
An Automatic Grading System for a High School-level
Computational Thinking Course

Sirazum Munira Tisha
stisha1@lsu.edu

Division of Computer Science and

Engineering

Louisiana State University

Baton Rouge, LA, United States

Rufino A. Oregon
rufinooregon@tamu.edu

Dept. of Education Administration

and Human Resource Development

Texas A&M University

College Station, TX, United States

Gerald Baumgartner
gb@lsu.edu

Division of Computer Science and

Engineering

Louisiana State University

Baton Rouge, LA, United States

Fernando Alegre
falegre@lsu.edu

Gordon A. Cain Center for STEM

Literacy

Louisiana State University

Baton Rouge, LA, United States

Juana Moreno
moreno@lsu.edu

Department of Physics & Astronomy

and Center for Computation &

Technology

Louisiana State University

Baton Rouge, LA, United States

ABSTRACT

Automatic grading systems help lessen the load of manual grading.

Most existent autograders are based on unit testing, which focuses

on the correctness of the code, but has limited scope for judging

code quality. Moreover, it is cumbersome to implement unit testing

for evaluating graphical output code. We propose an autograder

that can effectively judge the code quality of the visual output codes

created by students enrolled in a high school-level computational

thinking course. We aim to provide suggestions to teachers on an

essential aspect of their grading, namely the level of student com-

petency in using abstraction within their codes. A dataset from five

different assignments, including open-ended problems, is used to

evaluate the effectiveness of our autograder. Our initial experiments

show that our method can classify the students’ submissions even

for open-ended problems, where existing autograders fail to do so.

Additionally, survey responses from course teachers support the

importance of our work.
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1 INTRODUCTION AND MOTIVATION

An automatic grading system automatically assesses students’ code

pieces based on preset criteria and provides grades and/or feedback

accordingly. Autograding systems proved very useful for courses

with massive enrollments either online or in-person [20]. During

the Covid-19 pandemic, while most education systems were online,

instructors were stressed, exhausted, and overwhelmed with their

workload [21, 27]. An automatic grading system may serve at its

best by alleviating the workload for the graders. We have developed

an autograder for a high-school-level course named Introduction

to Computational Thinking (ICT).

As a part of the nationwide CS for All initiative [11], in 2017

the Gordon A. Cain Center at Louisiana State University launched

the ICT as an introductory programming course offered to ninth

and tenth graders [1]. ICT emphasizes connections to algebra, ge-

ometry, and science modeling. The ICT curriculum is designed

around hands-on activities that help students build mental models

of quantitative and formal reasoning and fill potential foundational

gaps in their understanding. All the activities are programmed in

CodeWorld [10], a web-based integrated development environment

that uses a simplified version of the Haskell programming language

[24]. CodeWorld uses a minimal set of graphical primitives to draw

shapes, such as circles, rectangles, and text, and supports transla-

tion, rotation, scaling, and coloring of these primitives. Students

are introduced to basic computational thinking practices within

this environment. Figure 1 shows the CodeWorld environment dis-

playing the code in the left panel and its outcome as a clock image

in the right panel.

Since there are not enough computer science teachers, the ICT

curriculum was designed to be accessible to teachers with diverse

backgrounds. Prospective ICT teachers receive intensive training

in the summer before teaching the course. The ICT curriculum

includes about a hundred coding assignments. It is undoubtedly

a hectic and time-consuming task for a novice teacher to grade

all the coding assignments manually. Additionally, in this course,

all the assignments have graphical output. To grade this type of
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Figure 1: CodeWorld environment with editor panel on the

left and the respective code output picture on the right.

assignments by only examining the final output is not sufficient to

provide meaningful feedback to the students; checking the quality

or elegance of the code is also crucial. Here in this research, the

term “code elegance” includes the code’s efficiency, coherency, and

readability aspects, such as appropriate variable naming, spacing,

function usage, code refactoring, documentation etc. Measuring

code elegance is essential in assessing students’ computational

thinking abilities. Our target is to develop an autograder that can

evaluate the code elegance of programming assignments even be-

fore running them and provide crucial insights into the student

learning of basic computational thinking skills.

