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Abstract—Network tomography aims at estimating source-
destination traffic rates from link traffic measurements. This
inverse problem was formulated by Vardi in 1996 for independent
Poisson traffic over networks operating under deterministic as
well as random routing regimes. Vardi used a second-order
moment matching approach to estimate the rates where a solution
for the resulting linear matrix equation was obtained using an
iterative minimum I-divergence procedure. Vardi’s second-order
moment matching approach was recently extended to higher
order cumulant matching approach with the goal of improving
the rank of the system of linear equations. In this paper we
go one step further and develop a moment generating function
matching approach for rate estimation, and seek a least squares
as well as an iterative minimum I-divergence solution of the
resulting linear equations. We also specialize this approach to a
characteristic function matching approach which exhibits some
advantages. These follow from the fact that the characteristic
function matching approach results in fewer conflicting equations
involving the empirical estimates. We demonstrate that the new
approach outperforms the cumulant matching approach while
being conceptually simpler.

Index Terms—Network traffic, network tomography, inverse
problem, moment generating function.

I. INTRODUCTION

The goal of network tomography is to estimate the rates
of traffic flows over source-destination pairs from traffic flows
over links of the networks. Traffic flow rates are measured by
the number of packets per second. Network tomography was
formulated by Y. Vardi in the seminal paper [1]. Suppose that
X denotes a vector of L source-destination traffic flows, and
that Y denotes a vector of M link traffic flows. Normally,
M < L. All source-destination traffic flows are assumed
independent Poisson random variables. Thus, X comprises a
vector of L independent Poisson random variables. Link traffic
flow measurements are assumed passive and require no probes.
For networks operating under a deterministic routing regime,
traffic flows from each source node is routed to the destination
node over a fixed path. Traffic flows over each link may
originate from multiple source-destination traffic flows. Thus,
we define a binary variable a;; such that a;; = 1 when traffic
over source-destination j passes through link ¢ and a;; = 0
otherwise. We also define an M X L binary routing matrix
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A = {a;j,i =1,...,M;j = 1,...,L} which is assumed
known throughout the paper. It follows that Y = AX. The
rate vector is the expected value of X which we denote by
A= E{X}.

The network tomography problem is that of estimating the
rate vector A from N independent realizations of Y. This
is a rather challenging inverse problem since ¥ = AX
is an underdetermined set of equations, and the estimate
of A must be non-negative. Vardi referred to the problem
as a “LININPOS” which stands for LINear INverse POS-
itive problem. Maximum likelihood estimation of A is not
feasible since the components of Y are dependent Poisson
random variables with no explicitly known distribution. The
expectation-maximization (EM) algorithm is also not useful
for this problem as it requires calculation of the conditional
mean F{X | Y} which in turns requires the infinite solutions
of Y = AX. Vanderbei and Iannone [2] developed an EM
algorithm in which E{X | Y} is simulated. An alternative
popular approach is to rely on the explicit form of E{X | Y’}
for jointly Gaussian X and Y, see, e.g., [1], [3], [4].

Vardi resorted to moment matching in which \ is estimated
from a linear matrix equation relating the first two empirical
moments of Y to the corresponding first two theoretical
moments of AX. The approach is applicable to networks op-
erating under deterministic as well as random routing regimes.
In the latter case, there are multiple alternative paths for each
source-destination pair which can be selected according to
some probability law. Vardi invoked an iterative procedure
for estimating A which was previously developed for image
deblurring [5] and as an EM iteration for Positron Emission
Tomography (PET). This procedure will be specified in Eq.
(17). Vardi’s work led to extensive research in the areas of
network inference and medical tomography.

Extension of Vardi’s second-order moment matching ap-
proach to higher-order cumulants matching was considered
in [6]. The higher-order cumulants introduce new useful
information on the unavailable distribution of Y which can
be leveraged in estimating the source-destination flow rates.
By using a sufficient number of empirical cumulants, the
linear mapping involved in the cumulant matching approach
can achieve full column rank. In an ideal scenario where the
cumulant matching equations are consistent, and the cumulants



of the link traffic flows are accurately known, the rate vector
can be recovered without error. It was demonstrated in [6] that
this ideal situation is approachable when a sufficiently large
number of realizations of Y is available.

In this paper we explore estimation of the rate vector
A using moment generating function (MGF) matching. The
rate is estimated from equations relating the theoretical and
empirical MGF of Y and its derivatives. This is an extension
of the moment matching approach to a function that represents
moments of all orders. The approach was proposed by Quandt
and Ramsey in 1978 [7]-[9] for estimating a mixture of
distributions. Under independent Poisson path traffic flows, the
MGF matching equations are linear just like in the cumulant
matching approach.

