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Abstract
As humans, we can modify our assumptions
about a scene by imagining alternative ob-
jects or concepts in our minds. For exam-
ple, we can easily anticipate the implications
of the sun being overcast by rain clouds (e.g.,
the street will get wet) and accordingly pre-
pare for that. In this paper, we introduce
a new task/dataset called Commonsense Rea-
soning for Counterfactual Scene Imagination
(COSIM) which is designed to evaluate the
ability of AI systems to reason about scene
change imagination. In this task/dataset, mod-
els are given an image and an initial question-
response pair about the image. Next, a coun-
terfactual imagined scene change (in textual
form) is applied, and the model has to pre-
dict the new response to the initial question
based on this scene change. We collect 3.5K
high-quality and challenging data instances,
with each instance consisting of an image, a
commonsense question with a response, a de-
scription of a counterfactual change, a new
response to the question, and three distrac-
tor responses. Our dataset contains various
complex scene change types (such as object
addition/removal/state change, event descrip-
tion, environment change, etc.) that require
models to imagine many different scenarios
and reason about the changed scenes. We
present a baseline model based on a vision-
language Transformer (i.e., LXMERT) and ab-
lation studies. Through human evaluation,
we demonstrate a large human-model perfor-
mance gap, suggesting room for promising fu-
ture work on this challenging counterfactual,
scene imagination task.1

1 Introduction

Anticipating what would happen when there is a
condition change in a situation is an important abil-
ity as it allows preparation for the implications of

*Equal contribution.
1Our code and dataset are publicly available at: https:

//github.com/hyounghk/CoSIm.

the change. For example, when swimming in the
sea on a clear day, you might feel safe. However, if
someone told you a storm warning has been issued
and dark clouds are coming in soon, you would
know that it is no longer safe to swim and return
to land. It will be also very useful to have AI
systems that could reason about the implications
of such scenario changes and provide appropriate
guidance/warnings; however, current AI systems
will have a hard time performing such counterfac-
tual commonsense reasoning.

Many efforts have been made to teach machines
how to reason about images (Antol et al., 2015;
Zhu et al., 2016; Johnson et al., 2017; Hudson and
Manning, 2019) and videos (Tapaswi et al., 2016;
Jang et al., 2017; Zhu et al., 2017; Lei et al., 2018).
This area has been built upon further by efforts to
teach machines to use commonsense knowledge
when analyzing visual scenes (Pirsiavash et al.,
2014; Wagner et al., 2018; Zellers et al., 2019; Park
et al., 2020). Through these efforts, many AI sys-
tems have reached near human-level performance
on scene understanding tasks. On the other hand,
more complex reasoning on scene ‘changes’ has
been less explored. Sampat et al. (2021) applies
simple condition manipulations (e.g., “Paint the
small green ball with cyan color”) on synthetic
images in a visual question answering setup. How-
ever, this task is based on simple block objects
that might not require complex implicit reasoning.
Thus, complicated counterfactual commonsense
reasoning on scene changes on real-world images
and situations remains widely unexplored.

Therefore, in this paper, we introduce a
new dataset called Commonsense Reasoning for
Counterfactual Scene Imagination (COSIM) to
evaluate the commonsense reasoning ability of
agents about counterfactual visual scenes imagined
via textual descriptions. To be specific, one data
instance in our COSIM dataset consists of an im-
age, an initial question-response pair, an imagined
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Is the railway line safe?

Yes because there are safety lights and crosswalk signs

add a train to the tracks.

New Response:  no. although there are safety lights and crossing gates, they don't appear to be 
working and there is a train coming.

Distractor #1:  yes. there are safety lights and crossing gates, they appear to be working and there is 
a train coming and it will stop.

Distractor #2:  yes. although there are safety lights and crossing gates, they don't appear to be 
working and there is no train coming.

Distractor #3: no. although there are safety lights and crossing gates, there is a power outage and 
there is a train coming.

Question / Initial Response

Change

Answer Choices

Figure 1: Example from our COSIM dataset. An image is associated with an initial commonsense question-
response pair, a described counterfactual change to the image, and a new response to the question (randomly
shuffled with three human-written distractors).

visual scene change, and a new response with three
distractors. The question is about commonsense
which can be inferred from the image and the initial
response includes a reasoning/justification for its
answer. The imagined visual scene change is a tex-
tual description of what to modify in the scene to
alter the conditions. The new response follows the
same format as the initial response, but should be
influenced by the imagined change (see Figure 1).

