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Abstract

Fashion attribute editing aims to manipulate fashion im-
ages based on a user-specified attribute, while preserving
the details of the original image as intact as possible. Re-
cent works in this domain have mainly focused on direct
manipulation of the raw RGB pixels, which only allows
to perform edits involving relatively small shape changes
(e.g., sleeves). The goal of our Virtual Personal Tailoring
Network (VPTNet) is to extend the editing capabilities to
much larger shape changes of fashion items, such as cloth
length. To achieve this goal, we decouple the fashion at-
tribute editing task into two conditional stages: shape-then-
appearance editing. To this aim, we propose a shape editing
network that employs a semantic parsing of the fashion im-
age as an interface for manipulation. Compared to operat-
ing on the raw RGB image, our parsing map editing enables
performing more complex shape editing operations. Sec-
ond, we introduce an appearance completion network that
takes the previous stage results and completes the shape dif-
ference regions to produce the final RGB image. Qualitative
and quantitative experiments on the DeepFashion-Synthesis
dataset confirm that VPTNet outperforms state-of-the-art
methods for both small and large shape attribute editing.

1. Introduction

Fashion attribute editing aims to manipulate the appear-
ance of a fashion image based on a user-specified attribute
(e.g, sleeve, cloth length or width) and corresponding at-
tribute value (e.g, long, short, narrow, or wide). It has a wide
range of applications in fashion industries, online shopping,
personalized marketing, advertising and entertainment.

Since pixel-level groundtruth for target image is not
available, fashion attribute editing is learned in an unsuper-
vised manner. The lack of strong supervision leads to the
main challenges of this task: 1) the desired target attribute
often requires editing a large area with complex shape oper-
ations and 2) the source image details and identity should

Stefano Petrangeli’
Viswanathan Swaminathan?

Dahun Kim®  Haoliang Wang®
Henry Fuchs!
2Adobe Research SKAIST

Raldd
ARl

Figure 1: Fashion Attribute Editing. Our Virtual Personal
Tailoring Network (VPTNet) is able to perform complex fashion
shape attribute edits, even for challenging poses, while preserving
the details and identity of the original image.

Length

be retained in the attribute-irrelevant regions. Existing
works [4, 10, 17, 14, 2] perform the unsupervised editing
directly on the input image, trying to manipulate both shape
and appearance at the same time. Although these direct
methods have already achieved high-quality results on ap-
pearance editing, their performance on the shape counter-
parts is still quite limited. For example, most prior works
only deal with minimal shape changes on sleeves or collars
which only take up very small portion of the entire image.
Therefore, we focus on more flexible shape editing without
affecting the wearer’s identity. In addition, we demonstrate
that the prior works are sub-optimal when it comes to large-
shape manipulations, e.g., cloth length and width (see Fig-
ure 4-(c)). Finally, since existing methods generate whole
image pixels from scratch, they involve unwanted changes
in attribute-irrelevant regions which can hurt preservation of
the wearer’s identity (see Figure 4 - 6th column). We note
that although this paper’s focus is on more flexible change
manipulation, it can be easily extended for appearance edit-
ing by adding an existing appearance editor.

To address these challenges, we present our Virtual Per-
sonal Tailoring Network (VPTNet), where we decouple
the fashion attribute editing into two stages: shape editing
(parsing map attribute editing) and appearance completion
(parsing-guided fashion image inpainting). Figure 1 shows
the effectiveness of our two-stage - shape-then-appearance
- decoupling strategy. VPTNet performs the desired at-
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tribute edit on the attribute-relevant regions, while main-
taining identity and fine-grained details of the source im-
age (e.g., face and hair), even for large shape changes (e.g.,
cloth length change in 1st and 2nd row) and with challeng-
ing asymmetric poses (2nd row).

