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Behaviours across terrorist groups differ based on a variety of factors, such as groups’ resources or objec-
tives. We here show that organizations can also be distinguished by network representations of their
operations. We provide evidence in this direction in the frame of a computational methodology organized
in two steps, exploiting data on attacks plotted by Al Shabaab, Boko Haram, the Islamic State and the
Taliban in the 2013–2018 period. First, we present LabeledSparseStruct, a graph embedding approach,
to predict the group associated with each operational meta-graph. Second, we introduce SparseStruct-
Explanation, an algorithmic explainer based on LabeledSparseStruct, that disentangles characterizing
features for each organization, enhancing interpretability at the dyadic level. We demonstrate that groups
can be discriminated according to the structure and topology of their operational meta-graphs, and that
each organization is characterized by the recurrence of specific dyadic interactions among event features.
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1. Introduction

Terrorist events are generally studied by only considering their temporal dependence employing, for
instance, traditional time-series approaches [1–5]. Little is known, conversely, about the complex structure
of their operational interdependencies.

The literature has highlighted how certain factors can influence the different decision-making pro-
cesses leading to the stage and execution of attacks [6, 7]. This wealth of research has contributed to
advancing our knowledge on the diversity and heterogeneity that characterizes terrorist actions, not only
concerning direct events characteristics (e.g. who to target) but also in relation to locations and timing.
Nonetheless, research on terrorism has vastly overlooked the micro-level operational mechanics arising
from the study of attack streams, as well as the dynamics emerging from the analysis of attacks framed
in a relational perspective. Especially when we consider groups that are to some extent structured and
organized, attacks are connected because they are part of coordinated campaigns occurring in bounded
timeframes. This temporal feature justifies analytic designs concerned with temporal dependencies [4, 8–
10]. Yet, not only are events patterned in time but they are also linked in terms of their characteristics,
unravelling patterns that exist on an operational layer. An organization does not randomly choose targets
or weapons: these decisions are made in relation to a specific strategy and therefore form behavioural
patterns that can be mathematically represented through complex graphs.

© The authors 2022. Published by Oxford University Press. All rights reserved.
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To shed light on the distinctive behavioural patterns characterizing terrorist organizations, we here
represent weekly streams of events as meta-graphs in which nodes are event features and edges map the
degree of co-occurrence among features. By doing so, we computationally derive the distinctive opera-
tional topologies of terrorist organizations, which we hypothesize unravel different behavioural patterns of
such organizations. To test our hypothesis, we provide a two-step analytical procedure. First, we propose
a modified version of SparseStruct, called LabeledSparseStruct [11], a graph embedding algorithm
that we train and evaluate against a set of state-of-the-art graph learning algorithms to demonstrate its
predictive ability and show that distinctive operational patterns can be inferred to identify perpetrators
of attacks. This algorithm includes edge weights, which are invaluable to understanding our dataset, and
incorporates attack characteristics in the form of node labels. Second, we present SparseStructExpla-
nation, a new graph-designed algorithmic explainer, and we analyse its results showing that—beyond
structural and topological differences—also simpler dyadic edge-level distinctive operational character-
istics can be ascertained. Relying on data from the Global Terrorism Database (GTD), the present study
specifically focuses on terrorist attacks plotted from 2013 to 2018 by Al Shabaab by Boko Haram, the
Islamic State and the Taliban.

In order to maximize the utility of meta-graphs to represent the data, optimal node embeddings must
be generated prior to classification tasks. We hypothesize that embeddings which capture the structural
similarity between nodes will be most effective. Additionally, the frequency of certain attack charac-
teristics is likely to inform a predictive model. To that end, LabeledSparseStruct [11] includes node
features, and weighted edges as are found in this dataset. The node features represent fundamental char-
acteristics of the attack, and edge weights correspond to the frequency that those characteristics were
observed in a given time frame. These node labels are considered in each iteration of the exploration of a
node’s neighbourhood. This process allows the algorithm to consider the attack characteristics associated
with a node as well as those associated with each of its neighbours. Further, we introduce an explanation
algorithm that scores the importance of each edge in the graphs for the classification of each terror group.
This enriches the information that can be extracted about the actions of terrorist organizations, further
showcasing behavioural signatures among them.

The remainder of the present article is as follows. In Section 2, we will provide an overview of research
on both terrorist operations and graph learning approaches, which constitute the two building blocks—the
theoretical and the methodological ones—of the work. Concerning the former aspect, we will frame the
extant research in terms of a relational perspective to terrorist operations. Then, in Section 3, we will
describe in detail the data used in the analyses, the information engineering step as well as the functioning
of the LabeledSparseStruct embedding approach and the SparseExplanation algorithmic explainer.
Section 4 will present the prediction outcomes from the comparative analyses of the various classification
approaches and the interpretation outcomes. Finally, in Section 5, we will summarize the contribution of
the present work, highlighting possible future research venues and intelligence implications.

2. Background

2.1 A relational perspective to terrorist operations

The extensive literature that studies terrorist behaviors clearly shows how several endogenous and exoge-
nous factors often explain organizations’ behavioural profiles. In turn, terrorist organizations differ in
terms of the nature and characteristics of their attacks, which are either explained by or correlated with
such factors.

Among these, scholars have for instance identified ideology [12–14], resources, goals and objectives
[15], organizational features [16] as well as exogenous factors such as counter-terrorism strategies and
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GEOMETRICAL SHAPES OF VIOLENCE 3

military campaigns [17]. All these aspects contribute to shed light on the critical differences that distin-
guish groups perpetrating political violence and help researchers and analysts disentangle the multifaceted
complexity of terrorism.

Within the scholarship on terrorism decision-making, a series of studies recently presented a novel
framework to study terrorist behavioural patterns through the use of complex networks. These works
proposed to represent terrorist actions and operations through the use of dynamic meta-graphs mapping
interconnections between attack features—such as attacked targets, employed weapons and deployed
tactics—in order to capture the hidden relations between distinct events and highlight existing behavioural
mechanisms that identify terrorists’ profiles.

In [18] for instance, authors show how representing terrorist actions by means of meta-graphs mapping
interconnections in terms of tactics, weapons and targets provides much more contextual information on
the recurring patterns of terrorist violence than traditional feature space engineering practices that only
rely on simple multivariate time-series measuring the frequency of feature occurrence.

Specifically, the meta-graph approach outperforms the shallow time-series approach when the out-
comes of a set of algorithmic architectures on the task of targets forecasting are compared. The authors
argue that the higher success determined by the meta-graph approach is related to the fact that such a
technique provides information on temporal dependencies and unravels a further layer of information that
includes operational dependency. This indicates that by engineering time-series through meta-graphs, the
measurements embed time-dependent structural information and help identify connections between quali-
tatively similar behaviours. Graphs, in this regard, flexibly formalize these multiple layers of dependencies
which are overlooked in traditional time-series approaches.