Most available autograder systems, such as Gradescope [16],

LAB.COMPUTER [22], and CodeGrade [9], use the unit testing

approach where the graders create several input test cases. The code

is run for all the test cases; if all the outputs are as expected, the code

is considered correct. This approach works best for programs where

outputs are literal. However, it cannot assess pictorial or graphical

outcomes. On top of this, it cannot evaluate codes for open-ended

assignments where the students’ creativity is encouraged. The unit

testing approach is also inconvenient for novice teachers who barely

have any computer science or coding background. To reduce the

test case writing loads, Carnegie Mellon University’s CS1 course

[26] provides an autograder with built-in test cases. However, the

built-in test cases confine students to the exact reference code

restricting their creativity. As the ICT course encourages students

to demonstrate their creativity, an autograder with built-in test

cases is not a good fit for the curriculum.

The goal of our novel autograder is not to replace teachers by

strictly grading the programming assignments but rather to reduce

the grading efforts by helping teachers assess the different aspects

of a piece of code.

2 RELATEDWORK

We aim to provide feedback on the writing styles of the pieces of

code without execution. Static program analysis analyzes computer

software without executing any program. Schwieren et al. [30] and

Benac et al. [5] used static analysis in their proposed autograder.

In their review, Arifi et al. [2] described the necessity of using

both dynamic and static analysis, and they found relatively good

results using the fusing system. Edwards et al. [13] in Web-CAT

autograder also used a combination of static analysis and unit

testing. In most cases, the static analysis is performed on some

version of a program’s source code and, in other cases, on some

form of its object code. A static analysis tool or linter, namely HLint

[19] in our case, can suggest alternative functions that might be

more efficient or simplify a code and reduce redundancy. Still, it

lacks the rubrics that a high-school teacher might want to look for

in this introductory level course, such as a specific function that the

problem assignment asked to use, or redundant use of a function

to draw something to achieve the learning objectives. Therefore, in

our case, a simple lexical analysis is not sufficient to measure code

elegance.

Researchers further implemented machine learning approaches

to build an autograder. For instance, Srikant et al. [32] implemented

Regression and SVM (Support Vector Machine), using features such

as keywords from codes, control flow graphs, and data dependency

graphs. In later work [33], they chose features which were the most

represented in the sample programs, or the most correlated fea-

tures. Barstad et al. [4] implemented K-nearest-neighbors (KNN),

Naive Bayes (NB), and Decision trees (DTree) for classifying their

data into well-written and poorly written categories using features

from static analysis. Similarly, Singh et al. [31] extracted standard

features like operators, expressions, etc. Gupta et al. [17] converted

pieces of code to sequences of tokens using Pygments, a Python

syntax highlighter, and used a deep neural network to analyze and

classify relevant and non-relevant code. In our approach, we also

used Pygments. Recently, Wu et al. [34] implemented personalized

feedback for the online CS1 level course named "Code in place"

[29] using machine learning approaches. To get the features, they

used the built-in parser to tokenize the input, using features such

as compilation error, function and method names. They used Code-

BERT [14] to train their dataset. In our work we implement machine

learning approaches considering several facts described in the latter

part of this paper.

3 DATASET EXPLORATION

For developing our autograder, we evaluate the submissions associ-

ated with five different assignments from different units of the ICT

course curriculum. We manually grade the assignments by analyz-

ing the source codes and categorize them based on the approach

taken by the student. We observe how multiple aspects of the code

vary when different approaches are used to solve the same problem.

The detailed procedure followed is described next.

3.1 Classifying Assignments

We start our discussion with the clock assignment. This problem

requires drawing an analog clock including hour and minute hands,

hour numbers, hour ticks, and minute ticks. A typical output is

shown in the right panel of Fig. 1. A sample code is shown in

Listing 1. We select this assignment because it is assigned halfway

through the course curriculum when students are already familiar

with basic coding. We extract all the submissions for this problem

from the ICT database, and filter out the submissions that were not

Haskell code. We keep all other submissions regardless of whether

they were incomplete, incorrect, or did not compile or run, as we are

only judging the source code elegance. Since, the grades provided

by the teachers were mainly based on the correctness and creativity
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of the drawn output, to conduct this study, we manually grade the

assignments as either elegant or non-elegant.

We observe students write their clock drawing codes in four

different ways shown in Figure 2. Most of the students took the

naive approach of drawing all sixty-minute ticks. Others tried to

optimize their code by drawing a quadrant of the minute ticks and

rotate it three times, drawing twelve-minute ticks and rotate the

block four times, or drawing only the four-minute ticks between

two-hour ticks and rotate them twelve times. Since for this par-

ticular problem, students were encouraged to start thinking about

optimizing the code, we consider repetitive code as non-elegant,

and the codes where abstractions were used as elegant codes.

