2022 IEEE/ACM 4th International Workshop on Software Engineering Education for the Next Generation (SEENG)

An Automatic Grading System for a High School-level
Computational Thinking Course

Sirazum Munira Tisha

Rufino A. Oregon

Gerald Baumgartner

stishal@lsu.edu rufinooregon@tamu.edu gb@lsu.edu
Division of Computer Science and Dept. of Education Administration Division of Computer Science and
Engineering and Human Resource Development Engineering

Louisiana State University
Baton Rouge, LA, United States

Fernando Alegre
falegre@lsu.edu
Gordon A. Cain Center for STEM
Literacy
Louisiana State University
Baton Rouge, LA, United States

ABSTRACT

Automatic grading systems help lessen the load of manual grading.
Most existent autograders are based on unit testing, which focuses
on the correctness of the code, but has limited scope for judging
code quality. Moreover, it is cambersome to implement unit testing
for evaluating graphical output code. We propose an autograder
that can effectively judge the code quality of the visual output codes
created by students enrolled in a high school-level computational
thinking course. We aim to provide suggestions to teachers on an
essential aspect of their grading, namely the level of student com-
petency in using abstraction within their codes. A dataset from five
different assignments, including open-ended problems, is used to
evaluate the effectiveness of our autograder. Our initial experiments
show that our method can classify the students’ submissions even
for open-ended problems, where existing autograders fail to do so.
Additionally, survey responses from course teachers support the
importance of our work.

KEYWORDS

open-ended problems, code quality, lexical analysis, machine learn-
ing

ACM Reference Format:

Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando
Alegre, and Juana Moreno. 2022. An Automatic Grading System for a High
School-level Computational Thinking Course . In 4th International Workshop
on Software Engineering Education for the Next Generation (SEENG’22), May
17, 2022, Pittsburgh, PA, USA. , 8 pages. https://doi.org/10.1145/3528231.
3528357

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9336-2/22/05...$15.00
https://doi.org/10.1145/3528231.3528357

Texas A&M University
College Station, TX, United States

Louisiana State University
Baton Rouge, LA, United States

Juana Moreno
moreno@lsu.edu

Department of Physics & Astronomy

20

and Center for Computation &
Technology
Louisiana State University
Baton Rouge, LA, United States

1 INTRODUCTION AND MOTIVATION

An automatic grading system automatically assesses students’ code
pieces based on preset criteria and provides grades and/or feedback
accordingly. Autograding systems proved very useful for courses
with massive enrollments either online or in-person [20]. During
the Covid-19 pandemic, while most education systems were online,
instructors were stressed, exhausted, and overwhelmed with their
workload [21, 27]. An automatic grading system may serve at its
best by alleviating the workload for the graders. We have developed
an autograder for a high-school-level course named Introduction
to Computational Thinking (ICT).

As a part of the nationwide CS for All initiative [11], in 2017
the Gordon A. Cain Center at Louisiana State University launched
the ICT as an introductory programming course offered to ninth
and tenth graders [1]. ICT emphasizes connections to algebra, ge-
ometry, and science modeling. The ICT curriculum is designed
around hands-on activities that help students build mental models
of quantitative and formal reasoning and fill potential foundational
gaps in their understanding. All the activities are programmed in
CodeWorld [10], a web-based integrated development environment
that uses a simplified version of the Haskell programming language
[24]. CodeWorld uses a minimal set of graphical primitives to draw
shapes, such as circles, rectangles, and text, and supports transla-
tion, rotation, scaling, and coloring of these primitives. Students
are introduced to basic computational thinking practices within
this environment. Figure 1 shows the CodeWorld environment dis-
playing the code in the left panel and its outcome as a clock image
in the right panel.

Since there are not enough computer science teachers, the ICT
curriculum was designed to be accessible to teachers with diverse
backgrounds. Prospective ICT teachers receive intensive training
in the summer before teaching the course. The ICT curriculum
includes about a hundred coding assignments. It is undoubtedly
a hectic and time-consuming task for a novice teacher to grade
all the coding assignments manually. Additionally, in this course,
all the assignments have graphical output. To grade this type of

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

main = drawingof(clock & hands & ticks & Tittle
bigtick-translated(solidRectangle(0.2,1),0,7.5
angle1=360/60

Tittletick=rotated(translated(solidgectangle (0.
otated(translated(solidRectangle(C

§ Totated(trans]ated(eo] 1drectanglo(t

& rotated(translated(solidRectangle(C

angle2-360/12
Tittleticks=littletick
rotated(littletick,angle2*2
& rotated(1ittletic
& rotated(Tittleti
& rotated(littletick,a
& rotated(Titt]etick, ang1e2 G
& rotated(litt]etick,angle2#7
& rotated(littletick,angle2*8
& rotated(littletick,angle2*9
& rotated(littletick,angle2*10
& rotated(itt]etick,angle2#11
& rotated(litt]etick,angle2*12
& rotated(Tittletick,angle2#13

lockoshiclcinclaln

D (18 (o O P) £

Figure 1: CodeWorld environment with editor panel on the
left and the respective code output picture on the right.