Given a target attribute, the first stage of VPTNet con-
sists of a shape editing network which leverages an external
parsing map estimator. High-quality parsing maps can be
obtained at near-free cost by using an off-the-shelf mod-
ule [24]. Here, we learn to edit shapes on the parsing map
instead of the raw input image. Such explicit shape manipu-
lation enables learning more complex and large-shape edit-
ing as it the parsing map contains less details than the origi-
nal input image. However, a naive unsupervised training of-
ten leads to undesirable shape changes and distortions near
edges due to lack of pixel-level supervision (see Figure 3
- (b,¢)). To tackle this issue, we employ edge map infor-
mation obtained from the parsing map, and propose edge-
preserving constraints during training that can provide an
effective guidance. The network learns to jointly modify the
shape of the parsing map and the edge map, while fusing
both complementary information for more accurate shape
manipulation. We also introduce Target Region Localiza-
tion (TRL) module to accurately localize which semantic
components (e.g., uppercloth and arms) and spatial parts
(e.g., around the upper arm region) should be edited. This
leads to effective manipulation of the attribute-relevant re-
gion, even when the editing requires larger shape changes
and the human subject presents challenging poses.

In the second stage, our appearance completion network
directly samples the RGB pixels from the source image into
the intersection region between the source and the synthe-
sized parsing maps. The final result is obtained by only
inpainting the cloth shape difference regions, guided by the
synthesized parsing map. This approach minimizes the gen-
eration of raw RGB pixels and maximizes the usage of the
source pixels from attribute-irrelevant regions, which re-
sults in high-quality results where the fine-grained details
of the source image are well-preserved (Figure 1).

In summary, our contributions are as follows:

e We propose VPTNet, a two-stage shape-then-
appearance framework for fashion attribute editing. It
enables performing more flexible shape manipulation
and, in turn, more accurate attribute editing;

e The proposed shape editing network and edge-
preserving constraints exploit the complementariness
of the edge and parsing maps. Also, the proposed TRL
attention module accurately localizes the attribute-
relevant regions.

* An appearance completion network to inpaint the
attribute-relevant regions only, which allows to better
retain the fine details and identity of the source image.

e To evaluate our method, we have extended the
DeepFashion-Synthesis dataset [27] by adding cloth
length and width attribute annotations. Extensive
quantitative and qualitative results, including a user
study, confirm the benefits of VPTNet, when compared
to several state-of-the-art methods [10, 17, 4, 14].

2. Related work

In this section, we review prior works in the area of fash-
ion image editing that are conditioned on two types of user
inputs: attribute vector and user sketches.

Attribute vector conditioned editing. Isola er al. [11]
present pix2pix and Zhu et al. [26] propose CycleGAN,
which perform image-to-image translation in a supervised
and unsupervised setting, respectively. However, arbitrary
attribute editing is a multi-domain image-to-image prob-
lem, which cannot be fully solved by pix2pix or Cycle-
GAN, which only support translation between two domains,
i.e., a new generator should be trained for every attribute
value pair. StarGAN [4] addresses this issue by adopt-
ing a single generator that learns to perform multi-domain
translations through a classification loss. Nonetheless, Star-
GAN is still limited when applied to the fashion domain,
where many fine-grained details should be accurately ma-
nipulated. This happens because the downsampling of the
StarGAN generator diminishes spatial resolution and fine
details of the feature map.AttGAN tackles this problem by
adopting skip connections in the generator, which however
limits its ability to perform attribute editing for better im-
age quality. STGAN [14] alleviates this problem by adopt-
ing the Selective Transfer Unit instead of plain skip connec-
tions. Itis challenging to apply these image attribute editing
works to the fashion image editing task, as fashion editing
often requires more global shape changes (e.g., changing
cloth length). Fashion-AttGAN [17] extends AttGAN to the
fashion domain, while improving the attribute manipulation
ability of the generator by backpropagating the classifica-
tion loss only to the decoder. AMGAN |[2] leverages an
attention mechanism to perform manipulations on attribute-
relevant regions. All the aforementioned methods directly
operate on the RGB pixels, which require the simultaneous
manipulation of both shape and appearance. Our VPTNet
employs a two-stage shape-then-appearance editing strat-
egy. This allows VPTNet to effectively perform shape at-
tribute editing while at the same time retaining the source
image identity and fine-grained details.

