25
GFLOPS vs 5.5 GFLOPS). In this work, we investigate whether it is possible to
retain the accuracy gains and proposal sparsity of modern detection heads while
reducing their computational cost, so as to make them applicable to efficient
object detection design. We note that a main limitation of existing high-end
detectors is that they treat all proposals equally, in the sense that the detection
head applies to all proposals an operator of identical complexity, maintaining
a constant cost per proposal. This, however, is unintuitive. While it seems ap-
propriate to spend significant computation on good proposals, it is wasteful to
allocate equal resources to poor proposals. Since the IoU of each proposal is
known during training, the detector could, in principle, learn to allocate dif-
ferent amounts of computation to different proposals. This, however, requires a
paradigm shift for detector design, illustrated in Figure 1: that different propos-
als should be treated unequally in terms of resource allocation, reserving more
computation for high quality proposals than low quality ones.

The difficulty is that, because IoUs are not available at inference, the net-
work has to learn to perform the resource allocation on the fly. This implies the
need for a resource allocation function that depends on the proposal itself and
has to be learned, i.e. a dynamic network module. To address this problem, we
propose the dynamic proposal processing (DPP) framework, where the single op-

DPP 3

erator used by current detection heads is replaced by an operator set , composed
of multiple operators of different complexities. The benefit of this approach is
to allow the detector to operate on multiple points of the complexity-precision
curve, on a proposal by proposal basis, so as to optimize the overall trade-off
between the two objectives. This is implemented by the addition of a selection
model that chooses the best operator to apply to each proposal, at each stage of
the network. We show that this selector can be very lightweight, a multi-layer
perceptron that outputs a one-hot code over operator indices, and learned at
training time, in an end-to-end manner. This is enabled by the introduction
of two novel loss functions, which jointly encourage the allocation of the avail-
able computational budget to proposals of large IoU. An IoU loss teaches the
detector to recognize proposals of large IoU and improve their alignment with
ground truth bounding boxes. A complexity loss makes the selector aware of the
number of instances, per image, so as to dynamically control the allocation of
computational resources and meet the overall computational target.

Experimental results on the COCO dataset show that DPP achieves a bet-
ter complexity-precision curve (see Figure 1) than designs that treat proposals
equally, especially in the low complexity regime, confirming the effectiveness of
treating proposals unequally. For large backbones (ResNet [9]), DPP achieves
the best precision-complexity curves in the literature, achieving state-of-the-art
precision with 60% of the computation of current models. For low-complexity
networks (MobileNet [26]), the gains are even more significant, in that DPP es-
tablishes a new state-of-the-art in terms of both precision and computation and
produces the best latency-precision curves.

2 Related Work

Object detection. Object detection frameworks can be mainly categorized into
one-stage [22,19,28,13,16,33] vs two-stage [25,2,1,6,5], depending on the approach
used to generate proposals. One-stage detectors can be anchor-based or not, but
all rely on the very dense generation of proposals, which means each feature
vector in the feature map is leveraged as a proposal. Two-stage detectors rely
on a region proposal network [25] to filter out the majority of regions that are
unlikely to contain an object instance. All the aforementioned methods require
a post-processing step (non-maximum suppression) to remove a large number of
duplicate proposals. More recently, an attention based framework [3,34,32,21] has
been proposed to overcome this problem, eliminating the need to post-process
candidate predictions. By resorting to an attention mechanism, [27] even showed
that it is possible to rely on a very sparse proposal density. In result, existing
methods differ significantly in terms of proposal density. However, within each
framework, all proposals are treaty equally. In this paper, we show that, by
diversifying the complexity of proposal processing dynamically, it is possible to
reduce detection complexity without decreasing precision.
Dynamic network. Dynamic networks are a family of networks with input
dependent structures or parameters derived from dynamic branches [11]. For

4 Y. Li et al.

classical convolutional networks, this can be done by using input-dependent
rather than static filters [31,4,17,14,29,15] or reweighing features spatially or
in a channel-wise manner [11,10]. Transformers are by definition dynamic net-
works, due to their extensive reliance on attention. Beyond that, [24,30] dynami-
cally discard uninformative tokens to reduce computational cost. While previous
methods show remarkable improvements in network efficiency, they mainly fo-
cus on backbones. This cannot fully address the problem of object detection,
namely the heavy computation required to process proposals. Dynamic DETR
[7] attempts to address the problem by building dynamic blocks on the detection
head. However, it still processes all proposals with a common operator, induc-
ing a constant complexity per proposal. In this work, we propose to leverage
the power of dynamic networks by matching proposals to operators of variable
complexity in a dynamic manner.