assignments by only examining the final output is not sufficient to
provide meaningful feedback to the students; checking the quality
or elegance of the code is also crucial. Here in this research, the
term “code elegance” includes the code’s efficiency, coherency, and
readability aspects, such as appropriate variable naming, spacing,
function usage, code refactoring, documentation etc. Measuring
code elegance is essential in assessing students’ computational
thinking abilities. Our target is to develop an autograder that can
evaluate the code elegance of programming assignments even be-
fore running them and provide crucial insights into the student
learning of basic computational thinking skills.

Most available autograder systems, such as Gradescope [16],
LAB.COMPUTER [22], and CodeGrade [9], use the unit testing
approach where the graders create several input test cases. The code
is run for all the test cases; if all the outputs are as expected, the code
is considered correct. This approach works best for programs where
outputs are literal. However, it cannot assess pictorial or graphical
outcomes. On top of this, it cannot evaluate codes for open-ended
assignments where the students’ creativity is encouraged. The unit
testing approach is also inconvenient for novice teachers who barely
have any computer science or coding background. To reduce the
test case writing loads, Carnegie Mellon University’s CS1 course
[26] provides an autograder with built-in test cases. However, the
built-in test cases confine students to the exact reference code
restricting their creativity. As the ICT course encourages students
to demonstrate their creativity, an autograder with built-in test
cases is not a good fit for the curriculum.

The goal of our novel autograder is not to replace teachers by
strictly grading the programming assignments but rather to reduce
the grading efforts by helping teachers assess the different aspects
of a piece of code.

2 RELATED WORK

We aim to provide feedback on the writing styles of the pieces of
code without execution. Static program analysis analyzes computer
software without executing any program. Schwieren et al. [30] and
Benac et al. [5] used static analysis in their proposed autograder.
In their review, Arifi et al. [2] described the necessity of using
both dynamic and static analysis, and they found relatively good
results using the fusing system. Edwards et al. [13] in Web-CAT
autograder also used a combination of static analysis and unit

21

Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and Juana Moreno

testing. In most cases, the static analysis is performed on some
version of a program’s source code and, in other cases, on some
form of its object code. A static analysis tool or linter, namely HLint
[19] in our case, can suggest alternative functions that might be
more efficient or simplify a code and reduce redundancy. Still, it
lacks the rubrics that a high-school teacher might want to look for
in this introductory level course, such as a specific function that the
problem assignment asked to use, or redundant use of a function
to draw something to achieve the learning objectives. Therefore, in
our case, a simple lexical analysis is not sufficient to measure code
elegance.

Researchers further implemented machine learning approaches
to build an autograder. For instance, Srikant et al. [32] implemented
Regression and SVM (Support Vector Machine), using features such
as keywords from codes, control flow graphs, and data dependency
graphs. In later work [33], they chose features which were the most
represented in the sample programs, or the most correlated fea-
tures. Barstad et al. [4] implemented K-nearest-neighbors (KNN),
Naive Bayes (NB), and Decision trees (DTree) for classifying their
data into well-written and poorly written categories using features
from static analysis. Similarly, Singh et al. [31] extracted standard
features like operators, expressions, etc. Gupta et al. [17] converted
pieces of code to sequences of tokens using Pygments, a Python
syntax highlighter, and used a deep neural network to analyze and
classify relevant and non-relevant code. In our approach, we also
used Pygments. Recently, Wu et al. [34] implemented personalized
feedback for the online CS1 level course named "Code in place”
[29] using machine learning approaches. To get the features, they
used the built-in parser to tokenize the input, using features such
as compilation error, function and method names. They used Code-
BERT [14] to train their dataset. In our work we implement machine
learning approaches considering several facts described in the latter
part of this paper.

3 DATASET EXPLORATION

For developing our autograder, we evaluate the submissions associ-
ated with five different assignments from different units of the ICT
course curriculum. We manually grade the assignments by analyz-
ing the source codes and categorize them based on the approach
taken by the student. We observe how multiple aspects of the code
vary when different approaches are used to solve the same problem.
The detailed procedure followed is described next.

3.1 Classifying Assignments

We start our discussion with the clock assignment. This problem
requires drawing an analog clock including hour and minute hands,
hour numbers, hour ticks, and minute ticks. A typical output is
shown in the right panel of Fig. 1. A sample code is shown in
Listing 1. We select this assignment because it is assigned halfway
through the course curriculum when students are already familiar
with basic coding. We extract all the submissions for this problem
from the ICT database, and filter out the submissions that were not
Haskell code. We keep all other submissions regardless of whether
they were incomplete, incorrect, or did not compile or run, as we are
only judging the source code elegance. Since, the grades provided
by the teachers were mainly based on the correctness and creativity

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

An Automatic Grading System for a High School-level Computational Thinking Course

of the drawn output, to conduct this study, we manually grade the
assignments as either elegant or non-elegant.