In [19, 20], instead, a similar representation framework is utilized to characterize terrorist behavioural
profiles to then detect clusters of groups that are found to be operationally similar. In the first work, the
authors analyse events pertaining to almost 1,500 organizations active worldwide from 1997 to 2016
to construct networks picturing behavioural profiles in a cross-sectional setting, using an entropy-based
approach to assess the relevance of each feature mode (i.e. targets, weapons and tactics). Each mode is
treated as a separate source of information for tracking organizations’ behaviours, giving more importance
to modes that were less homogeneous in their composition.

The second work describes a refined approach that considers multi-modal graphs originated from the
network representation of tactics, weapons and targets at the yearly level, focusing only on the 105 major
terrorist organizations that plotted at least 50 attacks globally from 1997 to 2018. By concentrating on
yearly multi-modal graphs, Campedelli et al. [20] assess the evolution in the number of clusters, in their
composition, and in the drivers that explain behavioural heterogeneity over time, indicating, for instance,
that ideology affinity and geographical proximity do not explain the operational similarity.

While the three works seek to respond to different research questions and are designed in different
ways, they all propose the use of operational meta-graphs as a new way to represent and character-
ize terrorist behaviours. Such a framework can be used for forecasting tasks as well as for describing
the changing dynamics associated to terrorist violence worldwide. Instead of treating events as inde-
pendent from one another, or events’ characteristics as independent from one another, a graph-oriented
approach facilitates the investigation of recurring behavioural patterns, distinctive features, anomalies
and behavioural changes.

This recent methodological line of research goes beyond the traditional use of networks in terrorism
studies and criminology. The now abundant literature that encompasses a network orientation on the
study of illicit and criminal networks mostly concentrates on relationships between individuals [21–23].
More recent efforts have moved beyond traditional social network analysis to employ complex networks
approaches to study, for instance, organized crime [24–26] and corruption [27, 28], but most of them relied
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4 G. M. CAMPEDELLI ET AL.

on tangible connections measured by, among others, meeting co-attendance, telephone communication
or co-offending.

Social network analysis has been an important toolbox to reveal behavioural dynamics and organi-
zational features behind a wide spectrum of organizations engaging in political violence as well. The
methodological breakthroughs in network science, in fact, benefited the study of criminal and terrorist
networks by providing empirical insights that have supported old theories or contributed to the generation
of new ones [29–32]. In terrorism research, the network paradigm has been applied among other things to
study Islamist or jihadism organizations [33–36], alliances between actors in the global scenario [37] and
support and radicalization through social media platform [38–40]. Yet, relational perspectives to the study
of such social phenomena fail to go beyond the tangible connections between individuals (or groups of
individuals). With very few exceptions, however, the literature on networks and crime and networks and
terrorism have not considered other types of relationships, e.g., those between events or characteristics
of events, which may reveal underlying knowledge structures that escape the traditional methodologies
embedded in traditional Euclidean spaces generally employed to study actors or their behaviours.

The particular representation strategy outlined in this work follows this intuition and is situated in the
theoretical framework of the strategic theories of terrorism. This frame originates in the work of [41] and
posits that terrorist actions are instrumental choices made by a rational entity (i.e. the group) to obtain
particular gains or achieve specific objectives. The strategic frame imposes to treat each group as if it was
guided by collective rationality [42, 43]: a group is therefore motivated by a defined set of preferences,
which in turn are transformed into events, acts and attacks. The strategic frame thus conveniently unveils
the possibility that these constrained decision-making processes hold characteristics that can be formalized
in a relational dimension. Proponents of the strategic frame have mostly considered terrorist actions as
the consequence of neoclassical rational agents that seek to optimize a certain objective function, often
identified by the groups’ specific political goals [42–44]. Other competing theoretical frames such as
the psychological and the organizational ones argue that alternative external and internal mechanisms
influence terrorists’ actions, suggesting that the strategic frame simplifies the inherent complexity of
terrorism [45]. Terrorist actions might be the effect of adversarial views within the same organization,
or could be determined by non-rational psychological mechanisms at the individual level. The unitary
definition of terrorist groups is the nucleus around which the strategic, psychological and organizational
frames wrestle. Yet, these alternative theories do not contest that actions remain strategic to some extent.
Is it a rational, calculated choice to cause a deviation in standard attack strategies? Is it due to a change
in leadership? Could it be explained in terms of psychological mechanisms? Regardless of the answer—
which is beyond the scope of this article—the strategic frame offers a flexible description of reality. This
description of reality is backed by empirical evidence demonstrating that although terrorists may not be
perfectly rational agents, their actions are crucially characterized by patterns at various scales and across
different dimensions in many circumstances and contexts. In light of these aspects, we model terrorist
behaviours, and particularly their attacks, using graphs, which are mathematical objects that enable us to
represent and capture the fundamental dependencies across events and, most importantly, across event
features. The hypothesis is that the resulting structural and topological characteristics of these graphs
offer a rich representation of terrorist operations, and that, given the non-random nature of their actions
and the unique goals and contexts in which the groups under analysis operate, we can leverage such
representations to better understand the nature of their complex behaviours.

2.2 Graph learning: related work

The development and application of machine learning approaches on graphs have become extremely
popular in the last years, as networks are central in many domains, ranging from the natural to the social
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GEOMETRICAL SHAPES OF VIOLENCE 5

Fig. 1. Connectivity vs. structural connectivity. Node colour represents similarity. Colour for “e” and “p” indicates similarity to all
other nodes in the two respective graphs.

sciences [46]. As reported by [47], the most important task of graph learning is to find ways to represent or
encode graph structures in order to easily exploit this information in machine learning models. One type
of graph representation learning refers to a body of approaches that convert graph data—a list of nodes
and edges—into a numerical vector representation for each node. This vector then becomes the input to
downstream standard machine learning tasks, such as classification. These methods aim to project the
node into some low-dimensional latent space while maintaining that similar nodes will be found close to
one another in said space.

Though a wide variety of methods exist, they can generally be classified into one of two groups based
upon their notion of node similarity. If similarity between nodes is based upon connectivity, then nodes
that share many neighbours will be proximal in the latent space. A structure-based node representation
will instead project two nodes with similar neighbourhood structures close to one another.

Figure 1 shows a schematic representation of the differences between connectivity-based similarity
and structural similarity. Using approaches based upon connectivity, node c would be proximal to a, b
and d, while distant from node g. Node e would be placed between c and g, and closer to them than the
leaf nodes. Notably, when a structure-based similarity is observed, one can clearly see that though nodes
m and r share only one neighbour, their structural role in the network is identical. This is also true for the
leaf nodes; each would be considered identical based upon their neighbourhood structure. Interestingly,
node p would be projected between the central nodes and the leaf nodes, as it is structurally less central
than m and r, but more central than the leaf nodes.

For this study, our aim is to capture information regarding the structure of the relationships between
characteristics, and further to gather information about the importance of individual structures in the
resulting networks. To this end, we will compare methods that are suited for structural-based proximity
embeddings.