3 Complexity and Precision of Proposals

In this section, we compare the complexity of treating proposals equally or un-
equally. We assume that a backbone produces a set X = {x1,x2, ...,xN} of pro-
posals and focus on the cost of the detection head, i.e. ignore backbone costs. We
further assume that the computation of the detection head can be decomposed
into a per-proposal operator h, e.g. a network block, and a pairwise component p
that accounts for the cost of inter-proposal computations. For example, the NMS
operation of classical detectors or a self-attention mechanism between proposals
for transformers.
Complexity of equally treated proposals. In prior works, all proposals are
processed by the same operator h. This has complexity

 \mathcal {C}(\psi)= NC_h + \frac {N(N-1)}{2}C_p, \label {eq:static_pro}

 (1)

where ψ = {h, p}, and Ch and Cp are the per proposal complexity of h and p,
respectively.
Complexity of unequally treated proposals. We propose to treat proposals
unequally. Rather than applying the same operator h to all proposals, we propose
to leverage an operator set G = {hj}Jj=1 of J operators of different architectures
and complexity, which are assigned to the proposals xi by a dynamic selector s.
This has complexity

 \mathcal {C}(\psi) = \sum _{i=1}^NC_{h_{s_i}} + \frac {N(N-1)}{2}C_p, \label {eq:dy_pro}

 (2)

where si = s(xi), hsi ∈ G represents the operator from G that is assigned to
the proposal xi by the selector s, ψ = {{hsi}i, s, p}, and Chsi

is the complexity
of the entire per proposal operation (selector plus operator). For simplicity, the
pairwise complexity is still considered constant.

DPP 5

Precision over proposals. When the detection head treats proposals un-
equally, the optimal detector precision for a given complexity constraint C can
be determined by optimizing the assignment of operators to proposals

 P(\psi ^*| C) = \max _{\underset {\mathcal {C}(\psi)<C}{h_{s_i}\in \mathcal {G}}}\mathcal {P}(\{h_{s_i}\}_i), \label {eq:opt}

 (3)

where P({hsi}i) is the precision of a specific operator assignment {hsi}i. As C
changes, P (ψ∗|C) forms a complexity-precision (C-P) curve that characterizes
the optimal performance, in terms of the trade-off between cost and precision, of
the object detectors implementable with G. In this work, we use both precision
(mAP) and the C-P curve as criteria to justify the effectiveness of treating
proposals unequally. Note that the assignment of operators to proposals is the
key to optimize the precision under a given computation budget C. This is
formulated as a learning function implementable with a simple network branch
and solved via suitable loss functions, as discussed next.

4 Dynamic Proposal Processing

In this section, we proposed a dynamic proposal processing (DPP) framework
for the solution of (3). Following the design of prior works [3,34,27], we assume
a detector head composed of multiple stages (ψ = ϕ1 ◦ . . . ◦ ϕK) that process
proposals sequentially. Each stage ϕk is implemented with an operator chosen
from G by a selector s. To minimize complexity, the selector can be applied only
to a subset k ∈ K ⊂ {1, . . . ,K} of the stages, with the remaining stages using
the operator chosen for their predecessor, i.e. ϕk = ϕk−1,∀k ̸∈ K.

4.1 Operator Set

In this paper, we consider an operator set G = {g0, g1, g2} composed of three op-
erators of very different computational cost. Specifically, g0 is a high complexity
operator, implemented with a dynamic convolutional layer (DyConv) of proposal
dependent parameters and a feed forward network (FFN) [3]. This operator is
based on the dynamic head architecture employed in the recent Sparse R-CNN
[27]. g1 is a medium complexity operator, implemented with a static FFN [3].
Finally, g2 is a light operator formed by an identity block, which simply feeds
the proposal forward with no further refinement.

4.2 Selector

In DPP, the selector is the key component to control the trade-off between
precision and complexity, by controlling the assignment of operators to proposals.
Let zk

i be the embedding of proposal xi at the input of stage ϕk. The selector
is implemented with a 3-layer MLP that associates a 3 dimensional vector ϵki ∈
[0, 1]3 with zk

i according to

 \epsilon ^k_i = \textrm {MLP}(\bm {z}^k_i) \label {eq:selector}
 (4)

6 Y. Li et al.

Operator
Selector

𝒛!"#!DyConv+FFN

FFN

Identity

𝑔!

𝑔"

𝑔# 𝒛$"#𝟏

𝒛&"#!