A model for this task needs to take this context
information as input and try to predict the correct
new response among other distractors. The distrac-
tors look similar to the correct new response but
have subtle differences and are semantically dif-
ferent from the correct new response, thus a good
model on this challenging new multimodal task
cannot take shortcuts and needs to fully understand
what each choice means based on the context. For
example, as shown in Figure 1, given an image,
the initial question-response pair (“Is the railway
line safe?” - “Yes because there are safety lights
and crosswalk signs”), and the scene change (“add
a train to the tracks.”), models should choose the
correct new response (“no. although there are
safety lights and crossing gates, they don’t appear
to be working and there is a train coming.") among
other distractors (“no. although there are safety
lights and crossing gates, there is a power outage
and there is a train coming.”, etc.). To solve this
problem, models need to be able to understand the
implications of an incoming train and how safety
lights and gates operate at a railroad crossing.

We collect 3.5K high-quality and challenging
data instances for this new multimodal reasoning
task via a crowd-sourcing annotation platform. To
collect each data instance and to help reduce in-
dividual crowd-worker load, we break the task up

into three separate phases: the question collection
phase, the scene change collection phase, and the
distractor collection phase. During the distractor
collection phase, to help avoid unexpected biases
such as text-only, we implement a modified version
of Human-And-Model-in-the-Loop Enabled Train-
ing (HAMLET) adversarial data collection (Nie
et al., 2020) for the validation and test splits. We
deploy the model trained on only the textual data
and allow annotators to test their distractors against
the model as they write (see Figure 2).

Our COSIM dataset features several diverse
types of imagined scene changes (object addi-
tion/removal, object state changes, etc.; see Sec. 5.2
for the full change type list and examples) which
requires to deeply understand the contexts, making
the task very challenging. For example, to under-
stand the scene change of “Add another person to
the dock ...”, the model should figure out what a
dock is, where it is located in the image and be able
to add one more person onto it via imagination.

As a baseline model for this new multimodal rea-
soning task, we employ a vision-language Trans-
former (based on LXMERT (Tan and Bansal,
2019)) which computes vision and language feature
matching scores via multi-head self-attention layers
followed by cross-modal attention layers, and we
report ablation studies on input modality and scene
change types. We also show a large human-model
performance gap allowing more effective future
work from the community on this new challenging
multimodal task on commonsense reasoning for
imagined counterfactual scene changes.

2 Related Work

Visual Question Answering. There have been
many efforts to teach machines how to reason about



images (Antol et al., 2015; Zhu et al., 2016; John-
son et al., 2017; Hudson and Manning, 2019) and
videos (Tapaswi et al., 2016; Jang et al., 2017; Zhu
et al., 2017; Lei et al., 2018), and in some of these
tasks, machine performance is approaching human
levels. Although these tasks require a complicated
reasoning process, they provide very explicit con-
text to solve the problems and might not be enough
to evaluate the ability to reason about implicit as-
pects (i.e., commonsense).

Visual Commonsense Reasoning. Another ac-
tively explored line of study has been on visual
commonsense reasoning (Pirsiavash et al., 2014;
Wagner et al., 2018; Zellers et al., 2019; Park et al.,
2020). In addition to using the provided clues
in the context, these tasks require commonsense
knowledge to reason about given problems, mak-
ing these tasks more challenging since machines
should be equipped with prior or external informa-
tion. However, these tasks handle static scene un-
derstanding for which contexts and conditions are
not changed during the reasoning process. On the
other hand, our proposed COSIM introduces an ad-
ditional dimension of difficulty by integrating imag-
ined scene changes in the context. Moreover, the
changes in our COSIM dataset are imagined (tex-
tually) and counterfactual, so imagination-based
commonsense is required for the reasoning.

Textual Scene Change. Recent effort has been
made on visual understanding by requiring mental
simulation of changes to the scene (Sampat et al.,
2021). These tasks require simulating change with-
out any visible result, hence increasing the diffi-
culty of VQA tasks. They, however, have been
completed in the simpler context of basic shapes
and objects and simple questions (E.g. “How many
blue objects will be present in this scene?”). Our
COSIM dataset is based on complex real-world im-
ages/situations requiring commonsense reasoning
about imagined counterfactual scene changes, al-
lowing for evaluation of the ability to anticipate the
implications of complex situation changes, thus,
future events.

3 Task

Given a real-world image, models should predict
a new response conditioned on the initial question-
response pair and the imagined counterfactual
scene change.

Initial Question and Response. The initial
question-response pair is created only from a given
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Figure 2: HAMLET cycle for distractor collection on
validation and test splits.

image. The question and response themselves re-
quire quite an amount of commonsense reasoning
to understand. For example, to understand the re-
sponse to the question in Figure 1 (“Is the railway
line safe?”), models should know that the ‘safety
lights’ and ‘crosswalk signs’ are devised for keep-
ing people safe around the railway (“Yes because
there are safety lights and crosswalk signs”).

Imagined Counterfactual Scene Change. The
imagined counterfactual scene change is a textual
description that modifies the scene in the image.
The change affects the reasoning process of the
initial question and response, and provides a new
context for the new response (“add a train to the
tracks.”).

