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Abstract
In this paper, we propose systematic and effi-
cient gradient-based methods for both one-way
and two-way partial AUC (pAUC) maximization
that are applicable to deep learning. We pro-
pose new formulations of pAUC surrogate ob-
jectives by using the distributionally robust opti-
mization (DRO) to define the loss for each individ-
ual positive data. We consider two formulations
of DRO, one of which is based on conditional-
value-at-risk (CVaR) that yields a non-smooth
but exact estimator for pAUC, and another one
is based on a KL divergence regularized DRO
that yields an inexact but smooth (soft) estimator
for pAUC. For both one-way and two-way pAUC
maximization, we propose two algorithms and
prove their convergence for optimizing their two
formulations, respectively. Experiments demon-
strate the effectiveness of the proposed algorithms
for pAUC maximization for deep learning on var-
ious datasets. The proposed methods are imple-
mented with tutorials in our open-sourced library
LibAUC (www.libauc.org).

1. Introduction
AUC, short for the area under the ROC curve, is a perfor-
mance measure of a model, where the ROC curve is a curve
of true positive rate (TPR) vs false positive rate (FPR) for all
possible thresholds. AUC maximization in machine learn-
ing has a long history dating back to early 2000s (Herbrich
et al., 1999). It has four ages in the twenty-years history,
full-batch based methods in the first age, online methods
in the second age, stochastic methods in the third age, and
deep learning methods in the recent age. The first three
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ages focus on learning linear models or kernelized mod-
els. In each age, there have been seminal works in rigorous
optimization algorithms that play important roles in the evo-
lution of AUC maximization methods. Recent advances in
non-convex optimization (in particular non-convex min-max
optimization) (Liu et al., 2020) has driven large-scale deep
AUC maximization to succeed in real-world tasks, e.g., med-
ical image classification (Yuan et al., 2020) and molecular
properties prediction (Wang et al., 2021).

Nevertheless, the research on efficient optimization algo-
rithms for partial AUC (pAUC) lag behind. In many ap-
plications, there are large monetary costs due to high false
positive rates (FPR) and low true positive rates (TPR), e.g.,
in medical diagnosis. Hence, a measure of primary interest
is the region of the curve corresponding to low FPR and/or
high TPR, i.e., pAUC. There are two commonly used ver-
sions of pAUC, namely one-way pAUC (OPAUC) (Dodd
& Pepe, 2003) and two-way pAUC (TPAUC) (Yang et al.,
2019), where OPAUC puts a restriction on the range of FPR,
i.e., FPR∈ [α, β] (Figure 1 middle) and TPAUC puts a re-
striction on the lower bound of TPR and the upper bound
of FPR, i.e., TPR≥ α, FPR≤ β (Figure 1 right). Compared
with standard AUC maximization, pAUC maximization is
more challenging since its estimator based on training exam-
ples involves selection of examples whose prediction scores
are in certain ranks.

To the best of our knowledge, there are few rigorous and
efficient algorithms developed for pAUC maximization for
deep learning. Some earlier works have focused on pAUC
maximization for learning linear models. For example,
Narasimhan & Agarwal (2017) have proposed a structured
SVM approach for one-way pAUC maximization, which
is guaranteed to converge for optimizing the surrogate ob-
jective of pAUC. However, their approach is not efficient
for big data and is not applicable to deep learning, which
needs to evaluate the prediction scores of all examples and
sort them at each iteration. There are some heuristic ap-
proaches, e.g., updating the model parameters according
to the gradient of surrogate pAUC computed based on a
mini-batch data (Kar et al., 2014) or using an ad-hoc weight-
ing function for each example for computing the stochastic
gradient (Yang et al., 2021). However, such approaches are
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Figure 1. From left to right: AUC, one-way pAUC, two-way pAUC

either not guaranteed to converge or could suffer a large
approximation error.

In this paper, we propose more systematic and rigorous
optimization algorithms for pAUC maximization with con-
vergence guarantee, which are applicable to deep learning.
We consider both OPAUC maximization and TPAUC maxi-
mization, where for OPAUC we focus on maximizing pAUC
in the region where FPR ∈ [0, β] and for TPAUC we focus
on maximizing pAUC in the region where FPR ≤ β and
TPR ≥ α for some α, β ∈ (0, 1). In order to tackle the
challenge of computing unbiased stochastic gradients of the
surrogate objective of pAUC, we propose new formulations
based on distributionally robust optimization (DRO), which
allows us to formulate the problem into weakly convex opti-
mization, and novel compositional optimization problems,
and to develop efficient stochastic algorithms with conver-
gence guarantee. We summarize our contributions below.

• For OPAUC maximization, for each positive example,
we define a loss over all negative examples based on
DRO. We consider two special formulations of DRO,
with one based on the conditional-value-at-risk (CVaR)
function that yields an exact estimator of the surrogate
objective of OPAUC, and another one based on Kull-
back–Leibler (KL) divergence regularized DRO that
yields a soft estimator of the surrogate objective.

• We propose efficient stochastic algorithms for optimiz-
ing both formulations of OPAUC and establish their
convergence guarantee and complexities for finding a
(nearly) stationary solution. We also demonstrate that
the algorithm for optimizing the soft estimator based on
the KL divergence regularized DRO can enjoy parallel
speed-up.

• For TPAUC maximization, we apply another level of
DRO with respect to the positive examples on top of
OPAUC formulations, yielding both exact and soft
estimators for TPAUC. We also provide two rigorous
stochastic algorithms with provable convergence for
optimizing both the exact and soft estimator of TPAUC,
with the latter problem formulated as a novel three-
level compositional stochastic optimization problem.

• We conduct extensive experiments for deep learning on
image classification and graph classification tasks with

imbalanced data. We compare with heuristic and ad-
hoc approaches for pAUC maximization and multiple
baseline methods, and observe superior performance
of the proposed algorithms.

To the best our knowledge, this work is the first one that
provides rigorous stochastic algorithms and convergence
guarantee for pAUC maximization that are efficient and ap-
plicable to deep learning. We expect the proposed novel
formulations for OPAUC and TPAUC will allow researchers
to develop even faster algorithms than the proposed algo-
rithms in this paper.

2. Related Work
In this section, we provide a brief overview of related work
for pAUC maximization.

Earlier works have considered indirect methods for pAUC
maximization (Rudin, 2009; Agarwal, 2011; Rakotoma-
monjy, 2012; Li et al., 2014; Wu et al., 2008). They did
not directly optimize the surrogate objective of pAUC but
instead some objectives that have some relationship to the
right corner of ROC curve, e.g., p-norm push (Rudin, 2009),
infinite-push (Agarwal, 2011; Rakotomamonjy, 2012; Li
et al., 2014), and asymmetric SVM objective (Wu et al.,
2008). Nevertheless, none of these studies propose algo-
rithms that are scalable and applicable for deep learning.

In (Kar et al., 2014), the authors proposed mini-batch based
stochastic methods for pAUC maximization. At each iter-
ation, a gradient estimator is simply computed based on
the pAUC surrogate function of the mini-batch data. How-
ever, this heuristic approach is not guaranteed to converge
for minimizing the pAUC objective and its error scales as
O(1/

√
B), where B is the mini-batch size. Narasimhan

& Agarwal (2013b;a; 2017) developed rigorous algorithms
for optimizing pAUC with FPR restricted in a range (α, β)
based on the structured SVM formulation. However, their
algorithms are only applicable to learning linear models
and are not efficient for big data due to per-iteration costs
proportional to the size of training data. Recently, Yang et al.
(2021) considered optimizing two-way partial AUC with
FPR less than β and TPR larger than α. Their paper focuses
on simplifying the optimization problem that involves se-
lection of top ranked negative examples and bottom ranked
positive examples. They use ad-hoc weight functions for
each positive and negative examples to relax the objective
function into decomposable over pairs. The weight function
is designed such that the larger the scores of negative exam-
ples the higher are their weights, the smaller the scores of
positive examples the higher are their weights. Nevertheless,
their objective function might have a large approximation
error for the pAUC estimator.
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There are also some studies about partial AUC maximization
without providing rigorous convergence guarantee on their
methods, including greedy methods (Wang & Chang, 2011;
Ricamato & Tortorella, 2011) and boosting methods (Ko-
mori & Eguchi, 2010; Takenouchi et al., 2012). Some works
also use pAUC maximization for learning non-linear neural
networks (Ueda & Fujino, 2018; Iwata et al., 2020). How-
ever, it is unclear how the optimization algorithms were
designed as there were no discussion on the algorithm de-
sign and convergence analysis. Finally, it was brought to our
attention that a recent work (Yao et al., 2022) also consid-
ered partial AUC maximization with a non-convex objective.
The difference between this work and (Yao et al., 2022) is
that: (i) they focus on optimizing one-way pAUC with FPR
in a certain range (α, β) where α > 0; in contrast we con-
sider optimizing both one-way pAUC and two-way pAUC,
but for one-way pAUC we only consider FPR in a range of
(0, β); (ii) the second difference is that the proposed algo-
rithms in this paper for one-way pAUC maximization has a
better complexity than that established in (Yao et al., 2022).

3. Preliminaries
In this section, we present some notations and preliminaries.
Let S = {(x1, y1), . . . , (xn, yn)} denote a set of training
data, where xi represents an input training example (e.g.,
an image), and yi ∈ {1,−1} denotes its corresponding
label (e.g., the indicator of a certain disease). Let hw(x) =
h(w,x) denote the score function of the neural network
on an input data x, where w ∈ Rd denotes the parameters
of the network. Denote by I(·) an indicator function of a
predicate, and by [s]+ = max(s, 0). For a set of given
training examples S, let S+ and S− be the subsets of S
with only positive and negative examples, respectively, with
n+ = |S+| and n− = |S−|. Let S↓[k1, k2] ⊂ S be the
subset of examples whose rank in terms of their prediction
scores in the descending order are in the range of [k1, k2],
where k1 ≤ k2. Similarly, let S↑[k1, k2] ⊂ S denote the
subset of examples whose rank in terms of their prediction
scores in the ascending order are in the range of [k1, k2],
where k1 ≤ k2. We denote by Ex∼S the average over
x ∈ S . Let x+ ∼ P+ denote a random positive example
and x− ∼ P− denote a random negative example. We use
∆ to denote a simplex of a proper dimension.

A function F (w) is weakly convex if there exists C > 0
such that F (w) + C

2 ∥w∥2 is a convex function. A function
F (w) is L-smooth if its gradient is Lipchitz continuous, i.e.,
∥∇F (w)−∇F (w′)∥ ≤ L∥w −w′∥.

pAUC and its non-parametric estimator. For a given
threshold t and a score function h(·), the TPR can be writ-
ten as TPR(t) = Pr(h(x) ≥ t|y = 1), and the FPR can be
written as FPR(t) = Pr(h(x) > t|y = −1). For a given
u ∈ [0, 1], let FPR−1(u) = inf{t ∈ R : FPR(t) ≤ u}

and TPR−1(u) = inf{t ∈ R : TPR(t) ≤ u}. The
ROC curve defined as {u,ROC(u)}, where u ∈ [0, 1] and
ROC(u) = TPR(FPR−1(u)). OPAUC (non-normalized)
with FRP restricted in the range (α0, α1) is equal to (Dodd
& Pepe, 2003)

OPAUC(h, α0, α1) =

∫ α1

α0

ROC(u)du = (1)

Pr(h(x+) > h(x−), h(x−) ∈ [FPR−1(α1), FPR−1(α0)]),

where h(x−) ∈ [FPR−1(α1), FPR−1(α0)] means that only
negative examples whose prediction scores are in certain
quantiles are considered. As a result, we have the following
non-parametric estimator of OPAUC:

ÔPAUC(h, α0, α1) = (2)
1

n+

1

n−

∑
xi∈S+

∑
xj∈S↓

−[k1+1,k2]

I(h(xi) > h(xj)),

where k1 = ⌈n−α0⌉, k2 = ⌊n−α1⌋. In this work, we will
focus on optimizing ÔPAUC(h, 0, β) for some β ∈ (0, 1).

Similarly, a non-parametric estimator of TPAUC with
FPR ≤ β,TPR ≥ α is given by

T̂PAUC(h, α, β) = (3)
1

n+

1

n−

∑
xi∈S↑

+[1,k1]

∑
xj∈S↓

−[1,k2]

I(h(xi) > h(xj)),

where k1 = ⌊n+α⌋, k2 = ⌊n−β⌋.

Distributionally Robust Optimization (DRO). For a set
of random loss functions ℓ1(·), . . . , ℓn(·), a DRO loss can
be written as

L̂ϕ(·) = max
p∈∆

∑
j

pjℓj(·)− λDϕ(p, 1/n), (4)

whereDϕ(p, 1/n) =
1
n

∑
i ϕ(npi) is a divergence measure,

and λ > 0 is a parameter. The idea of the DRO loss is to as-
sign an importance weight pi to each individual loss and take
the uncertainty into account by maximization over p ∈ ∆
with a proper constraint/regularization on p. In the literature,
several divergence measures have been considered (Levy
et al., 2020). In this paper, we will consider two special
divergence measures that are of most interest for our pur-
pose, i.e., the KL divergence ϕkl(t) = t log t− t+1, which
gives Dϕ(p, 1/n) =

∑
i pi log(npi), and the CVaR diver-

gence ϕc(t) = I(0 < t ≤ 1/γ) with a parameter γ ∈ (0, 1),
which gives Dϕ(p, 1/n) = 0 if pi ≤ 1/(nγ) and infinity
otherwise. The following lemma gives the closed form of
L̂ϕ for ϕc and ϕkl.