We observe students write their clock drawing codes in four
different ways shown in Figure 2. Most of the students took the
naive approach of drawing all sixty-minute ticks. Others tried to
optimize their code by drawing a quadrant of the minute ticks and
rotate it three times, drawing twelve-minute ticks and rotate the
block four times, or drawing only the four-minute ticks between
two-hour ticks and rotate them twelve times. Since for this par-
ticular problem, students were encouraged to start thinking about
optimizing the code, we consider repetitive code as non-elegant,
and the codes where abstractions were used as elegant codes.

We also observe that most optimized codes have fewer lines
than non-optimized ones. So we set a threshold for the number
of lines in the code to check whether it was sufficient to measure
elegance. However, we observe that the number of lines of code is
not enough to detect non-elegant codes where the students plugged
direct calculations into the draw function without assigning the
calculated values to any variable. This approach ends up with fewer
lines of code. The opposite happens for detecting an elegant code
that uses more variables. So the classification of the codes based
only on the number of lines of code is not sufficient for measuring
the sophistication (elegance) of the code. At a minimum, we need
to incorporate the number of variables, operators, and functions
used in the code.

1 import Standard

2 import Extras.Colors

; import Extras.Cw(overlays)
‘

s program = drawingOf (pivotPoint

6 & bigHand

smallHand

overlays (hourNumber ,12)
overlays (hourTickMarks,12)
overlays(minuteTickMarks ,b60)
myName

clockLettering

innerCircle

circleOutline

background

N~ Q0 Q0 Q0 Q0 Q0 Q0 Q0 QO QO

19 circleOutline = solidCircle(9)

20 innerCircle = painted(solidCircle(8.5),

21 pivotPoint = solidCircle (0.25)

22 bigHand = translated(painted(rotated(solidRectangle
(0.5,9),-60), "red"),3,1.75)

"maroon"

23 smallHand = translated(painted(rotated(solidRectangle
(0.5,6),60), "red"),-1.5,0.9)

24

25 myName = painted(translated(lettering(""), 0,4), "yellow"
)

26 clockLettering = painted(translated(lettering("Clock"),
0,-4), "yellow")

25 background = painted(solidRectangle (20,20),
30 hourTickMarks (hourTickNumber) = rotated(translated(
solidRectangle(0.5,1.5), 0,8),

32 minuteTickMarks (minuteTickNumber) = rotated(translated(
solidRectangle(0.2,0.75), 0,8.25),
* 6)

32 hourNumber (clockNumber) = rotated(translated(rotated(
dilated(lettering(printed(clockNumber)),1.5),
clockNumber*30) ,0,6.3),clockNumber*(-30))

Listing 1: Clock sample code

"lightblue")

hourTickNumber x 30)

minuteTickNumber

22

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

Drawing of minute ticks
BEGIN PROGRAN
Draw (minTick1)
Draw (minTick2)
Draw (minTick3)

Draw (minTick60)
END

(a) Sixty minute ticks are drawn individually (Non-
elegant)

Drawing of minute ticks
BEGIN PROGRAM
Draw(Quadrant of minute ticks)
Draw (minTick1)
Draw (minTick2)

Draw (minTick15)
End
Draw Quadrant
Draw(Rotate(Quadrant),anglel)
Draw(Rotate(Quadrant),angle2)
Draw(Rotate(Quadrant),angle3)
END

(b) Draw a quadrant of minute ticks and rotate them three
times (Elegant)
Drawing of minute ticks
BEGIN PROGRAM
Draw({minTick set : 12 minute ticks, 30 degree apart)
Draw (minTick1)
Draw (minTick2)

Draw (minTick12)

End

Draw (minTick set)
Draw(Rotate(minTick set),anglel)
Draw(Rotate(minTick set), angle2)
Draw(Rotate(minTick set),angle3)
Draw(Rotate(minTick set),angle4)

END

(c) Draw twelve minute ticks and rotate them four times
(Elegant)
Drawing of minute ticks
BEGIN PROGRAM
Draw(minTick set : 4-minute ticks within two-hour ticks)

Draw (minTick1)
Draw (minTick2)

Draw (minTick4)
End
Draw (minTick set)
Draw(Rotate(minTick set),angle1)
Draw(Rotate(minTick set),angle2)
Draw(Rotate(minTick set),angle3)

Draw(Rotate(minTick set),angle12)
END

(d) Draw only the four minute ticks between two hour
ticks and rotate them twelve times (Elegant)

Figure 2: Four types of codes found in student submissions.
(a) Drawing sixty minute ticks separately is considered naive
and non-elegant. (b)-(d) The concept of looping is encouraged
and graded as elegant code.

