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Abstract 
Cardiovascular diseases (CVDs) are the number one cause of death worldwide. Mass 
production of engineered heart tissue using differentiation of human-induced pluripotent 
stem cells (hiPSCs) can substitute a large number of the lost heart muscle cells in patients 
with CVDs. However, the scale-up of the differentiation systems for heart tissue, i.e., 
cardiomyocyte (CM), production is challenging because many parameters affect the 
process. Machine learning (ML) techniques can be employed to identify critical process 
parameters for differentiation systems and build models to elucidate the impact of these 
parameters on process outcomes. Here, we present a ML model to predict CM content on 
day 10 of the differentiation. Phase-contrast images of microspheroid tissues on 
differentiation day 5 are the inputs of the ML model, and the output is CM content on 10 
of differentiation, classified as either sufficient and insufficient. Support vector machines 
are used as the classifier models. We utilized feature extraction and selection methods. 
The best classifier had an accuracy of 77% in predicting the sufficient CM content class. 
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1. Introduction 
Heart muscle cells (cardiomyocytes (CMs)) are one of the least regenerative cells in the 
body. Cardiovascular diseases (CVDs) can lead to heart failure and loss of in the order of 
billion CMs (Kempf et al., 2016). Few viable treatments are present for patients with 
CVD and post-heart attack problems. Production of CMs via differentiation from human-
induced pluripotent stem cells (hiPSCs) may contribute to developing and testing 
therapeutics for CVDs, e.g., in fields such as drug monitoring and cell therapy (Denning 
et al., 2016). Mass production of CMs and their implementation in cell therapy of CVD 
patients is another potential application of hiPSC-derived CMs (hiPSC-CMs).  

The production of CMs by differentiation of hiPSCs in a 3D platform is a complex, 
expensive process, and a high number of parameters impact the system performance 
(Gaspari et al., 2018). The 3D platforms are promising for the scale-up of CM production, 
and identifying critical process parameters and their optimal ranges for 3D platforms is 
the first step towards scale-up. More specifically, distinguishing an unsuccessful batch 
from a successful one at an earlier time point of the differentiation would significantly 
reduce the expense and time required for CM production. 

In recent years, machine learning (ML) techniques have been successfully used to study 
complex systems where fundamental understanding is limited. These techniques use 
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information from data sets to infer the relationships between process parameters (inputs) 
and outcomes (outputs). With the progress in ML algorithms and computational power, 
many studies exploited the information contained in images to build models to study 
different systems, such as quantification of CM contraction using image correlation 
analysis (Kamgoué et al., 2009) and plant disease detection (Vishnoi et al., 2021).  

This study investigates the ability to classify CM content on day 10 of hiPSC-laden 
microspheroid differentiation using images taken on day 5. The CM content is defined as 
the percentage of the cells which are CMs on the specific differentiation day. We 
hypothesize that the phase-contrast images of the cells taken during differentiation 
include information regarding differentiation progress and that a classifier model can 
capture this information to distinguish batches with sufficient CM content from those 
with insufficient. Support vector machines are trained using different extracted feature 
sets of the phase-contrast images to predict the CM content class. The best model had an 
accuracy of 77% and an MCC of 0.53.  

2. Methods and Materials 
2.1. Experiments 

HiPSCs were encapsulated within PEG-fibrinogen (PF) by using a novel microfluidic 
system (Tian and Lipke, 2020) in microspheroids with different sizes and axial ratios 
(AR). After culturing the hiPSC-laden microspheroids in E8 or mTeSR-1 media for 3 
days, the CM differentiation is carried out by supplemented CDM3 or RPMI/B27 minus 
insulin with CHIR on day 0 and IWP2 on days 1 and 3, respectively. Fresh CDM3 was 
added on days 3, 5, 7, and fresh RPMI/B27 minus insulin media was added on days 1 and 
5. Following day 7 or 10, the microspheroids were cultured with RPMI/B27 (Gibco), and 
the media was exchanged every 3–4 days. (Figure 1). Phase-contrast images were taken 
throughout the differentiation timeline on days 0, 1, 3, and 5, shown in Figure 1.  

 
Figure 1. Differentiation protocol of hiPSC-laden microspheroids 

2.2. Data Used to Build the Classifier Model 

The initial training data set included 301 phase-contrast images, from day 5 of 
differentiation, with their corresponding CM content on day 10. Images on day 5 were 
used because day 5 is the earliest time point without any external stimuli or changes to 
the system with image availability. Each image contained 496 × 658 pixels. Figure 2 
shows two representative images. The images were augmented to increase the number of 
training data points to improve the model’s generalization. Each image was flipped and 
rotated (180°), increasing the number to 903. 