Optimizing Partial AUC for Deep Learning with Convergence Guarantee

Lemma 1. By using KL divergence measure, we have

L̂kl(·;λ) = λ log

(
1

n

n∑
i=1

exp

(
ℓi(·)
λ

))
. (5)

By using the CVaR divergence ϕc(t) for some γ such that
nγ is an integer, we have,

L̂cvar(·; γ) =
1

nγ

nγ∑
i=1

ℓ[i](·), (6)

where ℓ[i](·) denotes the i-th largest value in {ℓ1, . . . , ℓn}.

The estimator in (6) is also known as the estimator of
conditional-value-at-risk (Rockafellar et al., 2000).

4. AUC meets DRO for OPAUC Maximization
Since the non-parametric estimator of OPAUC in (2) is non-
continuous and non-differentiable, a continuous surrogate
objective for OPAUC(hw, 0, β) is usually defined by us-
ing a continuous pairwise surrogate loss L(w;xi,xj) =
ℓ(hw(xi)− hw(xj)), resulting in the following problem:

min
w

1

n+

∑
xi∈S+

1

n−β

∑
xj∈S↓

−[1,n−β]

L(w;xi,xj), (7)

where we assume n−β is an positive integer for simplicity
of presentation. For the surrogate loss ℓ(·), we assume it
satisfies the following properties.

Assumption 1. We assume ℓ(·) is a convex, differentiable
and monotonically decreasing function when ℓ(·) > 0, and
ℓ′(0) < 0.

It is notable that the above condition is a sufficient con-
dition to ensure that the surrogate ℓ(·) is consistent for
AUC maximization (Gao & Zhou, 2015). There are many
surrogate loss functions that have the above properties,
e.g., squared hinge loss ℓ(s) = (c − s)2+, logistic loss
ℓ(s) = log(1 + exp(−s/c)) where c > 0 is a parameter.

The challenge of optimizing a surrogate objective of pAUC
in (7) lies at tackling the selection of top ranked negative
examples from S−, i.e., S↓

−[1, k] for some fixed k. It is
impossible to compute an unbiased stochastic gradient of
the objective in (7) based on a mini-batch of examples that
include only a part of negative examples.

4.1. AUC meets DRO for OPAUC

To address the above challenge, we define new formula-
tions for OPAUC maximization by leveraging the DRO. In
particular, we define a robust loss for each positive data by

L̂ϕ(w;xi) = max
p∈∆

∑
xj∈S−

pjL(w;xi,xj)− λDϕ(p, 1/n−).

Then we define the following objective for OPAUC maxi-
mization:

min
w

1

n+

∑
xi∈S+

L̂ϕ(w;xi). (8)

When ϕ(·) = ϕc(·), we refer to the above estimator (i.e.,
the objective function) as CVaR-based OPAUC estimator;
and when ϕ(·) = ϕkl(·), we refer to the above estimator
as KLDRO-based OPAUC estimator. Below, we present
two theorems to state the equivalent form of the objective,
and the relationship between the two estimators and the
surrogate objective in (7) of OPAUC.

Theorem 1. By choosing ϕ(·) = ϕc(·) = I(· ∈ (0, 1/β]),
then the problem (8) is equivalent to

min
w

min
s∈Rn+

F (w, s) =
1

n+

∑
xi∈S+

(
si +

1

β
ψi(w, si)

)
, (9)

where ψi(w, si) =
1
n−

∑
xj∈S−

(L(w;xi,xj)− si)+. If ℓ
is a monotonically decreasing function for ℓ(·) > 0, then
the objective in (8) is equivalent to (7) of OPAUC.

Remark: The above theorem indicates that CVaR-based
OPAUC estimator is an exact estimator of OPAUC, which is
consistent for OPAUC maximization. The variable si can be
considered as the threshold variable to select the top-ranked
negative examples for each positive data.

Theorem 2. By choosing ϕ(·) = ϕkl(·), then the prob-
lem (8) becomes

min
w

1

n+

∑
xi∼S+

λ log Exj∈S− exp(
L(w;xi,xj)

λ
). (10)

If ℓ(·) is a monotonically decreasing function for ℓ(·) >
0, when λ = 0, the above objective is a surrogate of
ÔPAUC(hw, 0, 1

n−
); and when λ = +∞, the above ob-

jective is a surrogate of ÔPAUC(hw, 0, 1), i.e., the AUC.

Remark: Theorem 2 indicates that KLDRO-based OPAUC
estimator is a soft estimator, which interpolates between
OPAUC(hw, 0, 1/n−) and OPAUC(hw, 0, 1) by varying λ.

It is also notable that when β = 1/n− in CVaR-based es-
timator, the objective in (8) becomes the infinite-push (or
top-push) objective considered in the literature (Agarwal,
2011; Rakotomamonjy, 2012; Li et al., 2014), and hence
our algorithm for solving (9) can be also used for solving
the infinite-push objective for deep learning. In contrast,
the previous works for the infinite-push objective focus on
learning linear models. Similarly, when λ = 0 in KLDRO-
based estimator, the objective in (10) becomes the infinite-
push objective. Nevertheless, our algorithm for optimizing
KLDRO-based estimator is not exactly applicable to opti-
mizing the infinite-push objective as we focus on the cases
λ > 0, which yields a smooth objective function under
proper conditions of ℓ(·) and h(·;x). As a result, we could
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have stronger convergence by optimizing the KLDRO-based
estimator as indicated by our convergence results in next
subsection.

4.2. Optimization Algorithms and Convergence Results

In this subsection, we present the optimization algorithms
for solving both (9) and (10), and then present their conver-
gence results for finding a nearly stationary solution. The
key to our development is to formulate the two optimization
problems into known non-convex optimization problems
that have been studied in the literature, and then to develop
stochastic algorithms by borrowing the existing techniques.

Optimizing CVaR-based estimator. We first consider opti-
mizing the CVaR-based estimator, which is equivalent to (9).
A benefit for solving (9) is that an unbiased stochastic sub-
gradient can be computed in terms of (w, s). However, this
problem is still challenging because the objective function
F (w, s) is non-smooth non-convex. In order to develop a
stochastic algorithm with convergence guarantee, we prove
that F (w, s) is weakly convex in terms of (w, s), which
allows us to borrow the techniques of optimizing weakly
convex function (Davis & Drusvyatskiy, 2018) for solv-
ing our problem and to establish the convergence. We first
establish the weak convexity of F (w, s).
Lemma 2. If L(·;xi,xj) is a Ls-smooth function for any
xi,xj , then F (w, s) is ρ-weakly convex with ρ = Ls/β.

Another challenge for optimizing F (w, s) is that s is of high
dimensionality and computing the gradient for all entries
in s at each iteration is expensive. Therefore, we develop a
tailored stochastic algorithm for solving (9), which is shown
in Algorithm 1. This algorithm uses stochastic gradient
descent (SGD) updates for updating w and stochastic coor-
dinate gradient descent (SCGD) updates for updating s. We
refer to the algorithm as SOPA. A key feature of SOPA is
that the stochastic gradient estimator for w is a weighted
average gradient of the pairwise losses for all pairs in the
mini-batch, i.e., step 6. The hard weights pij (either 0 or 1)
are dynamically computed by step 4, which compares the
pairwise loss (ℓ(h(wt,xi)− h(wt,xj)) with the threshold
variable sti, which is also updated by a SGD step.

Optimizing KLDRO-based estimator of OPAUC. Next,
we consider optimizing the KLDRO-based estimator, which
is equivalent to (10). A nice property of the objective func-
tion is that it is smooth under a proper condition as stated in
Assumption 2. However, the challenge for solving (10) is
that an unbiased stochastic gradient is not readily computed.
To highlight the issue, the problem (10) can be written as

min
w

F (w) =
1

n+

∑
xi∈S+

f(gi(w)), (11)

where gi(w) = Exj∼S− exp(
L(w;xi,xj)

λ ) and f(·) =
λ log(·). A similar optimization problem has been studied

Algorithm 1 SOPA

1: Set s1 = 0 and initialize w
2: for t = 1, . . . , T do
3: Sample two mini-batches B+ ⊂ S+,B− ⊂ S−
4: Let pij = I(ℓ(h(wt,xi)− h(wt,xj))− sti > 0)

5: Update st+1
i = sti −

η2

n+
(1−

∑
j pij

β|B−| ) for xi ∈ B+

6: Compute a gradient estimator ∇t by

∇t =
1

β|B+||B−|
∑

xi∈B+

∑
xj∈B−

pij∇wL(wt;xi,xj)

7: Update wt+1 = wt − η1∇t

8: end for

in (Qi et al., 2021) for maximizing average precision, which
is referred to as finite-sum coupled compositional stochastic
optimization, where f(gi(w)) is a compositional function
and gi(w) depends on the index i for the outer summation.
A full gradient of f(gi(w)) is given by f ′(gi(w))∇gi(w).
With a mini-batch of samples, gi(w) can be estimated by an
unbiased estimator ĝi(w). However, f ′(ĝi(w))∇ĝi(w) is a
biased estimator due to the compositional form. To address
this challenge, Qi et al. (2021) proposed a novel stochas-
tic algorithm that maintains a moving average estimator
for gi(w) denoted by ui. Recently, Wang & Yang (2022)
has also studied the finite-sum coupled compositional opti-
mization problem comprehensively and proposed a similar
algorithm (SOX) and derived better convergence results than
that in (Qi et al., 2021). Hence, we employ the same algo-
rithm in (Wang & Yang, 2022) for solving (10), which is in
shown in Algorithm 2 and is referred to as SOPA-s.

There are two key differences between SOPA-s and SOPA.
First, the pairwise weights pij in SOPA-s (step 5) are soft
weights between 0 and 1, in contrast to the hard weights
pij ∈ {0, 1} in SOPA. Second, the update for wt+1 is a
momentum-based update where γ1 ∈ (0, 1). We can also
use an Adam-style update, which shares similar convergence
as the momentum-based update (Guo et al., 2021).

4.3. Convergence Analysis

For convergence analysis, we make the following assump-
tion about h and ℓ(·).
Assumption 2. Assume h(·;x) is Lipschitz continuous,
smooth and bounded, ℓ(·) is a smooth function and has
a bounded gradient for a bounded argument.

A bounded smooth score function h(·;x) is ensured if the
activation function of the neural network is smooth and the
output layer uses a bounded and smooth activation func-
tion. For example, let ĥ(w;x) denote the plain output
of the neural network, then the score function h(w;x) =
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Algorithm 2 SOPA-s

1: Set u1 = 0 and initialize w
2: for t = 1, . . . , T do
3: Sample two mini-batches B+ ⊂ S+,B− ⊂ S−
4: For each xi ∈ B+, update ut+1

i = (1 − γ0)u
t
i +

γ0
1

|B−|
∑

xj∈B−
exp

(
L(wt;xi,xj)

λ

)
5: Let pij = exp(L(wt;xi,xj)/λ)/u

t
i

6: Compute a gradient estimator ∇t by

∇t =
1

|B+|
1

|B−|
∑

xi∈B+

∑
xj∈B−

pij∇L(wt;xi,xj)

7: Update vt = (1− γ1)vt−1 + γ1∇t

8: Update wt+1 = wt − ηvt (or Adam-style)
9: end for

1/(1 + exp(−ĥ(w;x)) is bounded and smooth. The Lip-
schitz continuity of h(w;x) can be guaranteed if w is
bounded.

We first consider the analysis of SOPA. Since F (w, s) is
non-smooth, for presenting the convergence result, we need
to introduce a convergence measure based on the Moreau
envelope of F (w, s) given below for some ρ̂ > ρ:

Fρ̂(w, s) = minw,s F (w, s) +
ρ̂

2
(∥w∥2 + ∥s∥2).

It is guaranteed that Fρ̂(w, s) is a smooth function (Drusvy-
atskiy & Paquette, 2019). A point (w, s) is called an ϵ-
nearly stationary solution to F (w, s) if ∥∇Fρ̂(w, s)∥ ≤ ϵ
for some ρ̂ > ρ, where ρ is the weak convexity parameter
of F . This convergence measure has been widely used for
weakly convex optimization problems (Davis & Drusvy-
atskiy, 2018; Rafique et al., 2020; Chen et al., 2019). Then
we establish the following convergence guarantee for SOPA.

Theorem 3. Under Assumption 2, Algorithm 1 ensures that
after T = O(1/(βϵ4)) iterations we can find an ϵ nearly
stationary solution of F (w, s), i.e., E∥∇Fρ̂(wτ , sτ )∥2 ≤
ϵ2 for a randomly selected τ ∈ {1, . . . , T} and ρ̂ = 1.5ρ.

Next, we establish the convergence of SOPA-s. Under As-
sumption 2, we can show that F (w) in (11) is smooth.
Hence, we use the standard convergence measure in terms
of gradient norm of F (w).

Theorem 4. Under Assumption 2, Algorithm 2
with γ0 = O(B−ϵ

2), γ1 = O(min{B−, B+}ϵ2),
η = O(min{γ0B1/n+, γ1}) ensures that after
T = O( 1

min(B+,B−)ϵ4 + n+

B+B−ϵ4 ) iterations we can find an
ϵ-stationary solution of F (w), i.e., E[∥∇F (wτ )∥2] ≤ ϵ2

for a randomly selected τ ∈ {1, . . . , T}, where B+ = |B+|
and B− = |B−|.

