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Abstract—Low-capacity scenarios have become increasingly
important in the technology of Internet of Things (IoT) and
the next generation of mobile networks. Such scenarios require
efficient and reliable transmission of information over channels
with an extremely small capacity. Within these constraints, the
performance of state-of-the-art coding techniques is far from
optimal in terms of either rate or complexity. Moreover, the
current non-asymptotic laws of optimal channel coding provide
inaccurate predictions for coding in the low-capacity regime.
In this paper, we provide the first comprehensive study of
channel coding in the low-capacity regime. We will investigate
the fundamental non-asymptotic limits for channel coding as
well as challenges that must be overcome for efficient code
design in low-capacity scenarios.

I. INTRODUCTION

Low-capacity scenarios have become increasingly impor-
tant in the technology of Internet of Things (IoT) and next
generation of mobile networks. In particular, these scenarios
have emerged in two extremes of wireless communications:
narrowband and wideband communications. The former is
widely considered for deploying IoT in cellular networks
where massive number of users need to be served [1],
and the latter models communication in the millimeter-Wave
(mmWave) band which is one of the key innovations of
the next generation of cellular networks (5G) [2]. From the
channel modeling perspective, it turns out that users operating
in these two different applications typically experience a
very low signal-to-noise ratio (SNR). Therefore, studying
fundamental limits as well as practical code construction is
required to address the challenges of wireless system design
for these emerging applications.

The Third Generation Partnership Project (3GPP) has in-
troduced new features into the Long-Term Evolution (LTE)
standard in order to integrate Internet of Things (IoT) into
the cellular network. These new features, called Narrow-Band
IoT (NB-IoT) and enhanced Machine-Type Communications
(eMTC), have been introduced in the release 13 of LTE [1].
To ensure high coverage, the standard has to support coupling
losses as large as 170 dB for these applications, which is
approximately 20 dB higher than that of the legacy LTE.
Tolerating such coupling losses requires reliable detection for
a typical —13 dB of effective SNR, translated to capacity
~ 0.03 bits/transmission. To enable reliable communication
in such low-SNR regimes, LTE has adopted a legacy turbo
code of rate 1/3 as the mother code together with many
repetitions. For NB-IoT, the standard allows up to 2048
repetitions to enable the maximum coverage requirements,
thereby supporting effective code rates as low as 1.6 x 107%
[1]. However, from a channel coding perspective, repeating a
high-rate code to enable low-rate communication can be very
sub-optimal.

Most of classical channel coding theory is centered on
the design of point-to-point error-correcting codes, assuming
an underlying channel with a certain capacity C > 0.
However, since C is only asymptotically achievable, recently
there has been a large body of work to study the finite-
length performance: given a fixed block error probability
Pes what is the maximum achievable rate R in terms of
the blocklength n? This question has been of interest to
information theorists since the early years of information
theory [3], and a precise characterization is provided in [4]
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as R =C-— \/gQ_l(pe) +0 ( 5 ), where Q(-) is the
tail probability of the standard normal distribution, and V is
the channel dispersion. In recent years, this non-asymptotic
law is specified up to the third and later to the fourth order
for particular channels including BEC, BSC, and AWGN (see
[5, Theorems 41,44], [6—10]). Such non-asymptotic laws have
steered optimal code design for channels with moderate values
of C. However, very little is known about optimal code design
in the low-capacity regime, where channel capacity C could
be extremely small (e.g. as small as O(1/n)) and hence, the
first and the second order terms of the law could be as small
as the third order and the fourth order terms. In other words,
for a given C, the prediction based on normal approximation,
e.g., [4], after discarding the O(1) term, becomes more
and more accurate as 1 grows large where the O(1) term
becomes less and less relevant. However, when C is extremely
small, even at moderate blocklengths, from coding application
perspective, e.g., C = 0.01 and n being between 1000
and 10000, the O(1) term is still well comparable even
with the first-order term nC leading to imprecise predictions
by the normal approximation. More formally, such setting
can be formulated as, for instance, C = O(1/n), which
is particularly of interest from wideband communications
perspective (see [11, Section 3]). Optimal code design in the
low-capacity regime, defined explicitly in Section III, requires
addressing various theoretical and practical challenges.