Response on the Scene Change. Models should
respond to the initial question with a proper rea-
son based on the imagined counterfactual scene
change.2 The task is a multi-choice setup to pick
the correct response among other distractors (“no.
although there are safety lights and crossing gates,
they don’t appear to be working and there is a
train coming.”). To choose the correct response,
models should understand what the implications
and safety concerns of an incoming train are and
that the safety lights should be turning on and the
crossing gates should be closing when a train is in
proximity.

4 Dataset

Our COSIM dataset is composed of 3.5K3 images
paired with a commonsense question-response pair,
a description of an imagined counterfactual change
to the image, a new response to the question based
on the effect of the described change, and then

2Models should derive scene knowledge from the image or
clues embedded in the textual context like the initial response.

3Low resource setup of this middle-scale size dataset en-
courages employing effective external commonsense knowl-
edge.



three distractor responses to the question (all text
is in English).

We employ annotators from the crowd-sourcing
platform Amazon Mechanical Turk4. Our data col-
lection is broken into three separate phases (ques-
tion, change, and distractor) in order to reduce the
workload for each worker. In the question phase,
workers are asked to select an image (from three
random images) to use, write a commonsense ques-
tion and then respond to it. In the change phase,
they are asked to describe a counterfactual scene
change for the image and then write a new response
to the initial question. Lastly, in the distractor
phase, they are asked to write three distractor re-
sponses for the question.

Commonsense Question Collection. To collect
the initial question and response, we present three
images to the workers and then ask them to choose
the one that they want to use (images are taken
from Visual Genome (Krishna et al., 2017)). Then
using that image, they should come up with a com-
monsense question about the image. We define a
commonsense question as a question that requires
logical thought and understanding of what is hap-
pening in the image to be able to answer. Then
workers are asked to write a response to their ques-
tion (the initial response). A response consists of
two parts, an “answer” that is a direct answer to
the question (e.g. “Yes, ...”) and then a “justifica-
tion” that uses visual clues from the image to prove
the answer is correct (e.g. “..., because everyone
is wearing shorts and short-sleeved shirts and a
woman can be seen wearing sunglasses.”). See
Appendix for the collection interface.

Counterfactual Scene Change Collection. In
this phase, workers are given the image chosen
from the previous commonsense question collec-
tion phase and the corresponding initial common-
sense question-response pair. Then workers are
asked to describe a counterfactual scene change
for the image and write a new response to the
question based on that scene change (the new re-
sponse). To help ensure that workers describe a
reasonable counterfactual scene change, we pro-
vide two guide templates for them to follow when
they write. Workers are asked to select the guide
template that they believe makes the most sense for
them to use for each data instance (see Appendix
for collection interface and guide template details).

4https://www.mturk.com

Distractor Collection. Workers are given the im-
age, the initial commonsense question-response
pair, as well as the counterfactual scene change and
new response. Then they are told to write three
distractor responses that are similar to the new re-
sponse but incorrect. To help ensure the distractors
pose a challenge but are still distinct, we pre-fill the
worker’s textboxes with the new response. Then
they are told to edit the text enough so the answers
become false and distinct.

HAMLET Data Collection. To avoid having un-
expected biases such as context+response bias in
our textual data, when collecting distractors for the
validation and test splits, we implement a HAM-
LET style collection (see Figure 2). We deploy
the model trained only with textual data and allow
workers to test their distractors directly against the
model in real-time and check whether they are able
to fool it. Workers are also permitted to edit the
new response from the previous collection phase if
it helps make distractor writing better (they must
maintain the original meaning/intent of the new
response if they choose to edit).

Data Verification. At each collection phase, we
ask workers to verify the previous phase’s work. If
the previous set of work is not good, workers are
given a place to flag and describe the reason for
flagging. This reasoning is manually reviewed and
if it is fair, then that data is removed and prevented
from progressing to the next phase.

Worker Qualifications and Payment. For all 3
phases, workers are required to pass certain qual-
ifications before they could begin. As all of the
phases require reading and writing English, they
were required to be from native English-speaking
countries. Workers were also required to have at
least 1,000 approvals from other tasks and a 95%
or higher approval rating. Then for each phase, we
require workers to pass a qualification test that tests
their understanding of their task at each phase. See
Appendix for worker totals and pay (+bonus) rates.

5 Data Analysis

We collect 3.5K task instances (3.5K images, ini-
tial questions-response pairs, scene changes, new
responses, and 10.5K distractors).

5.1 Statistics

Length. Lengths of each part of the data instances
are shown in Table 1. While the lengths of ques-



Object Addition

“Add snow and ice to the road. Add a bus.
Place the person inside the bus.”

Object Relocation

“... move the skateboarder much higher up in
the air ... move the skateboard further away from
the skateboarder so they can not land with the
board.”