CM content above 70% on the 10th differentiation day was defined as the Sufficient class, 
and batched with CM content below 70% belonged to the Insufficient class. The data was 



Image classification of experimental yields for cardiomyocyte cells differentiated from 
human induced pluripotent stem cells 

split into test and train sets using 20% and 80% of data ratios, respectively. Different 
classifier models were compared based on their performance on the test set. 

 
Figure 2. Representative phase-contrast images of microspheroids on day 5 

2.3. Feature Extraction 

The RGB color space features (color features) of the image pixels formed the initial input 
feature set. We used two techniques to extract additional features from the images, 
Histogram of Oriented Gradients (HOGs) (Freeman and Roth, 1994) and texture 
transformations (Haralick et al., 1973). The HOG feature descriptor is used for object 
detection and utilizes the local intensity gradient distributions to identify object edges in 
the images. In the texture transformation method, the grey level co-occurrence matrix 
(GLCM) is used to calculate six different statistical attributes to explain the image texture 
patterns. Four different directions, 0°, 90°, 45°, and 135°, were used to calculate the 
GLCM matrices. The six attributes derived from the co-occurrence matrix (Aborisade et 
al., 2014; Haralick et al., 1973) includes  

1) Contrast, which is a measure of the local intensity variations, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � � |𝑖𝑖 − 𝑗𝑗|2𝑝𝑝(𝑖𝑖, 𝑗𝑗)
𝑗𝑗𝑖𝑖

 Eq. 1 

2) Dissimilarity, which is a localized measure of distance for a pair of pixels, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = � � |𝑖𝑖 − 𝑗𝑗| 𝑝𝑝(𝑖𝑖, 𝑗𝑗)
𝑗𝑗𝑖𝑖

 Eq. 2 

3) Angular Second Moment (ASM), which represents the orderliness of each window 
of the image, 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑝𝑝(𝑖𝑖, 𝑗𝑗)2
𝑖𝑖,𝑗𝑗

 Eq. 3 

4) Energy, which is the square root of the ASM,  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √𝐴𝐴𝐴𝐴𝐴𝐴 Eq. 4 

5) Homogeneity, which represents the local homogeneity within the image by comparing 
the elements to the diagonal value of the GLCM matrix, and  
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𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = � �
1

1 + |𝑖𝑖 − 𝑗𝑗| 2
 𝑝𝑝(𝑖𝑖, 𝑗𝑗)

𝑗𝑗𝑖𝑖
 Eq. 5 

6) Correlation, which is a measure of the linear correlation between the grey-level values 
of neighbouring pixels. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � �
(𝑖𝑖 − 𝜇𝜇𝑖𝑖) �𝑗𝑗 − 𝜇𝜇𝑗𝑗� 𝑝𝑝(𝑖𝑖, 𝑗𝑗)

𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
 

𝑗𝑗𝑖𝑖
 Eq. 6 

In Eqs. (1) – (6), 𝑝𝑝(𝑖𝑖, 𝑗𝑗) is the normalized value of the GLCM matrix element at row 𝑖𝑖 and 
column 𝑗𝑗, and 𝜇𝜇𝑖𝑖and 𝜎𝜎𝑖𝑖 are mean and variance for each row of the GLCM matrix 
components. 

We constructed five feature sets as potential inputs for the classifier model using color 
features, HOG features, and texture transformation features. The first set includes all 
features (color+HOG+texture), the second color and HOG features (color+HOG), the 
third color and texture features (color+texture), the fourth HOG and texture features 
(HOG+texture), and the last one only texture (texture) features. Principal Component 
Analysis (PCA) (Hotelling, 1933) was used to reduce feature set dimensions. PCA uses 
orthogonal transformations to build components with a linear combination of the original 
input features to convert a set of possibly correlated features into uncorrelated ones. The 
principal components (PCs) explaining 95% of the variance in the input data were 
considered as classifier inputs. 
2.4. Classifier Model Construction and Evaluation 

Support Vector Machines (SVMs) (Drucker et al., 2002) were used as the classification 
models. Linear, radial basis function, and second and third-order polynomials, were 
evaluated as potential kernels for the SVMs. Kernel selection and regularization 
parameter tuning were carried out using five-fold cross-validation. Accuracy (Guyon and 
Elisseeff, 2003), recall (Sokolova and Lapalme, 2009), precision (Sokolova and Lapalme, 
2009), and Mathew’s correlation coefficient (MCC) (Matthews, 1975) were the metrics 
used for comparing the performance of the classifiers. 

3. Results and Discussion 
The performance of classification models in predicting the CM content class for the test 
points is shown in Figure 3. Figure 3 includes a plot of the performance metrics of the 
classifiers trained using each feature set. The classifiers were trained using the original 
data set and the augmented data set, and the performance metrics are plotted separately 
for these classifiers. The plots only include performance metrics calculated using the test 
data. Figure 3 reveals that the SVM employing the texture transformation features yielded 
the best performance with an accuracy of 77%, a recall of 92%, a precision of 75%, and 
an MCC of 0.53. The data augmentation improved the classifier model performance for 
the ones employing features other than textures transformations. Because texture features, 
except for those in which the GLCM matrix was calculated in 45° and 135° directions, 
are obtained using global transformations, their values are both rotation and flip invariant. 
As a result, the models that employ texture transformation features perform similarly 
when trained using the original data set or the augmented one.  