From the theoretical standpoint, channel variations in the
low-capacity regime may be better approximated by different
probabilistic laws rather than the ones used for typical chan-
nels. For instance, consider transmission over BEC(e) with
blocklength n. When the erasure probability € is not very
close to 1 (e.g., € = 0.5), the number of non-erased bits
will be governed by the central limit theorem and behaves
as nC + y/ne(1 —¢€)Z, where Z is the standard normal
random variable. However, in the low-capacity regime, when
the capacity C = 1 — € is very small, although 7 is large, the
number of channel non-erasures will not be large since a non-
erasure occurs with small probability 1 — €. In other words,
the average number of non-erased bits is 72(1 — €) which can
be a constant or a number much smaller than n. Hence, the
number of non-erasures will be best approximated by the law
of rare events or the so-called Poisson convergence theorem
rather than the central limit theorem.

From the design standpoint, we need to construct efficient
codes with extremely low rates. Such constraints render
the state-of-the-art codes and their advantages, in terms of
decoding complexity and latency, inapplicable. For instance,
it is well known that low-rate iterative codes have highly
dense Tanner graphs which significantly deteriorates the per-
formance (as there are many short cycles) as well as the
computational complexity. Polar codes [12] can naturally
be adapted to the low-rate regime. However, the current
implementation of these codes suffers from relatively high
computational complexity and latency, especially when such
parameters are analyzed in terms of the number of information
bits k rather than the blocklength #n in the low-capacity
regime.

This paper provides the first comprehensive study of chan-
nel coding at the low-capacity regime from both theoretical
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and code design viewpoints. We refer to [11] for a longer
version of this paper with all the proofs. Section II provides
the necessary background. Section III contains a precise
definition of the low-capacity regime as well as fundamental
non-asymptotic laws. Section IV considers various approaches
to practical code design with simulation results and numerical
comparisons.

II. PRELIMINARIES

In this section, we will review the main concepts of channel
coding in the non-asymptotic regime along with a brief review
of previous works.! For an input alphabet X’ and an output
alphabet ), a channel W can be defined as a conditional
distribution on Y given X. An (M, p,)-code for the channel
W is characterized by a message set M = {1,2,--- , M}, an
encoding function fenc : M — X and a decoding function
faee =Y — M such that the average probability of error
does not exceed p,. Accordingly, an (M, p.)-code for the
channel W over n independent channel uses can be defined
by replacing W with W in the definition. The blocklength
of the code is defined as the number of channel uses and is
denoted by n. For the channel W, the maximum code size
achievable with a given error probability p. and blocklength
n is denoted by

M*(n, pe) = max {M | 3(M, p.)-code for W"}. (1)

In this paper, we consider the binary erasure channel with era-
sure probability € by BEC(€) and binary symmetric channel
with crossover probability by BSC(6). The non-asymptotic
expansion of M*(n, p.) is given as [4,14]

log, M*(n, pe) = nC — \/nVQfl(pe) + O(log, n), (2)

where C is the channel capacity, V is the channel dispersion,
and Q(.) is the tail probability function of standard normal
distribution. Note that the third order term in the non-
asymptotic expansion of M*(n, p.) depends on type of the
channel (see [5, Theorems 41,44], [6], and [7-10]).

III. FUNDAMENTAL LIMITS

The Low-Capacity Regime. Consider the transmission over
a channel W with a capacity C. Let k denote the number of
information bits to be sent and n denote the blocklength of
the code. In informal terms, the low-capacity regime refers
to scenarios in which the channel capacity C is very small.
Indeed, To reliably communicate k bits, we clearly must have
n > k/C and thus 7 is a fixed and finite number but fairly
large. For instance, consider the narrowband and wideband
applications discussed in SectionI, where the number of
information bits k varies between few tens, in narrowband,
to few thousands, in wideband (see [11, Section 3]), and the
channel capacity C is typically below 0.05. This makes 7 to
vary between few thousands to several tens of thousands. For
instance, if k = 50 and C = 0.02, then the blocklength 7 is
at least 2500.

In order to proceed with a formal definition of the low-
capacity regime, we need to provide a formal characterization
of the term “low” in the case where all the parameters such
as C and n are assumed to be fixed an finite quantities (i.e.
we consider the non-asymptotic setting).

Definition 1. Let C and n be given fixed quantities. The trans-
mission over a channel W with capacity C and blocklength n
is called to be in the low-capacity regime if C < n®~1, where
s € [0,1) is a tuning parameter quantifying what we consider
as “low” in the application and its exact domain should be
specified according to the channel.