Remark: The convergence analysis of Algorithm 2 follows

directly from that in (Wang & Yang, 2022). Compared with
that in Theorem 3 for SOPA, the convergence of SOPA-s is
stronger than that of SOPA in several aspects: (i) the conver-
gence measure of SOPA-s is stronger than that of SOPA due
to that Theorem 4 guarantees the convergence in terms of
gradient norm of the objective, while Theorem 3 guarantees
the convergence on a weaker convergence measure namely
the gradient norm of the Moreau envelope of the objective;
(ii) the complexity of SOPA-s enjoys a parallel speed-up by
using a mini-batch of data. However, it is also notable that
the complexity of SOPA does not depend on the number of
positive data as that of SOPA-s.

5. AUC meets DRO for TPAUC Maximization
In this section, we propose estimators for the surrogate
objective of TPAUC and stochastic algorithms with conver-
gence guarantee for optimizing the estimators. To this end,
we apply another level of DRO on top of L̂ϕ(xi,w),xi ∈
S+ and define the following estimator of TPAUC:

F (w;ϕ, ϕ′) = max
p∈∆

∑
xi∈S+

piL̂ϕ(xi,w)− λ′Dϕ′(p,
1

n+
).

Next, we focus on optimizing the soft estimator of TPAUC
defined by using ϕ = ϕ′ = ϕkl. First, we have the following
form for the estimator.
Lemma 3. When ϕ = ϕ′ = ϕkl, we have

F (w;ϕkl, ϕkl)

= λ′ log Exi∼S+

(
Exj∼S− exp(

ℓ(w;xi,xj)

λ
)

) λ
λ′

.

For minimizing this function, we formulate the problem as
a novel three-level compositional stochastic optimization:

min
w

f1(
1

n+

∑
xi∈S+

f2(gi(w))),

where f1(s) = λ′ log(s), f2(g) = gλ/λ
′

and gi(w) =
Exj∼S− exp(L(w;xi,xj)/λ). We propose a novel stochas-
tic algorithm for solving the above problem, which is
shown in Algorithm 3, to which we refer as SOTA-
s. Note that the problem is similar to multi-level com-
positional optimization (Balasubramanian et al., 2021)
but also has subtle difference. The function inside f1
has a form similar to that in (11). Hence, we use
similar technique to SOPA-s by maintaining and updat-
ing ui to track gi(w) in step 4. Besides, we need to
maintain and update vt+1 to track 1

n+

∑
xi∈S+

f2(gi(wt))

in step 5. Then the gradient estimator in step 7 is
computed by ∇f1(vt+1)

1
|B+|

∑
xi∈B+

∇ĝi(wt)∇f2(uit),
where ĝi(w) = Exj∼B− exp(L(wt;xi,xj)/λ). Then we
update the model parameter by the momentum-style or
Adam-style update.

Theorem 5. Under Assumption 2, Algorithm 3 with γ0 =
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Algorithm 3 SOTA-s

1: Set u0 = 0, v0 = 0,m0 = 0 and initialize w
2: for t = 1, . . . , T do
3: Sample two mini-batches B+ ⊂ S+, B− ⊂ S−
4: For each xi ∈ B+ compute uit = (1 − γ0)u

i
t−1 +

γ0
1

|B−|
∑

xj∈B−
L(wt;xi,xj)

5: Let vt = (1− γ1)vt−1 + γ1
1

|B+|
∑

xi∈B+
f2(u

i
t−1)

6: Let pij = (uit−1)
λ/λ′−1 exp(L(wt,xi,xj)/λ)/vt

7: Compute a gradient estimator ∇t by

∇t =
1

|B+

1

|B−|
∑

xi∈B+

∑
xj∈B−

pij∇L(wt;xi,xj)

8: Update mt = (1− γ2)mt−1 + γ2∇t

9: Update wt+1 = wt − ηmt (or Adam-style)
10: end for

O(B−ϵ
2), γ1 = O(B+ϵ

2), γ2 = O(min{B−, B+}ϵ2),
η = O(min{γ0B1/n+, γ1, γ2}) ensures that after T =
O( 1

min(B+,B−)ϵ4 + n+

B+B−ϵ4 ) iterations we can find an ϵ

nearly stationary solution of F (w), where B+ = |B+| and
B− = |B−|.
Remark: It is notable that SOTA-s has an iteration complex-
ity in the same order of SOPA-s for OPAUC maximization.

Finally, we discuss how to optimize the exact estimator of
TPAUC defined by F (w;ϕc, ϕ

′
c), where ϕc(t) = I(0 ≤ t ≤

1/β) and ϕ′c(t) = I(0 ≤ t ≤ 1/α) with K2 = n−β and
K1 = n+α being integers. Lemma 7 in the supplement
shows that if ℓ(·) is monotonically decreasing for ℓ(·) > 0

F (w;ϕc,ϕ
′
c) =

1

K1K2

∑
xi∈S↑

+[1,K1]

∑
xj∈S↓

−[1,K2]

L(w;xi,xj),

is a consistent surrogate function of TPAUC for TPR ≥ α

and FPR ≤ β in view of the estimator T̂PAUC given in (3).

Similar to Theorem 1, we can show that F (w;ϕc, ϕ
′
c) is

equivalent to:

min
s′∈R,s∈Rn+

s′ +
1

n+α

∑
xi∈S+

(si +
1

β
ψi(w; si)− s′)+.

Like F (w, s) in (9), we can prove the inner function is
weakly convex in terms of (w, s, s′). However, computing
an unbiased stochastic gradient in terms of w and si is also
impossible due to that ψi(w; si) is inside a hinge function.
To solve this problem, we can use the conjugate form of the
hinge function to convert the minimization of F (w;ϕc, ϕ

′
c)

into a weakly-convex concave min-max problem (Rafique
et al., 2020) and we can develop a stochastic algorithm but
only with O(1/ϵ6) iteration complexity for finding a nearly
stationary solution. We present the algorithm and analysis

in the supplement for interested readers.

6. Experiments
Datasets. We consider binary classification tasks on two
types of datasets, namely image datasets and molecular
datasets. For image datasets, we use CIFAR-10, CIFAR-
100, Melanoma for experiments. For CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009), we construct imbalanced
versions of the datasets by randomly removing some pos-
itive samples following (Yuan et al., 2020). Specifically,
we take first half of classes as the negative class and last
half of classes as the positive class, and then remove 80%
samples from the positive class to make it imbalanced. The
Melanoma dataset is a naturally imbalanced medical dataset
which is released on Kaggle (Rotemberg et al., 2021). For
molecular datasets, we use ogbg-moltox21 (the No.0 tar-
get), ogbg-molmuv (the No.1 target) and ogbg-molpbca (the
No.0 target) for experiments, which are from the Stanford
Open Graph Benchmark (OGB) website (Hu et al., 2020).
The task on these molecular datasets is to predict certain
property of molecules. The statistics for the datasets are
presented in Table 5 in the supplement.

Deep Models. For image datasets, we learn convolutional
neural network (CNN) and use ResNet18 (He et al., 2016)
for CIFAR-10, CIFAR100 and Melanoma. For molecular
datasets, we learn graph neural network (GNN) and use
Graph Isomorphism Network (GIN) as the backbone model
on all datasets (Xu et al., 2018), which has 5 mean-pooling
layers with 64 number of hidden units and dropout rate 0.5.

Baselines. We will compare our methods with different
baselines for both training performance and testing perfor-
mance. For comparison of training convergence, we con-
sider different methods for optimizing the same objective,
i.e., partial AUC. We compare with 2 baselines, i.e., the
naive mini-batch based method (Kar et al., 2014), to which
we refer as MB, and a recently proposed ad-hoc weight
based method (Yang et al., 2021), to which we refer as AW-
poly. MB that optimizes OPAUC only considers the top
negative samples in the mini-batch; and MB that optimizes
TPAUC considers the top negative samples and bottom pos-
itive samples in the mini-batch. For AW-poly, we use the
polynomial weight function according to their paper. It is
notable that AW-poly was originally proposed for optimiz-
ing TPAUC. But it can be easily modified for optimizing
OPAUC with FPR in (0, β). For comparison of testing per-
formance, we compare different methods for optimizing
different objectives, including the cross-entropy loss (CE),
the pair-wise squared hinge loss for AUC maximization
(AUC-SH), the AUC min-max margin loss (AUC-M) (Yuan
et al., 2021), p-norm push (P-push) (Rudin, 2009). For
optimizing CE and AUC-SH, we use the standard Adam
optimizer. For optimizing AUC-M, we use their proposed
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Figure 2. Training Convergence Curves on image and molecular datasets; Top for OPAUC maximization, bottom for TPAUC maximization.

optimizer PESG. For P-push, we use a stochastic algorithm
with an Adam-style update similar to that proposed in (Qi
et al., 2021). For our methods, we use ℓ(t) = (1− t)2+ and
also use the Adam-style update unless specified explicitly.
Similar to (Yuan et al., 2021; Qi et al., 2021), we use a pre-
training step that optimizes the base model by optimizing
CE loss with an Adam optimizer, and then re-initialize the
classifier layer and fine-tune all layers by different methods.

Target Measures. For OPAUC maximization, we evaluate
OPAUC with two FPR upper bounds, i.e., FPR ≤ 0.3 and
FPR≤ 0.5 separately. For TPAUC maximization, we evalu-
ate TPAUC with two settings, i.e, FPR≤ 0.4 and TPR≥ 0.6,
and FPR≤ 0.5 and TPR≥ 0.5.

Parameter Tuning. The learning rate of all methods is
tuned in {1e-3, 1e-4, 1e-5}, except for PESG which is tuned
at {1e-1, 1e-2, 1e-3} because it favors a larger learning
rate. Weight decay is fixed as 2e-4. Each method is run 60
epochs in total and learning rate decays 10-fold after every
20 epochs. The mini-batch size is 64. For AUC-M, we
tune the hyperparameter γ that controls consecutive epoch-
regularization in {100, 500, 1000}. For P-push, we tune the
polynomial power hyper-parameter in {2, 4, 6}. For MB that
optimizes OPAUC, we tune the top proportion of negative
samples in {10%, 30%, 50%}, and for MB that optimizes
TPAUC we tune the top proportion of negative samples in
{30%, 40%, 50%}, and tune the bottom proportion of posi-
tive samples in the range {30%, 40%, 50%}. For AW-poly,
we follow (Yang et al., 2021) and tune its parameter γ in
{101, 34, 11}. For SOPA, we tune the truncated FPR i.e. β
in {0.1, 0.3, 0.5}. For SOPA-s, we fix γ0 = 0.9 and tune
the KL-regularization parameter λ in {0.1, 1.0, 10}, and for
SOTA-s, we fix γ0 = γ1 = 0.9, and tune both λ and λ′ in
{0.1, 1.0, 10}. The momentum parameter for updating vt in
SOPA-s (i.e., 1− γ1) and SOTA-s (i.e., 1− γ2) is set to the
default value as in the Adam optimizer, i.e., 0.1. For com-
parison of training convergence, the parameters are tuned
according to the training performance. For comparison of

testing performance, the parameters are tuned according to
the validation performance. For each experiment, we repeat
multiple times with different train/validation splits and ran-
dom seeds, then report average and standard deviation over
multiple runs.

Results. We show the plots of training convergence in Fig-
ure 2 on two image datasets (CIFAR-10, -100) and on two
molecular datasets (moltox21, molpcba). From the results,
we can see that SOPA-s (SOTA-s) converge always faster
than MB and AW-poly for OPAUC (TPAUC) maximization.
For OPAUC maximization, SOPA-s is usually faster than
SOPA. More results are included in the supplement on other
datasets with similar observations. The testing performance
on all six datasets are shown in Table 1, 2, 3 and 4. In most
cases, the proposed methods are better than the baselines.
In particular, dramatic improvements have been observed
on Melanoma and ogbg-molmuv datasets, which are two
datasets with the highest imbalance ratios. In addition, we
see that AUC maximization methods (AUC-M, AUC-SH)
are not necessarily good for pAUC maximization.

Accuracy of KLDRO-based estimator. Of independent
interest, we conduct simple experiments to verify the accu-
racy of KLDRO-based estimator of OPAUC. To this end,
we compute the relative error (RE) of KLDRO-based esti-
mator compared with the exact estimator (i.e., CVaR-based
estimator). For a given upper bound of FRP we vary λ
for 100 independently randomly generated model parame-
ters w, and the results are shown in the following figure on
moltox21-t0 data (please refer to the experiments section for
more information of the dataset), which demonstrates that
for a given FPR there exists λ such that KLDRO estimator
is close to the exact estimator.