We also observe that most optimized codes have fewer lines

than non-optimized ones. So we set a threshold for the number

of lines in the code to check whether it was sufficient to measure

elegance. However, we observe that the number of lines of code is

not enough to detect non-elegant codes where the students plugged

direct calculations into the draw function without assigning the

calculated values to any variable. This approach ends up with fewer

lines of code. The opposite happens for detecting an elegant code

that uses more variables. So the classification of the codes based

only on the number of lines of code is not sufficient for measuring

the sophistication (elegance) of the code. At a minimum, we need

to incorporate the number of variables, operators, and functions

used in the code.
1 import Standard
2 import Extras.Colors
3 import Extras.Cw(overlays)
4

5 program = drawingOf(pivotPoint
6 & bigHand
7 & smallHand
8 & overlays(hourNumber ,12)
9 & overlays(hourTickMarks ,12)
10 & overlays(minuteTickMarks ,60)
11 & myName
12 & clockLettering
13 & innerCircle
14 & circleOutline
15 & background
16 )
17

18

19 circleOutline = solidCircle (9)
20 innerCircle = painted(solidCircle (8.5), "maroon")
21 pivotPoint = solidCircle (0.25)
22 bigHand = translated(painted(rotated(solidRectangle

(0.5 ,9) ,-60), "red") ,3,1.75)
23 smallHand = translated(painted(rotated(solidRectangle

(0.5 ,6) ,60), "red") ,-1.5,0.9)
24

25 myName = painted(translated(lettering(""), 0,4), "yellow"
)

26 clockLettering = painted(translated(lettering("Clock"),
0,-4), "yellow")

27

28 background = painted(solidRectangle (20 ,20), "lightblue")
29

30 hourTickMarks(hourTickNumber) = rotated(translated(
solidRectangle (0.5 ,1.5), 0,8), hourTickNumber * 30)

31

32 minuteTickMarks(minuteTickNumber) = rotated(translated(
solidRectangle (0.2 ,0.75), 0 ,8.25), minuteTickNumber
* 6)

33

34 hourNumber(clockNumber) = rotated(translated(rotated(
dilated(lettering(printed(clockNumber)) ,1.5),
clockNumber *30) ,0,6.3),clockNumber *( -30))

Listing 1: Clock sample code

(a) Sixty minute ticks are drawn individually (Non-

elegant)

(b) Draw a quadrant of minute ticks and rotate them three

times (Elegant)

(c) Draw twelve minute ticks and rotate them four times

(Elegant)

(d) Draw only the four minute ticks between two hour

ticks and rotate them twelve times (Elegant)

Figure 2: Four types of codes found in student submissions.

(a) Drawing sixty minute ticks separately is considered naive

and non-elegant. (b)-(d) The concept of looping is encouraged

and graded as elegant code.
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To refine our approach and choose appropriate parameters to

characterize the code, we analyze additional activities of different

nature. We chose the very basic hot dog drawing (Fig. 3(a)), and

the sunny meadow drawing (Fig. 3(b)) where students were asked

to produce similar output. In addition to those, we chose two ar-

bitrary drawing activities where students were asked to draw any

diagram they had studied in their science courses (Fig. 3(c)), and

the final group project of drawing a creative scene (Fig. 3(d)). For

data collection, we again only filter out the blank submissions and

non-Haskell codes and keep the rest of the data. While manually

grading these assignments, we observe that the number of lines

of code could be an essential aspect for grading the elegance of

the hotdog and the sunny meadow assignments, but not for the

arbitrary diagram and the scene as students were encouraged to

show their creativity in both activities. We further observe that

for the free drawing problems it was difficult to follow the code

and understand it if proper spacing, comments, definitions, and

indentation were not used. In other words, readability is the main

element of elegance for these open-ended problems. In brief, code

efficiency, coherency, and consistency are the aspects of a source

code that measure code elegance for diverse assignments.

Now similarly as the line of code measurement, it is not suit-

able to judge the elegance of a piece of code according to a preset

threshold for other code features like number of spaces, comments

usage or variable naming. For instance, a non-elegant code may

have more spacing that makes it disorganized, or may have many

variable names and comments that are irrelevant. Considering these

situations an autograder based on threshold judgements might not

be able to address the elegance of the code. It would also be quite

tedious to adjust the thresholds for different problems. Machine

learning approaches may be useful in this respect. We believe that

if we train our system with a manually graded training set by ex-

pert graders, then the system will be able to judge the assignments

accordingly.