Remark 1. Throughout the theorems and proofs, we define
Kk := nC and consider n and C as "variables" which can

'For more details, we refer the reader to [13] for an excellent review.

take any given fixed value. This allows us to replace the
condition C < n*~, for any s € [0,2/3) (in the BSC
case) with the condition k\/k = o(n) without abuse of the
o(.) notation (albeit n is originally a fixed rather than a
growing value) which represents a comparison between the
order of variables telling us which terms can be neglected.
For instance, k = O(1) (equivalently, C = O(1/n)) or
k = O(y/n) (equivalently, C = O(1/+/n)), etc.

Why the laws should be different in the low-capacity
regime? Let us now explain why the current non-asymptotic
laws of channel coding provided in (2) are not applicable in
the low-capacity regime. Consider transmission over BEC(¢)
with blocklength 1. When the erasure probability € is not
so large (e.g., € = 0.5), the number of channel non-erasures
will be governed by the central limit theorem and behaves as
nC + /ne(1 — €)Z, where Z is the standard normal random
variable. However, in the low-capacity regime, where the
capacity C = 1 — € is very small, the number of channel
non-erasures will not be large, as the probability of non-
erasure is very small. In other words, the expected number
of non-erasures is k = n(1 —€) which is much smaller
than n. In this case, the number of non-erasures is best
approximated by the Poisson convergence theorem (i.e., the
law of rare events) rather than the central limit theorem. Such
behavioral differences in the channel variations will lead to
totally different non-asymptotic laws, as we will see below.
Another reason for (2) being loose is that some of the terms
that are considered as O(1) become significant in the low-
capacity regime. E.g., we have 1/(,/nC) = /n/(nC) =
\/n/x which cannot be considered as o(1) as x is usually
much smaller than 7. As we will see, such terms can be
captured by using sharper tail bounds.
Our approach. Note that extremely tight converse and
achievability bounds for BEC and BSC have existed prior
to [4,5] and stated as [5, Corollary 42, Theorem 43] for BEC
and [5, Corollary 39, Theorem 40] for BSC. These bounds
are in a raw implicit form. The novel contribution of [4,5]
is using normal approximations and probability tail bounds
to convert these implicit forms into explicit ones directly
relating log, M*(n, p.) to n, p.. This procedure works well
for moderate values of C with respect to n but fails to provide
accurate estimates in the low-capacity setting considered in
this paper. In order to provide an accurate estimate, we need
novel probabilistic laws which are, in some cases such as the
BEC, totally different than what has been used before. Our
approach can be summarized as follows: our starting points
are the same as [4,5], i.e., we start with [5, Corollary 42,
Theorem 43] for BEC and [5, Corollary 39, Theorem 40] for
BSC, but our analysis is based on Poisson approximations
(for BEC) and much tighter probability tail bounds (for BSC)
which are specifically perfect for the low-capacity regime
but not necessary for moderate values of C. These novel
approaches in analysis lead to the low-capacity coding bounds
for BEC and BSC stated in the following subsections.

A. The Binary Erasure Channel

The following theorem provides lower and upper bounds
for the best achievable rate (see (1)) in terms of n, pe, €, and
x := n(1 — €). For the Poisson distribution, we use P, (x)
to denote

Pr(x) =Pr{X < x}, where X ~ Poisson(A).  (3)

Theorem 1 (Non-Asymptotic Coding Bounds for the Low—
Capacity BEC). Consider transmission over BEC(€) in the
low-capacity regime and let k = n(1 — €). Then,

M; < M*(n,pe) < My,

where My is the solution of

P1(My) +ay/P1(M1) — pe =0, 4)
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and My is the solution of

Po(Ma) — ay/Pa(Ma) — ay/ Pe(logy Ma) — pe = 0, (5)
and
P1(M1) = Py (log, My) + Mye ™% (1 — Py 2(log, My)),
Pa(Ma) = Pilogy Mz) — 11 P (1og, M),

V2

“= =5 <1+2\/§> (Ve—1)(1—e).

The bounds in Theorem 1 are tight and can be simply
computed numerically (see [11, Appendix]). The bounds are
expressed merely in terms of x := n(1 — €) rather than n.