𝒛!"

𝒛$"

𝒛&"

Fig. 2: Flow graph of operator assignments to proposals. The selector
takes the proposal embeddings, i.e. {zk

1 , z
k
2 ,..., z

k
N} in the kth stage as input and

outputs a selection vector per proposal. The operator that matches the index
of largest value in the selection vector is selected to process the proposal. In
the operator set, operator g0 contains a high complexity dynamic convolution
(DyConv) followed by a FFN [3]. g1 consists of a feed forward network (FFN),
while g2 is implemented with an identity function (Identity).

where ϵki,j is the selection variable in ϵki that represents the strength of the
assignment of operator gj to proposal xi. During training, the selection vector
is a one hot code over three variables and the Gumble-Softmax function [12] is
used as activation of the MLP to generate the selection vector. For inference, the
selection variables have soft values and the operator that matches the index of the
selection variable with largest value is chosen. The flow graph of the operator
assignment process is illustrated in Figure 2. Please note that the proposed
selector is very light (using 4e-3 GFLOPS for 100 proposals in our experimental
setting), in fact negligible in complexity when compared to the detection head.

It is clear from (4) that the chosen operator varies both across proposals i
and head stages k, enabling the unequal treatment of proposals in a dynamic
manner. Furthermore, while G has cardinality three, the cardinality of the set of
network architectures that can be used to implement the detector head is 3|K|.
Finally, because the selector is trainable, the assignment function can be learned
end-to-end.

4.3 Loss Functions

To assure that, given a complexity budget, DPP selects the optimal sequence
of operators for each proposal, a selection loss is applied to the selector of each
stage in K. This selection loss is designed to encourage two goals. First, complex
operators should be assigned to high quality proposals (large IoU), since these
require most additional work by the detection head. This is enforced through
the IoU loss

 L_{iou} = \frac {1}{N}\sum _{i=1}^N \sum _{k \in {\cal K}} \sum _{j\in \{0,1\}} (1-u_i^k)\epsilon ^k_{i,j} + u_i^k(1-\epsilon ^k_{i,j}), \label {eq:iou}

 (5)

where uki is the IoU of the ith proposal in kth stage. Liou pushes the selector
to turn ϵki,0 and ϵki,1 into ‘0’ for proposals of IoU smaller than 0.5 and into ‘1’
otherwise. This encourages the use of more complex operators in stage k for

DPP 7

the high quality proposals, which require more efforts for classifying categories
and regressing bounding boxes. Moreover, the loss magnitude is determined by
the IoU value, originating larger gradients when the selector predicts ϵki,0 or ϵki,1
as ‘1’ for tiny IoU proposals or as ‘0’ for large proposals. Second, the selector
should be aware of the total number of instances in each image and adjust the
overall complexity according to it, i.e., selecting more complex operators when
instances are dense. This is enforced through the complexity loss

 L_c=\frac {1}{N}\sum _{k \in {\cal K}}\left |\sum _{i=1}^N \epsilon ^k_{i,0}-T\right |,\label {eq:loss_n}

 (6)

where T is the target number of times that operator g0 is selected for a particular
image. This is defined as T = αM where α is a multiplier that specifies a
multiple of the M object instances in the image. Moreover, the condition T ∈
[Tmin, N] is enforced, by clipping αM according to a pre-specified lower bound
Tmin and an upper bound given by the overall proposal number N . The lower
bound prevents a very sparse selection of high complexity operators g0 and α
then adjusts the selector according to the number of instances. α, Tmin and N
are hyperparameters that can be leveraged to modify the behavior of DPP, as
discussed in the experimental section.

The overall selection loss is finally

 L_{s} = L_{iou}+\lambda L_{c}, (7)

where λ is the hyperparameter that controls the trade-off between the loss com-
ponents. Note that the selection loss is a plug-and-play loss that can be applied
to different object detectors. In this paper, Ls is combined with all the losses of
the original detector to which DPP is applied, including the cross entropy loss
and the bounding box regression loss, which are omitted from our discussion.

5 Experiments

Dataset. DPP is evaluated on the COCO dataset [20]. It is trained on the
train2017 split and mainly tested on the val2017 split with mAP.
Network. DPP is applied to detectors whose backbone is built on MobileNet
V2 [26] or ResNet-50 [9], using Feature Pyramid Networks (FPN) [18], on top
of which proposals are generated using the strategies of [27]. For MobileNetV2
[26], the FPN only considers features with strides 16 and 32 and the 3 × 3
FPN convolution is decomposed into an 1× 1 pointwise convolution and a 3× 3
depthwise convolution for efficiency. For ResNet-50, FPN is implemented on
features with the standard 4 different strides. Following [27], the detection head
is a decoder only transformer of 6 stages. For simplicity, the selector is only
applied in stages K = {2, 4, 6}. In the first stage, all proposals are processed
with the high complexity operator (g0). The full operator set G is used in all
remaining stages.