User sketch conditioned editing. Yu et al. [21] propose
a general image inpainting framework that inpaints incom-
plete images guided by user-provided sketchs. Portenier
et al. [18] and Jo et al. [12] present a face editing system
that takes sketch and color as input. Directly applying gen-
eral inpainting or face inpainting approaches to the fash-
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ion image inpainting is challenging because fashion images
present many fine-grained details. Therefore, Han et al. [8]
and Dong et al. [6] propose fashion image-specific inpaint-
ing frameworks.

3. Virtual Personal Tailoring Network

The overall architecture of the Virtual Personal Tailor-
ing Network (VPTNet) is illustrated in Figure 2. Instead
of manipulating the raw RGB images directly, VPTNet per-
forms shape-then-appearance editing in a two-stage fash-
ion: a shape editing network followed by an appearance
completion network. The shape editing network manipu-
lates the parsing map of the fashion image based on the tar-
get attribute. This is a crucial stage to synthesize a new
parsing map, which is then used to guide the appearance
completion network, whose goal is to fill in pixel-level tex-
tures/content to generate the final edited image. The two
networks are trained separately and used together at infer-
ence time. To better introduce notations and the two stages
operations performed our framework, we first detail the in-
ference operations of VPTNet (Section 3.1), followed by
training (Sections 3.2 and 3.3).

3.1. Inference

The inference pipeline of our VPTNet is structured as
follows (Figure 2-third row). x%, e® and b are the inputs
of the parsing network. x¢ €X*HxW g the source pars-
ing map with n binary attributes a = [a1,-- - , a,]. It con-
sists of K binary masks, each corresponding to the seman-
tic parsing of a clothed human, i.e., hair, face, ..., feet.
e? €W i the edge map calculated from the parsing map
%, while b is the target attribute vector. GPF, the gener-
ator of the shape editing network, synthesizes the parsing
map #° edited according to the target attribute vector b, de-
noted as G¥(2%;e%,b) = #°. G', the generator of the ap-
pearance completion network, takes three inputs to generate
the final inpainted image Ib. First, the synthesized target
parsing map #°. Second, the cloth shape difference mask
Mg = [2° — (2% ® 2%)] + [2° — (2% ® 27)] caused
by the attribute editing operation. Third, the source RGB
image /® multiplied by the inversion of the cloth shape
difference mask Mg;yy. Gt inpaints the cloth shape dif-
ference regions to output the final RGB image, denoted as
GH (@, Maigg, 1° © (1= Maigy)) = I".

3.2. Shape Editing Network

The goal of this stage is to manipulate the source parsing
map based on the given target attribute vector b (see Figure
2-first row). As no pixel-wise guidance is available, we pro-
pose to leverage edge information of the input shape to bet-
ter preserve the delineation of the editing results. Our shape
editing network incorporates the source parsing map x, and

its edge map e, as inputs, and learns to manipulate both z,
and e, into the target shape by (zp, ¢;) = G¥ ((z4;€4),b).
Specifically, our shape editor Gp is an encoder-decoder
network. The encoder G, . takes as inputs the concatena-
tion of the source parsing map and edge map and transforms
them into the latent representation z. It is then concatenated
with the target attribute vector b, and it is fed into the the
two branches for map prediction #° and edge map predic-
tion é°, respectively. For training, we use the discriminator
DF . which is composed of two branches DF, and DZ,.
DP, "is used to determine whether an image is fake or real;
DY, predicts an attribute vector.
Edge map pose cue. The manipulation of the source pars-
ing map should conform with the underlying human pose.
While the input parsing map itself contains the pose in-
formation implicitly, we empirically found that adding the
edge information to the shape editing network can have a
stronger pose cue and achieve more pose-faithful synthesis
results. The edge map can be easily computed by Laplacian
operator on the input parsing map.

Edge-preserving parsing map editing. When manipulat-
ing the parsing map, results are often coarse and unstable
due to the lack of pixel-level ground truth. Moreover, such
self-supervised approach mainly relies on classification to
drive learning, which ignores the shape information of the
source clothed humans. This often generates unreasonable
shapes and poor edge results. (see Figure 3 - (b.c)) To ad-
dress this issue, we propose an edge-preserving constraints
where the edge map is used to provide more explicit shape
information, and to better guide the parsing map synthesis.