Object Removal

“Remove all the kites and the unfurled sail.
Add some people in the foreground with long
hair. Have their hair blowing horizontally ...”

Complex Change

“remove the bowls and towels. Add plates of hot
food to the counter. the bowl on the stove has
steam rising from it.”

Figure 3: Scene change examples from our COSIM dataset. The relevant portions of the change are in italics.
Complex changes contain three or more changes within them (this example contains Object Removal, Object
Addition, Object State Change).

Component max. min. avg. sd.
Question 22 3 7.6 3.03
Initial Response 59 4 18.62 8.06
Scene Change 127 3 16.08 13.01
New Response 109 5 23.38 12.40
Distractor 111 5 23.57 12.40

Table 1: In our COSIM dataset, each part has a different
length according to its role and contained information.

tions are relatively short, the lengths of responses
and the changes are long. This means that question
itself does not contain detailed clues and models
should figure out which information is needed to
answer the question. On the other hand, the long re-
sponses contain reasons to justify their answers and
require models to deeply understand the reasoning
process to solve the problem. Furthermore, models
should also carefully read the long textual scene
change to capture all the condition modifications
and apply them to images.

Vocabulary. Among all data instances in our
COSIM dataset, there are 9,946 total unique words.
Within the commonsense questions, initial re-
sponses, scene changes, new responses, and the
distractors, there are 3,261 / 4,397 / 4,637 / 5,318 /
6,404 unique words, respectively. The unique word
count reflects what is shown by the lengths. Ques-
tions are on average the shortest part of each data in-
stance and they have the fewest unique words. The
new responses and distractors have long lengths
and high unique word counts. The high unique
word count for the distractors shows their diversity.
Figure 4 shows the most commonly occurring key-
words in our dataset. Many of the words are related
to people and directional positioning.

Number of changes present Frequency
1 34.70%
2 35.82%
3 21.39%

Greater than 3 8.08%

Table 2: Frequency of number of change types present
per instance (from the validation split).

5.2 Scene Change Type.

Different imagined scene change types are present
in our COSIM dataset. Imagined scenes changes
describe a change (with counterfactual thought) to
the image by applying various properties. Some
of these scene change types include object addi-
tion/removal, object state changes, environment
changes, etc. (see Figure 3 for some scene change
types and their examples; see Appendix for a figure
with a complete list of all the types with examples).
These scene change types, while they are seemingly
easy to visualize, require a complex understanding
of the effect of the change on other elements in the
scene. See Figure 5 for type frequencies.

Human/Object Addition. These two scene
change types involve introducing new hu-
man(s)/object(s) into the image that was not there
prior (“A bunch of old men are standing next to
the birds ...” / “There are tears in his eyes ...”).
The object addition scene change type is the most
commonly appearing one.

Human/Object Removal. These two scene
change types involve removing human(s)/object(s)
that are visible in the image (“... remove the work-
ers ...” / “Remove the two people’s coats”).

Object Replacement. This scene change type in-
volves removing object(s) from the image and re-
placing them with something else (“... replace the
plates of fruit by plates of dog biscuits ...”).



Figure 4: Most commonly occurring keywords in our
COSIM dataset. Many of them are related to people
and directional positioning.

Object Relocation. This scene change type in-
volves re-positioning object(s). Rather than chang-
ing it directly, this type changes its relation to other
objects (“space the zebras out. move them a little
further away”).

Object State Change. This scene change type
involves altering the state of object(s) present in
the image (“... change her luggage to all have a
Burberry pattern ...”). The alteration of object(s)
can occur in various forms such as changing color,
size, shape, and orientation (e.g., opening a door).

Event Description. This scene change type in-
volves the creation of an event or a description of
motion or interaction between objects in the image.
This type includes human actions and changes to
human emotions (“A pack of lions are approaching
the sheep.”).

Environment Change. This scene change type in-
volves changes that cause large-scale changes to
the entire environment either by drastically altering
the current environment, creating a new environ-
ment, or causing changes in the weather (“there is
very thick dust everywhere”).

Complex Changes. We define a complex change
as a change that contains three or more different
scene change types. For example, “someone is
throwing snow ball at her” this change introduces
a new human, a new object, and defines an inter-
action between all these and involves someone al-
ready present in the image. These complex changes
require much thought to understand their full effect
and implications. Complex changes make up about
30% of our dataset. See Table 2 for change types
per instance statistics.

6 Models

We employ a vision-language Transformer as the
base architecture of our baseline model for the
COSIM task. To be specific, we use LXMERT (Tan

Figure 5: Frequencies of the change types in our
COSIM dataset (from the validation split).

and Bansal, 2019) to compute the score of each
context-response pair given an image feature, and
select one with the highest score among them.