8 Y. Li et al.

g0 g1 g2 AP AP50 AP75 Neval

✓ 41.0 58.5 44.4 15
✓ 2.4 5.1 2.1 7

✓ 0.8 2.2 0.5 78
✓ ✓ 41.7 59.9 45.2 22
✓ ✓ ✓ 42.2 60.6 45.5 100

Table 1: Contribution of each operator to proposal processing. Perfor-
mance is evaluated on the COCO validation set. Neval is the average number of
proposals matched to the checkmarked operator(s).

Experimental setting. DPP is pretrained without selectors, using the hyper-
parameters and data augmentations of [3,27,25] on COCO. The selectors are
then added and trained with learning rate 2e-5, while 2e-6 is used for other lay-
ers. The training process lasts 36 (3×) epochs and the learning rate is divided
by 10 at 27 and 33 epochs. The selection loss Ls is combined with all the losses
used in [3,27,25], i.e. cross entropy loss Lce, GIoU loss Lgiou and bounding boxes
regression loss Lbbox and λ = 10 is used for all selectors. The lower bound Tmin

for the target number of times that g0 is selected is manually set to T last
min for

the last selector. For the remaining selectors, Tmin is derived automatically, so
that it decreases exponentially from N (number of proposals) to T last

min. Hence we
omit the subscript of the lower bound for conciseness in the following sections.
The multiplier α is constant across all selectors.

5.1 Proposal processing by DPP

We start by discussing experiments that illustrate the unequal processing of
proposals by DPP and how this impacts complexity. In these experiments, we
analyze how each operator contributes to the processing of proposals produced by
a ResNet-50 backbone. DPP training uses a lower bound Tmin = 1, a multiplier
α = 2, and N = 100 proposals.
Contribution of Each Operator. The influence of each operator in G =
{g0, g1, g2} is investigated separately. For this, we manually split the proposals
into three groups, according to the operator that process them, and evaluate
precision for each group. For simplicity, the split is only based on the selector of
the last DPP stage, i.e. the analysis is limited to this stage.

Table 1 shows the precision of proposals processed by the different operators.
Neval represents the average number of proposals evaluated across the COCO
validation set. This is equivalent to the number of times that the operators
checkmarked in the table were used. Clearly, the proposals processed by g0 are
the main contributors to the overall precision (41.0 vs 42.2), even though only
15 such proposals are evaluated on average. For proposals processed by g1 or
g2 the performance is quite poor. This shows that the selector successfully allo-
cates operators to proposals, assigning the operators of large complexity to the
proposals that have higher chance of being associated with objects and devoting
much less computation to the remaining.

DPP 9

Interestingly, the vast majority of proposals (78%) are assigned to g2, i.e. use
no computation in the final DPP stage. These are very poor proposals (almost
zero AP), showing that the DPP detector learns to “give up” on such proposals,
simply shipping them to the output. When the proposals processed by g0 and g1
are merged, the precision is promoted by 0.7% (41.0 vs 41.7). This shows, that
the two types of proposals are complementary and confirms that g1 is important
although sparsely used.
Performance of Each Stage in DPP. Precision is tested across all stages
(k = 1 ∼ 6) and we obtain the AP as {15.6, 32.1, 39.3, 41.7, 42.0, 42.2}. The
results show that the precision increases quickly in the first 4 stages and then
saturates. Among the 6 stages, the selector is applied in stages {2, 4, 6}. The IoU
distribution of the proposals selected by different operators is shown in Figure
3. The total number of proposals processed by each operator is illustrated as a
subplot. Note that the proposals of larger IoU are mostly processed by g0 (blue
curve) even though the overall number of proposals processed by g0 decreases
drastically for the later stages (blue bar). In these stages, most proposals are
simply “shipped to the next stage” without any computation (g2). Conversely,
most low IoU proposals are processed by operator g2 (green curve) and the
number of such proposals increases drastically with the stage (green bar). This
illustrates how DPP is quite successful at trading off complexity for precision.
Visualization. Figure 4 shows some qualitative results, in the form of bounding
boxes predicted by the high complexity operator g0 in stages 4 and 6. Note that
the boxes predicted in stage 6 (right column) have a good overlap with the ground
truth (left column) with limited duplication. By comparing the boxes predicted
in different stages, we can observe that they are refined in the deeper stages. More
importantly, duplication is removed to a remarkable extent, indicating that not
only the selector prevents poor proposals from being processed by operator g0
but the network gradually transforms duplicates into bad proposals, in order to
meet the complexity constraint.