Our shape editing network improves the parsing map
synthesis by exploiting edge features and edge prediction,
as illustrated in Figure 2-first row. The parsing map predic-
tor and edge map predictor of the decoder jointly learn the
parsing and edge map in an end-to-end manner. This ap-
proach allows to exploit the close relationship between the
two maps. Indeed, features from the parsing map predic-
tor can provide high-level semantic information for learning
the edge map. On the other hand, after obtaining the edge
map, the implicit shape information in the edge map fea-
tures can guide more precise parsing map synthesis results.
Parsing map features contain rich high-level information,
i.e., the pixel-wise semantic parsing information, which is
beneficial to predict the edge map. To exploit this mutual
information, our VPTNet employs a fusion block that inte-
grates parsing map features and edge map features for edge
map prediction. The parsing map feature is first applied a
1 x 1 convolution followed with a ReLLU activation. Next,
the output is summed with the edge map features to become
fused edge map features. We also fuse the final edge map
features with the parsing map features so that the edge map
features can guide a more precise parsing map synthesis.
A similar fusion block is employed to enrich the edge map
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Figure 2: Architecture. VPTNet consists of a shape editing network and an appearance completion network, which are trained separately

and used together at inference time.

with parsing map features. Each fused feature goes through
the rest of its branch to become parsing map and edge map
respectively. Synthesized parsing and edge maps are super-
vised as described in the following section.

Target Region Localization module. In order to correctly
localize the parsing map channels relevant to the target ma-
nipulation as well as the spatial locations within the selected
channel where the editing should be performed, we employ
the Target Region Localization (TRL) module that consists
of channel-wise and spatial-wise attention modules [19].

Zhu et al [2] also makes use of a localization module,
where they use a pretrained attribute classifier to obtain the
class activation map (CAM) [25]. This is often not opti-
mal for shape editing task because CAM tends to fire on
the dominant region in an image regardless of the target at-
tribute, and is low-resolution and coarse. Our TRL attention
is trained end-to-end with the shape editing objective, and
thus it focuses on the shapes as well as better delineates the
attribute-relevant regions, which will be shown later in the
experiments (see Figure 3 - (a, ¢)).

The channel attention module focuses on localizing
which parsing semantics (i.e., channels of the parsing map)

are relevant for the target attribute change. Given the in-
termediate feature [, the channel attention is computed as
]\/[ (F) = O'(U]( avg)) + (U]( 'maT)) avg and Fﬁwr de-
note spatial feature maps aggregated by average-pooling
and max-pooling operations, respectively. w denotes a
multi-layer perceptron with one hidden layer followed by
ReLU activation, and o denotes the sigmoid function. The
spatial attention module focuses on where the attribute-
relevant modifications should be performed The spatial at-
tention is computed as M (F') = o (g([Fy,g5 Frnazl))- Favg
and F; .. denote the average-pooled features and max-
pooled features across the channel axis, respectively, which
are concatenated before being fed to a convolutional layer
g. The final refined output is obtained by sequentially ap-

plying the channel attention and the spatial attention.

Our proposed TRL module is applied to the first layer
of the encoder, as well as the first and second layers of the
decoder, and effectively improves the parsing map attribute
manipulation quality.

Training. Our shape editing network is trained by a recon-
struction, adversarial, and attribute manipulation loss.

First, the shape editing network should be able to cor-
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rectly reproduce the source map when the target attribute
is the same as the source attribute. We therefore define
the reconstruction loss L. as the L pixel regression loss
between the source parsing map and the synthesized pars-
ing map when the target attribute is the same as the source
attribute. We consider the edge map reconstruction as a
pixel-level classification problem, following common prac-
tice in the edge detection domain [20, 23]. Most edge de-
tection works [20, 23, 1] take advantage of the weighted
cross-entropy to alleviate the class-imbalance problem in
edge prediction. However, weighted binary cross-entropy
leads to thick and coarse boundaries [5]. Following Deng et
al. [5], we use the dice loss [16] and binary cross-entropy
to optimize the edge map learning. The dice loss mea-
sures the overlap between predictions and ground truths,
and is insensitive to the number of foreground/background
pixels, thus alleviating the class-imbalance problem. Our
edge reconstruction loss L. is formulated as Legge =
Lpice(é*,e%) + Lpcr(€*,e?).

where ¢ €*W denotes the predicted edge and
e® eXW denotes the edge ground truth. where i denotes
the i-th pixel and € is a smooth term to avoid zero division
(set to e = 1 in this paper).