A vast literature exists on network tomography. Key refer-
ences include the work of Vanderbei and Iannone [2] men-
tioned earlier, and the work of Tebaldi and West [10] on
Bayesian rate estimation using Markov Chain Monte Carlo
simulation. See also [3], [4], [11]-[13] on related approaches.
Other work discuss network topology discovery from traffic
measurements [14]-[17]. A somewhat outdated survey can be
found in [18]. A more recent survey [19] discusses network
tomography in conjunction with network coding. The work
in [3], [4], [18] attempt to implement maximum likelihood
estimation of the source-destination rates from link data under
a Gaussian rather than a Poisson traffic model. In [12], condi-
tions for identifiability of higher order cumulants in estimation
of source-destination traffic from link measurements were
established.

The plan for this paper is as follows. In Section II we
address rate estimation in networks with deterministic rout-
ing. We develop the rate estimation equations which include
matching of the MGF and its first three derivatives. Rate
estimation from these equations is performed using least
squares and Vardi’s iterative approach. That approach was
shown to a minimum /-divergence recursion (17). Rate esti-
mation in networks operating under a random routing regime
follows from application of the rate estimation approach for
deterministic routing networks to an appropriately constructed
super-network [6], [10]. Numerical results for the NSFnet [20]
are presented in Section IIl. Concluding remarks are given in
Section IV.

II. MGF MATCHING IN DETERMINISTIC ROUTING

In this section we present our MGF matching approach. The
equations include the MGF and its first three derivatives.
A. MGF Matching

Let 8 = col{f1,...,0) } denote the parameter of the MGF.
Expressing A = [a1,...,ar} where a; is the jth column of
A, the MGF of Y is given by

Mp(Y) = E{e"Y} = BE{e" X} = My A{X} (1)

where -/ denotes matrix transpose. By independence of the
components {X;} of X, and the Poisson distribution of each
X; with mean );, we have

L
Mp(Y) = [ [ Moa,(X;)
j=1
L
= H exp[Aj(e? % —1)]. (2)
j=1
Hence,
log M(Y) = (eG’A — 1) A 3)
where
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The empirical MGF of Y given N realizations {y1,...,yn}
is given by

log My(Y) = log E {e”}

1
~ E 0" yn
=~ log e . (5)
n=1
Hence, the zeroth-order MGF matching equation is
1
0yn _ (0'A _
log i 7;:1 e = (e 1) A (6)

We next supplement this equation with some derivatives of
the MGF evaluated at the same 6. This will enable increasing
the column rank of the linear mapping from which A is
estimated. Let g : R — RX be any function of y,, where
K € {M, M? M?3}. Define

N
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which can be interpreted as the expected value of g(Y) under
the probability mass function
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for Y € {y1,...,yn}. Let D(e?4) denote a diagonal matrix
with (e @1 ... e%@7) on the main diagonal. Higher-order

derivatives of (6) are concisely expressed in terms of the
Khatri-Rao product defined by

AOA:=[a ®ay,as®as,...,ar ®ar] )

where ® denotes the Kronecker product.
The first-order derivative of (6) is given by

o(yn) = A-D(4) - . (10)

Let §, = yn — ©(yn). The second-order derivative of (6) is

given by

0(Jn ® n) = (A® A) - D(e”4) - . (11)



The third-order derivative of (6) is given by
P @ Jn @ Fn) = (A©AG A) - D(”4) -\,

The high-order moment matching approach of [6] is ob-
tained from (10)-(12) when 8 — 0. We have

12)
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where g, = yn—ZkN:l Yy /IN. The LHS of (13) constitutes the
empirical moments of the observed link traffic measurement
vector. In [6] the K -statistics were used instead. For any
practical value of N, the K-statistics are essentially the
empirical moments shown in (13).

The rate vector A\ can be estimated as the solution of
any subset of the four equations in (6), (10), (11) and (12).
Stacking the first r equations for » = 1,2, 3,4 yields a linear
matrix equation in A which can be expressed as

(YY) = ArA.

In this equation 7,.(Y), » = 2,3,4, contains values of the
empirical MGF of Y for the mentioned orders of r = 2, 3,4,
and 7j1(Y) is the LHS of (6). The matrix A,, r = 2,3,4,
represents a matrix with stacked Khatri-Rao products of A,
and from (6), A; = (%4 —1).

Estimation of A\ can be performed using the least squares
approach. The unique Tikhonov regularized least squares so-
lution for the possibly inconsistent set of equations (14), when
A, is not necessarily full column rank, is given by [21, p. 51]

= (Ar A, + D) 7P AL 9, (Y) (15)

for some v > 0. Note that the regularized estimator applies to
a skinny as well as a fat matrix A,.