5.2 Main Results

DPP is compared to the state-of-the-arts for two backbones, ResNet-50 [9] and
MobileNetV2 [26], with the results shown in Table 2 and 3 respectively. In Table
2 and 3, N̄ represents the number of proposals for the Faster R-CNN [25] and
Sparse R-CNN [27] and the number of queries (which play identical roles to pro-
posals for final prediction) for attention baselines. For DPP, where proposals are
processed by different operators, N̄ is the equivalent proposal number, defined as
the ratio between the overall FLOPS spent by the detector head and the FLOPS
spent by the high complexity operator g0. For ResNet-50 the results of the base-
lines are copied from the original papers. For MobileNetV2 baselines, they are
obtained with the official code, using the recommended hyperparameters.
ResNet. When ResNet-50 is used as backbone, four variants of DPP are used
as the detection head. DPP-S, DPP-M and DPP-L use different overall num-
bers of proposals (N ∈ {50, 100, 300}). The other hyperparameters, i.e. Tmin

and α, are set to 1 and 2 respectively. In this way, Lc can assure there is at

10 Y. Li et al.

� ��� ��� ��� ��� �
�

����

���

��	�

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

����

���

��	�

� ���
�

��� � � �
��� � � �
��� � � �

IoU (stage 2)

of

 o
pe

ra
to

rs
	

of

 o
pe

ra
to

rs
	

of

 o
pe

ra
to

rs
	

IoU (stage 4)
� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �� ��� ��� ��� ��� �

�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

�

�

�

� ���
�

��� � � �
��� � � �
��� � � �

𝑔! 𝑔" 𝑔#

IoU (stage 6)
� ��� ��� ��� ��� �
�

����

���

��	�

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �� ��� ��� ��� ��� �

�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

�

�

�

� ���
�

��� � � �
��� � � �
��� � � �

𝑔! 𝑔" 𝑔#

� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �� ��� ��� ��� ��� �

�

���

�

���

� ���
�

��� � � �
��� � � �
��� � � �

� ��� ��� ��� ��� �
�

�

�

�

� ���
�

��� � � �
��� � � �
��� � � �

𝑔! 𝑔" 𝑔#

Fig. 3: IoU distribution of proposals matched to the three operators
across DPP stages (stage indexes k ∈ {2, 4, 6}). Within each plot, the number
of proposals processed per operator is shown as a subplot.

least 1 high complexity operator and assign 2 high complexity operators per
instance, on average. DPP-XL, is equivalent to DPP-L but further increases the
hyperparameter Tmin to 100. Table 2 shows that DPP achieves a good trade-
off between complexity and precision. At the high end, DPP-XL performs on
par with the Sparse R-CNN [27] with a much lighter detection head (15 vs 25
GFLOPS). The prior method with this level of complexity (Faster RCNN-FPN)
has an AP loss of close to 5 points (40.2% vs 45.0%). At the low end, DPP-S
reduces the Sparse R-CNN computation by 12.5×, for a decrease of 4.6 points
in AP. This is equivalent to the Faster RCNN-FPN, but saving 7× computa-
tion. Figure 5 shows that the complexity-precision (C-P) curve of DPP is better
than those of all other baselines. This confirms the benefits of treating proposals
unequally. Finally, DPP is evaluated on the COCO test set and we achieve the
AP as {44.7, 43.8, 42.5, 40.7} for the four variants of DPP (44.7 is obtained for
SparseRCNN [27]), which further justifies the effectiveness and stability of DPP.

DPP 11

𝑔! (stage 4) 𝑔! (stage 6)ground truth

Fig. 4: Boxes predicted by operator g0 in stages 4 and 6.