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

To refine our approach and choose appropriate parameters to
characterize the code, we analyze additional activities of different
nature. We chose the very basic hot dog drawing (Fig. 3(a)), and
the sunny meadow drawing (Fig. 3(b)) where students were asked
to produce similar output. In addition to those, we chose two ar-
bitrary drawing activities where students were asked to draw any
diagram they had studied in their science courses (Fig. 3(c)), and
the final group project of drawing a creative scene (Fig. 3(d)). For
data collection, we again only filter out the blank submissions and
non-Haskell codes and keep the rest of the data. While manually
grading these assignments, we observe that the number of lines
of code could be an essential aspect for grading the elegance of
the hotdog and the sunny meadow assignments, but not for the
arbitrary diagram and the scene as students were encouraged to
show their creativity in both activities. We further observe that
for the free drawing problems it was difficult to follow the code
and understand it if proper spacing, comments, definitions, and
indentation were not used. In other words, readability is the main
element of elegance for these open-ended problems. In brief, code
efficiency, coherency, and consistency are the aspects of a source
code that measure code elegance for diverse assignments.

Now similarly as the line of code measurement, it is not suit-
able to judge the elegance of a piece of code according to a preset
threshold for other code features like number of spaces, comments
usage or variable naming. For instance, a non-elegant code may
have more spacing that makes it disorganized, or may have many
variable names and comments that are irrelevant. Considering these
situations an autograder based on threshold judgements might not
be able to address the elegance of the code. It would also be quite
tedious to adjust the thresholds for different problems. Machine
learning approaches may be useful in this respect. We believe that
if we train our system with a manually graded training set by ex-
pert graders, then the system will be able to judge the assignments
accordingly.

3.2 Research Questions

To extract the aspects of code elegance observed in our dataset, we
perform a lexical analysis of the student-submitted code. Our propo-
sition is that machine learning classifiers might infer the human
grading approaches from the distribution of the lexer features in
the source code. In addition, we believe that an autograder based on
assignments graded by experts can be beneficial for novice teachers
to gain competency. We presume that a machine learning approach
trained on an expert evaluated dataset can predict and suggest
better rubrics on new datasets.

Therefore, as an initial attempt, we use a lexer to extract the
features from the student codes and fed these features to different
machine learning classifiers. To guide our research, we formulate
the following research questions.

e RQ1: How can a simple lexer identify the important features
that represent the coding aspects?

e RQ2: Can machine learning algorithms successfully catego-
rize aspects of the code?

e RQ3: How do different models compare?

Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and Juana Moreno

(a) Hotdog

(b) Sunny meadow

*x \

*

neptung

(c) Diagram

AA
Y N1
Y T

(d) Final scene

Figure 3: Sample outputs of (a) hotdog, (b) sunny meadow, (c)
diagram, and (d) final scene assignments.

4 IMPLEMENTATION
4.1 Ground Truth Preparation

We start our initial experiment by manually classifying the samples
in Elegant vs. Non-elegant. Two graders manually classified the
assignments (a graduate student and an undergrad student). Later,
to train our machine learning classifiers we used a balanced dataset
of 300 samples of the clock, 722 samples of hot dogs, 454 samples
of sunny meadow, 684 samples of the diagram, and 608 samples
of the scene activity. While manually classifying the activities as
elegant and non-elegant, we consider the following:

(1) Is the algorithm used efficiently?
(2) Is the code easy to read and follow (proper usage of spaces,
comments, and meaningful variable names)?

For the specific problems where students have to produce the
same output type, i.e., clock, hot dog, and sunny meadow, we
consider the efficient use of algorithms as the main character-
istic of an elegant code. On the other hand, we chose readabil-
ity and coherency as the main ingredient of elegant codes for

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

An Automatic Grading System for a High School-level Computational Thinking Course

open-ended problems, i.e., diagram and final scene projects. We
also look for proper spacing and comments usage for classify-
ing these last two assignments. Datasets are available at https:
//git.brbytes.org/tisha/Autograder_dataset.

4.2 Experimental Analysis

We presume that the frequency of repeating the same element in
the code is related to the student level of algorithmic understanding.
By analyzing and classifying these features in clusters we will help
teachers to better judge the quality of their student submissions.
Therefore we clustered our features. However, we also surmise that
these features would not be enough to judge the correctness and
creativity of the assignments.

4.3 Qualitative Analysis
We use the following pipeline in our qualitative analysis:

(1) Collect samples from the database,

(2) Extract features from the samples,

(3) Cluster the features,

(4) Fit the models with previously clustered features,
(5) Compare the results and choose the best model.