Second, when the target attributes are different from the
source ones, we do not posses the ground truth for the edit-
ing result anymore. Therefore, we employ an adversarial
loss to help the network generating realistic parsing and
edge maps results. Specifically, our adversarial loss £ pr,

and Lgr to train D)), and G, respectively, are imple-
mented following the Wasserstein GAN (WGAN) [3] and
WGAN-GP [7] works. The adversarial loss is applied to the
concatenation of the synthesized parsing and edge maps.

Third, we actively leverage the attribute manipulation
loss to enforce that the synthesized parsing map correctly
possess the desired target attribute, despite the lack of
ground truth. For this reason, we introduce the attribute
classifier DI, DE. and G” are jointly trained together
through the attribute manipulation loss £ pr,, and CG&.
The attribute manipulation loss is applied on the concatena-
tion of the synthesized parsing and edge maps.

In summary, the objective to train the discriminator D”
can be formulated as minpr Lpr = —LDfdv + )\1[,tht,

and that for the generator G as:

rgipn LgP = _LGfdu + )\2£G(I:tt + )\SAcrec + )\4L"edgey (1)

where A1, Ao, A3, Ay are set to 1, 10, 100, 100 respectively.
3.3. Appearance Completion Network

After the shape editing operation, the difference between
the source and the shape-edited parsing map specifies the
attribute-relevant regions of the source image. The goal of
our appearance completion network is to inpaint the pixels
in these specific regions. The architecture of the proposed

appearance completion network is illustrated in Figure 2-
second row. It is composed of two main components: a gen-
erator GI and an attribute classifier D. For the generator,
we use a simple encoder-decoder network. We replace all
vanilla convolutions with gated convolutions, which have
been proven effective on image inpainting tasks [21, 22].
The attribute classifier consists of five convolution layers
and two fully-connected layers; given an image, its role is
to predict the associated attribute vector.

The input to G is the concatenation of the target parsing
map z, the inpainting mask M, and the incomplete RGB
image I’ = I ® (1 — M), where I denotes the ground truth
image. G performs inpainting under the guidance of the
input parsing map, as G’ (z, M, I') = I.

Training. The goal of our appearance completion net-
work is to inpaint the cloth shape difference regions in the
final image caused by the attribute edit task, so that the in-
painted regions are semantically aligned with the synthe-
sized parsing map generated at inference time. Typical
training approaches of classical inpainting works [21, 22,
13] are not directly applicable in this context for two rea-
sons. First, they train with random masks, e.g., free-form,
rectangle, scribbles, which are very different from the arti-
facts introduced by fashion attribute editing (see Mg;ss in
Figure 2). Second, inpainting operations are learned to fill
the mask regions with anything plausible, while our goal is
to teach the network to inpaint while respecting the input
semantic parsing map.

We therefore automatically generate masks on-the-fly to
resembles the cloth shape difference generated at inference
time, and use them during training. In addition, to produce
better inpainting results, we introduce an attribute classifier
DI. D! and G' are jointly trained through the attribute
classification loss Lpr and Lgr . The objective to train
the discriminator D" is formulated as minpr Lpr = Lpr

and that for the generator G7 is:

I’ICl:iIn £GI = ’Ylﬁ'r‘econ + 72£hole + 73LG£” B (2)

where 71, 2, and 73 are set to 1, 5, and 1 respectively.
Lecon 18 calculated as the L; and SSIM losses between
the synthesized image I and the ground truth image 1. Lpoe
is the masked loss between M ® I and M & I.