Method N̄ Epochs AP AP50 AP75 APs APm APl GFLOPS

Faster RCNN-FPN [25] 2000 36 40.2 43.8 43.8 24.2 43.5 52.0 14
RetinaNet [19] - 36 38.7 58.0 41.5 23.3 42.3 50.3 90
DETR-DC5 [3] 100 500 43.3 63.1 45.9 22.5 47.3 61.1 76
Deformable Detr [34] 300 50 43.8 62.6 44.2 20.5 47.1 58.0 98
Sparse R-CNN [27] 300 36 45.0 64.1 49.0 27.8 47.6 59.7 25

DPP-XL (ours) 182.3 36 45.0 63.8 48.8 28.2 47.4 59.9 15
DPP-L (ours) 82.6 36 43.7 62.4 47.5 27.2 46.0 59.1 6.8
DPP-M (ours) 38.8 36 42.2 60.6 45.5 23.9 44.6 58.5 3.2
DPP-S (ours) 25.5 36 40.4 58.2 43.4 22.0 42.8 57.0 2.1

Table 2: Comparison to state-of-the-art object detectors on COCO val-
idation set with ResNet-50. Four variants of DPP with various sizes are
shown, based on FPN. For DPP, N̄ is the equivalent proposal number, defined
as the ratio between the overall FLOPS spent by the detector head and the
FLOPS spent by each high complexity operator g0 (N̄ = C(ψ)/Cg0 in (2)),
while for baselines N̄ is either the proposal number or the number of queries.
The complexity (GFLOPS) is only that of the the detection head.

MobileNetV2. For MobileNetV2 we consider a lighter detection head, by de-
creasing the number of proposals for both DPP and baselines. Similar to ResNet,

12 Y. Li et al.

Method N̄ Epochs AP AP50 AP75 APs APm APl GFLOPS

Faster RCNN-FPN [25] 2000 36 28.7 47.1 30.3 12.7 32.6 39.6 14
DETR [3] 100 150 29.3 49.0 29.1 9.8 30.9 47.5 12
Deformable Detr [34] 100 50 35.8 54.4 37.8 17.6 38.8 51.0 25
Sparse R-CNN [27] 100 36 36.6 55.3 39.1 18.0 39.3 52.9 8.2

DPP-XL (ours) 94.8 36 36.9 55.8 39.3 18.8 40.3 51.9 7.8
DPP-L (ours) 78.9 36 36.7 55.3 39.0 18.4 39.8 52.2 6.5
DPP-M (ours) 54.5 36 36.1 54.5 38.3 17.5 38.8 52.1 4.5
DPP-S (ours) 43.7 36 35.7 54.2 37.9 16.9 38.2 52.1 3.6

Table 3: Comparison to state-of-the-art object detectors on COCO val-
idation set with MobileNetV2. Four variants of DPP with various sizes are
shown, based on light FPN for features with 2 strides (16, 32). For DPP, N̄ is
the equivalent proposal number, defined same as that in Table 2, while for base-
lines N̄ is either the proposal number or the number of queries. The complexity
(GFLOPS) is only that of the the detection head.

four variants of DPP are proposed. Given the more important role played by the
detection head in this case, we force the selector to choose more high complex-
ity operators, by increasing the lower bound Tmin for the target number of the
operators g0. When comparing DPP to the state-of-the-arts, the results shown
in Table 3 and Figure 6 enable even stronger conclusions than those drawn for
the ResNet. In this case, DPP-XL outperforms the Sparse R-CNN, establishing
a new state of the art, and even DPP-S has a small AP loss (less than 1%)
compared to the latter. These results confirm that DPP is a generic framework,
which can perform well with different types of backbones.

� � �� �� �� ���
��	
��
������������������������������

�

�!

"�

"�

"�

"�

""

"�

�
#�
��
$�
��
��	

%
�
�

DPP-XL

DPP-L

DPP-M

DPP-S

Sparse R-CNN

DETR

Deformable-DETR

Faster RCNN-FPN

RetineNet

Fig. 5: Comparison of complexity-
precision curve on ResNet-50
between DPP and state-of-the-arts
(MAdds only reflects the computa-
tional cost of the detector head).

� �� �� �� ��
����	
��
������

�
�����
�����������

��

��

�

!�

!�

!�

!�

!

�
"

��
#�
��
���

$
�
�

DPP-XLDPP-L
DPP-M

DPP-S
Sparse R-CNN Deformable-DETR

DETR

Faster RCNN-FPN

Fig. 6: Comparison of complexity-
precision curve on MobileNetV2
between DPP and state-of-the-arts
(MAdds only reflects the computa-
tional cost of the detector head).