B. The Binary Symmetric Channel

Unlike BEC, the non-asymptotic behavior of coding over
BSC can be well approximated in the low-capacity regime
by the central limit theorem (e.g., Berry-Essen theorem).
In the following we briefly explain the reason. Consider
transmission over BSC(J) where the value of ¢ is close
to 1/2. The capacity of this channel is 1 — h;(5), where
hy(x) := —xlog,(x) — (1 — x)log,(1 — x), and we denote
x = n(1 — hy(d)). Note that when 6 — 1/2 one can write
0 ~ 1/2 — +/x/n by using the Taylor expansion of the
function hp(x) around x = 1/2. Transmission over BSC(J)
can be equivalently modeled as follows: (i) With probability
26 we let the output of the channel be chosen according
to Bernoulli(1/2), i.e., the output is completely random and
independent of the input, and (ii) with probability 1 — 26 we
let the output be exactly equal to the input. In other words,
the output is completely noisy with probability 26 (call it
the noisy event) and completely noiseless with probability
1 — 26 (call it the noiseless event). As § — 1/2, then the
noiseless event is a rare event. Now, assuming 7 transmissions
over the channel, the expected number of noiseless events
is n(1 —26) ~ y/nx. Similar to BEC, the number of rare
noiseless events follows a Poisson distribution with mean
n(1 —25) due to the Poisson convergence theorem. However,
as the value of n(1 —26) ~ y/nx is large, the resulting
Poisson distribution can also be well approximated by the
Gaussian distribution due to the central limit theorem (note
that Poisson(#) can be written as the sum of m independent
Poisson(1) random variables).

As mentioned earlier, central limit laws are the basis for
deriving the laws of the form (2) which are applied to the
settings where the capacity is not small. However, for the
low-capacity regime, considerable extra effort is required in
terms of sharper arguments and tail bounds to work out the
constants correctly.

Theorem 2 (Non-Asymptotic Coding Bounds for the Low—
Capacity BSC). Consider transmission over BSC(S) in the
low-capacity regime and let k = n(1 — hy(8)). Then,

26(1—9) )
T VEQ Hpe) (6)

1
+ 5 log, x — log, p. + O (loglog ) .

log, M*(n, pe) =k —2

The superiority of this novel derivation compared to the
state-of-the-art BSC bound [5, Theorem 41] in the low-
capacity regime is numerically shown in Section IV-C.

IV. PRACTICAL CODE DESIGNS AND SIMULATION
RESULTS

As we need to design codes with extremely low rates, some
of the state-of-the-art codes may not be directly applicable.
A notable instance is the class of iterative codes, e.g., Turbo
or LDPC codes. It is well known that decreasing the design

rate of iterative codes results in denser decoding graphs which
further leads to highly complex iterative decoders with poor
performance. In order to circumvent this issue, the current
practical designs, such as the NB-IoT code design, use repe-
tition coding, i.e., a low rate repetition code is concatenated
with a powerful moderate-rate code. In Section IV-A, we will
provide fundamental trade-offs between the number of repeti-
tions and performance of the code, and show that, even though
repetition leads to efficient implementations, the rate loss
through many repetitions will result in codes with mediocre
performance. In Section IV-B, we will study the behavior of
polar coding on low-capacity channels. As we will see, polar
coding is advantageous in terms of distance, performance
and implicit repetition, however, it can be further simplified
for practical applications. Throughout this section, we will
consider code design for the class of binary memoryless
symmetric (BMS) channels.

A. Repetition Coding

As mentioned above, repetition is a simple way to design
practical low-rate codes that exploit the power of state-of-
the-art designs. Let r be a divisor of n, where n denotes the
length of the code. Repetition coding consists in designing
first a smaller outer code of length n/r and repeat each of
its code bits r times (i.e., the inner code is repetition). The
length of the final code is n/r-r = n. This is equivalent
to transmitting the outer code over the r-repetition channel,
W', which takes a bit as input, and outputs an r-tuple that is
the result of passing r copies of the input bit independently
through the original channel W, e.g., if W is BEC(e) then
its corresponding r-repetition channel is W" = BEC(e").
The main advantage of repetition coding is the reduction
in computational complexity and latency (especially if r is
large). This is because the encoding/decoding complexity is
effectively reduced to that of the outer code.

The outer code has to be designed for reliable communi-
cation over the channel W', If r is sufficiently large, then the
capacity of W” will not be low anymore. In this case, the outer
code can be picked from off-the-shelf practical codes designed
for channels with moderate capacity values (e.g., iterative or
polar codes). While this looks promising, one should note that
the main drawback of repetition coding is the loss in capacity.
In general, we have C(W") < rC(W) and the ratio vanishes
by growing r. As a result, if r is very large then repetition
coding might suffer from an unacceptable rate loss. Thus, the
main question that we need to answer is: how large r can be
made such that the rate loss is still negligible?