4. Experiments

In this section, we evaluate our VPTNet both quantita-
tively and qualitatively. For comparison, we select AM-
GAN and Fashion-AttGAN, two state-of-the-art methods
in the fashion attribute editing task [2, 17], and STGAN
and AttGAN, two state-of-the art methods in the face at-
tribute editing task [14, 10]. Following Ak et al. [2], we
evaluate our VPTNet for fashion attribute editing on the
DeepFashion-Synthesis dataset [27], a refined version of
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Fashion- VPTNet VPTNet VPTNet VPTNet
AUGAN ygan  STOAN - AMGAN | VPTNet 0, 0" 0E wioF wio C
Sleevel | 7663 7954 7806 _ 8166 | 8571 8335 8229 8376  82.83
Lengtht | 7505 7674 8241 8205 | 8590 8257 8242 8365  82.23
Avet 7584 78.14 8024 8186 | 8581 8296 8236 8371  82.53

Table 1: Evaluation of attribute editing accuracy. We train a classifier to predict the attribute of a fashion image. Higher values indicate

that the attribute editing task has been successful. Our VPTNet appro

ach consistently outperforms the other methods.

Fashion- VPTNet VPTNet VPTNet VPTNet

AttGAN AUGAN STGAN AMGAN | VPTNet wio A WioE wio F wio C
Lyl 0.0477 0.0433 0.0228 0.0222 0.0039 0.0047 0.0101  0.00529 0.0045
PSNRT | 23.5324 24.0409 29.9748 30.5343 | 32.2967 31.4136 29.6751 30.7484 31.8406
SSIM? 0.8591 0.8695 0.9424 0.9410 0.9862 0.9835 0.9624 0.9816 0.9760

Table 2: Evaluation of image reconstruction quality. We keep the same target attribute as the source one to evaluate the reconstruction
capabilities of our method. VPTNet is able to retain the highest level of fidelity.

the DeepFashion dataset [15], consisting of 78,979 images.
We perform editing on two fashion attributes: sleeve length
(long, short, sleeveless) and cloth length. To enable the lat-
ter, we automatically create additional pseudo-labels in the
DeepFashion-Synthesis dataset for the length of the upper-
cloth, i.e., tops and dresses, by calculating the ratio between
the uppercloth channel of the parsing map and the shorts
plus legs channels (labels will be made public upon publica-
tion). The cloth length attribute consists of five values rang-
ing from short to long. All images are resized to 128x128;
we use the original train and test sets of the DeepFashion-
Synthesis dataset (70,000 and 8,979 images, respectively).

4.1. Quantitative Experiments

We evaluate the performance of our attribute editing ap-
proach regarding two aspects, i.e., attribute editing accuracy
and final image overall quality.

Attribute editing accuracy. To measure the attribute edit-
ing accuracy, we use the classification accuracy score of
an attribute classifier, which allows us to evaluate if the at-
tribute manipulation is successfully applied to the original
image. Following Ak et al. [2], we train a ResNet-50 archi-
tecture [9] with cross-entropy loss as attribute classifier. We
report the classification accuracy results in Table 1, where
higher values indicate that the attribute has been success-
fully modified in the final image. Our VPTNet achieves the
best performance against the other methods for both sleeve
and cloth length attribute manipulation. We also investigate
the impact of the different components of VPTNet by re-
moving each one at the time: TRL module, edge branch,
parsing-edge fusion of the shape editing network, and clas-
sification loss of the appearance completion network. Re-
moving the TRL module from the shape editing network
(VPTNet w/o A in Table 1) has a strong impact on the per-
formance of the cloth length editing task, which indicates
that the proposed TRL module can help manipulating larger
shape attributes. Removing the edge branch (VPTNet w/o
E) leads to the highest performance drop in the sleeve ma-
nipulation task. This shows the importance of the infor-

Attribute generationt Image quality T
Sleeve Length Avg | Sleeve Length Avg
VPTNet (ours) 67.9 717 69.8 58.5 78.1 68.3
AMGAN 9.2 124 108 20.5 52 129
STGAN 39 58 49 14.8 5.8 103
F-AttGAN 14.9 7.0 11.0 43 70 57
AttGAN 4.1 3.1 3.6 1.9 39 29

Table 3: User study results (63 participants). VPTNet outper-
forms all other methods in the human perspective evaluation.

mation provided by the edge map to perform high-quality
attribute editing. Lastly, removing either the parsing-edge
fusion (VPTNet w/o F) or the classification loss from the
appearance completion network (VPTNet w/o C) produces
slight performance decreases in both editing tasks, albeit
more limited than in the previous cases. Overall, when all
the improvements are enabled, our VPTNet is able to in-
crease the classification accuracy by almost 4% when com-
pared to the second-best method (AMGAN in Table 1).