We will consider graph neural network-based methods that are expected to show good performance
at capturing structural information, and particularly a graph convolutional network (GCN) and a graph
isomorphism network (GIN). Like LabeledSparseStruct, both employ a method that is based upon
the Weisfeiler-Lehman’s graph isomorphism test, wherein a node’s structural representation is iteratively
updated as its neighbours are explored. Both the GCN and the GIN share a connection with convolu-
tional neural networks, where the convolution operation is an aggregation function performed upon a
node’s neighbours’ representations. For the GCN, the mean aggregation function is used and generates
a linear mapping followed by a ReLU activation function. Mean pooling is applied to generate graph
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6 G. M. CAMPEDELLI ET AL.

representations [48]. GIN uses a multi-layer perceptron with a ReLU and a sum aggregation function for
node representations. Graph representations are generated via sum pooling [49].

3. Materials and methods

3.1 Data

To study the interconnected operational features of attacks plotted by Al Shabaab, Boko Haram, the Islamic
State and the Taliban, we have relied on the GTD [50]. The GTD is the most comprehensive open-access
source for research on terrorist events, including more than 200,000 events. We have specifically focused
on attacks plotted by the abovementioned groups in the 2013–2018 period in the current work. Although
the GTD includes attacks from 1970 on, we have only considered the 2013–2018 frame because it is the
most extended time window in which there is temporal overlap between the organizations. In fact, the
most recent terrorist organization’s first registered attack in the dataset—the Islamic State—occurred in
2013. Temporal overlap is a crucial ingredient of our prediction task, as we are particularly interested in
finding distinctive operational characteristics in the topology of non-temporally separable attacks.

First, we have removed all those events of uncertain terrorist nature, as reported by the GTD, to
ensure that all the events used in our study were relevant. Second, per each given group, we have kept all
those attacks in which at least one of the identified perpetrators was the given group, in the time-frame
of interest, which started on 1 January 2013 and ended on 31 December 2018. The GTD records up to
three perpetrators for each attack: in fact, one event may be plotted by two or three allied organizations.
This operation led to a total of 14,104 events. The Taliban accounted for 5,280 observations, the Islamic
State 5,104, Boko Haram was responsible for 1,829 while Al Shabaab for 1,891. We have then grouped
all the events by 1-week windows comprising 7 days of activity for each actor. The weekly distribution
of events is provided in Fig. 2.

To generate the temporal operational graphs for each group, we have relied on three sets of variables
that are available in the GTD. These are attack types (that we refer to as tactics henceforth), targets,
and weapons. In the GTD, each event can be associated with up to three different tactics, three different
targets and four different weapons. Similarly to the group variable where an event may be plotted by
more than one group at a time, an attack can thus be directed to a mix of targets, using multiple tactics
and multiple weapons.

The set of attacked targets in the period under consideration is given by Airports & Aircraft,
Business, Educational Institution, Food or Water Supply, Government (Diplomatic), Government
(General), Journalists & Media, Maritime, Military, NGO, Police, Private Citizens & Property, Reli-
gious Figures/Institutions, Telecommunication, Terrorists/Non-State Militia, Tourists, Transportation,
Unknown, Utilities and Violent Political Party. The set of weapons instead includes Chemical, Explosives,
Fake Weapons, Firearms, Incendiary, Melee, Other, Unknown and Vehicle (not to include vehicle-borne
explosives, i.e., car or truck bombs) . Finally, possible tactics are Armed Assault, Assassination, Bomb-
ing/Explosion, Facility/Infrastructure Attack, Hijacking, Hostage Taking (Barricade Incident), Hostage
Taking (Kidnapping), Sabotage Equipment and Unarmed Assault.

We used all the available information on the operational characteristics of each event to generate our
graphs. The specific procedure is described below.

3.2 Operational meta-graphs

3.2.1 Defining operational meta-graphs Once our filtered dataset containing all the attacks plotted by
each of the four groups has been prepared, we have proceeded to create the temporal operational graphs.
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GEOMETRICAL SHAPES OF VIOLENCE 7

Fig. 2. Number of terrorist attacks per week in the 2013–2018 time window, per group.

However, before moving to the proper explanation of how meta-graphs are generated, it is useful to
provide a general, non-technical definition to describe what they are.

An operational meta-graph is intended as a graph having as nodes specific terrorist events’ features
that have characterized attacks in a given time frame. In the present work, every operational meta-graph
is generated using the information at the weekly level. Hence, for instance, the node-set in a meta-graph
contains the targets hit by a given group in the week under consideration, as well as the tactics utilized and
the employed weapons. These nodes (i.e. event features) would form connections if they co-occurred in
some events in the same week. Connections are weighted, meaning that the higher the number of times a
certain target has been associated with a specific weapon, the stronger the connection will be. It is relevant
to note that edges do not connect together attacks, but features of attacks. We are not using the framework
to connect attacks that are part of coordinated campaigns: we are interested in the relationships that map
feature co-occurrence in the same time unit. Describing attacks via meta-graphs leads to a topological
representation of terrorist actions that do not treat event features as independent of one another. Instead,
temporally close attacks are seen in a relational perspective, in line with the theoretical proposition that
strategic patterns govern terrorist decision-making. To exemplify, by analyzing attacks of a group we might
find that Attacking religious institutions is put in relation to the use of firearms, which in turn are also con-
nected to diplomatic targets, and so on. Our core hypothesis then is that this web of connections between
features should hold distinctive characteristics for different groups, as a byproduct of distinct strategies.

3.2.2 Generating operational meta-graphs For each group o in our set O, we have represented the
terrorist attacks plotted in the 2013–2018 period by separating them in weekly chunks that can be for-
malized as sequential bipartite matrices W1,2,...,313 in the ordered list W , where one mode represents the
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8 G. M. CAMPEDELLI ET AL.

days associated to a specific week, and the other mode represents the specific set of tactics, targets and
weapons that characterize a group’s repertoire. For a group oi, Equation 1 visualizes the weekly bipartite
matrices W1,2,...,313, where the entries α are integers indicating the number of times a specific feature Fn

has characterized attacks in a given day within W.

W1,oi :=

F1 · · · Fn⎛
⎝

⎞
⎠

day 1 α1,F1 · · · α1,Fn
...

...
. . .

...
day 7 α7,F1 · · · α7,Fn

W2,oi :=

F1 · · · Fn⎛
⎝

⎞
⎠

day 8 α8,F1 · · · α8,Fn
...

...
. . .

...
day 14 α14,F1 · · · α14,Fn

...

W313,oi :=

F1 · · · Fn⎛
⎝

⎞
⎠

day 2184 α2184,F1 · · · α2184,Fn
...

...
. . .