Ablation Study. We also conduct some ablation study to
understand the proposed algorithm SOPA-s and SOTA-s. In
particular for both algorithms, we verify that tuning γ0 in
SOPA-s and γ0, γ1 in SOTA-s can help further improve the
performance. The results are included in the supplement.
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Table 1. One way partial AUC on testing data of three image datasets
CIFAR-10 CIFAR-100 Melanoma

Methods FPR≤0.3 FPR≤0.5 FPR≤0.3 FPR≤0.5 FPR≤0.3 FPR≤0.5
CE 0.8446(0.0018) 0.8777(0.0014) 0.7338(0.0047) 0.7787(0.0044) 0.7651(0.0135) 0.8151(0.0028)
AUC-SH 0.8657(0.0056) 0.8948(0.0036) 0.7467(0.0047) 0.7930(0.0027) 0.7824(0.0138) 0.8176(0.0160)
AUC-M 0.8678(0.0016) 0.8934(0.0022) 0.7371(0.0031) 0.7828(0.0005) 0.7788(0.0068) 0.8249(0.0141)
P-push 0.8610(0.0007) 0.8889(0.0021) 0.7445(0.0025) 0.7930(0.0029) 0.7440(0.0130) 0.8028(0.0170)
MB 0.8690(0.0016) 0.8931(0.0015) 0.7487(0.0017) 0.7930(0.0014) 0.7683(0.0303) 0.8184(0.0278)
AW-poly 0.8664(0.0052) 0.8915(0.0075) 0.7490(0.0058) 0.7909(0.0068) 0.7936(0.0238) 0.8355(0.0067)
SOPA 0.8766(0.0034) 0.9028(0.0031) 0.7551(0.0044) 0.7999(0.0028) 0.8093(0.0248) 0.8585(0.0210)
SOPA-s 0.8691(0.0036) 0.8961(0.0036) 0.7468(0.0056) 0.7877(0.0053) 0.7775(0.0076) 0.8401(0.0206)

Table 2. Two way partial AUC on testing data of three image datasets; (α,β) represents TPR≥ α and FPR ≤ β.
CIFAR-10 CIFAR-100 Melanoma

Methods (0.6,0.4) (0.5,0.5) (0.6,0.4) (0.5,0.5) (0.6,0.4) (0.5,0.5)
CE 0.4981(0.0078) 0.6414(0.0080) 0.2178(0.0136) 0.4011(0.0118) 0.3399(0.0135) 0.5150(0.0038)
AUC-SH 0.5622(0.0064) 0.6923(0.0071) 0.2599(0.0061) 0.4397(0.0062) 0.3640(0.0354) 0.5291(0.0312)
AUC-M 0.5691(0.0021) 0.6907(0.0125) 0.2336(0.0041) 0.4153(0.0022) 0.3665(0.0646) 0.5404(0.0545)
P-push 0.5477(0.0077) 0.6781(0.0055) 0.2623(0.0042) 0.4417(0.0092) 0.3317(0.0304) 0.4870(0.0443)
MB 0.5404(0.0041) 0.6724(0.0011) 0.2207(0.0033) 0.4017(0.0149) 0.3330(0.0258) 0.4981(0.0252)
AW-poly 0.5536(0.0196) 0.6814(0.0203) 0.2489(0.0166) 0.4342(0.0112) 0.3878(0.0292) 0.5216(0.0288)
SOTA-s 0.5799(0.0202) 0.7074(0.0145) 0.2708(0.0055) 0.4528(0.0069) 0.4198(0.0825) 0.5865(0.0664)

Table 3. One way partial AUC on testing data of three molecular datasets
moltox21(t0) molmuv(t1) molpcba(t0)

Methods FPR≤0.3 FPR≤0.5 FPR≤0.3 FPR≤0.5 FPR≤0.3 FPR≤0.5
CE 0.6671(0.0009) 0.6954(0.005) 0.8008(0.0090) 0.8201(0.0061) 0.6802(0.0002) 0.7169(0.0002)
AUC-SH 0.7161(0.0043) 0.7295(0.0036) 0.7880(0.0382) 0.8025(0.0437) 0.6939(0.0009) 0.7350(0.0015)
AUC-M 0.6866(0.0048) 0.7080(0.0020) 0.7960(0.0123) 0.8076(0.0175) 0.6985(0.0016) 0.7399(0.0005)
P-push 0.6946(0.0107) 0.7160(0.0073) 0.7832(0.0220) 0.7940(0.0321) 0.6841(0.0007) 0.7293(0.0043)
MB 0.7398(0.0131) 0.7329(0.0099) 0.7672(0.0563) 0.7772(0.0547) 0.6899(0.0002) 0.7253(0.0006)
AW-poly 0.7227(0.0024) 0.7271(0.0112) 0.7754(0.0372) 0.7883(0.0431) 0.6975(0.0006) 0.7350(0.0015)
SOPA 0.7209(0.0063) 0.7318(0.0084) 0.8187(0.0319) 0.8245(0.0312) 0.6989(0.0022) 0.7371(0.0011)
SOPA-s 0.7309(0.0151) 0.7330(0.0073) 0.8449(0.0399) 0.8412(0.0447) 0.7027(0.0018) 0.7416(0.0006)

Table 4. Two way partial AUC on testing data of three molecular datasets; (α,β) represents TPR≥ α and FPR ≤ β.
moltox21(t0) molmuv(t1) molpcba(t0)

Methods (0.6,0.4) (0.5,0.5) (0.6,0.4) (0.5,0.5) (0.6,0.4) (0.5,0.5)
CE 0.0674(0.0014) 0.2082(0.0011) 0.1613(0.0337) 0.4691(0.0183) 0.0949(0.0006) 0.2639(0.0006)
AUC-SH 0.0640(0.0080) 0.2170(0.0140) 0.2600(0.1300) 0.4440(0.1280) 0.1400(0.0030) 0.3120(0.0030)
AUC-M 0.0660(0.0090) 0.2090(0.0100) 0.1140(0.0790) 0.4330(0.0530) 0.1420(0.0090) 0.3130(0.0030)
P-push 0.0610(0.0180) 0.2070(0.0120) 0.1860(0.1520) 0.4170(0.1080) 0.1350(0.0020) 0.3000(0.0120)
MB 0.0670(0.0150) 0.2150(0.0230) 0.1730(0.1530) 0.4260(0.1180) 0.0950(0.0020) 0.2620(0.0030)
AW-poly 0.0640(0.0100) 0.2060(0.0250) 0.1720(0.1440) 0.3930(0.1230) 0.1100(0.0010) 0.2810(0.0020)
SOTA-s 0.0680(0.0180) 0.2300(0.0210) 0.3270(0.1640) 0.5260(0.1220) 0.1430(0.0010) 0.3140(0.0020)
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Figure 3. Relative error (RE) for KLDRO-based estimator for
OPAUC on moltox21-t0 dataset with FPR={0.3, 0.5}.

7. Conclusions
In this paper, we have proposed new formulations for partial
AUC maximization by using distributionally robust opti-

mization. We propose two formulations for both one-way
and two-way partial AUC, and develop stochastic algorithms
with convergence guarantee for solving the two formula-
tions, respectively. Extensive experiments on image and
molecular graph datasets verify the effectiveness of the pro-
posed algorithms.
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A. More Experimental Results

Table 5. Datasets Statistics. The percentage in parenthesis represents the proportion of positive samples.
Dataset Train Validation Test
CIFAR-10 24000 (16.67%) 6000 (16.67%) 6000 (16.67%)
CIFAR-100 24000 (16.67%) 6000 (16.67%) 6000 (16.67%)
Melanoma 26500 (1.76%) 3313 (1.78%) 3313 (1.75%)
moltox21(t0) 5834 (4.25%) 722 (4.01%) 709 (4.51%)
molmuv(t1) 11466 (0.18%) 1559 (0.13%) 1709 (0.35%)
molpcba(t0) 120762 (9.32%) 19865 (11.74%) 20397 (11.61%)

A.1. Additional plots for training convergence

We present more training convergence plots on Melanoma dataset and molmuv dataset at Figure 4. For OPAUC maximization,
We can observe that both our proposed SOPA-s and SOPA converge much better than AW-poly and MB method under
different settings, i.e., FPR≤ 0.3 and FPR≤ 0.5. And our proposed SOTA-s converge higher by a noticeable margin than
AW-poly and MB method for TPAUC maximization all the time.
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Figure 4. Training Convergence Curves on Melanoma and molmuv datasets; Top for OPAUC maximization, bottom for TPAUC maxi-
mization.

A.2. Ablation study for γ0 in SOPA-s and γ0, γ1 in SOTA-s

We conduct extensive ablation study for understanding the extra hyper-parameters γ0 in SOPA-s and γ0, γ1 in SOTA-s
algorithms. We fix it as 0.9 for all of our experiments in the main content. But in practice, the performance would be further
improved if we tune those hyper-parameters as well.

For image datasets, we conduct experiments on CIFAR-10 and CIFAR-100; for molecule datasets, we conduct experiments
on ogbg-moltox21 and ogbg-molmuv. For each dataset, we first fix the best learning rate and other hyper-parameters based
on our previous results in the paper. Then, for SOPA-s, we investigate γ0 at {1.0, 0.9, 0.7, 0.5, 0.3, 0.1}; for SOTA-s, we
investigate both γ0 and γ1 at {1.0, 0.9, 0.7, 0.5, 0.3, 0.1}

For training aspect, we include the comparisons for SOPA-s at Figure 5; we include the comparisons for SOTA-s at Figure 6.
From Figure 5, we can see that better training performance could be achieved by tuning the parameter γ0 in SOPA-s,
compared with fixing it as 0.9; the similar result for SOTA-s can be also observed from Figure 6.

For testing aspect, we include the testing pAUC results at Table 6 for SOPA-s; Table 7 for SOTA-s. Both verify that tuning
these parameters can further improve the performance.
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Figure 5. Training convergence for SOPA-s on different γ0.
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Figure 6. Top-6 choices of γ0 and γ1 for SOTA-s from training perspective.

Table 6. Test pAUC for SOPA-s on different γ0.
Dataset Metric γ0 = 1.0 γ0 = 0.9 γ0 = 0.7 γ0 = 0.5 γ0 = 0.3 γ0 = 0.1
CIFAR-10 FPR≤0.3 0.8721(0.0049) 0.8691(0.0036) 0.8682(0.0048) 0.8697(0.0032) 0.8674(0.0045) 0.8725(0.0012)

FPR≤0.5 0.8989(0.0051) 0.8961(0.0036) 0.8946(0.0040) 0.8980(0.0037) 0.8947(0.0028) 0.8996(0.0021)
CIFAR-100 FPR≤0.3 0.7464(0.0012) 0.7460(0.0068) 0.7482(0.0031) 0.7508(0.0038) 0.7494(0.0048) 0.7514(0.0018)

FPR≤0.5 0.7888(0.0016) 0.7877(0.0053) 0.7936(0.0040) 0.7961(0.0063) 0.7922(0.0059) 0.7954(0.0015)
moltox21 FPR≤0.3 0.7242(0.0170) 0.7288(0.0125) 0.7274(0.0087) 0.7274(0.0062) 0.7158(0.0069) 0.7340(0.0079)

FPR≤0.5 0.7245(0.0194) 0.7266(0.0111) 0.7280(0.0066) 0.7358(0.0079) 0.7249(0.0090) 0.7360(0.0123)
molmuv FPR≤0.3 0.8692(0.0116) 0.8376(0.0340) 0.8642(0.0214) 0.8735(0.0070) 0.8732(0.0104) 0.8496(0.0392)

FPR≤0.5 0.8773(0.0186) 0.8616(0.0355) 0.8747(0.0053) 0.8996(0.0228) 0.8918(0.0232) 0.8622(0.0415)

B. Proofs
We next present several lemmas. The first lemma is straightforward.

Lemma 4. For L̂kl(·;λ), when λ = 0 it reduces to the maximal value of {ℓ1(·), . . . , ℓn(·)}, i.e., L̂kl(·, 0) = maxi ℓi(·);
and when λ = ∞, it reduces to the average value of {ℓ1, . . . , ℓn}, i.e., L̂kl(·;∞) = 1

n

∑n
i=1 ℓi(·).

Lemma 5. [Lemma 1 (Ogryczak & Tamir, 2003)] Assume γ = k/n for some integer k ∈ [n], we have L̂cvar(·; γ) =
mins s+

1
nγ

∑n
i=1[ℓi(·)− s]+.