Image quality. To evaluate the final image quality pro-
duced by VPTNet, we keep the same target attribute vector
as the source image, and compute the L;, PSNR, and SSIM
reconstruction results (Table 2). Our VPTNet achieves the
best reconstruction performance on all metrics. Particularly,
VPTNet outperforms the other state-of-the-art methods by
a large margin in terms of L; loss, since VPTNet directly
re-uses the source pixels in the regions of the original im-
age that are irrelevant for the target attribute manipulation.
In terms of ablative effects, we observe that removing the
edge branch leads to the most performance degradation in
all metrics, which is consistent with the results in Table
1. Similar trends can be found for the other components,
which confirms that each of the proposed improvements has
a positive impact on the final image quality as well as on the
attribute editing accuracy.

User Study. In order to confirm the objective benefits of our
VPTNet, we perform a user study to evaluate the attribute
editing accuracy and image quality from a human perspec-
tive, for both the sleeve and length attribute manipulation
tasks. 63 people were involved in the study; each partici-

3836



Synthesized
parsing

It
i

(a) Target Region Localization (spatial)

Inpainted
result

?

Attention Source

Source

™
9

(
/

re

v
v

w/o edge

Result

£a
“ * Source RGB

(b) Edge supervision ablation

Be Your Own Prada [34]
— Target: white sleeveless shirt

- QAL

Source Parsing Target Parsing Final RGB

bR’

'VPTNet (ours) Target: sleeveless shirt

w/ edge

Result

(c) Comparison with [34]

Figure 3: Visualization of the effect of the TRL attention module and edge branch.

VPTNet

AMGAN STGAN

Q\

(a) Sleeve sleeveless - long sleeve

F-AttGAN AttGAN

(c) Length: short — long

T}

(d) Length: long — short

Figure 4: Comparison results on attribute manipulation on asym-
metric poses (b, ¢) and large shape operations (¢, d).

pant was asked to answer 21 questions, each composed of
2 sub-questions (total 21 x 2 = 42). We randomly sam-
ple 21 corresponding source images that are manipulated
by a target attribute of sleeve (10 images) and uppercloth-
length (11 images). We shuffle the results of compared
methods [2, 14, 10, 17] and ours.

In each question, participants were given a pair of source
images and edited results from the test set, obtained from all
compared methods. First, participants were asked to iden-
tify the image presenting the highest visual quality and pre-
serving the identity and fine details of the source image, re-
gardless of how successful the target attribute manipulation
was. Second, participants had to evaluate the image with the

most successful attribute edit manipulation. The responses
on the faithfulness and visual quality are separately sum-
marized in Table 3. Each element in ‘Sleeve’ (or ‘Length’)
column is calculated by averaging the scores over 10 (or
11) image tuples and over 63 participants. The ‘Avg’ col-
umn is the average of the previous two columns. Our VPT-
Net again achieves the best performance, both from an im-
age quality and attribute manipulation perspective, for both
sleeve and cloth length editing tasks. Particularly, these re-
sults confirm that VPTNet is superior in altering the tar-
get attribute editing without altering the source image iden-
tity and details. Moreover, our VPTNet greatly outperforms
competing methods in the cloth length editing task, which
confirms that our approach can produce convincing results
even when the manipulation requires larger shape changes,
as opposed to the other methods that often fail in this case.

4.2. Qualitative Experiments

Impact of Edge-preserving constraints. in Figure 3, We
first present the effectiveness of two main components of
VPTNet: the TRL module and the edge branch. As pre-
sented in Section 3, we propose the TRL module to better
localize the semantic and spatial regions where to perform
the attribute manipulation. Figure 3-(a,¢) clearly shows
that the attention mechanism leads to improved parsing map
synthesis quality.