...
day 2191 α2191,F1 · · · α2191,Fn

. (1)

The bipartite graphs in the W list are then individually projected into monopartite graphs in order to
obtain F × F weekly weighted graphs for each group, where nodes are the features derived from the
repertoire of tactics, targets and weapons of each group. These graphs are then stored in the ordered list
G, where they are indexed by the week they refer to. For a group oi in a week Wk , the projection into G
is computed multiplying the transpose of the bipartite graph with the original bipartite graph itself:

GWk ;oi = WT

k,oi
(Wk,oi). (2)

This step leads to a square monopartite matrix with non-zero diagonal, where entries are weights W .
Raw weights in each monopartite matrix are a measure of the number of times two features Fl and Fm

co-occurred together in attacks plotted within the range of 7 days covering each week.
Then Goi = (GW1;oi , GW2;oi , · · · , GWk ;oi) represents the ordered list of weekly operational meta-graphs

for a group oi. A sample visualization of the final outcome of the meta-graph processing phase is provided
in Fig. 3.

3.3 The embedding approach

3.3.1 Graph basics and notations Let G = (V , E, L, W) be a labelled, weighted, undirected operational
meta-graph (for parsimony in this section we will ignore the subscripts referring to the specific week
and terrorist group an operational meta-graph is associated with). V denotes the set of all nodes in
the graph, and E ⊆ (V × V) the set of edges connecting the nodes. The list of node labels and edge
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GEOMETRICAL SHAPES OF VIOLENCE 9

Fig. 3. Sample visualization of operational meta-graphs G for 3 weeks W1, W2, Wk for group oi. Nodes are the features present in
each weekly time window, indexed by F1, ..., F8.

Table 1 Notations found throughout this work

Notation Description

G The given graph
V The set of nodes in the graph
E The set of edges in the graph
W The list of edge weights in the graph
L The list of node labels in the graph
|V | The number of vertices
|E| The number of edges
u Single node in the graph
nbr(u) The set containing the neighbours of node u
knbr(u, k) The set of neighbours in the k-hop neighbourhood of node u
n The size of the representation of node u

weights are denoted as L and W . |V | and |E| represent the number of nodes and edges, respectively.
The neighbourhood of node u ∈ V is given by nbr(u) = {v|(u, v) ∈ E or (v, u) ∈ E}. For our purposes,
knbr(u, k) will refer to the set of all edges connecting each node in the k-hop neighbourhood of node u.
Following the embedding algorithm, each node will have a representation of the same size, denoted here
as n. The full list of notations is found in Table 1.

3.3.2 LabeledSparseStruct algorithm In [11], the authors present SparseStruct, an unsuper-
vised method which generates structural node representations based upon Weisfeiler–Lehman’s graph
isomorphism test [51].

SparseStruct was found to perform at least as well many state of the art graph representation learning
algorithms including GraphSage [52], Node2Vec [53], Struc2Vec [54] and GraphWave [55] on both
node classification and in its ability to capture node structure. Additionally, SparseStruct shows rapid
convergence of the algorithm, and efficient time complexity.

We here propose a modified version of SparseStruct, denominated LabeledSparseStruct , which
incorporates weighted edges and node labels into the structural representation of each node. Prior to
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10 G. M. CAMPEDELLI ET AL.

generating node embeddings, the edge weights are normalized by the terror group and timestamp to
which they belong. Weights are row-normalized as follows in the range [0, 1] in order to control their
high variance, a byproduct of the variations in terms of number of attacks observed for the considered
groups:

WNorm
u,vW

= Wu,vW

sum(W ∈ TerrorGroupuW
)
. (3)

Row-normalization allows easier temporal comparison in relative terms among features. Trivially, the
higher the weight, the higher the number of times two features have co-characterized events in the same
weekly time window.

Briefly, the algorithm (Algorithm 1) consists of an iterative convergent process that explores the
neighbourhood of each node and updates the node’s representation at each depth. The algorithm continues
until the maximal number of allowed iterations is reached or further iterations fail to generate additional
novel node structures. Here, we say that the algorithm has converged. We begin the while loop with all
nodes considered to have the same structure, so the starting matrix is set to a single column, all with
index zero. At each iteration i, the one-hot encoded labels are concatenated to the previous iteration’s
node representation matrix. The SparseMatrixGen method assigns to all the identical rows the same
progressive identifier with the use of a hash tree index (Line 17). A sparse matrix SMi is then generated of
size |V |× |indexID(SMi)| (Line 18). This generates a column for each structure type that is known at this
level of exploration. Each column is then updated by adding the weight of each neighbour matching the
corresponding structure type. For node u, the value of the cell SMi[id(u), j] is the sum of the weights of
edges between node u and all of its neighbours with identifier j (Line 20). The sparse matrices generated
in each iteration are concatenated to the previous iteration’s representations to capture information from
the evolution of a node’s structural representation as its neighbourhood is further explored. After the
SparseMatrixGen function has converged (or the maximal number of iterations have been completed),
the sparse matrix is condensed using a Truncated SVD to generate the final node embeddings.

A detailed description of the space and time complexity of the original version of the algorithm, along
with its performance can be found in [11].

3.4 SparseStructExplanation: explaining graph embedding results

The embedding procedure provides us with a further layer of information, namelythe quantification of the
importance of each connection between nodes. Once graph classification has been performed, a generic
explainer can be used in fact to return importance scores for attributes of the node (or graph) embedding.
Algorithm 2 traces a score back through the iterations of node representation parsing performed in
Algorithm 1 and places it on all edges responsible for that structural feature. The final result is an edge
score representing an accumulation of scores for all structural features to which it contributed.

During the iterations of the node embedding generation method of LabeledSparseStruct, infor-
mation about each structural feature in the sparse matrix is stored in a hashmap under a tuple key
(node, featureIndex). The value at each key is a list of all neighbours contributing to that feature, and the
level at which they were explored (Algorithm 1, Line 21). This results in an easy lookup table to which
we can refer to trace each attribute score to its component edges.

For this work, each node embedding for an individual terror group and timestamp was concatenated
to represent a graph embedding. ExtraTrees was used to perform graph classification, followed by the
LIME Explainer to obtain graph attribute importance scores [56]. Because the number of features was
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GEOMETRICAL SHAPES OF VIOLENCE 11

Algorithm 1 LabeledSparseStruct algorithm
1. function SparseStruct(G = (V , E), W , L, explorationDepth, k)
2. WNorm

u,v = NormalizeEdgeWeights(G, W)

3. LC = OneHotEncode(L)

4. SM, explanVal = SparseMatrixGen(G, WNorm
u,v , L, explorationDepth)

5. M, svdComponents = TruncatedSVD(SM, k)

6. return M, explanVal, svdComponents
7. end function
8. function SparseMatrixGen(G = (V , E), WNorm

u,v , LC, explorationDepth)
9. Initialize a sparse matrix SM0 ∈ Z

|V |×1 to zero
10. Initialize a list L of sparse matrices
11. Initialize a hashmap explanVal
12. current = 0
13. i = 1
14. len = 0
15. while i <= explorationDepth do � Stopping criteria
16. SMi = horizontalstack(SMi, LC)