Inference speed. Inference speed is measured for DPP and baselines on Mo-
bileNetV2 with a single-threaded core Intel(R) Xeon(R) CPU E5-2470 (2.4GHz)
(Deformable DETR [34] does not support CPU implementation). Results are

DPP 13

��� ��� ��� ��� �
��	
��
��������

��

��

��

��

��

��

��

��

�
�

��
��
��
���
�
�
�

DPP-XLDPP-L
DPP-MDPP-S

Faster RCNN-FPN
DETR

Sparse R-CNN

Fig. 7: Comparison of latency-
precision curve. Latency is tested by
using MobileNetV2 implemented on a
CPU, across the COCO validation set.
Latency reflects the inference time of
the whole network instead of only the
detection head.

��� ���� � ���� ��� ���� � ���� ���
��	
��
������������������������������

�

� ��

��

����

�
!�
��
"�
��
��	

#
�
�

𝑇!"# = 1,
𝛼 = 1

𝑇!"# = 1,
𝛼 = 2

𝑇!"# = 20,
𝛼 = 2

𝑇!"# = 30,
𝛼 = 2

Fig. 8: Effect of the hyperparam-
eters for the target usage of g0,
i.e. lower bound (Tmin) and multiplier
(α), on the complexity-precision trade-
off. The performance of four variants of
DPP model are illustrated via varying
Tmin and α.

obtained by averaging inference time of all images in the COCO validation split
and shown in Figure 7. The latency is for the whole network, not just the head.
It can be seen that DPP achieves a consistently better latency-precision curve
and its savings in computation are clearly reflected in savings of inference time.

5.3 Ablation Study

In this section, we present some ablation studies for the proposed loss function
and hyperparameters used by DPP. The backbone is based on ResNet-50 and, by
default, 100 proposals (N = 100) are used by all models. The lower bound Tmin

and multiplier α for the operator g0 are 1 and 2. All experiments are performed
on the COCO dataset.
Selection loss. We start by exploring the influence of the selection loss Ls on
DPP performance. Table 4 shows that using either component, IoU loss Liou

or complexity loss Lc, alone degrades the precision of DPP. Without Liou the
precision drops by 0.4% (41.8% vs 42.2%), because the selector can no longer
fully match the proposal qualities to the operator complexities. Without Lc, the
precision is 1.1% worse (41.1% vs 42.2%). This is because, during training with-
out Lc, the model is more prone to assign the light operator (g2) to proposals.
Beyond weakening precision, this more critically prevents the complexity of DPP
from being modified as needed. Table 5 studies the trade-off between Liou and
Lc as a function of λ. The performance is similar for λ = 1 and λ = 10, but
further increasing λ makes DPP focus too much on complexity and ignore the
importance of IoU matching, degrading performance. We thus set λ = 10 in all
subsequent experiments.
Target number of heavy operators. The target number T of useage of heavy
operator g0 is leveraged in Lc to control the complexity of DPP. T is determined
by two hyperparameters, the lower bound Tmin and the multiplier α. Four DPP

14 Y. Li et al.

Liou Lc AP AP50 AP75 APs APm APl

✓ 41.1 59.2 44.2 23.1 43.1 57.0
✓ 41.8 60.2 45.1 23.7 44.0 58.2

✓ ✓ 42.2 60.6 45.5 23.9 44.6 58.5

Table 4: Effect of the loss functions, i.e. the IoU loss Liou and the complexity
loss Lc on DPP.

λ AP AP50 AP75 APs APm APl

1 42.1 60.7 45.6 24.1 44.5 58.3
10 42.2 60.6 45.5 23.9 44.6 58.5
100 41.7 60.3 44.9 23.4 44.1 57.5
300 41.0 59.4 44.3 22.2 43.5 57.2

Table 5: Effect of the hyperparameter λ in the selection loss (Ls = Liou +
λLc) of DPP.

variants are implemented by varying these hyperparameters as shown in Fig-
ure 8. The average number of times the operator g0 is selected per image is
{8, 15, 22, 31} in the COCO validation set, for models ranging from small to
large FLOPS in Figure 8. It can be seen that the precision of the model with
Tmin = 1 and α = 2 is at the inflection point of the curve, beyond which the pre-
cision grows slowly for a large increase of the computational cost. When α = 2
and Tmin = 1, the model selects the g0 operator 15 times on average. This is
only twice the average instance number in COCO (7), confirming the effective-
ness of loss function Lc. This result also suggests that using twice as many high
complexity proposals as the number of object instances is a very effective choice
in terms of the complexity-precision trade-off for the detection head.

In summary, the number of high complexity operators used on average can
be very smaller than the overall number of proposals (N = 100). Moreover, both
hyperparameters can be used to modify the complexity of the detection head.
The multiplier is more useful when the best complexity-precision trade-off is
desired while the lower bound is more effective when the goal is to achieve the
best precision irrespective of complexity.