Impact of Target Region Localization (TRL). The sec-
ond column in the figure shows a visualization of the TRL
spatial attention when the target manipulation is to change
the short sleeve into long sleeve and sleeveless, respectively.
We can observe that our TRL module accurately attend to
the target region around the arms. In Figure 3-(b, c), we
present the editing results without and with the edge branch.
Adding the edge branch allows VPTNet to synthesize more
precise parsing maps, especially around the boundary re-
gions.

Comparison with other methods. We also present a com-
parison in Figure 4 on four representative attribute ma-
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Figure 5: Comparison results on attribute manipulation with
one source. VPTNet outperforms all the other benchmarking
methods, resulting in high-quality realistic images.

nipulation tasks: long-to-short sleeve (and vice-versa) and
long-to-short cloth length (and vice-versa) changes. VPT-
Net achieves precise attribute manipulation and shows the
best results overall. We notice that even when the required
shape change is small (e.g., sleeve changes as in Figure 4-
(a,b)), AMGAN and STGAN generate sleeves with unclear
boundaries (hands region) and inconsistencies (shoulders
region). The VPTNet is able to generate realistic-looking
sleeves. When the human subject presents a highly asym-
metric pose (Figure 4-(b)), the other benchmarking methods
fail to accurately synthesize a realistic image. Moreover, we
can notice how Fashion-AttGAN and AttGAN fail retain-
ing several fine-grained details of the source image (arms,
skirt color, face details etc.). For the cloth length editing
task (Figure 4-(c, d)), all the other methods fail to localize
the regions to be edited and show severe artifacts. On the
other hand, VPTNet is able to successfully modify the cloth
length producing high-quality, realistic results. This con-
firms that our VPTNet can provide superior results in the
shape attribute editing, even for asymmetric poses ((b) and
(c)) and challenging tasks that require multiple regions to
be edited, as in the cloth length manipulation ((¢) and (d)).
We also evaluate on all attributes manipulation with a
challenging asymmetric pose (Figure 5). In the sleeve edit-
ing task, AMGAN and STGAN only generate the silhou-
ette or an incomplete sleeve. Also, while editing the cloth

lp
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(a) Editing of more shape attributes (b) Multiple attributes

Figure 6: Editing of more shape attributes, and multiple at-
tributes. Our VPTNet can manipulate more (width of hemline
and waist) and multiple attributes (sleeve and cloth length) at the
same time.

length, Fashion-AttGAN and AttGAN alter the neckline re-
gion, which should remain unchanged. Moreover, all the
benchmarking methods leave visible artifacts of the origi-
nal cloth. This behavior is due to the difficult nature of the
cloth length editing, which involves editing multiple parts
at the same time: uppercloth, bottomcloth and legs. Even
though AMGAN employs a similar attention mechanism as
VPTNet to localize the target region to manipulate, it di-
rectly operates on the RGB pixels, which can cause sub-
optimal results when dealing with large edits and/or chal-
lenging poses, as in Figure 5. On the other hand, our VPT-
Net is able to successfully perform the target attribute ma-
nipulation in all cases, while maintaining the source image
details that should remain unchanged.

Multiple attribute editing. The VPTNet can work on sev-
eral other shape attributes: width of hemline and waist. We
show the results in Figure 6 - (a). This confirms the ap-
plicability of VPTNet on a wide range of shape attributes.
Also, the VPTNet can also successfully perform multiple
attributes editing operations (sleeve and cloth length) at the
same time, as shown in Figure 6 - (b).

5. Conclusion

We presented VPTNet, a two-stage framework for high-
quality fashion attribute editing. First, a shape editing net-
work modifies the source parsing map with respect to the
queried attribute. Second, an appearance completion net-
work completes the pixels on the modified regions. The
VPTNet enables complex editing operations with large
shape changes while retaining the identity the original
wearer. Extensive quantitative and qualitative experiments
confirm that our VPTNet is able to provide higher quality
attribute editing results compared to several state-of-the-art
methods [10, 17, 14, 2].
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