We extract 14 problem-independent features from the students’
codes using a simple Python lexer, Pygments, a syntax highlighter
[7] able to identify Haskell keywords. We further count the Haskell
keywords according to their category. We calculate some Halstead
complexity measures, [18] such as volume of the code, difficulty
to write or understand the program, and effort to coding, from the
lexer outcome. We also check if the variable names are meaningful
and count them. All the features we consider are:

(1) Lines of code
(2) Operator usage
(3) Comments usage
(4) Number of blank lines/ white space
(5) Number of local variables
(6) Number of non-local variables
(7) Integer count
(8) Float count
(9) String count
(10) Halstead volume
(11) Halstead difficulty
(12) Halstead effort
(13) Number of meaningful variables
(14) Number of meaningless variables

Along with these features, we have our manual classification of
Elegant vs. Non-elegant as a target function. We check the distribu-
tion of these features in students’ codes for separate assignments
to categorize them accordingly. Next, we classify students’ submis-
sions according to their code aspects and suggest to teachers which
class the submission fall into rather than providing direct scores.
We use KNN+ cluster analysis [3]'. We automatically extract the
cluster boundaries by using the elbow method [25]. Fig. 4 shows
a histogram displaying the number of lines of code for the clock
problem after automatic clustering.

IWe also used expectation-maximization clustering, but did not get good results.

24

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

#0f Samples

60 70 80 90 100 110 120 130 140 150 160 170 180
Lines of Code

I | }
10 20 30 40 50

Figure 4: Sample of automatic clustering for the number of
lines of code in the clock activity. The number of clusters is
four for this feature and activity.

We then feed all these feature classes and our manual grading to
machine learning classification models using a pipeline written in
Python and the Scikit-learn library [28]. Classification algorithms
like Naive Bayes (NB), KNN (K-nearest Neighbor), Support Vector
Machine (SVM) and Decision Tree (DTree) were previously used
for text and code analysis [4, 15, 32, 33]. Motivated by these prior
studies, we experiment with these four machine learning models.
While training our classifiers, we used 10-fold cross validation to
avoid over-fitting. Later, to find out the most crucial features for
the models, we use a wrapper sub-set evaluation. Table 1 shows up
to four best features from the wrapper sub-set evaluation based on
the accuracy values of the models.

We also calculate precision and recall to evaluate the perfor-
mance of different classifiers. Precision is the ratio of correctly
classified instances of a specific label to the total number of cases
classified under that label. On the other hand, recall represents the
ratio between correctly classified cases for a label and the number
of cases that belong to that label. We collect precision and recall
values for each activity and machine learning model with clus-
tered features and with clustered and wrapper-subset features. The
average precision and recall values are shown in Table 2.

5 RESULTS AND DISCUSSION

While false-positive situations where a non-elegant student code is
identified as elegant might be acceptable, false-negative instances
where competent students may be penalized even though their
submissions are elegant must be reduced. We also aim to develop
an accurate automatic grading system with reduced false values.
Therefore, we intend to use a machine learning model that produces
acceptable precision and recall measures.

Table 2 shows the recorded precision (Pre) and recall (Rec) values.
We observe that clustered features performed similarly for almost
all the models except NB. We observe in the histograms of multiple
features (Figure 4) that most features do not follow a normal distri-
bution. Naive Bayes (NB) performs better for normally distributed
datasets as it is a generative models. On the other hand, SVM, KNN,
and decision tree-based models are discriminative models and we
observe they performed similarly [6]. We further notice that clus-
tered+wrapper features produce better results. The recall values
are between 71% and 95% and precision values are in the 73-93%

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

25

20

15

10

5]]
9 - = =

Clock1(Elegant) Clock2(Non-Elegant) Diagram(Non-elegant) Sunny(Elegant) Sunny{Non-elegant)

MElegant M Non-elegant

Figure 5: Survey response with teachers grading input. The
horizontal axis displays the problem name with the auto-
grader suggestions in parenthesis. The vertical axis shows
teachers scoring as elegant and non-elegant.

range. Overall the decision tree algorithm with clustered+wrapper
features produced slightly better precision and recall results.

In brief, to answer our research questions, we can conclude from
these observations that a simple lexer counting code features in
combination with machine learning models can successfully classify
elegant vs non-elegant pieces of code. Our results also show that
the decision tree with wrapper subset features performs slightly
better than order machine learning models.

6 SURVEY

To check the applicability and acceptance of our approach we con-
ducted an initial survey in which 32 ICT course teachers from vari-
ous disciplines (Computer Science, Math, Arts, Spanish, Chemistry
etc.) and from several local high schools participated. The survey
is available at https://Isu.formstack.com/forms/elegant_autograder.
We provided five sample student codes, autograder suggestions
based on the decision tree classifier, and possible influential factors
in the scoring of that particular piece of code. Teachers evaluated
two clock examples, one diagram example, and two sunny meadow
examples. We asked the participants whether they agreed or dis-
agreed with the autograder choice. Later we asked three additional
yes/no answer questions, which are:

(1) Do you think an autograder that tells whether code is elegant

or not would be useful?

(2) Would you like to use an autograder like that while grading

in the future?