3.2 Research Questions

To extract the aspects of code elegance observed in our dataset, we

perform a lexical analysis of the student-submitted code. Our propo-

sition is that machine learning classifiers might infer the human

grading approaches from the distribution of the lexer features in

the source code. In addition, we believe that an autograder based on

assignments graded by experts can be beneficial for novice teachers

to gain competency. We presume that a machine learning approach

trained on an expert evaluated dataset can predict and suggest

better rubrics on new datasets.

Therefore, as an initial attempt, we use a lexer to extract the

features from the student codes and fed these features to different

machine learning classifiers. To guide our research, we formulate

the following research questions.

• RQ1:How can a simple lexer identify the important features

that represent the coding aspects?

• RQ2: Can machine learning algorithms successfully catego-

rize aspects of the code?

• RQ3: How do different models compare?

(a) Hotdog

(b) Sunny meadow

(c) Diagram

(d) Final scene

Figure 3: Sample outputs of (a) hotdog, (b) sunny meadow, (c)

diagram, and (d) final scene assignments.

4 IMPLEMENTATION

4.1 Ground Truth Preparation

We start our initial experiment by manually classifying the samples

in Elegant vs. Non-elegant. Two graders manually classified the

assignments (a graduate student and an undergrad student). Later,

to train our machine learning classifiers we used a balanced dataset

of 300 samples of the clock, 722 samples of hot dogs, 454 samples

of sunny meadow, 684 samples of the diagram, and 608 samples

of the scene activity. While manually classifying the activities as

elegant and non-elegant, we consider the following:

(1) Is the algorithm used efficiently?

(2) Is the code easy to read and follow (proper usage of spaces,

comments, and meaningful variable names)?

For the specific problems where students have to produce the

same output type, i.e., clock, hot dog, and sunny meadow, we

consider the efficient use of algorithms as the main character-

istic of an elegant code. On the other hand, we chose readabil-

ity and coherency as the main ingredient of elegant codes for
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open-ended problems, i.e., diagram and final scene projects. We

also look for proper spacing and comments usage for classify-

ing these last two assignments. Datasets are available at https:

//git.brbytes.org/tisha/Autograder_dataset.

4.2 Experimental Analysis

We presume that the frequency of repeating the same element in

the code is related to the student level of algorithmic understanding.

By analyzing and classifying these features in clusters we will help

teachers to better judge the quality of their student submissions.

Therefore we clustered our features. However, we also surmise that

these features would not be enough to judge the correctness and

creativity of the assignments.

4.3 Qualitative Analysis

We use the following pipeline in our qualitative analysis:

(1) Collect samples from the database,

(2) Extract features from the samples,

(3) Cluster the features,

(4) Fit the models with previously clustered features,

(5) Compare the results and choose the best model.

We extract 14 problem-independent features from the students’

codes using a simple Python lexer, Pygments, a syntax highlighter

[7] able to identify Haskell keywords. We further count the Haskell

keywords according to their category. We calculate some Halstead

complexity measures, [18] such as volume of the code, difficulty

to write or understand the program, and effort to coding, from the

lexer outcome. We also check if the variable names are meaningful

and count them. All the features we consider are:

(1) Lines of code

(2) Operator usage

(3) Comments usage

(4) Number of blank lines/ white space

(5) Number of local variables

(6) Number of non-local variables

(7) Integer count

(8) Float count

(9) String count

(10) Halstead volume

(11) Halstead difficulty

(12) Halstead effort

(13) Number of meaningful variables

(14) Number of meaningless variables

Along with these features, we have our manual classification of

Elegant vs. Non-elegant as a target function. We check the distribu-

tion of these features in students’ codes for separate assignments

to categorize them accordingly. Next, we classify students’ submis-

sions according to their code aspects and suggest to teachers which

class the submission fall into rather than providing direct scores.

We use KNN+ cluster analysis [3]1. We automatically extract the

cluster boundaries by using the elbow method [25]. Fig. 4 shows

a histogram displaying the number of lines of code for the clock

problem after automatic clustering.

1We also used expectation-maximization clustering, but did not get good results.

Figure 4: Sample of automatic clustering for the number of

lines of code in the clock activity. The number of clusters is

four for this feature and activity.

We then feed all these feature classes and our manual grading to

machine learning classification models using a pipeline written in

Python and the Scikit-learn library [28]. Classification algorithms

like Naive Bayes (NB), KNN (K-nearest Neighbor), Support Vector

Machine (SVM) and Decision Tree (DTree) were previously used

for text and code analysis [4, 15, 32, 33]. Motivated by these prior

studies, we experiment with these four machine learning models.