A major difference between L̂kl(·;λ) and L̂cvar(·; γ) that has an impact on optimization is that L̂cvar(·; γ) is a non-smooth
function, and L̂kl(·;λ) is a smooth function for λ > 0 when ℓi(·) is smooth and bounded as indicated by the following
lemma.
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Table 7. Test pAUC for SOTA-s on different γ0 and γ1.
CIFAR-10 (0.4, 0.6) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1

γ0 = 1.0 0.5731(0.0069) 0.5744(0.0083) 0.5668(0.0048) 0.5686(0.0089) 0.5678(0.0070) 0.5739(0.0135)
γ0 = 0.9 0.5802(0.0081) 0.5839(0.0116) 0.5693(0.0072) 0.5743(0.0131) 0.5688(0.0048) 0.5760(0.0095)
γ0 = 0.7 0.5755(0.0098) 0.5715(0.0032) 0.5684(0.0131) 0.5797(0.0036) 0.5718(0.0095) 0.5695(0.0111)
γ0 = 0.5 0.5743(0.0058) 0.5706(0.0025) 0.5641(0.0094) 0.5819(0.0077) 0.5725(0.0109) 0.5739(0.0068)
γ0 = 0.3 0.5767(0.0121) 0.5638(0.0144) 0.5617(0.0075) 0.5644(0.0099) 0.5595(0.0028) 0.5768(0.0100)
γ0 = 0.1 0.5608(0.0075) 0.5689(0.0134) 0.5699(0.0096) 0.5685(0.0056) 0.5583(0.0101) 0.5756(0.0135)

CIFAR-10 (0.5, 0.5) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.7022(0.0054) 0.6999(0.0076) 0.6922(0.0076) 0.6969(0.0087) 0.6982(0.0046) 0.6981(0.0074)
γ0 = 0.9 0.7051(0.0083) 0.7047(0.0072) 0.6987(0.0034) 0.7008(0.0103) 0.6964(0.0048) 0.7003(0.0064)
γ0 = 0.7 0.7027(0.0046) 0.6999(0.0031) 0.6959(0.0099) 0.7043(0.0056) 0.6988(0.0099) 0.6914(0.0110)
γ0 = 0.5 0.7012(0.0050) 0.6988(0.0008) 0.6944(0.0067) 0.7044(0.0067) 0.7014(0.0047) 0.7031(0.0088)
γ0 = 0.3 0.7024(0.0099) 0.6940(0.0085) 0.6901(0.0060) 0.6981(0.0047) 0.6908(0.0025) 0.6977(0.0129)
γ0 = 0.1 0.6934(0.0068) 0.7009(0.0060) 0.6972(0.0088) 0.6946(0.0037) 0.6891(0.0098) 0.7027(0.0082)

CIFAR-100 (0.4, 0.6) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.2710(0.0144) 0.2650(0.0052) 0.2528(0.0061) 0.2573(0.0129) 0.2587(0.0096) 0.2613(0.0046)
γ0 = 0.9 0.2666(0.0144) 0.2708(0.0055) 0.2698(0.0117) 0.2586(0.0116) 0.2562(0.0032) 0.2663(0.0056)
γ0 = 0.7 0.2634(0.0086) 0.2624(0.0065) 0.2577(0.0045) 0.2664(0.0051) 0.2634(0.0090) 0.2626(0.0144)
γ0 = 0.5 0.2633(0.0010) 0.2591(0.0026) 0.2552(0.0068) 0.2530(0.0069) 0.2656(0.0089) 0.2594(0.0052)
γ0 = 0.3 0.2572(0.0063) 0.2542(0.0076) 0.2517(0.0111) 0.2599(0.0184) 0.2580(0.0191) 0.2631(0.0081)
γ0 = 0.1 0.2532(0.0050) 0.2745(0.0029) 0.2529(0.0060) 0.2573(0.0115) 0.2568(0.0029) 0.2671(0.0187)

CIFAR-100 (0.5, 0.5) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.4489(0.0122) 0.4454(0.0084) 0.4337(0.0097) 0.4418(0.0083) 0.4361(0.0093) 0.4405(0.0063)
γ0 = 0.9 0.4416(0.0115) 0.4528(0.0069) 0.4494(0.0073) 0.4449(0.0171) 0.4337(0.0046) 0.4421(0.0058)
γ0 = 0.7 0.4426(0.0119) 0.4426(0.0098) 0.4367(0.0092) 0.4414(0.0072) 0.4455(0.0046) 0.4430(0.0108)
γ0 = 0.5 0.4404(0.0058) 0.4388(0.0085) 0.4341(0.0066) 0.4332(0.0079) 0.4426(0.0107) 0.4421(0.0057)
γ0 = 0.3 0.4384(0.0090) 0.4313(0.0081) 0.4377(0.0104) 0.4392(0.0185) 0.4401(0.0095) 0.4384(0.0125)
γ0 = 0.1 0.4325(0.0006) 0.4500(0.0015) 0.4361(0.0085) 0.4316(0.0083) 0.4355(0.0053) 0.4461(0.0213)

moltox21 (0.4, 0.6) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.0769(0.0403) 0.0800(0.0345) 0.0594(0.0377) 0.0409(0.0241) 0.0774(0.0342) 0.0607(0.0139)
γ0 = 0.9 0.0668(0.0304) 0.0733(0.0198) 0.0676(0.0357) 0.0761(0.0316) 0.0737(0.0245) 0.0588(0.0249)
γ0 = 0.7 0.0657(0.0280) 0.0849(0.0451) 0.0840(0.0162) 0.0807(0.0253) 0.0665(0.0171) 0.0573(0.0262)
γ0 = 0.5 0.0795(0.0537) 0.0513(0.0140) 0.0704(0.0301) 0.0367(0.0164) 0.0754(0.0190) 0.0676(0.0350)
γ0 = 0.3 0.1009(0.0133) 0.0695(0.0256) 0.0806(0.0289) 0.0805(0.0358) 0.0943(0.0453) 0.0546(0.0409)
γ0 = 0.1 0.0746(0.0473) 0.0610(0.0224) 0.0694(0.0303) 0.0578(0.0458) 0.0768(0.0574) 0.0485(0.0254)

moltox21 (0.5, 0.5) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.2474(0.0154) 0.2489(0.0282) 0.2355(0.0508) 0.2127(0.0326) 0.2798(0.0640) 0.2254(0.0223)
γ0 = 0.9 0.2483(0.0214) 0.2476(0.0222) 0.2373(0.0552) 0.2457(0.0296) 0.2341(0.0137) 0.2198(0.0233)
γ0 = 0.7 0.2306(0.0286) 0.2354(0.0360) 0.2531(0.0217) 0.2546(0.0174) 0.2415(0.0181) 0.2233(0.0225)
γ0 = 0.5 0.2536(0.0531) 0.2251(0.0163) 0.2276(0.0241) 0.2153(0.0196) 0.2488(0.0121) 0.2230(0.0228)
γ0 = 0.3 0.2773(0.0207) 0.2482(0.0256) 0.2434(0.0224) 0.2603(0.0323) 0.2574(0.0455) 0.2208(0.0494)
γ0 = 0.1 0.2368(0.0193) 0.2395(0.0267) 0.2323(0.0239) 0.1973(0.0383) 0.2543(0.0611) 0.2121(0.0369)

molmuv (0.4, 0.6) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.5021(0.1222) 0.4508(0.1263) 0.3878(0.0776) 0.5399(0.1575) 0.3972(0.0768) 0.3904(0.1404)
γ0 = 0.9 0.5651(0.0833) 0.4524(0.0290) 0.6060(0.2187) 0.5711(0.1495) 0.4250(0.0543) 0.4313(0.1174)
γ0 = 0.7 0.4120(0.1026) 0.4338(0.0407) 0.5375(0.1339) 0.5765(0.1719) 0.3251(0.0889) 0.4744(0.1379)
γ0 = 0.5 0.5432(0.1177) 0.4934(0.1065) 0.4812(0.0744) 0.3890(0.0976) 0.4507(0.0387) 0.3859(0.0488)
γ0 = 0.3 0.4680(0.1079) 0.4559(0.1037) 0.4811(0.1237) 0.4221(0.1322) 0.4297(0.2263) 0.3828(0.0606)
γ0 = 0.1 0.4777(0.0591) 0.4264(0.1414) 0.5322(0.1342) 0.4122(0.0260) 0.3836(0.0368) 0.3903(0.0325)

molmuv (0.5, 0.5) γ1 = 1.0 γ1 = 0.9 γ1 = 0.7 γ1 = 0.5 γ1 = 0.3 γ1 = 0.1
γ0 = 1.0 0.6780(0.0880) 0.6384(0.0964) 0.6175(0.0447) 0.7135(0.1074) 0.6188(0.0483) 0.6152(0.0965)
γ0 = 0.9 0.7405(0.0621) 0.6399(0.0276) 0.7481(0.1464) 0.7230(0.1020) 0.6136(0.0321) 0.6277(0.0854)
γ0 = 0.7 0.6201(0.0698) 0.6445(0.0430) 0.7007(0.1013) 0.7272(0.1178) 0.5588(0.0482) 0.6496(0.1030)
γ0 = 0.5 0.7071(0.0869) 0.6854(0.0853) 0.6542(0.0646) 0.5867(0.0657) 0.6495(0.0470) 0.5996(0.0431)
γ0 = 0.3 0.6626(0.0737) 0.6561(0.0778) 0.6658(0.0910) 0.6408(0.0825) 0.6264(0.1791) 0.5801(0.0399)
γ0 = 0.1 0.6643(0.0562) 0.6362(0.1103) 0.7142(0.0904) 0.6271(0.0188) 0.5746(0.0283) 0.5877(0.0449)
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Lemma 6. If ℓi(·) is a smooth function, and has a bounded value and bounded gradient for a bounded input, then for λ > 0
the function L̂kl(·;λ) is also a smooth and bounded function.

Lemma 7. When ϕc(t) = I(0 ≤ t ≤ 1/β) and ϕ′c(t) = I(0 ≤ t ≤ 1/α) with K2 = n−β and K1 = n+α being integers, if
ℓ(·) is monotonically decreasing for ℓ(·) > 0, we can show that

F (w;ϕc, ϕ
′
c) =

1

K1K2

∑
xi∈S↑

+[1,K1]

∑
xj∈S↓

−[1,K2]

L(w;xi,xj),

which is also equivalent to

F (w;ϕc, ϕ
′
c) = min

s′∈R,s∈Rn+
s′ +

1

n+α

∑
xi∈S+

(si +
1

β
ψi(w; si)− s′)+.

B.1. Proof of Lemma 6

It is easy to see if ℓ(w) ∈ [0, C] is bounded and smooth, we have exp( ℓ(w)
λ ) is bounded and smooth due to its second order

gradient is upper bounded. Then log Ei exp(
ℓi(w)

λ ) is bounded. Its smoothness due to that is a composition of f = log(·)
and g = Ei exp(

ℓi(w)
λ ) ∈ [1, C ′] and both f, g are smooth and Lipschitz continuous for their inputs.

B.2. Proof of Lemma 7

Proof. First, following Lemma 1, we have F (w;ϕ, ϕ′) is equivalent to 1
K1

∑K1

i=1 L̂ϕ(xπi
,w), where πi denote the index of

the positive example whose L̂ϕ(xπi
,w) is the i-th largest among all positive examples. We prove that this is equivalent

to 1
K1

∑
xi∈S↑

+[1,K1]
L̂ϕ(xi,w). To this end, we just need to show that if hw(x) ≥ hw(x′) then L̂ϕ(x

′,w) ≥ L̂ϕ(x,w),

which is true due to L̂ϕ(xi,w) = 1
K2

∑
xj∈S↓

−[1,K2]
ℓ(hw(xi)− hw(xj)) and ℓ is monotonically decreasing function. The

second equation in the lemma is applying Lemma 5 twice and by noting that (minx f(x)− s)+ = minx(f(x)− s)+.

B.3. Proof of Theorem 1

Proof. Let us consider for a particular xi ∈ S+. When ϕ(·) = ϕc(·) = I(· ∈ (0, 1/β]), then L̂(w;xi) becomes the CVaR
estimator, i.e., the average of top K = n−β losses of ℓ(hw(xi)− hw(xj)) among xj ∈ S−. Since ℓ(·) is monotonically
decreasing when ℓ(·)) > 0, the top K = n−β losses of ℓ(hw(xi)− hw(xj)) among all xj ∈ S− correspond to negative
samples with top K prediction scores. Hence, L̂ϕc

(w;xi) =
1
K

∑
xj∈S↓

−[1,K] ℓ(hw(xi)− hw(xj)). Then the equivalent
problem in (9) follows from Lemma 5.

B.4. Proof of Theorem 2

Proof. When choosing ϕ(·) = ϕkl(·), the L̂ϕ(w;xi) in problem (8) becomes

max
p∈∆

∑
xj∈S−

pjL(w;xi,xj)− λ
∑
j

pj log(npj).

With Karush-Kuhn-Tucker(KKT) conditions, it is not difficult to have p⋆j =
exp(L(w;xi,xj)/λ∑
j exp(L(w;xi,xj)/λ

. By plugging in this back

we obtain the claimed objective (10). When λ = 0, the above becomes the maximal one among {L(w;xi,xj),xj ∈ S+}
for each xi. Then the object is 1

n+
maxxj∈S− L(w;xi,xj), which is the surrogate of pAUC with FPR≤ 1/n−. When

λ = ∞, the above becomes the average of {L(w;xi,xj),xj ∈ S+}, which gives the standard surrogate of AUC.

B.5. Proof of Lemma 2

First note that F (w, s) = 1
n+

∑
xi∈S+

(
si +

1
β gi(w, si)

)
, and gi(w, si) = 1

n−

∑
xj∈S−

(L(w;xi,xj)− si)+. We prove
that (L(w;xi,xj) − si)+ is weakly convex in terms of (w, si), i.e. there exists ρ > 0 such that (L(w;xi,xj) − si)+ +
ρ
2∥w∥2 + ρ

2s
2
i is jointly convex in terms of w, s. To this end, let ψ(·) = [·]+ which is convex and Lipchitz continuous, and

q(w, si) = L(w;xi,xj)− si, which is Ls-smooth function with respect to (w, si) due to that L(w;xi,xj) is Ls-smooth
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function. Then for any ω ∈ ϕ′(ψ(w′, s′i)) we have

ψ(q(w, si)) ≥ ψ(q(w′, s′i)) + ω(q(w, si)− q(w′, s′i))

≥ ψ(q(w′, s′i)) + ω(∇q(w′, s′i)−
Ls

2
(∥w −w′∥2 + |si − s′i|2))

≥ ψ(q(w′, s′i)) + ∂ψ(q(w′, s′i))−
Ls

2
(∥w −w′∥2 + |si − s′i|2)

where we use 0 ≤ ω ≤ 1. The above inequality implies that [L(w;xi,xj) − si]+ is Ls-weakly convex in terms of
(w, si) (Davis & Drusvyatskiy, 2018), i.e., 1

n−

∑
xj∈S−

{
(L(w;xi,xj)− si)+ + Ls

2 (∥w∥2 + |si|2)
}

is convex. As a result
1
n−

∑
xj∈S−

(L(w;xi,xj)− si)++ Ls

2 (∥w∥2+ ∥si∥2) is jointly convex in (w, si). Then F (w, s)+ Ls

2β (∥w∥2+
∑

i |si|2)
is jointly convex in terms of (w, s).