(3) Do you think using an autograder like that would make your

grading biased?

Figure 5 shows the scoring responses. From the teacher re-
sponses, we find that for the clockI sample which autograder sug-
gested it was elegant, 31 teachers agreed with the autograder clas-
sification, and one disagreed. Similarly, for the clock2 selection, 30
teachers agreed, and two dissented, for the diagram, 20 teachers
agreed and 12 disagreed, for the sunny1 sample, 30 teachers agreed,
and two disagreed, and finally for sunny2, 21 teachers agreed, and
11 disagreed.

25

Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and Juana Moreno

wn

Have youever Have youever Do you thinkan Would you like to Do you think
heard about an used an autograder that use an autograder using an
autograder? autograder? tells whether like that while autograder like

that would make
your grading
biased?

code is elegant or grading in the
not would be future?
useful?

HYes WNo

Figure 6: Responses to yes/no survey questions

In relation with the responses to our yes/no questions, among 32
teachers, twenty-seven teachers would like to use the autograder
in the future, and 24 teachers thought the autograder would not
make their grading biased. In addition, 27 teachers thought the
autograder suggestions were helpful. Figure 6 shows the chart for
these responses.

We also asked participants to provide their comments or sug-
gestions to improve the autograder. Most of the teachers suggested
having more scales than only elegant and non-elegant. They also
suggested to have a measurement of effort. We find that the novice
teachers felt more comfortable and relieved about using the auto-
grader feedback than the expert teachers. Our target was to help
novice teachers mainly; this revealed our success in reaching our
goal. Furthermore, teachers thought overall, the autograder’s sug-
gestion would be helpful to point out different aspects and start
grading from there.

7 FUTURE WORK

Our initial results show the applicability of a machine learning
classifier based on lexer features to automatically judge code ele-
gance. In this research we extract features from Haskell pieces of
code and classify the submissions in binary classes, i.e., elegant and
non-elegant. We are hopeful that a similar approach will work to
judge code elegance for other programming languages. We extract
14 features and implement four machine learning classifiers with
promising results. We are planning to extract additional features
like separated operator count, style of variable names to measure
the style consistency, use of magic numbers, etc. and implement
other classifiers along with modern boosting algorithms like the
XGBoost [8] and CatBoost classifiers [12]. Additionally, to check the
applicability of our approach to predict correctness we experiment
with the clock problem only. All the machine learning classifiers
produce around 50% of incorrectly classified instances, confirming
our intuition that our approach with features extracted by lexer
is not suitable for judging correctness. Judging creativity depends
upon the graders’ perspectives on the output picture, which is not
possible to measure with our approach either. Our understanding
is that along with lexer, if we extract features from the structure of
the code, code matrices, and features from both compile-time and
run-time information such as semantic analysis [23], parse tree, and

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

An Automatic Grading System for a High School-level Computational Thinking Course

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

Table 1: Best lexer features according to wrapper subset evaluation technique based on accuracy values

Problem set

NB subset

SVM subset

KNN subset

DTree subset

Lines of code

Lines of code

Lines of code

Lines of code

Halstead volume

String count

Halstead volume

Clock Comments usage Comments usage Float counts Halstead effort
No of blank lines Halstead effort No of meaningless variables No of meaningless variables
. No of local variables Operator usage No of local variable
String count . .
Hot-dog Integer count String count String count

Halstead volume

Sunny meadow

Integer count
Float count

No of local variables

No of non-local variables
No of meaningful variables
No of meaningless variables

Operator usage

No of local variables

No of non-local variables
Halstead effort

Lines of code

Halstead difficulty

No of meaningful variables
No of meaningless variables

Comments usage

Comments usage

Comments usage

Comments usage

No of blank lines

No of meaningful variables

No of meaningful variables

Diagram No of blank lines No of blank lines No of blank lines No of blank lines
Integer count String count Float count No of meaningful variables
Lines of code Operator usage Operator usage Comments usage

Scene Comments usage Comments usage Comments usage No of blank lines

No of meaningful variables

Table 2: Comparison of classifiers for all activities with clustered features and with only the sub-set of features from the
wrapper subset evaluation. Recall values are in bold. Results show overall the decision tree with wrapper subset features

perform better.