While training our classifiers, we used 10-fold cross validation to

avoid over-fitting. Later, to find out the most crucial features for

the models, we use a wrapper sub-set evaluation. Table 1 shows up

to four best features from the wrapper sub-set evaluation based on

the accuracy values of the models.

We also calculate precision and recall to evaluate the perfor-

mance of different classifiers. Precision is the ratio of correctly

classified instances of a specific label to the total number of cases

classified under that label. On the other hand, recall represents the

ratio between correctly classified cases for a label and the number

of cases that belong to that label. We collect precision and recall

values for each activity and machine learning model with clus-

tered features and with clustered and wrapper-subset features. The

average precision and recall values are shown in Table 2.

5 RESULTS AND DISCUSSION

While false-positive situations where a non-elegant student code is

identified as elegant might be acceptable, false-negative instances

where competent students may be penalized even though their

submissions are elegant must be reduced. We also aim to develop

an accurate automatic grading system with reduced false values.

Therefore, we intend to use a machine learning model that produces

acceptable precision and recall measures.

Table 2 shows the recorded precision (Pre) and recall (Rec) values.

We observe that clustered features performed similarly for almost

all the models except NB. We observe in the histograms of multiple

features (Figure 4) that most features do not follow a normal distri-

bution. Naive Bayes (NB) performs better for normally distributed

datasets as it is a generative models. On the other hand, SVM, KNN,

and decision tree-based models are discriminative models and we

observe they performed similarly [6]. We further notice that clus-

tered+wrapper features produce better results. The recall values

are between 71% and 95% and precision values are in the 73-93%
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Figure 5: Survey response with teachers grading input. The

horizontal axis displays the problem name with the auto-

grader suggestions in parenthesis. The vertical axis shows

teachers scoring as elegant and non-elegant.

range. Overall the decision tree algorithm with clustered+wrapper

features produced slightly better precision and recall results.

In brief, to answer our research questions, we can conclude from

these observations that a simple lexer counting code features in

combinationwithmachine learningmodels can successfully classify

elegant vs non-elegant pieces of code. Our results also show that

the decision tree with wrapper subset features performs slightly

better than order machine learning models.

6 SURVEY

To check the applicability and acceptance of our approach we con-

ducted an initial survey in which 32 ICT course teachers from vari-

ous disciplines (Computer Science, Math, Arts, Spanish, Chemistry

etc.) and from several local high schools participated. The survey

is available at https://lsu.formstack.com/forms/elegant_autograder.

We provided five sample student codes, autograder suggestions

based on the decision tree classifier, and possible influential factors

in the scoring of that particular piece of code. Teachers evaluated

two clock examples, one diagram example, and two sunny meadow

examples. We asked the participants whether they agreed or dis-

agreed with the autograder choice. Later we asked three additional

yes/no answer questions, which are:

(1) Do you think an autograder that tells whether code is elegant

or not would be useful?

(2) Would you like to use an autograder like that while grading

in the future?

(3) Do you think using an autograder like that would make your

grading biased?

Figure 5 shows the scoring responses. From the teacher re-

sponses, we find that for the clock1 sample which autograder sug-

gested it was elegant, 31 teachers agreed with the autograder clas-

sification, and one disagreed. Similarly, for the clock2 selection, 30

teachers agreed, and two dissented, for the diagram, 20 teachers

agreed and 12 disagreed, for the sunny1 sample, 30 teachers agreed,

and two disagreed, and finally for sunny2, 21 teachers agreed, and

11 disagreed.

Figure 6: Responses to yes/no survey questions

In relation with the responses to our yes/no questions, among 32

teachers, twenty-seven teachers would like to use the autograder

in the future, and 24 teachers thought the autograder would not

make their grading biased. In addition, 27 teachers thought the

autograder suggestions were helpful. Figure 6 shows the chart for

these responses.

We also asked participants to provide their comments or sug-

gestions to improve the autograder. Most of the teachers suggested

having more scales than only elegant and non-elegant. They also

suggested to have a measurement of effort. We find that the novice

teachers felt more comfortable and relieved about using the auto-

grader feedback than the expert teachers. Our target was to help

novice teachers mainly; this revealed our success in reaching our

goal. Furthermore, teachers thought overall, the autograder’s sug-

gestion would be helpful to point out different aspects and start

grading from there.