B.6. Proof of Theorem 3

Let F (w, s) denote the objective function, and let v = (w, s). Define F1/ρ̂(v) = minu F (u)+
ρ̂
2∥u−v∥2 for some ρ̂ > ρ

and the minimizer is denoted by proxF/ρ̂(v). Let v̂t = proxF/ρ̂(vt). Define ∥v − v′∥2 = ∥w −w′∥2 + ∥s− s′∥2.

Et[F1/ρ̂(vt+1)] = Et[F (v̂t) +
ρ̂

2
∥vt+1 − v̂t∥2]

≤ F (v̂t) +
ρ̂

2
Et[∥wt − η1∇wF (wt, st, ξt)− ŵt∥2 + ∥st+1 − ŝt∥2]

≤ F (v̂t) +
ρ̂

2
Et[∥wt − η1∇wF (wt, st, ξt)− ŵt∥2] +

ρ̂

2
Et[∥st+1 − ŝt∥2]

≤ F (x̂t) +
ρ̂

2
∥wt − ŵt∥2 + ρ̂ηtEt[(ŵt −wt)

⊤∇wF (wt, st)] +
ρ̂η21G

2

2
+
ρ̂

2
Et[∥st+1 − ŝt∥2]

where we assume E[∥∇wF (wt, st, ξt)∥2] ≤ G2 = C2

β2 . According to the analysis of stochastic coordinate descent method,
for any s = (s1, . . . , sn+

) we have

2η2(st,i − si)
⊤∇siF (wt, st; ξt) ≤ η22∥∇siF (w̄t,ut; ξt)∥2 + (∥si − st,i∥2 − ∥si − st+1,i∥2)

Summing the above inequality over i ∈ B+, we have

2η2
∑
i∈B+

(st,i − si)
⊤∇siF (wt, st; ξt) ≤ η22

∑
i∈B+

∥∇siF (w̄t,ut; ξt)∥2 + (∥s− st∥2 − ∥s− st+1∥2)

Taking expectation and re-arrange, we have

E[
1

2
∥st+1 − ŝt∥2] ≤ E[

1

2
∥st − ŝt∥2 + η2

B+

n+
(ŝt − st)

⊤∇sF (wt, st) +
η22B+C

2
2

2
]

where we use the fact E[|∇siF (w, s)|2] ≤ C2
2 = 1

n2
+
(1 + 1/β)2. Let η2B+/n+ = η1, we have

Et[F1/ρ̂(vt+1)]

≤ F (x̂t) +
ρ̂

2
∥wt − ŵt∥2 + ρ̂η1Et[(ŵt −wt)

⊤∇wF (wt, st)] +
ρ̂

2
Et[∥st+1 − ŝt)] +

ρ̂η21G
2

2

≤ F (v̂t) +
ρ̂

2
∥vt − v̂t∥2 + ρ̂η1Et[(v̂t − vt)

⊤∂F (wt, st)] +
ρ̂η21(G

2 + n2+C
2
2/B+)

2

≤ F1/ρ̂(vt) + ρ̂η1(F (v̂t)− F (vt) +
ρ

2
∥vt − v̂t∥2) +

ρ̂η21(G
2 + n2+C

2
2/B+)

2
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As a result, we have

ρ̂η1(F (vt)− F (v̂t)− ρ∥vt − v̂t∥2) ≤ F1/ρ̂(vt)− Et[F1/ρ̂(vt+1)] +
ρ̂η21(G

2 + n2+C
2
2/B+)

2
Since we have

F (vt)− F (v̂t)− ρ∥vt − v̂t∥2 = (F (vt) + ρ̂∥vt − vt∥2)− (F (v̂t) + ρ̂∥v̂t − vt∥2) + (ρ̂− ρ)∥vt − v̂t∥2

≥ (2ρ̂− ρ)

2
∥v̂t − vt∥2 + (ρ̂− ρ)∥vt − v̂t∥2 = (2ρ̂− 3/2ρ)∥vt − v̂t∥2 =

(2ρ̂− 3/2ρ)

ρ̂2
∥∇F1/ρ̂(vt)∥2

Let ρ̂ = 3ρ/2. As a result, we have

1

T

T∑
t=1

∥∇F1/ρ̂(vt)∥2 ≤
(F1/ρ̂(v1)−minF )

η1T
+
ρ̂η1(G

2 + n2+C
2
2/B+)

2

≤
(F1/ρ̂(v1)−minF )

η1T
+
ρ̂η1(C

2/β2 + (1 + 1/β)2/B+)

2

By setting η1 = O(βϵ2) and T = O( 1
ϵ2η1

) = O(1/(βϵ4)) we have E[∥∇F1/ρ̂(vτ )∥2] ≤ ϵ2 for a randomly selected
τ ∈ [T ].

B.7. Proof of Theorem 4

Note that the SOPA-s algorithm is just a special case of the SOX algorithm (Wang & Yang, 2022) for the more general
problem minw

1
n

∑
zi∈D fi(gi(w)) and the convergence proof just follows the proof of Theorem 1 in Wang & Yang (2022).

B.8. Proof of Theorem 5

We consider the following problem:

min
w

F (w), F (w) = f1

(
1

n

∑
i∈S

f2(gi(w))

)
. (12)

Lemma 8. If gi is Cg-Lipschitz, Lg-smooth and f1, f2 are Cf -Lipschitz, Lg-smooth, F in (12) is LF -smooth and LF =
LfC

2
fC

2
g + C2

fLg + CfCgLf .

Proof. Based on the definition of F , we have

∥∇F (w)−∇F (w′)∥

=

∥∥∥∥∥∇f1
(
1

n

∑
i∈S

f2(gi(w))

)(
1

n

∑
i∈S

∇f2(gi(w))∇gi(w)

)

−∇f1

(
1

n

∑
i∈S

f2(gi(w
′))

)(
1

n

∑
i∈S

∇f2(gi(w′))∇gi(w′)

)∥∥∥∥∥
≤ Lf

∥∥∥∥∥ 1n∑
i∈S

∇f2(gi(w))∇gi(w)

∥∥∥∥∥
∥∥∥∥∥ 1n∑

i∈S
(f2(gi(w))− f2(gi(w

′)))

∥∥∥∥∥
+

∥∥∥∥∥∇f1
(
1

n

∑
i∈S

f2(gi(w
′))

)∥∥∥∥∥
∥∥∥∥∥ 1n∑

i∈S
(∇f2(gi(w))∇gi(w)−∇f2(gi(w′))∇gi(w′))

∥∥∥∥∥ .
We can show that

∥∥ 1
n

∑
i∈S(∇f2(gi(w))∇gi(w)−∇f2(gi(w′))∇gi(w′))

∥∥ ≤ (CfLg + CgLf ) ∥w −w′∥. Thus,

∥∇F (w)−∇F (w′)∥ ≤ LfC
2
fC

2
g ∥w −w′∥+ Cf (CfLg + CgLf ) ∥w −w′∥

= (LfC
2
fC

2
g + C2

fLg + CfCgLf ) ∥w −w′∥ .

We propose SOTA-s to solve (12).
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Lemma 9. Consider a sequence wt+1 = wt − ηmt and the LF -smooth function F and the step size ηLF ≤ 1/2.

F (wt+1) ≤ F (wt) +
η

2
∥∆t∥2 −

η

2
∥∇F (wt)∥2 −

η

4
∥mt∥2 , (13)

where ∆t := mt −∇F (wt)

Lemma 10. For the gradient estimator mt in SOTA-s and ∆t = mt −∇F (wt),

E
[
∥∆t+1∥2

]
≤ (1− γ2)E

[
∥∆t∥2

]
+

2L2
F η

2

γ2
E
[
∥mt∥2

]
+ 10γ2C

2
fC

2
1L

2
fE
[
∥Ψt+1∥2

]
+ 20γ2C

2
fL

2
fC

2
1E

[
1

n
∥Ξt+1∥2

]
+ 20γ2C

2
fL

2
fC

2
1E

[
1

n
∥ut+1 − ut∥2

]
+ 2γ22C

4
f

(
ζ2

B−
+
C2

g

B+

)
, (14)

where we denote ∆t := mt+1 −∇F (wt), Ξt := ut+1 − g(wt) and Ψt := vt+1 − 1
n

∑
i∈S f2(gi(wt)).

Proof. Based on the update rule mt+1 = (1− γ2)mt + γ2G(wt+1), we have

∥mt+1 −∇F (wt+1)∥2

=

∥∥∥∥∥∥(1− γ2)mt + γ2
1

B+

∑
i∈B+

∇f1(vt+1)∇f2(uit)∇gi(wt+1;B−)−∇F (wt+1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥(1− γ2)(mt −∇F (wt))︸ ︷︷ ︸
a⃝

+(1− γ2)(∇F (wt)−∇F (wt+1))︸ ︷︷ ︸
b⃝

+γ2
1

B+

∑
i∈B+

∇f1(vt+1)∇f2(uit)∇gi(wt+1;B−)

−γ2
1

B+

∑
i∈B+

∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)
∇f2(gi(wt+1))∇gi(wt+1;B−)

+ γ2

 1

B+

∑
i∈B+

∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)
∇f2(gi(wt+1))∇gi(wt+1;B−)−∇F (wt+1)


︸ ︷︷ ︸

d⃝

∥∥∥∥∥∥∥∥∥∥∥

2

.

We define that

c⃝ := γ2

 1

B+

∑
i∈B+

∇f1(vt+1)∇f2(uit)∇gi(wt+1;B−)

− 1

B+

∑
i∈B+

∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)
∇f2(gi(wt+1))∇gi(wt+1;B−)

 .

We define that ∆t := mt −∇F (wt). Note that E [⟨ a⃝, d⃝⟩] = E [⟨ b⃝, d⃝⟩] = 0. Then,

Et

[
∥ a⃝+ b⃝+ c⃝+ d⃝∥2

]
= ∥ a⃝∥2 + ∥ b⃝∥2 + Et

[
∥ c⃝∥2

]
+ Et

[
∥ d⃝∥2

]
+ 2 ⟨ a⃝, b⃝⟩

+ 2Et [⟨ a⃝, c⃝⟩] + 2Et [⟨ b⃝, c⃝⟩] + 2Et [⟨ c⃝, d⃝⟩] .

Based on the Young’s inequality for products, we have 2 ⟨a,b⟩ ≤ ∥a∥2c
2 + 2∥b∥2

c for c > 0.

Et

[
∥ a⃝+ b⃝+ c⃝+ d⃝∥2

]
≤ (1 + γ2) ∥ a⃝∥2 + 2(1 + 1/γ2) ∥ b⃝∥2 + 2 + 3γ2

γ2
Et

[
∥ c⃝∥2

]
+ 2Et

[
∥ d⃝∥2

]
.

Thus, we have

Et[∥∆t+1∥2] ≤ (1− γ2) ∥∆t∥2 +
2(1 + γ2)

γ2
∥ b⃝∥2 + 5

γ2
Et[∥ c⃝∥2] + 2Et[∥ d⃝∥2]. (15)
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Moreover, we have

∥ b⃝∥2 = (1− γ2)
2 ∥∇F (wt)−∇F (wt+1)∥2 ≤ (1− γ2)

2η2L2
F ∥mt∥2 . (16)

On the other hand,

∥ c⃝∥2 ≤ 2γ22
B+

∑
i∈B+

∥∇gi(wt+1;B−)∥2
∥∥∥∥∥∇f1(vt+1)−∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)∥∥∥∥∥
2 ∥∥∇f2(uit)∥∥2

+
2γ22
B+

∑
i∈B+

∥∇gi(wt+1;B−)∥2
∥∥∥∥∥∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)∥∥∥∥∥
2 ∥∥∇f2(uit)−∇f2(gi(wt+1))

∥∥2
≤

2γ22L
2
fC

2
f

B+

∑
i∈B+

∥∇gi(wt+1;B−)∥2
∥∥∥∥∥vt+1 −

1

n

∑
i∈S

f2(gi(wt+1))

∥∥∥∥∥
2

+
2γ22L

2
fC

2
f

B+

∑
i∈B+

∥∇gi(wt+1;B−)∥2
∥∥uit − gi(wt+1)

∥∥2
Due to EB−

[
∥∇gi(wt+1;B−)∥2

]
≤ C2

g + ζ2/B− := C2
1 , we have

Et

[
∥ c⃝∥2

]
≤

2γ22L
2
fC

2
fC

2
1

n

∑
i∈S

Et

∥∥∥∥∥vt+1 −
1

n

∑
i∈S

f2(gi(wt+1))

∥∥∥∥∥
2

+
∥∥uit − gi(wt+1)

∥∥2
Besides, we also have

Et

[
∥ d⃝∥2

]
≤ γ22Et


∥∥∥∥∥∥ 1

B+

∑
i∈B+

∇f1

(
1

n

∑
i∈S

f2(gi(wt+1))

)
∇f2(gi(wt+1))∇gi(wt+1;B−)−∇F (wt+1)

∥∥∥∥∥∥
2


= γ22C
2
fEt


∥∥∥∥∥∥ 1

B+

∑
i∈B+

(∇f2(gi(wt+1))∇gi(wt+1;B−)−∇f2(gi(wt+1))∇gi(wt+1))

∥∥∥∥∥∥
2


+ γ22C
2
fEt


∥∥∥∥∥∥ 1

B+

∑
i∈B+

∇f2(gi(wt+1))∇gi(wt+1;B−)−
1

n

∑
i∈S

∇f2(gi(wt+1))∇gi(wt+1;B−)

∥∥∥∥∥∥
2


≤
γ22C

4
fζ

2

B−
+
γ22C

4
fC

2
g

B+
. (17)

Then,

E
[
∥∆t+1∥2

]
≤ (1− γ2)E

[
∥∆t∥2

]
+

2L2
F η

2

γ2
E
[
∥mt∥2

]
+ 10γ2C

2
fC

2
1L

2
fE
[
∥Ψt+1∥2

]
+ 20γ2C

2
fL

2
fC

2
1E

[
1

n
∥Ξt+1∥2

]
+ 20γ2C

2
fL

2
fC

2
1E

[
1

n
∥ut+1 − ut∥2

]
+ 2γ22C

4
f

(
ζ2

B−
+
C2

g

B+

)
,

where we denote Ξt := ut − g(wt) and Ψt := vt − 1
n

∑
i∈S f2(gi(wt)).