Classifiers | Feature Choice Clock Hotdog Sunny Diagram Scene
Pre Rec |Pre Rec | Pre Rec |Pre Rec |Pre Rec
NB Clustered 090 0.62 | 092 0.75 |08 094 | 065 0.63 | 0.58 0.74
Clustered+Wrapper | 0.83 0.88 | 0.88 0.95 | 0.87 0.94 | 0.70 0.66 | 0.61 0.76
SVM Clustered 0.84 0.88 089 094 |08 094|076 0.63]|0.76 0.71
Clustered+Wrapper | 0.85 0.89 | 091 0.93 | 0.90 0.94 | 0.75 0.70 | 0.73 0.70
KNN Clustered 0.84 0.87 | 093 087|087 0388|072 0.60]|0.72 0.73
Clustered+Wrapper | 0.86 0.86 | 0.89 0.91 | 0.90 0.89 | 0.67 0.71 | 0.73 0.63
DTree Clustered 0.80 082|091 0.88 |09 0382075 0.76 | 0.81 0.75
Clustered+Wrapper | 0.89 0.86 | 0.93 0.94 | 0.92 093 | 0.74 0.71 | 0.73 0.75

call-graphs, scene-graphs, etc., we will be able to judge the code
structure, code complexity, and correctness. Our future research
target is to include these features. Additionally, we would also like
to address plagiarism testing. Our intuition is that by comparing
the lexer-extracted features, plagiarism issues could be addressed.

Moreover, in this initial implementation we manually graded
the samples by briefly looking at the code. In the future we would
like to follow a well developed rubric while preparing the ground
truth. We also have plans to classify our data in more categories
not only the binary classes elegant vs. non-elegant. We would also
like to use grades provided by the teachers as ground truth to make
our model more robust. Our future goal is to have a large-scale
study and deploy student surveys to better understand which kind
of feedback they value more.

The long-term goal of our research work is to develop a fully
functional, automated, and robust grading system for the ICT course

specifically, and later for other coding courses to support teach-
ers better with grading suggestions, and to alleviate their manual

grading load.

8 ACKNOWLEDGMENT

This research is funded by the NSF Computer Science for All:
Researcher Practitioner Partnership program (CNS-1923573) and
the U.S. Department of Education, Education Innovation and Re-
search program (U411C190287). RAO is funded by NSF award OAC-
1852454.

9 AUTHOR’S PROFILE

Sirazum Munira Tisha is a Ph.D. candidate in the Division of Com-
puter Science and Engineering at Louisiana State University (LSU).
Currently, she is developing an automated grading system for the
Introduction to Computational Thinking (ICT) course. She served

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

SEENG’22, May 17, 2022, Pittsburgh, PA, USA

as course instructor at the LSU STEM Pathways Summer Teacher In-
stitute program. Her research interest includes Automated Grading

Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and Juana Moreno

Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 785-794. https:
//doi.org/10.1145/2939672.2939785

Systems, Computer Science Education and Curriculum Develop- [9] CodeGrade. 2020. Deliver engaging feedback on code. https://www.codegrade.com
ment, and Machine Learning. [10] CodeWorld. 2020. Educational computer programming environment using Haskell.
. . - https://github.com/google/codeworld
Rufino A. Oregon 1s a senior undergraduate student majoring [11] CSforALL. 2021. CSforAll. https://www.csforall.org/.
in Technology Management in the college of Educational Adminis- 12] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost:

tration & Human Resource Development at Texas A&M University
(TAMU). He worked as a teacher assistant for seven semesters
where he taught programming and engineering in freshmen engi-
neering courses at TAMU. Rufino is interested in inter-disciplinary
areas that intersect with computer science and has participated
in computational biology and engineering enculturation research
projects.

Gerald Baumgartner received a Dipl.-Ing. degree from the
University of Linz, Austria, and M.S. and Ph.D. degrees from Purdue
University, all in computer science. He began his academic career at
The Ohio State University in 1997. Since 2004 he is in the Division of
Computer Science & Engineering at Louisiana State University. His
research interest includes cloud computing middleware, compiler
optimizations, the design and implementation of domain-specific
and object-oriented languages, and development and testing tools.

Fernando Alegre is associate director of the Gordon A. Cain
Center, LSU. He received his M.S. in Computer Science from the
Georgia Institute of Technology. He has experience working in
research-oriented projects and implementing scientific software
in fields such as image and signal processing, statistics, Monte
Carlo methods, machine learning, Bayesian inference, probabilistic
graphical models, compiler writing, automatic program analysis
and abstract interpretation.

Juana Moreno is a professor in the LSU Department of Physics
& Astronomy with a joint appointment in the LSU Center for Com-
putation & Technology. She received her Ph.D. in Physics from Rut-
gers University. She also serves as the team leader of the BRBytes
project which is part of the CSforALL movement. Her research in-
terests include computing education and computational condensed
matter physics.