7 FUTUREWORK

Our initial results show the applicability of a machine learning

classifier based on lexer features to automatically judge code ele-

gance. In this research we extract features from Haskell pieces of

code and classify the submissions in binary classes, i.e., elegant and

non-elegant. We are hopeful that a similar approach will work to

judge code elegance for other programming languages. We extract

14 features and implement four machine learning classifiers with

promising results. We are planning to extract additional features

like separated operator count, style of variable names to measure

the style consistency, use of magic numbers, etc. and implement

other classifiers along with modern boosting algorithms like the

XGBoost [8] and CatBoost classifiers [12]. Additionally, to check the

applicability of our approach to predict correctness we experiment

with the clock problem only. All the machine learning classifiers

produce around 50% of incorrectly classified instances, confirming

our intuition that our approach with features extracted by lexer

is not suitable for judging correctness. Judging creativity depends

upon the graders’ perspectives on the output picture, which is not

possible to measure with our approach either. Our understanding

is that along with lexer, if we extract features from the structure of

the code, code matrices, and features from both compile-time and

run-time information such as semantic analysis [23], parse tree, and
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Table 1: Best lexer features according to wrapper subset evaluation technique based on accuracy values

Problem set NB subset SVM subset KNN subset DTree subset

Clock

Lines of code

Comments usage

No of blank lines

Lines of code

Comments usage

Halstead effort

Lines of code

Float counts

No of meaningless variables

Lines of code

Halstead effort

No of meaningless variables

Hot-dog
String count

Halstead volume

No of local variables

Integer count

String count

Operator usage

String count

Halstead volume

No of local variable

String count

Halstead volume

Sunny meadow
Integer count

Float count

No of local variables

No of non-local variables

No of meaningful variables

No of meaningless variables

Operator usage

No of local variables

No of non-local variables

Halstead effort

Lines of code

Halstead difficulty

No of meaningful variables

No of meaningless variables

Diagram

Comments usage

No of blank lines

Integer count

Comments usage

No of blank lines

String count

Comments usage

No of blank lines

Float count

Comments usage

No of blank lines

No of meaningful variables

Scene

Lines of code

Comments usage

No of blank lines

Operator usage

Comments usage

No of meaningful variables

Operator usage

Comments usage

No of meaningful variables

Comments usage

No of blank lines

No of meaningful variables

Table 2: Comparison of classifiers for all activities with clustered features and with only the sub-set of features from the

wrapper subset evaluation. Recall values are in bold. Results show overall the decision tree with wrapper subset features

perform better.

Classifiers Feature Choice Clock Hotdog Sunny Diagram Scene

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

NB Clustered 0.90 0.62 0.92 0.75 0.86 0.94 0.65 0.63 0.58 0.74

Clustered+Wrapper 0.83 0.88 0.88 0.95 0.87 0.94 0.70 0.66 0.61 0.76

SVM Clustered 0.84 0.88 0.89 0.94 0.88 0.94 0.76 0.63 0.76 0.71

Clustered+Wrapper 0.85 0.89 0.91 0.93 0.90 0.94 0.75 0.70 0.73 0.70

KNN Clustered 0.84 0.87 0.93 0.87 0.87 0.88 0.72 0.60 0.72 0.73

Clustered+Wrapper 0.86 0.86 0.89 0.91 0.90 0.89 0.67 0.71 0.73 0.63

DTree Clustered 0.80 0.82 0.91 0.88 0.90 0.82 0.75 0.76 0.81 0.75

Clustered+Wrapper 0.89 0.86 0.93 0.94 0.92 0.93 0.74 0.71 0.73 0.75

call-graphs, scene-graphs, etc., we will be able to judge the code

structure, code complexity, and correctness. Our future research

target is to include these features. Additionally, we would also like

to address plagiarism testing. Our intuition is that by comparing

the lexer-extracted features, plagiarism issues could be addressed.

Moreover, in this initial implementation we manually graded

the samples by briefly looking at the code. In the future we would

like to follow a well developed rubric while preparing the ground

truth. We also have plans to classify our data in more categories

not only the binary classes elegant vs. non-elegant. We would also

like to use grades provided by the teachers as ground truth to make

our model more robust. Our future goal is to have a large-scale

study and deploy student surveys to better understand which kind

of feedback they value more.

The long-term goal of our research work is to develop a fully

functional, automated, and robust grading system for the ICT course

specifically, and later for other coding courses to support teach-

ers better with grading suggestions, and to alleviate their manual

grading load.
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