We note that the overall capacity corresponding to n
channel transmissions is nC(W). With repetition coding, the
capacity will be reduced to n/r - C(W") since we transmit
n/r times over the channel W”. For any B € [0,1], we ask
what is the largest repetition size rg such that

L cwre) > pnc(w). )
i

Theorem 3 (Maximum Repetition Length for BEC). If W =
BEC(€), then for the largest repetition size rg that satisfies
(7), we have

n<1—€>f.<ﬁ)2§n§;

2(1—%) l

®)

where ¢ = —}rlfee. Equivalently, assuming x = n(1 —e¢), (8)
becomes
K 5 n
— B (14+0(1-€)) < -
Sy F+o0-9) < 2
K
<—(1+0(1—¢)).
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n 1024
Aoin (Amin /1) 128 (1/8)

TABLE I: Minimum distance of a polar code constructed for
k = 40 over various channels with capacity 0.02.

4096
512 (1/8)

16364
2048 (1/3)

Remark 2. Going back to the results of Theorem 1, in order
to obtain similar non-asymptotic guarantees with repetition-
coding, a necessary condition is that the total rate loss due
to repetition is O(1), ie.,

%C(Wrﬁ) = nC(W) + O(1).

If W = BEC(€) and x = n(1 — €), then the necessary con-
dition implies plugging p =1 — O(1/x) into (7). Moreover,
Jfrom Theorem 3 we can conclude that, when € is close to 1, the
maximum allowed repetition size is O (n / KZ). Equivalently,
the size of the outer code can be chosen as O(x?).

We conclude that, as having a negligible rate loss implies
the repetition size to be at most O(n/x?), the outer code
has to be designed for a BEC with erasure probability at
least €Q(W/¥%) — 1 _ O(1/x). This means that the outer
code should still have a low rate even if x is as small as
few tens. Thus, the idea of using e.g., iterative codes as the
outer code and repetition codes as the inner code will lead to
an efficient low-rate design only if we are willing to tolerate
non-negligible rate losses. We refer to Section IV-C for a
numerical case study on repetition coding.

It turns out that the binary erasure channel has the smallest
rate loss due to repetition among all the BMS channels. This
property has been used in the following theorem to provide
an upper bound on rg for any BMS channel.

Theorem 4 (Upper Bound on Repetition Length for any
BMS). Among all BMS channels with the same capacity, BEC
has the largest repetition length g that satisfies (7). Hence,
for any BMS channel with capacity C and ¥ = nC, we have

n K 2

— > ——p(1+0(1-0)).

rg — 2(1-B)
Remark 3. Similar to Remark 2, we conclude that for any
low-capacity BMS channel, in order to have the total rate loss
of order O (1), the repetition size should be at most O(n/x?).

B. Polar Coding at Low Capacity

We show in this section that polar construction provides
several coding advantages, in terms of both performance and
complexity, in the low-capacity regime. We also show that, to
make polar codes a suitable candidate for practice, we need
to carefully adapt their encoding and decoding operations.

The generator matrix of polar codes of length n = 2™ is
10 @m
11 !
corresponding to the best k “synthetic” channels [12].

High Minimum Distance at Low-Capacity. If the channel
W has low capacity, then clearly any good (i.e., noiseless)
synthetic channel requires a lot of plus operations. As a
result, for all the k best synthetic channels the Hamming
weight of the corresponding row in G, is very high. Hence,
the resulting polar code will have a high minimum distance.
Table I provides the minimum distance of the polar code
for various channels and lengths. The channels are BAWGN,
BEC, BSC all with capacity 0.02. We have constructed polar
codes for these channels with k = 40. Indeed, polar and Reed-
Muller codes become very similar in the low-capacity regime.
Polar Coding Does Optimal and Implicit Repetition at
Low-Capacity. We have shown in Section IV-A that the
maximum allowed regetition size to have a negligible ca-
pacity loss is O(n/x*). We will show in this section that

based on choosing k rows of the matrix G, =

at low-capacity, the polar construction is enforced to have
O(n/x?) repetitions. In other words, the resulting polar code
is equivalent to a smaller polar code of size O(x?) followed
by repetitions. Consequently, the encoder and decoder of the
polar code could be implemented with much lower complexity
taking into account the implicit repetitions. That is, the
encoding can be reduced to 7 + O (x> log x) and the decoding
complexity using the list successive cancellation (SC) decoder
with list size L is reduced to n + O(Lx? log k). Recall that
the original implementation of polar codes requires nlogn
encoding complexity and O(Lnlogn) decoding complexity.
Moreover, as the repetition steps can all be done in parallel,
the computational latency of the encoding and decoding
operations can be reduced to O(x?logx) and O(Lx?logx),
respectively. To further reduce the complexity, simplified SC
decoders can be invoked, and are crucial for making polar
codes a suitable candidate for practice.