We employ Faster R-CNN (Ren et al.,
2015) to extract object-level visual features
O = {o1, o2, ..., oNO

} and bound boxes
B = {b1, b2, ..., bNO

} from an image I , where NO

is the number of detected object features. For tex-
tual feature encoding we use BERT (Devlin et al.,
2019) as it is used in LXMERT. We concatenate all
the textual data, i.e., question Q = {q1, ..., qNQ

},
initial response Ri = {ri1, ..., riNRi

}, scene
change C = {c1, ..., cNC

}, and new response
Rn = {rn1, ..., rnNRn

} along with [CLS]
and [SEP] tokens to create a sequence W =
{[CLS], Q, [SEP], Ri, [SEP], C, [SEP], Rn, [SEP]}
where NQ, NRi , NC , and NRn are the lengths of
question, initial response, scene change, and new
response, respectively.

O,B = FRCNN(I) (1)

Ô = LinearO([[V-TokO];O]dim=t) (2)

B̂ = LinearB([[V-TokB];B]dim=t) (3)

V̂ = LinearOB([Ô; B̂]dim=f) (4)

L = Emb(W ), L̂ = TFL(L) (5)

where LinearO, LinearB , and LinearOB are linear
layers. [V-TokO] and [V-TokB] are visual token at-
tached to object and bounding box sequences (like
[CLS] for a language sequence), respectively, and
[; ]dim=t is concatenation operation along the token-
dimension and [; ]dim=f is along feature-dimension.
TFL is a language Transformer (Vaswani et al.,
2017) which consists of self-attention layers. The
ith attention head in the lth layer ai,l is computed



Text EncoderVisual Encoder

Self- Attention / Cross-Attention

Matching Layer

…

[CLS] Is this refrigerator new ? [SEP] Yes, ... red 
tape around the refrigerator indicating that it is 
brand new. ... a wooden crate. [SEP] There is no 
red tape and not on wooden crate, but there is 
plastic cover ... [SEP] Yes, the fridge is fully 
covered by plastic cover, so it is new. [SEP]

Question: Is this refrigerator new ?
Original Answer: Yes, as you can see a red tape around the 
refrigerator indicating that it is brand new. Also the prod-
uct is on a wooden crate.

Change: There is no red tape and not on wooden crate , 
but there is plastic cover on the fridge everywhere .
New Answer: Yes, the fridge is fully covered by plastic 
cover, so it is new.

Distractor #1: No, the fridge is fully covered by plastic cover 
because the owner is moving it to somewhere else.
Distractor #2:  No, the fridge is fully covered by plastic 
cover because the owner wants to protect the paint that is 
falling off.
Distractor #3: Yes, the fridge is fully covered by plastic cover 
and it is on wooden stack, so it is new.

Question: Is this refrigerator new ?
Original Answer: Yes, as you can see a red tape around the 
refrigerator indicating that it is brand new. Also the prod-
uct is on a wooden crate.

Change: There is no red tape and not on wooden crate , 
but there is plastic cover on the fridge everywhere .
New Answer: Yes, the fridge is fully covered by plastic 
cover, so it is new.

Distractor #1: No, the fridge is fully covered by plastic cover 
because the owner is moving it to somewhere else.
Distractor #2:  No, the fridge is fully covered by plastic 
cover because the owner wants to protect the paint that is 
falling off.
Distractor #3: Yes, the fridge is fully covered by plastic cover 
and it is on wooden stack, so it is new.

Question: Is this refrigerator new ?
Original Answer: Yes, as you can see a red tape around the 
refrigerator indicating that it is brand new. Also the prod-
uct is on a wooden crate.

Change: There is no red tape and not on wooden crate , 
but there is plastic cover on the fridge everywhere .
New Answer: Yes, the fridge is fully covered by plastic 
cover, so it is new.

Distractor #1: No, the fridge is fully covered by plastic cover 
because the owner is moving it to somewhere else.
Distractor #2:  No, the fridge is fully covered by plastic 
cover because the owner wants to protect the paint that is 
falling off.
Distractor #3: Yes, the fridge is fully covered by plastic cover 
and it is on wooden stack, so it is new.

Question: Is this refrigerator new ?
Original Answer: Yes, as you can see a red tape around the 
refrigerator indicating that it is brand new. Also the prod-
uct is on a wooden crate.

Change: There is no red tape and not on wooden crate , 
but there is plastic cover on the fridge everywhere .
New Answer: Yes, the fridge is fully covered by plastic 
cover, so it is new.

Distractor #1: No, the fridge is fully covered by plastic cover 
because the owner is moving it to somewhere else.
Distractor #2:  No, the fridge is fully covered by plastic 
cover because the owner wants to protect the paint that is 
falling off.
Distractor #3: Yes, the fridge is fully covered by plastic cover 
and it is on wooden stack, so it is new.