17. index = IndexID(SMi)

18. Initialize a sparse matrix SMi ∈ Z
|V |×|index| to zero

19. for all (u, v) ∈ E do
20. SMi[id(u), index(SMi−1[id(v), :])]+ = WNorm

u,v
21. append (id(v), i) to explanVal[(id(u), index(SMi−1[id(v), :]) + current)]
22. end for
23. append SMi to L
24. if len = |index| then
25. break
26. else
27. append SMi to L
28. len = |index|
29. current+ = len
30. i = i + 1
31. end if
32. end while
33. SMtot = horizontalStack(L)

34. return SM, explanVal
35. end function

reduced using SelectKBest, scores were mapped back to the feature space generated prior to the reduction,
and the scores were also decomposed from the graph representation back into its node constituents. This
generates a sparse matrix for the attribute scores, and Algorithm 2 is used to obtain explanations only for
edges that were relevant to the classification. For each node u, we reverse the truncatedSVD performed
in LabeledSparseStruct to retrieve a list of feature scores equal to the size of the original node embedding
(Line 9). This means that the value found at any index in the score matrix is the corresponding score for
a feature in that same index in the node embedding. We iterate through each of these features, obtaining
the list of all the neighbour nodes of u that contributed to that structural feature (Line 11). To each of
the neighbours v in that list, the score is allocated according to the proportion of weight that its edge
contributed to the original embedding ((Line 16). If the first level iteration is being explored, the resulting
individualScore can simply be added to the edgeScore for that edge (u, v). However, recall that each
iteration represents a depth of exploration of each node’s neighbourhood, resulting in an updated structural
representation of that node. Therefore, if we consider scores that result from later iterations, that feature
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12 G. M. CAMPEDELLI ET AL.

must be ‘unfolded’ to each of the structures attributed to it, and the score applied to each corresponding
edge. To accomplish this, we gather every edge in the k-hop neighbourhood of the neighbour v, where
k is the levelExplored for the feature. This represents every edge that makes up the known structure of
neighbour v at a depth of exploration k. Each of these edges were considered in the parsing of node u
through its edge with neighbour v, so each of their edgeScores is incremented by the value individualScore.
It becomes clear that after all features for every node are input to the algorithm, each edge’s score reflects
its level of participation in the overlapping structures of every node’s local neighbourhood.

Algorithm 2 SparseStructExplanation algorithm
1. function SparseStructExplanation(G = (V , E))
2. initialize a hashmap edgeScores
3. M, explanVal, svdComponents = SparseStruct(G = (V , E), W , L, explorationDepth, k)

4. ExplainEdge(G, explanVal, svdComponents, score)
5. return edgeScores
6. end function
7. function ExplainEdge(G, explanVal, svdComponents, score)
8. for all (u) ∈ V do
9. scores = score × svdComponents

10. for all i ∈ n do
11. (nbr(u)i, levelExploredi) = explanVal[(id(u), i)]
12. for all (v, levelExplored) ∈ (nbr(u)i, levelExplored) do
13. if (u, v) /∈ edgeScores then
14. edgeScores[(u, v)] = 0
15. end if
16. individualScore = score[i]

WNorm
u,v /WNorm

tot ∈(nbr(u)i)

17. if levelExploredi = 0 then
18. edgeScores[(u, v)]edgeScores[(u, v)] + individualScore
19. else
20. for all (x, y) ∈ knbr(v, levelExplored) do
21. edgeScores[(x, y)] = edgeScores[(x, y)] + individualScore
22. end for
23. end if
24. end for
25. end for
26. end for
27. return edgeScores
28. end function

4. Results

4.1 Experiments

LabeledSparseStructwas used to generate node embeddings that incorporated normalized edge weights
and node labels for the dataset described above. Node labels refer to the attack characteristics outlined in
the dataset description, while edge weights are proportional to the frequency of observed characteristics in
the measured time period. Data were split into a 75:25 train-test set maintaining the integrity of individual
subgraphs (terror groups and time-stamps). Two different splits were performed, and both maintained a
chronological order between attacks (The earliest 75% of time-stamps were used for training, and the
latest 25%). The first one used weekly time-stamps, the second instead used bi-weekly time-stamps for
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GEOMETRICAL SHAPES OF VIOLENCE 13

Table 2 Graph classification performance on the dataset. Means are presented plus/minus standard
deviation. SparseStruct refers to the original algorithm in which no labels or edge weights are included.
For all LabeledSparseStruct analyses, both labels and edge weights are included. LabeledSparseStruct
1 wk groups attacks in a weekly interval, while LabeledSparseStruct 2 wk groups is the dataset where
attacks are grouped in a biweekly interval

Model Accuracy% F1 score% Recall% Precision%

GIN (no weights/labels) 43.27 ± 5.51 35.72 ± 4.61 43.59 ± 4.57 32.04 ± 4.88
GIN (weights+node labels) 60.93 ± 5.46 60.40 ± 5.41 61.32 ± 5.38 61.21 ± 5.55
GCN (no weights/labels) 25.88 ± 4.89 10.22 ± 1.55 25.00 ± 0.00 6.47 ± 1.22
GCN (weights+node labels) 72.99 ± 5.07 65.29 ± 13.40 67.32 ± 11.76 68.37 ± 13.78
SparseStruct 53.39 ± 1.07 53.07 ± 1.06 53.84 ± 1.08 52.78 ± 1.08
LabeledSparseStruct 1 wk 75.38 ± 0.74 74.95 ± 0.77 75.50 ± 0.75 76.11 ± 0.75
LabeledSparseStruct 2 wk 74.96 ± 1.20 74.51 ± 1.20 75.03 ± 1.20 75.52 ± 1.10

comparative purposes, following previous studies that found that micro-cycles of violence for many ter-
rorist organizations follow bi-weekly time periods [57–59]. SelectKBest was used to reduce the number
of features; then the ExtraTrees Classifier was used for graph classification. Performances are measured
as the mean of 10 KBest transformations each run on 10 ExtraTrees Classifiers. For comparison, embed-
dings were generated from LabeledSparseStruct without node labels or edge weights to demonstrate the
improvement on classification performance. Hyperparameters for the TruncatedSVD, ExtraTrees Clas-
sifier and SelectKBest were determined empirically to optimize accuracy. The TruncatedSVD reduced
each node’s embedding to 17 features, which were then concatenated into a graph representation. This
resulted in a sparse matrix with 629 possible features (17 × 37 possible node types). The list was further
reduced using the SelectKBest method, to 130 features per graph.

For comparison, graph classifications were performed on the dataset using a GIN and a GCN. Five
thousand epochs were run with a node representation size of 100, and the metrics were averaged over
all after a settling period, from 1000 to 5000. Single and double-layer neural networks were tested, and
results for the best-performing models are presented below.