Theorem 5. Consider using a polar code of length n = 2™
for transmission over a BMS channel W. Let mg = log, (4x?)

where k = nC(W). Then any synthetic channel W,gl) whose
Bhattacharyya value is less than 1/2 has at least mg plus
operations in the beginning. As a result, the polar code
constructed for W is equivalent to the concatenation of
a polar code of length (at most) 2™ followed by 2™~ ™0
repetitions.

Remark 4. Note that from Theorem 5, polar codes automat-
ically perform repetition coding with O(n/ KZ) repetitions,
where k = nC. This matches the necessary (optimal) number
of repetitions given in Remark 2 and 3.

C. Simulation Results

For the BEC, Figure 1 compares the lower and upper
bounds obtained from Theorem 1 with the predictions of
Formula (2). We have also plotted the performance of random
linear codes as well as polar codes (with successive list
decoding, L = 16 and 6 cyclic redundancy check (CRC) bits
[15]). The setting considered in Figure 1 is as follows: We
intend to send k = 40 information bits over the BEC(¢).
The desired error probability is p, = 1072. For erasure
values between 0.96 and 1, Figure 1 plots bounds on the
smallest (optimal) blocklength 7 needed for this scenario as
well as the smallest length required by polar codes. Note that
in order to compute a lower bound on the shortest length
from Theorem 1, we should fix M*(n, p.) to k = 40 and
search for the smallest n satisfying (5) with ¥ = n(1 — ¢€)
and p, = 0.01.

As we see in Figure 1, the lower and upper bounds
predicted from Theorem 1 are very close to each other. The
performance of random linear codes is very close to the upper
bound which is natural as the upper bound uses a random
coding achievability argument. As expected, the prediction
obtained from Formula (2) is not precise in the low-capacity
regime and it becomes worse as the capacity approaches zero.

Figure 1 also includes bounds and predictions for the BSC
under the same setting (i.e. k = 40 and p, = 0.01). We have
compared in Figure 1, the predictions from Theorem 2 and
Formula (2) together with the upper and lower bounds which
are directly computed from Random coding union bound (for
instance, see [5, Corollary 39]) and a general tight converse
bound for BSC (see e.g. [5, Theorem 40]), respectively. Note
that the true value of n lies between these two bounds.
Theorem 2 and Formula (2) are both estimating that true value
based on these upper and lower bounds. In this way, Figure 1
shows that, as we expected, the prediction from Formula (2)
(obtained in [4]) is quite imprecise in the low-capacity regime
particularly in comparison to the prediction from Theorem 2.

Figure 2 compares the performance of polar codes with
repeated LTE Turbo codes over the binary-input additive
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Figure 1: Comparison for the low-capacity BEC (top plots) and BSC (bottom plots). The number of information bits is k = 40
and the target error probability is p, = 10~2. Each plot on the right is a “normalized” version of its left counterpart, i.e.,
all the blocklengths 7 in the left plots are normalized by the value of the lower bound and are plotted in the right. Also, for
each of the plots on the right we have used the same legend entries as their left counterpart.

white Gaussian noise channel. Here, we intend to send k = 40
information bits. The polar-CRC code has length 8192, and
the Turbo-repetition scheme has the (120,40) mother code of
rate 1/3 as the outer code which is repeated 68 times (the
total length is 68 x 120 = 8160). In the considered (8192,40)
polar code, a repetition factor of 4 is implicitly enforced by
the construction, as predicted by Theorem 5. Hence, the polar
coding scheme is actually a (2048,40) polar code with 4
repetitions. We note from Section I that repetition of the LTE
code for data channel, in this case the Turbo code of rate 1/3,
is the proposed code design in the NB-IoT standard. For these
two choices of code designs, the block error probability is
plotted with respect to Ej, / Ny in Figure 2. As we see from the
figure, the waterfall region of Turbo-repetition is almost 4 dB
away from that of the polar code. This is mainly due to the
many repetitions that must be invoked in the repeated Turbo
code to provide the low rate design. Consequently, this results
in capacity loss and significantly degraded performance for
Turbo-repetition scheme comparing to the carefully designed
polar code.
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Figure 2: Comparison for the low-capacity BAWGN between
polar codes and Turbo-repetition codes. The Shannon limit
for this setting is —4.75 dB.
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