[V-Tok]

[CLS][V-Tok]

Matching Score

Question: Is this refrigerator new ?
Original Answer: Yes, as you can see a red tape around the 
refrigerator indicating that it is brand new. Also the prod-
uct is on a wooden crate.

Change: There is no red tape and not on wooden crate , 
but there is plastic cover on the fridge everywhere .
New Answer: Yes, the fridge is fully covered by plastic 
cover, so it is new.

Distractor #1: No, the fridge is fully covered by plastic cover 
because the owner is moving it to somewhere else.
Distractor #2:  No, the fridge is fully covered by plastic 
cover because the owner wants to protect the paint that is 
falling off.
Distractor #3: Yes, the fridge is fully covered by plastic cover 
and it is on wooden stack, so it is new.

Figure 6: The full model computes the matching scores
between [V-Tok] token feature and each [CLS] token
feature of the response candidates (a ground-truth re-
sponse and three distractors), and selects the highest
one as a final prediction.

this way:

ai,l = Softmax(
QK>√

dh
)V (6)

Q = W q
l Hl−1, K = W k

l Hl−1, V = W v
l Hl−1

(7)

Hl = [a0,l; a1,l; ...; aNA,l] (8)

where W q
l , W k

l , and W v
l are trainable parameters,

NA is the number of attention head, and dh is the
dimension of each attention head. Then, V̂ and
L̂ are fed to the cross-attention layers: V̄ , L̄ =
TFX(V̂ , L̂), where TFX is cross-attention layers
of vision and language Transformer which consists
of self-attention layers as well as cross-attention
layers. Scores are computed between visual feature
and each of the 4 language features (1 ground-truth
and 3 distractors) pair: sk = Linear(V̄0 ∗ L̄k,0),
where ∗ is the element-wise product, V̂0 is the vi-
sual token (i.e., [V-Tok]) that is attached in the
input layer, and L̂k,0 is the first token (i.e., [CLS])
of k-th language feature. The model compares the
4 scores to select the pair with the highest score as
the final answer. The loss is computed by cross-
entropy: L = −

∑N
j log p(s∗j ), where s∗j is a score

for the ground-truth pair.

7 Experiments

Data Splits. We split the dataset into
1,924/800/800 (train/val/test).

Training Details. We use 768 as the hidden size
and use Adam (Kingma and Ba, 2015) as the op-
timizer, setting the learning rate to 1× 10−5. See
Appendix for more details.

Model Accuracy (%)
1 Response-Only 38.37
2 TC-Response 44.62
3 Full (Image-TC-Response) 49.25
4 Human 98

Table 3: Model results on the val set. Human perfor-
mance is quite high, showing large room for model
improvement (TC: Textual Context). The full model
achieves 40.87% on the test split.

Scene Change Type Accuracy (%)
1 Object Addition 46.41
2 Object Removal 37.87
3 Object Replacement 43.59
4 Object Relocation 48.72
5 Object State Change 51.70
6 Human Addition 56.40
7 Human Removal 42.10
8 Environment Change 52.70
9 Event Description 51.56

Table 4: Model performance on different change types.
While the model generally shows balanced scores over
all scene change types, the performance on removal
types seems to be lower than addition types.

Human Upper Bound Evaluation Setup. We
conduct a human evaluation of our COSIM task
to estimate the upper bound that models can reach.
We take 50 samples from the validation split and
ask two experts to complete the task and average
their scores.

Scene Change Types. We collect the type of the
Scene Change for the validation set. Two experts
are shown each change and then asked to label it
into one or more types. See Figure 5 for the change
types.

Multi-Task / Contrastive Learning. To exploit
extra commonsense reasoning information, we
explore multi-task learning (MTL) with a large-
scaled visual commonsense reasoning dataset,
VCR (Zellers et al., 2019) dataset through alter-
nating mini-batch training. In one mini-batch, the
model is trained on our COSIM dataset, and in the
next, the model is trained on the VCR dataset, and
so on. Also, we try contrastive learning to explore
potential improvement. Specifically, we compute
matching scores between each visual token and
[CLS] token of each ground truth text feature in a
mini-batch, and compute contrastive loss.

8 Results

Modality Ablation. We build models with differ-
ent input modalities and conduct an ablation study.



Number of Scene Change Types Accuracy (%)
1 52.35
2 46.34

3 or more 49.15

Table 5: Model performance on different numbers
of change types, showing instances with single scene
change type are relatively easier.

Model Accuracy (%)
1 MTL with VCR 47.37
2 Contrastive Learning 49.50

Table 6: Model performance on multi-task and con-
trastive learning approaches.

As shown in Table 3, the Response-Only model
(which only takes the new response/distractors as
input) does not do well (row 1). The TC-Response
model (which takes all text data as input) obtains a
better score than the Response-Only model (row 1
and 2), but still performs poorly. The Full model
(which takes the full image and text data as in-
put) does best (row 3), with a val/test score of
49.25/40.87, meaning models need all the visual
and textual input to perform reasonably.5,6

Human Evaluation. We conduct a human evalu-
ation to check the upper performance bound for
the COSIM task. As shown in row 4 of Table 3,
the score is quite high7, indicating a large room for
improvement from future work.