REFERENCES
[1

Fernando Alegre, John Underwoood, Juana Moreno, and Mario Alegre. 2020.
Introduction to Computational Thinking: A New High School Curriculum Using
CodeWorld. In Proceedings of the 51st ACM Technical Symposium on Computer Sci-
ence Education (Portland, OR, USA) (SIGCSE °20). Association for Computing Ma-
chinery, New York, NY, USA, 992-998. https://doi.org/10.1145/3328778.3366960
Sara Mernissi Arifi, Ismail Nait Abdellah, Azeddine Zahi, and Rachid Benabbou.
2015. Automatic program assessment using static and dynamic analysis. In 2015
Third World Conference on Complex Systems (WCCS). 1-6. https://doi.org/10.
1109/IC0CS.2015.7483289
David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful
seeding. Technical Report. Stanford.
Vera Barstad, Morten Goodwin, and Terje Gjoseaeter. 2014. Predicting source code
quality with static analysis and machine learning. In Norsk IKT-konferanse for
forskning og utdanning.
Clara Benac Earle, Lars-Ake Fredlund, and John Hughes. 2016. Automatic Grading
of Programming Exercises Using Property-Based Testing. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education
(Arequipa, Peru) (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 47-52. https://doi.org/10.1145/2899415.2899443
[6] Guillaume Bouchard and Bill Triggs. 2004. The tradeoff between generative and
discriminative classifiers. In 16th IASC International Symposium on Computational
Statistics (COMPSTAT 04). 721-728.
[7] Georg Brandl, Matthaus Chajdas, Armin Ronacher, Pocoo, and Tim Hatch. 2006.

Python syntax highlighter. https://pygments.org
[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on

[2

—

[3

[4

fla?

[5

=

=
&

gradient boosting with categorical features support. ArXiv abs/1810.11363 (2018).
Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automati-
cally grading programming assignments. In Proceedings of the 13th annual con-
ference on Innovation and technology in computer science education. 328-328.
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv:2002.08155 [cs.CL]

Chase Geigle, ChengXiang Zhai, and Duncan C Ferguson. 2016. An exploration
of automated grading of complex assignments. In Proceedings of the Third (2016)
ACM Conference on Learning@ Scale. 351-360.

Gradescope. 2020. Online grading platform. https://www.gradescope.com
Anshul Gupta and Neel Sundaresan. 2018. Intelligent code reviews using deep
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’18) Deep Learning Day.

MH Halstead and T McCabe. 1976. A software complexity measure. IEEE Trans.
Software Engineering 2, 12 (1976), 308-320.

HLint. 2020. Linter for Haskell. https://github.com/ndmitchell/hlint

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéld. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86-93.

Florian Klapproth, Lisa Federkeil, Franziska Heinschke, and Tanja Jungmann.
2020. Teachers’ Experiences of Stress and Their Coping Strategies during COVID-
19 Induced Distance Teaching. Journal of Pedagogical Research 4, 4 (2020), 444
452.

LAB.COMPUTER. 2020. Put your computer laboratory on the browser. https:
//lab.computer

Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic Grading of
Programming Assignments: A Formal Semantics Based Approach. In Proceedings
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering Education and Training ICSE-SEET 2019, 25-31 May 2019, Montreal,
Canada.

Simon Marlow et al. 2010. Haskell 2010 language report. Available online
http://www. haskell. org/(May 2011) (2010).

Dhendra Marutho, Sunarna Hendra Handaka, Ekaprana Wijaya, et al. 2018. The
determination of cluster number at k-mean using elbow method and purity
evaluation on headline news. In 2018 International Seminar on Application for
Technology of Information and Communication. IEEE, 533-538.

Carnegie Mellon University’s School of Computer Science (SCS). 2020. Carnegie
Mellon University Computer Science Academy. https://academy.cs.cmu.edu/
Gabriella Oliveira, Jorge Grenha Teixeira, Ana Torres, and Carla Morais. 2021.
An exploratory study on the emergency remote education experience of higher
education students and teachers during the COVID-19 pandemic. British Journal
of Educational Technology (2021).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Christopher Piech, Ali Malik, Kylie Jue, and Mehran Sahami. 2021. Code in Place:
Online Section Leading for Scalable Human-Centered Learning. In Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education. 973-979.
Joachim Schwieren, Gottfried Vossen, and Peter Westerkamp. 2006. Using Soft-
ware Testing Techniques for Efficient Handling of Programming Exercises in an
e-Learning Platform. Electronic Journal of e-Learning 4, 1 (2006), 87-94.
Gursimran Singh, Shashank Srikant, and Varun Aggarwal. 2016. Question inde-
pendent grading using machine learning: The case of computer program grading.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 263-272.

Shashank Srikant and Varun Aggarwal. 2013. Automatic grading of computer
programs: A machine learning approach. In 2013 12th International Conference
on Machine Learning and Applications, Vol. 1. IEEE, 85-92.

Shashank Srikant and Varun Aggarwal. 2014. A System to Grade Computer
Programming Skills Using Machine Learning. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (New
York, New York, USA) (KDD °14). Association for Computing Machinery, New
York, NY, USA, 1887-1896. https://doi.org/10.1145/2623330.2623377

Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. 2021. ProtoTrans-
former: A Meta-Learning Approach to Providing Student Feedback. arXiv preprint
arXiv:2107.14035 (2021).

Authorized licensed use limited to: Louisiana State University. Downloaded on January 11,2023 at 16:40:48 UTC from IEEE Xplore. Restrictions apply.