Table 2 shows that our modifications to the SparseStruct algorithm increased the performance on
the graph classification task by over 20 percentage points in terms of accuracy. Indeed, the performance
of all models was significantly increased by the addition of node labels. The incorporation of both
node labels and edge weights in the LabeledSparseStruct algorithm has resulted in a model that
exceeds the performance of the graph neural network models. Similar performance was observed when
attacks were grouped in 2-week time intervals. The LabeledSparseStruct with 1-week time-stamps
has on average an accuracy that is 0.42 percentage points higher than the second-best model, which is
the LabeledSparseStruct with bi-weekly time-stamps, 2.39 percentage points more than GCN with
weights and node labels and 14.45 percentage points more than GIN with weights and labels. In terms of
F1 score, compared to the other three methods, LabeledSparseStructwith weekly time-stamps achieves
results that are 0.44, 9.66 and 14.55 percentage points higher, respectively. The difference in terms of
performance remains similar in recall (+0.47, +8.18 and +14.18) and precision (+0.59, +7.74 and +14.9)
compared to the other three best alternatives.

These results are relevant in two different directions. First, from an algorithmic perspective, they
demonstrate the better performance of LabeledSparseStruct against other competing approaches. Given
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14 G. M. CAMPEDELLI ET AL.

Fig. 4. Trend in weekly number of edges in each graph G—per each group. Dashed lines in each subplot represent polynomial fits
describing the overall trend in the number of edges over the period under consideration.

the nature of the problem, which is challenging hard as these groups acted in the same historical period,
and considering the relatively small amount of data at our disposal to avoid temporal separability, the
outcomes achieved across the four metrics are promising.

From a theoretical point of view, the results empirically demonstrate graph-level differences in the
representation of terrorist events, suggesting a sort of geometrical shape of violence characterizing each
of the groups. In line with our initial intuition, terrorist groups can also be distinguished in terms of
the hidden connections between features of temporally close events. Additionally, it is relevant to notice
that, despite the chosen algorithmic approach, better performances have been achieved by considering
also node labels and weights. This means that not only geometry is important but that also access to the
specific characteristics of the elements in the graphs is critical. In fact, while the topology and geometry
of violence have a role in describing distinct actions by distinct groups, it is not sufficient to rely on them
alone to fully capture the complexity of terrorist behaviours. Similar topologies may be very different in
terms of the features represented in each graph and the strength of the association between distinct nodes.

4.2 Explaining terrorist signatures

4.2.1 Operational heterogeneity and temporal trends Before delving into the explanation results at the
dyadic level to identify terrorist signatures, we review the evolving nature of each group’s operational
graphs in two ways. First, in terms of trends in the number of edges composing each of the graphs (Fig. 4).
Second, in terms of node heterogeneity, as a complementary measure of repertoire heterogeneity (Fig. 5).
Node heterogeneity is calculated as the ratio between the total number of unique nodes in each weekly
graph G per each group and the universe of unique nodes present at least in one graph in the test set. This
measure aims at quantifying how diverse are the attacks in a given week, for a given terrorist organization.
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GEOMETRICAL SHAPES OF VIOLENCE 15

Fig. 5. Trend in weekly node heterogeneity in each graph G—per each group. Node heterogeneity is defined as the ratio between
the number of unique nodes at each time stamp and the total number of unique nodes over the period under consideration (in the
test set). Dashed lines in each subplot represent polynomial fits describing the overall trend in the number of edges over the period
under consideration.

The plot reveals three sets of findings. First, the graph structures across our analysed organizations
considerably vary from one group to the other in terms of number of edges. Boko Haram is the jihadist
group with the overall lower number of edges, as demonstrated by the scale of the y-axis in the dedicated
subplot. Conversely, the Taliban stands out compared to the others, indicating that a higher number of
connections generally characterizes the graphs associated with the Afghan organization.

Second, and more importantly, the Taliban is the only group showing an increasing trend in the number
of edges over time. This means that, in our test test—which maps the most recent bulk of activity spanning
approximately the period that goes from June 2017 to the end of 2018—the number of edges in the Taliban
operational graphs has continued to grow, indicating increasing diversity in feature connectivity. It should
be kept in mind that a growing trend does not mean increasing activity, as we are here considering feature
compositions of attacks rather than quantity of events. To exemplify, one group may plot 100 attacks
only using one weapon, one tactic and choosing one target, and in that case the operational graph will
only be composed of three feature nodes and at most three edges. Alternatively, another group may
plot 10 attacks using 6 different weapons, 5 different tactics against 10 different targets. Trivially, in
the latter case, the number of edges will be higher in spite of a lower level of activity compared to the
former case.

Third, in terms of node heterogeneity, instead, the four groups are much more comparable, but the
Taliban remains the only group displaying a slightly increasing trend. This underscores that the Taliban
have widened their repertoire in the last period of the analyses, while the other three have consistently
clustered their behaviours around a more restricted set of tactics, weapons and targets.

The Taliban, as anticipated, is the only one presenting increased complexity in behavioural hetero-
geneity. All the other groups, conversely, are characterized by diminishing operational combinations.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/2/cnac008/6564024 by guest on 10 April 2022



16 G. M. CAMPEDELLI ET AL.

ISIS displays a less steep decrease, Al Shabaab and Boko Haram instead reveal instead significant edge
reductions over the period under consideration.

These two results suggest macro differences exist among groups, even without focusing on micro-level
qualitative distinctions in terms of behavioural characteristics.

4.2.2 Most recurring edges To further describe the distinctive characteristics of the four considered
groups, we focus on the edge-wise composition of the temporal meta-graphs in each group’s test set. In
this subsection, we specifically analyse the distribution of the 10 most common dyadic edges. This allows
shedding light on the most recurring operational preferences for each group, along with an assessment of
the prevalence of such preferences. For each group, the 10 most common edges are visualized in Fig. 6:
each edge’s presence is measured in terms of the share out of the total number of time units, 83, in the
test set. If a certain edge is always present in a given graph GTest Set, the share will be equal to 1.

Several indications emerge from Fig. 6. First, the 10 most recurring edges for the Taliban are all
very close to the maximum of 1. This is peculiar, especially in comparison with Al Shabaab and Boko
Haram, pointing out that there exist a consistent bulk of dyadic edges that always characterize Taliban
operational graphs and, therefore, behaviours. The Taliban’s preferences are not converging over a single
dyad or very few of them but are, conversely, distributed over an extended set of edges, suggesting that
the Taliban’s behavioural stability is reflected in larger topological networks, rather than in consistent
sub-graphs. In fact, while for Al Shabaab and Boko Haram the distribution of the most recurring edges
entails variations in graph structures but stability in specific edges, the almost universal presence of the
10 most recurring edges for the Taliban demonstrates that they constitute the backbone of the operational
graphs in the test set. The situation for ISIS is similar to the one commented for the Taliban.