6 Conclusion

In this paper, we propose to treat proposals of object detection unequally. A
matching problem between proposals and operators is designed and optimized
via a dynamic proposal processing (DPP) framework that contains a simple
selector supervised with two loss functions, the IoU loss and the complexity
loss. Experimental results show that the DPP framework achieves the state-of-
the-art complexity-precision trade-off for the object detection on different types
of backbones under a wide complexity range. We hope this paper can provide
inspiration for different approaches of proposal processing by future research as
well as research in deeper questions, such as the role of computational constraints
in the development of effective vision systems.

DPP 15

References

1. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolu-
tional neural network for fast object detection. In: European conference on com-
puter vision. pp. 354–370. Springer (2016) 3

2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 6154–6162 (2018) 1, 3

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision. pp. 213–229. Springer (2020) 1, 3, 5, 6, 8, 11, 12

4. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution:
Attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11030–11039 (2020) 4

5. Chen, Z., Huang, S., Tao, D.: Context refinement for object detection. In: Proceed-
ings of the European conference on computer vision (ECCV). pp. 71–86 (2018) 3

6. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully
convolutional networks. In: Advances in neural information processing systems.
pp. 379–387 (2016) 3

7. Dai, X., Chen, Y., Yang, J., Zhang, P., Yuan, L., Zhang, L.: Dynamic detr: End-
to-end object detection with dynamic attention. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 2988–2997 (2021) 4

8. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features
from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1580–1589 (2020) 2

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 3, 7, 9

10. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network
design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 13713–13722 (2021) 4

11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)
3, 4

12. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016) 6

13. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceed-
ings of the European conference on computer vision (ECCV). pp. 734–750 (2018)
3

14. Li, C., Wang, G., Wang, B., Liang, X., Li, Z., Chang, X.: Dynamic slimmable
network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 8607–8617 (2021) 4

15. Li, F., Li, G., He, X., Cheng, J.: Dynamic dual gating neural networks. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. pp. 5330–
5339 (2021) 4

16. Li, X., Wang, W., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss v2: Learn-
ing reliable localization quality estimation for dense object detection. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11632–11641 (2021) 3

16 Y. Li et al.

17. Li, Y., Chen, Y., Dai, X., Liu, M., Chen, D., Yu, Y., Yuan, L., Liu, Z., Chen, M.,
Vasconcelos, N.: Revisiting dynamic convolution via matrix decomposition. arXiv
preprint arXiv:2103.08756 (2021) 4

18. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017) 7

19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017) 3, 11

20. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014) 7

21. Liu, F., Wei, H., Zhao, W., Li, G., Peng, J., Li, Z.: Wb-detr: Transformer-based
detector without backbone. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 2979–2987 (2021) 3

22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21–37. Springer (2016) 3

23. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV). pp. 116–131 (2018) 2

24. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: Dynamicvit: Ef-
ficient vision transformers with dynamic token sparsification. arXiv preprint
arXiv:2106.02034 (2021) 4

25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28, 91–99 (2015) 1, 3, 8, 9, 11, 12

26. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018) 2, 3, 7, 9

27. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L.,
Yuan, Z., Wang, C., et al.: Sparse r-cnn: End-to-end object detection with learnable
proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14454–14463 (2021) 1, 2, 3, 5, 7, 8, 9, 10, 11, 12

28. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 9627–9636 (2019) 3

29. Verelst, T., Tuytelaars, T.: Dynamic convolutions: Exploiting spatial sparsity for
faster inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2320–2329 (2020) 4

30. Wang, Y., Huang, R., Song, S., Huang, Z., Huang, G.: Not all images are worth
16x16 words: Dynamic vision transformers with adaptive sequence length. arXiv
preprint arXiv:2105.15075 (2021) 4

31. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: Conditionally parameterized
convolutions for efficient inference. arXiv preprint arXiv:1904.04971 (2019) 4

32. Zhang, J., Huang, J., Luo, Z., Zhang, G., Lu, S.: Da-detr: Domain adaptive de-
tection transformer by hybrid attention. arXiv preprint arXiv:2103.17084 (2021)
3

33. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based
and anchor-free detection via adaptive training sample selection. In: Proceedings

DPP 17

of the IEEE/CVF conference on computer vision and pattern recognition. pp.
9759–9768 (2020) 3

34. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020) 3, 5, 11, 12

	Should All Proposals be Treated Equally in Object Detection?