Scene Change Types. As shown Table 4, our
model shows balanced scores over all scene change
types in general, however, comparing the addition
and removal types (row 1 and 2 for object, row
6 and 7 for human), the performance on removal
types is lower than addition types. That is possibly
because removing something from an image might
be harder to imagine.

Number of Scene Change Types. As shown Ta-
ble 5, instances with a single scene change type
seem to be relatively easier to address than ones
with multiple scene change types. This might im-
ply that multiple scene changes make the reasoning
process more complex and challenging.

Multi-Task / Contrastive Learning. As shown in

5The standard deviation of the Full model’s scores on
validation split is 1.52

6The average length difference between the predicted re-
sponses and the rest is 0.0075 words, and the ground-truth
response indices are randomly assigned, thus there is no bias
based on the response length and index.

7Inter-annotator agreement (kappa) is 0.9461, which indi-
cates nearly perfect agreement.

row 1 of Table 6, multi-task training with VCR
does not seem to help improve performance on our
COSIM dataset, implying our dataset is challenging
to address and requires a more complex reasoning
process. The performance of the contrastive learn-
ing (row 2) is also very close to the Full model’s
(row 3 in Table 3), meaning more advanced ap-
proaches might be needed to tackle our COSIM

dataset/task.

Output Examples. As shown in the upper exam-
ple of Figure 7, our model predicts the correct re-
sponse by understanding the implication of “steep
slopes” in the change. In the bottom example, our
model fails to understand that “there is a shark”
must mean the shark is in the water (as sharks
live in the water), and choose a wrong response.
We also split changes into sub-parts and compute
scores for each part to see on which part the model
focuses to answer questions. As shown in Figure 8,
the model looks at “Add labels to the spines of all
the books” to choose the answer.

9 Conclusion

We introduced a challenging counterfactual com-
monsense reasoning task/dataset called COSIM

which features imagined counterfactual scene
changes requiring models to imagine the changed
situation to answer questions. We collected 3.5K
high-quality instances that consist of an image,
an initial question-response pair on the image,
an imagined scene change, and a new response
(with three distractors). The scene changes have
different challenging types (such as object ad-
dition/removal/replacement, environment change,
etc.). We presented a baseline model as a start-
ing point with useful ablation studies and showed
a large human-model performance gap allowing
useful future works.
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Q: Is it a good place for a beginner to learn to snow-
board?
IR: No, because it is really crowded and there is not 
much space to practice.

Model choice:  no, because it has very precipitous 
slopes and it is not safe for new learners.

CH: It is not crowded, but it has very steep slopes.

Q: Is it safe to swim here?
IR: No, it is a pier with lots of boats in and out, so it 
wouldn't be safe to swim.

Model choice:  no, there is a shark in the boat.
CH: there are not a lot of boats, but there is a shark

Figure 7: Model output examples (Q: question, IR: ini-
tial response, CH: scene change).
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A Data Collection

We implement different interfaces for our data col-
lection. The commonsense question collection in-
terface allows for workers to choose which image
they would like to use when making the question,
as well as an object to focus on (Figure 9). The
counterfactual scene change collection and the dis-
tractor collection interfaces (Figure 10 and Fig-
ure 11) feature a verification checkbox. Workers
can check the box if the quality of the data from the
previous phase is poor. If it is flagged, the reason
is reviewed.8 If the reasoning is valid, the instance
is removed from the dataset/no longer progressed
through the collection phases.

A.1 Counterfactual Change Collection
templates

The first guide template is “Keep A, Flip B” and
the second is “Flip A, Keep B” (where ‘A’ means
answer and ‘B’ means justification). For “Keep A,
Flip B”, workers are told to describe a change that
results in the “answer” part of initial response to be
the same, but with a different “justification” part
(E.g. “yes because people are wearing jackets and
winter clothes.” → “yes because you can see some
snow ...”). In the change they write, they should
negate/remove the “justification” part of initial re-
sponse and add something that could be used for a
new “justification”. For “Flip A, Keep B”, workers
are told to describe a change that results in the op-
posite “answer”. The change should also modify
the context so that the initial response “justifica-
tion” part is true, but is no longer valid in proving
the answer and a new “justification” part is needed.
(e.g., “no, as you can see the man is not soaking
wet.” → “yes, the man isn’t wet and he is under a
structure, however ...”).9

A.2 Worker Totals and Payment
We had a total of 182, 97, 194 workers pass testing
for question collection, change collection, distrac-
tor collection, respectively. For the question collec-
tion phase and the change collection phase, work-

8Once the flag is checked, workers are provided with a
textbox where they can explain their reasoning for flagging it.