A qualitative comparison of the edges in the four subplots allows one to further appreciate differences
among these organizations. First, it is straightforward for the Taliban to note a strong tendency towards
targeting police forces. This attitude is a unicum in the considered sample of terrorist groups. However,
ISIS demonstrates to prefer soft targets and civilians in their decision-making of targeting choices, as
highlighted by the high and diffused prevalence of private citizens and properties as a feature node in the
reported most common edges. Al Shabaab and Boko Haram also share this distinctive characteristic.

Concerning weapons, three groups out of four (i.e. Al Shabaab, ISIS and the Taliban) have explosives
as the preferred means for conducting attacks, and particularly the combination of two explosives. Boko
Haram, conversely, prefers lighter weapon choices, such as firearms, although explosives are yet present
in its most recurring edges. Interestingly, heterogeneous weapon selections (namely, edges between two
distinct weapon types) do not characterize any of the recurring behavioural choices of the four groups.

In terms of tactics, they largely reflect the groups’ preferences for explosives and firearms. Thus,
bombing/explosion and armed assault are the most common tactics present in the core recurring structures
of the organizations’ operational graphs. Boko Haram behaviours, however, show uniqueness compared
to the others given their peculiar recurring tendency of using facility and infrastructure attack tactics,
which are present in almost 60% of the temporal graphs in the test set for the Nigerian group. This reflects
a particular dimension of Boko Haram’s confrontation strategy with Nigerian institutions and companies
aimed at disrupting critical infrastructure, communication networks and legitimate economic sectors.

4.2.3 Edge importance ThroughSparseStructExplanation,we retrieve the edges that were important
for the classification of the graphs into each terror group. Figure 7 displays the distributions in terms of
feature importance scores over all the weeks in the test set, for each group. Importance scores can take
both positive and negative values, with negative values indicating that a given edge, conditional on the
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GEOMETRICAL SHAPES OF VIOLENCE 17

Fig. 6. Top 10 most recurring edges in the test set—per each group, measured in terms of presence share over number of weeks.

particular structure of graph G in which it is embedded, is detected to be anomalous. In other terms, when
an importance score is lower than zero, the explanation algorithm indicates that the specific edge would
have fit better within the operational topology of another group.

It should be noted that the ranking in Fig. 7 does not reflect the one seen in Fig. 6. In fact, edges are
listed here based on their decreasing average importance, from the top to the bottom of each subplot. In
other words, this means that if an edge is the most popular one in the test set does not mean that it is also
the one that has higher importance in the explanation phase.
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18 G. M. CAMPEDELLI ET AL.

Fig. 7. Distribution of feature importance scores for the top 10 most recurring edges—per each group.

Interestingly, the highest average values are associated with the Taliban, especially concerning the
top 4 edges within the 10 most recurring ones. This outcome further testifies to the strong homogeneity
of behaviours of the Afghan group, characterized by recurring patterns. Particularly, edges connecting
firearms weapons used against police, armed assault used again police, and police targeted in combination
represent the most important Taliban’s signatures, not only in terms of prevalence but also in terms of
importance. Notwithstanding, these three relevant edges also report some considerable degree of variation
suggesting that, while characterizing operations for most weeks in the test set, the overall topology of the
operational graphs changes, slightly modifying signatures at the edge-level. This result may be explained
by the considerable number of average links in each Taliban weekly meta-graph, as displayed in Fig. 4.

While the Taliban and ISIS exhibited similarities in terms of the high distributed prevalence of a
restricted number of edges, the two groups display distinct situations in terms of distribution of feature
importance scores. ISIS, in fact, does not have a straightforward subset of edges that definitely characterize
its operations, compared to the Taliban, as magnitudes are lower and much more homogeneous across
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the ten most common edges. The distributional ranges for the ten most recurrent edges are very similar,
indicating a very low degree of operational variation in the weeks included in the test set for ISIS.

The situation for Boko Haram is the most peculiar one. Not only are the distributions considerably
wider than those of Al Shabaab, ISIS and, on average, also the Taliban, but they also exhibit a considerable
amount of outliers. At least one positive outlier is present in each of the Nigerian group’s 10 most common
operational edges. The magnitude of the highest importance scores is significantly different from the
others. The diffused presence of outliers points toward a noticeable degree of evolution in behaviours and
operations, making Boko Haram the group with the highest levels of variability. This finding likely reflects
the varying strategies that the group has embraced over the last years considered in the analysis, in line
with previous research depicting Boko Haram’s tendency to modify tactics according to new strategies
or in response to external factors [60–62]. Finally, besides the considerable presence and importance of
edges involving the use of armed assault as a tactic, it is worth highlighting the significance of attacks
involving facility/infrastructure attacks against private citizens and property, a highly distinctive feature
of Boko Haram [63]. Facility and infrastructure attacks represent the only considerable anomalous edge
across the four groups and our algorithmic approach recognized its relevance in the characterization of
Boko Haram’s operational graphs.

From a distributional standpoint, Al Shabaab manifests a feature importance situation that resembles
the one commented for ISIS, with very restricted distribution having mean values very close to zero. The
joint use of assassination tactics represents the edge with the highest average overall, another peculiarity
compared to the other three groups, which did not report a tendency in using this particular tactic to carry
out their attacks. Al Shabaab’s increasing resort to assassination as a means of targeted terrorism was
already highlighted by [64] observing data from 2007 to 2013. Most of the other links in the list are very
common also to other groups, indicating a general cohesiveness in a relevant share of operational fabrics.

5. Discussion and conclusions

Social network analysis and network science in general have consistently become two valuable method-
ological approaches in the study of terrorism [21, 22, 65, 66]. The literature now counts dozens of studies
analysing how terrorist groups are organized, evolve, adapt, and act in the perpetration of political vio-
lence. However, the vast majority of these studies mostly concentrated on networks of individuals. In
this context, networks are used to map relationships between agents, such as groups’ affiliates: links con-
necting two actors may describe communication connections, attack co-participation and other similar
constructs.

These approaches have offered researchers considerable opportunities to expand our knowledge on
how terrorist organizations work. Yet, the power of networks has remained almost unexplored when
it comes to mapping other types of terrorist dynamics that do not regard individual-level connections.
Although empirical research has now demonstrated that terrorist events cluster in space and time, scholars
have only marginally investigated whether other types of less visible dependencies exist. In particular,
we know very little about the possible interdependencies between event characteristics. We know that
terrorist events often self-excite sequences of other attacks [4, 67, 68], and that temporal concentration
also has a spatial component [57, 69, 70], but we have only recently started to investigate whether we
can gain significant knowledge also from the study of connections among features describing temporally
close attacks [18] or operationally similar actors [20]. Network science and computational modelling are,
in this regard, crucial frameworks to investigate this possibility.

Motivated by the strategic theories of terrorism, this work has precisely sought to showcase the
promise of geometrical representations of terrorist attacks in advancing our understanding of how terrorist
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20 G. M. CAMPEDELLI ET AL.

organizations operate. The strategic theories of terrorism posit that, in light of collective rationality,
terrorist groups act strategically to reach specific objectives [45]. This strategical behaviour, in turn,
generates patterned dynamics that, we hypothesized, can also be detected in the peculiar characteristics
defining a group’s history of attacks.