The performance of classification models trained using PCs is given in Figure 4. The 
classifiers that employ the texture features had the best performance with an accuracy of 
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74% and an MCC of 0.51. The classifier model trained only using HOG and texture 
features for constructing the PCs, eliminating all color features, had the worst 
performance with recall, precision, and MCC of zero. Data augmentation, in general, 
improved the performance of the classifiers that used PCs as input sets. However, the 
performance metrics of the classifier models using PCs as inputs were lower (worse) than 
those of classifier models built using raw texture, color, and HOG features.  

 
Figure 3. Bar plots of SVM classifier performance metrics trained using different feature sets for 
the original data set (solid bars) and augmented data set (dashed bars). 

 
Figure 4. Bar plots of SVM classifier performance metrics trained using PC and different feature 
sets for the original data set (solid bars) and augmented data set (dashed bars). 
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4. Conclusions 
Imaging is commonly used for tracking human induced pluripotent stem cell (hiPSC) 
differentiation. Using image-based classification, we built binary classification models to 
predict Sufficient/Insufficient classes of cardiomyocyte (CM) content in cells 
differentiated from hiPSCs. Feature extraction methods were implemented to identify and 
use the significant features from images to build the classifier. The experimental batched 
with a CM content above 70% was labeled as the Sufficient class, and our classifier was 
able to predict the classes with 77% accuracy. Future work will include consideration of 
mixed data from experimental variables and images and consideration of convolutional 
neural networks as the ML technique to improve the performance of the classifier models. 

5. Acknowledgments 
This work was funded by NSF grants #1743445 and #2135059. 

References 
Aborisade, D.O., Ojo, J.A., Amole, A.O., Durodola, A.O., 2014. Comparative Analysis of 

Textural Features Derived from GLCM for Ultrasound Liver Image Classification. Int. J. 
Comput. Trends Technol. 11, 239–244. https://doi.org/10.14445/22312803/ijctt-v11p151 

Drucker, H., Shahrary, B., Gibbon, D.C., 2002. Support vector machines: Relevance feedback and 
information retrieval. Inf. Process. Manag. 38, 305–323. https://doi.org/10.1016/S0306-
4573(01)00037-1 

Freeman, W.T., Roth, M., 1994. Orientation Histograms for Hand Gesture Recognition. Gesture. 
Gaspari, E., Franke, A., Robles-Diaz, D., Zweigerdt, R., Roeder, I., Zerjatke, T., Kempf, H., 

2018. Paracrine mechanisms in early differentiation of human pluripotent stem cells: 
Insights from a mathematical model. Stem Cell Res. 32, 1–7. 
https://doi.org/10.1016/j.scr.2018.07.025 

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. Learn. 
Res. 3, 1157–1182. 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification. 
IEEE Trans. Syst. Man. Cybern. SMC-3, 610–621. 

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. J. 
Educ. Psychol. 24, 417. 

Kamgoué, A., Ohayon, J., Usson, Y., Riou, L., Tracqui, P., 2009. Quantification of 
cardiomyocyte contraction based on image correlation analysis. Cytom. Part A 75, 298–
308. https://doi.org/10.1002/cyto.a.20700 

Kempf, H., Andree, B., Zweigerdt, R., 2016. Large-scale production of human pluripotent stem 
cell derived cardiomyocytes. Adv. Drug Deliv. Rev. 96, 18–30. 
https://doi.org/10.1016/j.addr.2015.11.016 

Matthews, B.W., 1975. Comparison of the predicted and observed secondary structure of T4 
phage lysozyme. Biochim. Biophys. Acta - Protein Struct. 405, 442–451. 
https://doi.org/10.1016/0005-2795(75)90109-9 

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance measures for 
classification tasks. Inf. Process. Manag. 45, 427–437. 
https://doi.org/10.1016/j.ipm.2009.03.002 

Tian, Y., Lipke, E.A., 2020. Microfluidic Production of Cell-Laden Microspheroidal Hydrogels 
with Different Geometric Shapes. ACS Biomater. Sci. Eng. 6, 6435–6444. 
https://doi.org/10.1021/acsbiomaterials.0c00980 

Vishnoi, V.K., Kumar, K., Kumar, B., 2021. Plant disease detection using computational 
intelligence and image processing, Journal of Plant Diseases and Protection. Springer 
Berlin Heidelberg. https://doi.org/10.1007/s41348-020-00368-0 