Lemma 11. For the function value estimator vt+1 in SOTA-s and Ψt := vt − 1
n

∑
i∈S f2(gi(wt)),

Et

[
∥Ψt+1∥2

]
≤ (1− γ1) ∥Ψt∥2 +

2C2
fC

2
gη

2

γ1
∥mt∥2 + 5γ1C

2
fEt

[
1

n
∥Ξt+1∥2

]
(18)

+
10γ1C

2
f

n
Et

[
∥ut − ut+1∥2

]
+

2γ21C
2
f

B+
.
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Proof. According to the update of v in SOTA-s, we have∥∥∥∥∥vt+1 −
1

n

∑
i∈S

f2(gi(wt+1))

∥∥∥∥∥
2

=

∥∥∥∥∥∥(1− γ1)vt + γ1
1

B+

∑
i∈B+

f2(u
i
t)−

1

n

∑
i∈S

f2(gi(wt+1))

∥∥∥∥∥∥
2

=

∥∥∥∥∥(1− γ1)

(
vt −

1

n

∑
i∈S

f2(gi(wt))

)
+ (1− γ1)

(
1

n

∑
i∈S

(f2(gi(wt))− f2(gi(wt+1)))

)

+γ1

 1

B+

∑
i∈B+

f2(u
i
t)−

1

B+

∑
i∈B+

f2(gi(wt+1))

+ γ1

 1

B+

∑
i∈B+

f2(gi(wt+1))−
1

n

∑
i∈S

f2(gi(wt+1))

∥∥∥∥∥∥
2

.

Denoting Ψt :=
∥∥vt − 1

n

∑
i∈S f2(gi(wt))

∥∥2, we have

Et

[
∥Ψt+1∥2

]
≤ (1− γ1) ∥Ψt∥2 +

2(1− γ1)C
2
fC

2
gη

2

γ1
∥mt∥2 +

(2 + 3β)C2
f

γ1
γ21Et

 1

B+

∑
i∈B+

∥∥uit − gi(wt+1)
∥∥2+

2γ21C
2
f

B+

≤ (1− γ1) ∥Ψt∥2 +
2C2

fC
2
gη

2

γ1
∥mt∥2 +

5γ1C
2
f

n
Et

[
∥ut − g(wt+1)∥2

]
+

2γ21C
2
f

B+

≤ (1− γ1) ∥Ψt∥2 +
2C2

fC
2
gη

2

γ1
∥mt∥2 +

10γ1C
2
f

n
Et

[
∥ut+1 − g(wt+1)∥2

]
+

10γ1C
2
f

n
Et

[
∥ut − ut+1∥2

]
+

2γ21C
2
f

B+
.

Proof of Theorem 5. Based on (13), we have

E [F (wt+1)− Finf ] ≤ E [F (wt)− Finf ] +
η

2
E
[
∥∆t∥2

]
− η

2
E
[
∥∇F (wt)∥2

]
− η

4
E
[
∥mt∥2

]
(19)

Re-arranging the terms and telescoping (19) from t = 1 to T leads to

1

T

T∑
t=1

E
[
∥∇F (wt)∥2

]
≤ 2E [F (w1)− Finf ]

ηT
+

1

T

T∑
t=1

E
[
∥∆t∥2

]
︸ ︷︷ ︸

:= e⃝

− 1

2T

T∑
t=1

E
[
∥mt∥2

]
. (20)

Based on (14), the term e⃝ can be upper bounded as

1

T

T∑
t=1

E
[
∥∆t∥2

]
≤

E
[
∥∆1∥2

]
γ2T

+
2L2

F η
2

γ22

1

T

T∑
t=1

E
[
∥mt∥2

]
+ 2γ2C

4
f

(
ζ2

B−
+
C2

g

B+

)

+ 20C2
fC

2
1L

2
f

T∑
t=1

1

n
E[∥ut+1 − ut∥2] + 20C2

fC
2
1L

2
f

 1

T

T∑
t=1

E
[
∥Ψt+1∥2

]
︸ ︷︷ ︸

:= f⃝

+
1

T

T∑
t=1

E

[
1

n
∥Ξt+1∥2

]
︸ ︷︷ ︸

:= g⃝

 .

Based on Lemma 2 in Wang & Yang (2022), the term g⃝ can be upper bounded as

1

T

T∑
t=1

E

[
1

n
∥Ξt+1∥2

]
≤

4nE
[
1
n ∥Ξ2∥2

]
γ0B+T

+ 20C2
g

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+1∥2

]
+

8γ0σ
2

B−
− 1

γ0B+

T∑
t=1

E
[∥∥ut+1 − ut

∥∥2] .
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With 1/(γ0B+) ≥ max(10C2
f/n, 1/n), based on (18), the term f⃝ can be bounded as

1

T

T∑
t=1

E
[
∥Ψt+1∥2

]
≤

E
[
∥Ψ2∥2

]
γ1T

+
2C2

fC
2
gη

2

γ21

1

T

T∑
t=1

E
[
∥mt+1∥2

]
+ 5C2

f

1

T

T∑
t=1

E

[
1

n
∥Ξt+2∥2

]
+

2γ1C
2
f

B+

≤
E
[
∥Ψ2∥2

]
γ1T

+
2C2

fC
2
gη

2

γ21

1

T

T∑
t=1

E
[
∥mt+1∥2

]
+

2γ1C
2
f

B+
+

20C2
fnE

[
1
n ∥Ξ3∥2

]
γ0B+T

+ 100C2
fC

2
g

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+2∥2

]
+

40C2
fγ0σ

2

B−
.

Plug the upper bounds of f⃝ and g⃝ into (20).

1

T

T∑
t=1

E
[
∥∇F (wt)∥2

]

≤ 2E [F (w1)− Finf ]

ηT
+

E
[
∥∆1∥2

]
γ2T

+ 2γ2C
4
f

(
ζ2

B−
+
C2

g

B+

)

+
40nC2

fC
2
1L

2
fE
[
1
n ∥Ξ2∥2

]
γ0B+T

−
(
1

2
− 2L2

F η
2

γ22

)
1

T

T∑
t=1

E
[
∥mt∥2

]
+ 200C2

fC
2
gC

2
1L

2
f

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+1∥2

]
+

80γ0C
2
fC

2
1L

2
fσ

2

B−

+
10C2

fC
2
1L

2
fE
[
∥Ψ2∥2

]
γ1T

+
20C4

fC
2
gC

2
1L

2
fη

2

γ21

1

T

T∑
t=1

E
[
∥mt+1∥2

]
+

20γ1C
4
fC

2
1L

2
f

B+

+
200nC4

fC
2
1L

2
fE
[
1
n ∥Ξ3∥2

]
γ0B+T

+ 1000C4
fC

2
1C

2
g

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+2∥2

]
+

400γ0C
4
fC

2
1L

2
fσ

2

B−
.

If we choose η ≤ min

{
γ2

4LF
, γ0B+

40nCfCgC1

√
L2

f+5C2
f

, γ1

15C2
fCgC1Lf

}
, we have

−
(
1

2
− 2L2

F η
2

γ22

)
1

T

T∑
t=1

E
[
∥mt∥2

]
+ 200C2

fC
2
gC

2
1L

2
f

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+1∥2

]
+

20C4
fC

2
gC

2
1L

2
fη

2

γ21

1

T

T∑
t=1

E
[
∥mt+1∥2

]
+ 1000C4

fC
2
1C

2
g

(
nη

γ0B+

)2
1

T

T∑
t=1

E
[
∥mt+2∥2

]

≤
E
[
∥mT+1∥2

]
+ E

[
∥mT+2∥2

]
8T

.

Besides, Lemma 2 in Wang & Yang (2022) and Lemma 11 imply that

E

[
1

n
∥Ξ2∥2

]
≤ E

[
1

n
∥Ξ1∥2

]
+

5nη2C2
g

γ0B+
E
[
∥m1∥2

]
+

2γ20σ
2B+

nB−

≤ E

[
1

n
∥Ξ1∥2

]
+

ηCg

8CfC1

√
L2
f + 5C2

f

E
[
∥m1∥2

]
+

2γ20σ
2B+

nB−
,

E

[
1

n
∥Ξ3∥2

]
≤ E

[
1

n
∥Ξ1∥2

]
+

ηCg

8CfC1

√
L2
f + 5C2

f

(
E
[
∥m1∥2 + ∥m2∥2

])
+

4γ20σ
2B+

nB−
,

E
[
∥Ψ2∥2

]
≤ E

[
∥Ψ1∥2

]
+

2Cgη

15C1Lf
∥m1∥2 + 5γ1C

2
fE

[
1

n
∥Ξt+1∥2

]
+

2γ21C
2
f

B+
.
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If we initialize m1 = 0, then E
[
∥mt∥2

]
≤ C2

fC
2
1 for any t ≥ 1. We define that ΛF,1 = E [F (w1)− Finf ] < +∞,

Λ∆,1 = E
[
∥∆1∥2

]
< +∞, ΛΞ,2 = E

[
1
n ∥Ξ2∥2

]
< +∞, ΛΞ,3 = E

[
1
n ∥Ξ2∥2

]
< +∞, Λ2

Ψ = E
[
∥Ψ2∥2

]
< +∞. Then,

1

T

T∑
t=1

E
[
∥∇F (wt)∥2

]
≤ 2ΛF,1

ηT
+

Λ∆,1

γ2T
+

40nC2
fC

2
1L

2
fΛΞ,2

γ0B+T
+

10C2
fC

2
1L

2
fΛ

2
Ψ

γ1T
+

200nC4
fC

2
1L

2
fΛΞ,3

γ0B+T

+ 2βC4
f

(
ζ2

B−
+
C2

g

B+

)
+

80γ0C
2
fC

2
1L

2
fσ

2

B−
+

20γ1C
4
fC

2
1L

2
f

B+
+

400γ0C
4
fC

2
1L

2
fσ

2

B−
+
C2

fC
2
1

4T
.

Set γ0 = B−ϵ2

400C2
fC

2
1L

2
fσ

2(1+5C2
f )

, γ1 = B+ϵ2

200C4
fC

2
1L

2
f

, γ2 = min{B−,B+}ϵ2
20C4

f (ζ
2+C2

g)
, and

η ≤ min

 γ2
4LF

,
γ0B+

40nCfCgC1

√
L2
f + 5C2

f

,
γ1

15C2
fCgC1Lf

 ,

T = max

1600ΛF,1LFC
4
f (ζ

2 + C2
g )

min{B−, B+}ϵ4
,
320000nΛF,1C

3
fCgC

3
1L

2
f (1 + 5C2

f )
√
L2
f + 5C2

fσ
2

B−B+ϵ4
,

60000ΛF,1C
6
fCgC

3
1L

3
f

B+ϵ4
,
200C4

f (ζ
2 + C2

g )Λ∆,1

min{B−, B+}ϵ4
,
160000nC4

fC
4
1L

4
fσ

2(1 + 5C2
f )Λ

2
Ξ

B−B+ϵ4
,

20000C6
fC

4
1L

4
fΛ

2
Ψ

B+ϵ4
,
800000nC6

fC
4
1L

4
f (1 + 5C2

f )ΛΞ,3σ
2

B−B+ϵ4

}
.

Then, we have 1
T

∑T
t=1 E

[
∥∇F (wt)∥2

]
≤ ϵ2.

C. Optimization of CVaR-estimator of TPAUC
We have the following estimator

F (w) = min
s′∈R

s′ +
1

n+α

∑
xi∈S+

(min
si

si +
1

β
gi(w; si)− s′)+.

It is not difficult to show that the above estimator is equlvalent to

F (w) = min
s′∈R,s∈Rn+

s′ +
1

n+α

∑
xi∈S+

(si +
1

β
gi(w; si)− s′)+.

The reason is that (minx f(x)− s)+ = minx(f(x)− s)+. Using the conjugate of [·]+, we have

min
w,s∈Rn+ ,s′

max
u∈[0,1]n+

s′ +
1

n+α

∑
xi∈S+

ui(si +
1

β
gi(w; si)− s′)

︸ ︷︷ ︸
F (w,s,s′,u)

.