9The proportions of “Keep A, Flip B” and “Flip A, Keep
B” are 42.93% and 57.07%, respectively.



ers are paid 0.35 USD per instance they complete
(each takes about 2 minutes). As the distractor col-
lection phase is faster and easier, workers are paid
0.30 USD per instance (takes around 1.5 minutes).
In all three phases, an additional bonus of 0.02
USD is given for each high-quality instance they
completed, and then for every subsequent group
of 25 high-quality instances completed, the bonus
per instance is increased by 0.01 USD (0.02 USD
bonus per instance for the first 25, 0.03 USD bonus
for the next 25, 0.04 USD bonus for the next 25,
and so on). Since there is no limit on how much a
worker can write, they can keep stacking the bonus
as much as they want. All the payments are at a
reasonable hourly rate of 11-12 USD.

B Scene Change Types

The scene change types, while they are seemingly
easy to visualize, require a complex understanding
of what effect the change has on other elements
in the scene. The Object Addition scene change
type (the most commonly occurring one) involves
introducing new object(s) into the image that was
not there prior. The Object State Change scene
change type involves altering the state of object(s)
present in the image. The alteration of object(s)
can take place in various forms such as changing
color, size, shape, and orientation (e.g., opening a
door). The Event Description scene change type
involves the creation of an event or a description of
motion or interaction between objects in the image.
Please see Figure 12 for the full list of the scene
change types and examples.

C Training Details (Reproducibility)

All the model experiments are conducted on a
Ubuntu 16.04 system using the NVIDIA GeForce
GTX 1080 Ti GPU and Intel Xeon CPU E5-
2630. We employ PyTorch1.4 (Paszke et al.,
2017) to build our models. We run models up
to 50 epochs (each epoch takes around 8 mins)
and choose the best ones based on the validation
split evaluation. We use 768 as the hidden size
and use Adam (Kingma and Ba, 2015) as the
optimizer, setting the learning rate to 1 × 10−5.
We initialize the language layer with the pre-
trained BERT weights and cross-attention layers
with the pretrained LXMERT weights. We use
1234/2345/3456 as the random seed values. The
number of trainable parameters of our full model
is 173M. We employ accuracy as the evaluation

metric. We use manual hyperparameter tuning
(e.g, learning-rate={1× 10−3, ..., 1× 10−6}, num-
of-cross-layer={1, 2, ..., 5}, batch-size={2,4,6,8},
etc.) based on validation scores. We use the im-
plementation of Yang et al. (2017) for the Faster
R-CNN (Ren et al., 2015) model. The evaluation
splits of our COSIM dataset are not overlapped
with the training split of the Faster R-CNN.

D Potential Risk

Potential models trained on our dataset may learn
misleading information accidentally and create un-
safe suggestions; therefore, careful use is required
when deploying models in a real-world applica-
tion.



Figure 9: Collection interface for the commonsense question collection phase. Workers are given three images, and
they select the one they wish to use. Then workers are given space to write their question and response. Workers
are told to select an object in the image they choose to help them focus their question around something specific.

Figure 10: Collection interface for the change collection phase. Workers are given the selected image and the
written question and response from the commonsense question collection phase and then asked to write a change
and new response based off that change.



Figure 11: Collection interface for the distractor collection phase. Workers are given the image and all the context
from the previous phases and then asked to write three distractors that are similar to the new response but are
distinct/semantically different. The distractor textboxes are prefilled with the new response and during HAMLET
collection, workers are given a section to check their distractors against the model. Note: This interface is quite
large and relevant portions are stitched together.

Object Addition

“Add snow and ice to the road. Add a bus.
Place the person inside the bus.”

Object State Change

“Dress everyone in black clothes and give the
scene a somber mood. Change the table cloth
to white.”

Event Description

“Add rice falling from the sky on to the
umbrella. show the rice accumulated on the
umbrella and falling o� in the places where
the umbrella dips.”

Human Addition

“There is now a person in each boat. They
each also have a �shing pole that is being
used on the water.”

Human Removal

“There is no snow and there are no people, but the
windows on the building are covered with ice.”

Object Relocation

“... move the skateboarder much higher up in
the air ... move the skateboard further away from
the skateboarder so they can not land with the
board.”

Object Removal

“Remove all the kites and the unfurled sail.
Add some people in the foreground with long
hair. Have their hair blowing horizontally ...”

Object Replacement

“Change the cake to a round cake covered in
something that has the colour of marzipan. Add
13 round balls on the cake with the same
colour.”

Environment Change

“... Dress the others in clothes suited to a period
of the Roman Empire. Add a market behind on
the raised area with the people there now
shopping for produce...”

Figure 12: Scene change examples from our dataset. The relevant portions of the change are in italics.