In the current work, we have specifically explored the topological characteristics of terrorist attacks of
four major jihadist organizations using data obtained from the GTD [50]: Al Shabaab, Boko Haram, ISIS
and the Taliban. These topological characteristics are investigated by creating operational meta-graphs
representing connections among event features (i.e. tactics, weapons and targets) at the weekly level for
the 2013–2018 period, accounting for more than 14,000 events.

Our computational approach has been organized into two phases. First, we were interested in verifying
that graph-based differences existed between the groups, possibly indicating that different groups exhibit
different behaviours also in terms of dependencies between event characteristics. Second, we aimed to
capture each group’s micro-level distinctive operational features to qualitatively understand the dyadic
features that, beyond overall topology, help us describe each group’s behaviours. This second phase
sought to contribute to the increasing demand for interpretability in black-box machine learning models
that are often extremely difficult to describe and understand [71, 72].

Concerning the first phase, we have proposed a modified version of SparseStruct [11], named
LabeledSparseStruct, to correctly classify the group associated to each weekly operational meta-graph
in a multiclass classification problem setting.SparseStruct is a fast and scalable structural representation
learning approach that uses a sparse internal representation for each node in a given graph, preserving
nodes’ structural information. Unlike the original version, our modified algorithm incorporates node
labels and weights to fully exploit the information portfolio offered by our operational meta-graphs.
The performance of LabeledSparseStruct has been compared to five other algorithmic architectures:
the original SparseStruct with no labels and weights, two versions of GINs (one with nodes labels
and weights, and one without) and two versions of GCNs (again, with and without node labels and
weights). LabeledSparseStruct with weekly time-stamps reached an accuracy performance more than
20 percentage points larger than the original SparseStruct algorithm, demonstrating the importance
of weights and labels in describing terrorist behavioural and operational differences. Node labels and
weights increased the performance of GINs and GCNs as well, but no approach obtained a better global
performance than LabeledSparseStruct across the four considered metrics (i.e. Accuracy, F1 Score,
Recall and Precision).

With regard to the second phase, we used LabeledSparseStruct—being the algorithms with the
highest performance—to generate SparseStructExplanator, an approach to obtain information about
the importance of dyad-level features in the prediction task. SparseStructExplanator is built upon
the LIME Explainer [56] and allows to identify what links contribute more to the operational profile
of the Islamist organizations in our sample. The results of our explanation technique reveal interesting
differences across the groups. First, the Taliban—the only group that overall displayed an increase in the
number of edges and node heterogeneity in the operational meta-graphs over time—reported a distinctive
subset of edges, which appear to map recurring operations over time. Yet, we also documented a sizable
degree of variation of importance scores, meaning that the Taliban’s strong preference towards certain
operations sometimes is coupled with alternative sets of behaviours. Second, the Taliban and ISIS show
a certain similarity in their most recurring edges, although the distribution of the feature scores for such
edges is very different between the two. The quantitative results for ISIS, in this case, qualitatively
suggest a limited degree of variation and, in turn, a high degree of consistency of behaviours. Third, Boko
Haram exhibits a peculiar situation. Outliers in the distribution of the feature importance scores of the
10 most common links point in the direction of a high degree of strategical evolution over the period
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under consideration. Fourth, Al Shabaab feature importance scores distributions resemble those of ISIS,
suggesting a comparable level of operational homogeneity between the two.

Our study fits in a recent line of inquiry that addressed terrorist behaviours from a relational perspec-
tive, with relationships represented in forms of operational meta-graphs [18, 19]. It has highlighted how
representing streams of attacks through connections between event features provides relevant information
on the distinctive characteristics associated with groups’ different strategies. Our sample of compared
groups revealed a substrate of topological characterizations which becomes even more interesting in light
of the fact that all groups are associated with Islamist extremism. Not only historical, cultural, geograph-
ical, political differences as well as ideological nuances exist between these groups but also operational
ones at various levels, as documented by both our analytic phases—the prediction and the explanation
ones.

Albeit algorithmic results are encouraging, our work naturally comes with several limitations. First,
we needed to use a relatively small amount of data to satisfy the condition of overlapping timeframes of
activity, given the fact that the first attack recorded for ISIS available in the GTD dates back to 2013.
More data would be useful to fully exploit the computational performance of LabeledSparseStruct
which is specifically designed to handle vast amount of data efficiently.

Second, our sample of groups is interesting because it comprises groups that are all linked to the
same broader category of Islamist extremism but do not include organizations that are overlapping also
in terms of local geography. Each of the four acts in distinct countries or regions somehow limiting the
practical relevance of our analysis beyond its mere research value.

Third, our explainability only considers dyadic features rather than expanding the focus to more
complex sub-graphs that might distinguish groups even more sensibly. While the dyadic approach cer-
tainly offers more straightforward results to be interpreted, it may be limiting in situations where deeper
topological differences are at play.

In spite of these limits, this work provided two sets of contributions. From a research standpoint,
it generated insights on behavioural patterns that are not merely visible when considering aggregated
data in traditional cross-sectional or spatio-temporal settings, calling for new systematic approaches that
incorporate other layers of dependencies among events. The results of our classification experiments
and the insights provided by the explanation phase demonstrated the existence of topological complex
differences in the nature of attacks across different organizations. How these actors organize and plot
terrorist events unravel the role interdependencies between features have in shaping their behavioural
profiles.

In the future, our framework may also be used to study topological differences between different
criminal groups or criminal behaviours, extending its applicability beyond terrorism research. The algo-
rithmic approach here presented may reveal significant geometrical differences distinguishing different
criminal organizations or gangs, enriching the set of network-oriented tools that are already available to
researchers and law enforcement. Its applicability could cover both traditional social networks as well as
knowledge graphs mapping, for instance, offenders’ roles, skills or tasks.

From a practical counter-terrorism perspective, our computational approach may become helpful
for engineering tools that can help analysts identify perpetrators of specific sets of attacks for which
responsibility is uncertain or not known at all. Exploiting the relational perspective might be useful for
determining perpetrators of unclaimed attacks and can facilitate counter-intervention and enhance security
strategies for civilians and other sensible subjects. The contained computational cost of our models makes
them particularly palatable as they do not require excessive time or resources to be computed. Further, our
explainer supplies dyad-level information that can be embedded into risk assessment tools for intelligence
monitoring. Scores mapping the importance of specific connections between features for a given group
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might enhance security policies to disrupt such links. However, as also mentioned in the limitations, this
type of policy contribution will require additional experiments in geographical contexts with overlapping
actors beyond simple overlapping timeframes of activity to become effective. Future work will hence go
in this direction.

Code Availability

The data and code used to conduct the current research are available for reproducibility purposes at
https://github.com/janetlayne2/SparseStruct.
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