Let w̄ = (w, s, s′). We consider the function F (w̄,u), which can be proved to be weakly convex and concave. Hence, we
can use the stagewise proximal point method to solve the problem (Rafique et al., 2020). At the k-th stage, we solve the
following problem approximately:

min
w̄

max
u∈[0,1]

Fk(w̄,u) = F (w̄,u) +
1

2γ
∥w̄ − w̄k

1∥2

We will use stochastic primal-dual algorithm for solving Fk. However, for s we use stochastic coordinate gradient descent
update, and for u we also use stochastic coordinate gradient descent update. Let ∇1F , ∇2F , ∇3F , ∇4F denote the partial
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Algorithm 4 SOTA

1: Set s0 = 0, s′0 = 0,u0 = 1 and initialize w0

2: for k = 1, . . . ,K do
3: Let wk

1 = wk−1, s
k
1 = sk−1, s

′
k = s′k−1,u

k
1 = uk−1

4: for t = 1, . . . , Tk do
5: Sample B+ ⊂ S+ and B− ⊂ S−
6: Update wt+1, st+1, s

′
t+1,ut+1 according to (21)

7: end for
8: Let wk, sk, s

′
k,uk be the average of wt, st, s

′
t,ut, respectively

9: end for

gradient of F in terms of w, s, s′,u, respectively. We consider the following update:

wt+1 = argmin
w

w⊤∇1F (w̄t,ut; ξt) +
1

2η1
∥w −wt∥2 +

1

2γ
∥w −wk

1∥2

st+1,i = argmin
s
sUi∇2F (w̄t,ut; ξt) +

1

2η2
|s− st,i|2 +

1

2γ
|s− sk1,i|2, ∀xi ∈ B+

s′t+1 = argmin
s′

∇3F (w̄t,ut; ξt) +
1

2η3
|s′ − s′t|2 +

1

2γ
|s′ − s′k,1|2

ut+1,i = [ut,i +
n+
B+

η4Ui∇4F (w̄t,ut; ξt)][0,1], ∀xi ∈ B+,

(21)

where Ui ∈ R1×d denotes an operation that chooses the i-th coordinate of a vector. Note that different from (Rafique et al.,
2020), we use stochastic coordinate descent (ascent) to update st+1 (ut+1).

Next, we present the stochastic gradients.

∇1F (w̄t,ut; ξt) =
1

B+B−αβ

∑
xi∈B+

∑
xj∈B−

uiI(L(wt;xi,xj)− st,i > 0)∇L(wt;xi,xj)

Ui∇2F (w̄t,ut; ξt) =
1

n+α
ut,i(1−

1

B−β

∑
xj∈B−

I(L(wt;xi,xj)) > st,i)

∇3F (w̄t,ut; ξt) = 1− 1

B+α

∑
xi∈B+

ut,i

Ui∇4F (w̄t,ut; ξt) =
1

n+α
(st,i − s′t +

1

B−β

∑
xj∈B−

(L(wt;xi,xj)− st,i)+)

We have

E[∇1Fk(w̄t,ut; ξt)] = ∇1Fk(w̄t,ut), E[∥∇1Fk(w̄t,ut; ξt)∥2] ≤
C

α2β2

E[n+U
⊤
i Ui∇2Fk(w̄t,ut; ξt)] = ∇2Fk(w̄t,ut), E[∥Ui∇2Fk(w̄t,ut; ξt)∥2] ≤

1

n2+α
2
(1 +

1

β
)2

E[∇3Fk(w̄t,ut; ξt)] = ∇3Fk(w̄t,ut), E[∥∇3Fk(w̄t,ut; ξt)∥2] ≤ (1 +
1

α
)2

E[n+U
⊤
i Ui∇4Fk(w̄t,ut; ξt)] = ∇4Fk(w̄t,ut), E[∥Ui∇4F (w̄t,ut; ξt)∥2] ≤

4C2

n2+α
2
(1 +

1

β
)2

where we assume max(|s′t|, |st,i|, L(wt;xi,xj), ∥∇L(wt;xi,xj)∥) ≤ C. The algorithm is shown in Algorithm 4.

C.1. Analysis

Theorem 6. Assume there exists C > 0 such that max(|s′t|, |st,i|, L(wt;xi,xj), ∥∇L(wt;xi,xj)∥) ≤ C at every stage.
Let 1/γ ≥ ρ, ηk1 = ηk3 = ηk4 = ηk2B+/n+ = ηk ∝ 1/k, Tk ∝ k2. SOTA ensures that after T = O(1/ϵ6) iterations we can
find an ϵ-nearly stationary solution for minw,s,s′ F (w, s, s

′).
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We first show that F (w̄,u) is weakly convex in terms of w̄ for any u.

Lemma 12. Under Assumption 2, then F (w̄,u) is ρ/(αβ)-weakly convex in terms of w̄ for any u, where ρ is equal to the
smoothness parameter of L(w;xi,xj).

Proof. Following similar analysis of Lemma 2, we can show that F (w̄,u)+ ρ
2αβ ∥w̄∥2 = F (w̄,u)+ 1

n+α

∑
i ui(

ρ
2β ∥w∥2+

ρ
2β |si|

2 + ρ
2β |s

′|2) + ρ
2n+αβ

∑
i(1 − ui)(∥w∥2 + |si|2 + |s′|2) + (n+−1)

2n+αβ ∥s∥2 is jointly convex in terms w, s, s′ for any
u ∈ [0, 1]. Then F (w̄,u) is ρ′ = ρ

αβ -weakly convex in terms of w̄ for any u.

We need the following lemma for analysis.

Lemma 13. Consider the proximal gradient update

xt+1 = argminx⊤Gt +
1

2η
∥x− xt∥2 + g(x),

we have

(xt − x)⊤Gt + g(xt)− g(x) +
1

2γ
∥x− xt+1∥2

≤ η∥Gt∥2 +
1

2η
(∥x− xt∥2 − ∥x− xt+1∥2) + g(xt)− g(xt+1)−

1

4η
∥xt+1 − xt∥2

Proof. Due to the update of xt+1, we have

x⊤
t+1Gt +

1

2η
∥xt+1 − xt∥2 + g(xt+1) + (

1

2η
+

1

2γ
)∥x− xt+1∥2

≤ x⊤Gt +
1

2η
∥x− xt∥2 + g(x)

As a result, we have

(xt − x)⊤Gt + g(xt)− g(x) +
1

2γ
∥x− xt+1∥2

≤ (xt − xt+1)
⊤Gt +

1

2η
(∥x− xt∥2 − ∥x− xt+1∥2) + g(xt)− g(xt+1)−

1

2η
∥xt+1 − xt∥2

≤ η∥Gt∥2 +
1

2η
(∥x− xt∥2 − ∥x− xt+1∥2) + g(xt)− g(xt+1)−

1

4η
∥xt+1 − xt∥2

Below, we let g1(w) = 1
2γ ∥w −wk

1∥2, g2(s) = 1
2γ ∥s− sk1∥2, and g3(s′) = 1

2γ ∥s
′ − s′k,1∥2. Applying the above Lemma

to wt+1, we have

(wt −w)⊤∇1F (w̄t,ut; ξt) + g1(wt)− g1(w)

≤ η1∥∇1F (w̄t,ut; ξt)∥2 +
1

2η1
(∥w −wt∥2 − ∥w −wt+1∥2) + g1(wt)− g1(wt+1)

Assume w is independent of noise and taking expectation on both sides, we have

E[(wt −w)⊤∇1F (w̄t,ut) + g1(wt)− g1(w)]

≤ E[η1∥∇1F (w̄t,ut; ξt)∥2 +
1

2η1
(∥w −wt∥2 − ∥w −wt+1∥2) + g1(wt)− g1(wt+1)]

Applying the above Lemma to st+1,i, we have

(st,i − si)
⊤Ui∇2F (w̄t,ut; ξt) + g2(st,i)− g2(si)

≤ η2∥Ui∇2F (w̄t,ut; ξt)∥2 +
1

2η2
(∥si − st,i∥2 − ∥si − st+1,i∥2) + g2(st,i)− g2(st+1,i)
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Summing the above inequality over xi ∈ B+, assuming s is independent of noise and taking expectation on both sides, we
have

B+

n+
E(st − s)⊤∇2F (w̄t,ut) + g2(st)− g2(s)]

= E[η2
∑
i∈B+

∥Ui∇2F (w̄t,ut; ξt)∥2 +
1

2η2
(∥s− st∥2 − ∥s− st+1∥2) + g2(st)− g2(st+1)]

Applying the above lemma to s′t+1, we have

(s′t − s′)⊤∇3F (w̄t,ut; ξt) + g3(s
′
t)− g3(s

′)

≤ η2∥∇3F (w̄t,ut; ξt)∥2 +
1

2η2
(∥s′ − s′t∥2 − ∥s′ − s′t+1∥2) + g3(s

′
t)− g3(s

′
t+1)

Assume s′ is independent of noise and taking expectation on both sides, we have

E[(s′t − s′)⊤∇3F (w̄t,ut) + g3(s
′
t)− g3(s

′)]

≤ E[η2∥∇3F (w̄t,ut; ξt)∥2 +
1

2η2
(∥s′ − s′t∥2 − ∥s′ − s′t+1∥2) + g3(s

′
t)− g3(s

′
t+1)]

Adding the above inequalities for w, s, s′ together we have

E[
∑
t

(w̄t − w̄)⊤∇w̄F (w̄t,ut) + g(w̄t)− g(w̄)]

≤ η1C
2
1T + η2n+C

2
2T + η3C

2
3T

+
1

2η1
(∥w −w1∥2) +

n+
2η2B+

(∥s− s1∥2) +
1

2η3
(∥s′ − s′1∥2) + g1(w1) +

n+
B+

g2(s1) + g3(s
′
1)

As a result,

E[
∑
t

Fk(w̄t,ut)− Fk(w̄,ut)] ≤ η1C
2
1T + η2n+C

2
2T + η3C

2
3T

+
1

2η1
(∥w −w1∥2) +

n+
2η2B+

(∥s− s1∥2) +
1

2η3
(∥s′ − s′1∥2)

For the update of u, it is equivalent to

ut+1 = arg min
u∈[0,1]

u⊤∇̃4F (w̄t,ut; ξt) +
1

2η4
∥u− ut∥2

where ∇̃4F (w̄t,ut; ξt) =
n+

B+

∑
i∈B+

U⊤
i Ui∇4F (w̄t,ut; ξt). It is easy to show that E[∇̃4F (w̄t,ut; ξt)] = ∇4F (w̄t,ut).

Applying the same analysis to the update of ut, we have

(u− ut)
⊤∇̃4F (w̄t,ut; ξt)

≤ η4∥∇̃4F (w̄t,ut; ξt)∥2 +
1

2η4
(∥u− ut∥2 − ∥u− ut+1∥2)

We do not assume u is independent of the randomness in order to derive the primal objective gap. As a result,

(u− ut)
⊤∇4F (w̄t,ut)

= η4∥∇̃4F (w̄t,ut; ξt)∥2 +
1

2η4
(∥u− ut∥2 − ∥u− ut+1∥2)

+ (u− ut)
⊤(∇4F (w̄t,ut)− ∇̃4F (w̄t,ut; ξt))

Following previous analysis (e.g., Proposition A.1 in (Rafique et al., 2020)), we have

(u− ũt)
⊤(∇4F (w̄t,ut)−∇4F (w̄t,ut; ξt))

≤ η4∥∇4F (w̄t,ut)−∇4F (w̄t,ut; ξt)∥2 +
1

2η4
(∥u− ũt∥2 − ∥u− ũt+1∥2)

Hence for any u, we have

E(u− ut)
⊤∇4F (w̄t,ut)] ≤

2n2+
B+

η4C
2
4 +

1

η4
∥u− u1∥2
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As a result, for any u we have

E[
∑
t

Fk(u, w̄t)− Fk(ut, w̄t)] ≤
2n2

+

B+
η4C

2
4 +

1

η4
∥u− u1∥2

As a result,

E[
∑
t

Fk(w̄t,u)− Fk(w̄,ut)] ≤ η1C
2
1T + η2n+C

2
2T + η3C

2
3T +

2n2+
B+

η4C
2
4

+
1

2η1
(∥w −w1∥2) +

n+
2η2B+

(∥s− s1∥2) +
1

2η3
(∥s′ − s′1∥2) +

1

η4
∥u− u1∥2

Let η1 = η3 = η2B+/n+ = η, η4 = η. Then we have

E[
∑
t

Fk(w̄t,u)− Fk(w̄,ut)] ≤ ηC2
1T + η

n2+
B+

C2
2T + ηC2

3T +
2n2+
B+

ηC2
4

+
1

2η
(∥w̄ − w̄1∥2) +

1

η

Then we have

E[max
u

Fk(ŵT ,u)− Fk(w̄
∗, ût)] ≤ ηC2

1T + η
n2+
B+

C2
2 + ηC2

3 + 2
n2+
B+

ηC2
4

+
1

2ηT
(∥w̄∗ − w̄1∥2) +

1

ηT

where ŵT is the average of w̄t, t = 1, . . . , T and ûT is the averaged solution of ut, w̄∗ is the optimal solution to Fk(w̄).
The above implies that

E[Fk(ŵT )−min
w̄

Fk(w̄)] ≤ η(
C

α2β2
+
n2+
B+

1

n2+α
2
(1 +

1

β
)2 + (1 +

1

α
)2 + 2

n2+
B+

4C2

n2+α
2
(1 +

1

β
)2)

+
1

2η
(∥w̄∗ − w̄1∥2) +

1

ηT

≤ ηO

(
C

α2β2

)
+

1

2η
(∥w̄∗ − w̄1∥2) +

1

ηT

It remains to apply the analysis in (Rafique et al., 2020, Theorem 4.1) to derive the convergence for the Moreau envelope
of F (w, s, s′) with a complexity in the order of O(1/ϵ6) by setting ηk ∝ 1/k and Tk ∝ k2 and the total number of stages
K = O(1/ϵ2).