We could change the relative weight of the equations in
(14) by multiplying the equations corresponding to a specific
derivative of the MGF by some factor smaller than one. We
found it useful to multiply the equations corresponding to the
third-order derivative by ¢ = .01. The rationale here is similar
to the regularization of the moments used by Vardi in [1].
Following this approach, we denote the e-weighted matrix A4,
by A, ., and let the vector 7}, (Y") be denoted by 7}, .(Y"). Then,
from (15), the least squares rate vector estimate is given by

S‘T,E = (A:,eAr,e + 71)71“4:; Tre (V). (16)

Note that the estimator (16) is not guaranteed to be non-
negative. A non-negative estimate of A\ can be obtained by
using non-negative least squares optimization [22]. This ap-
proach did not lead to good results in our earlier work [6].
Instead, we have arbitrarily substituted negative estimates in
our numeric examples with the value of .001. This approach

(14)

resulted in substantially lower MSE compared to using the
constrained optimization algorithm of [22, p. 161]. The perfor-
mance of the algorithm should not be affected by this arbitrary
substitution since negative estimates are rare at our working
point.

Estimation of A could also be performed using the iter-
ative approach of Vardi [1]. This approach guarantees non-
negative rate estimates. In this paper we study the least squares
estimator (16) and the iterative approach and compare their
performance. The iterative solution of (14) is stated as follows:

)\oleA 7]71( ) j_l

A )\old) AR
where )\‘J’-ld denotes a current estimate of the jth component
of A\, and Agew denotes the new estimate of that component at
the conclusion of the iteration; 7, ;(Y") is the ith component
of (YY) in (14);

An(i,j) =

ALY = L, (17

A, (i)
Mo A(t, )

with A,.(4, j) being the (4, j)th component of A,; and M, is
the number of equations in (14). This procedure is in fact an
EM iteration in the positron emission tomography problem,
which follows a similar formulation as network tomography,
but with the crucially facilitating difference that the Poisson
components of Y are now independent random variables [23],
[24]. Clearly this assumption does not hold for the network
tomography problem. The iteration was independently but
heuristically developed for image deblurring [5], [25]. In that
context, it was shown by Snyder, Schulz and O’Sullivan [25]
to monotonically decrease Csiszar’s I-divergence [26] between
the original image convolved with the kernel, and the observed
blurred image.

When the characteristic function M;(Y) = E{e®Y} is
used instead of the MGF, the above equations (7), (6), (10),
(11) and (12) become, respectively,

(18)
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Arranging Eqs. (20)-(23) as in (14) results in a linear equation
for A\. We shall not repeat this equation here and refer to (14)
as either the MGF matching equation or as the characteristic
function matching equation, respectively. Estimating A by
matching the characteristic function rather than the MGF is



advantageous since some equations in the MGF approach may
be inconsistent and hence are ignored in the rate estimation
process [6]. Inconsistency occurs when the centralized mo-
ments in (10)-(12) are negative while the RHS of each of
these equations is always non-negative. This problem does not
arise when matching the characteristic function as all equations
involved are complex. Thus, rows in the characteristic function
matching equation are not removed.

B. Complexity

The computational effort in the MGF matching approach is
similar to that seen in the cumulant matching approach of [6].
The set of equations (14) contains n,.(M) = 1+ M +M?+M?3
when the first three derivatives of the MGF are used. Con-
struction of the right hand side of (14) requires (M? + M3)L
operations. Construction of the left hand side of (14) requires
(M? + M3)N operations where N is the number vectors
used to estimate the MGF and its derivatives. Solving the
equations requires effort that depends only on n,.(M), M
and the number of iterations in (17). The combined effort is
dominated by n,.(M)N since N must be large to produce
meaningful MGF estimates. Thus the computational effort of
the MGF matching approach is approximately linear in N
when N is large which is always the case.

IIT. NUMERICAL EXAMPLE

In this section we demonstrate the performance of the
moment generating function matching approach and of the
characteristic function matching approach in estimating the
rate vector of the source-destination traffic in the NSFnet
network [20]. We compare these two new approaches with the
recently developed high-order cumulant matching approach
[6]. In the moment generating function matching approach the
rate vector A is estimated as the solution of (6), (10)-(12) with
r = 3. In the characteristic function matching approach the
rate vector A is estimated from (20)-(23) with r = 3.

We study the NSFnet [20] whose topology is shown in Fig.
1. The network consists of 14 nodes and 21 bidirectional links.
Hence, it contains L = 14 - 13/2 = 91 source-destination
pairs. This size network may represent a private network, a
transportation network or a subset of interest of a large-scale
network. The link weights in Fig. 1 are exclusively used to
determine k& > 1 shortest paths for each source-destination
pair. Otherwise, they play no role in the traffic rate estimation
problem. To determine the k shortest paths between a given
source-destination pair, we used the shortest simple paths
function from the NetworkX Python library, which is based on
the algorithm of Yen [27]. When k& = 1, the number of source-
destination paths equals the number of source-destination pairs
and the routing matrix A is a 21 x 91 matrix. The augmented
routing matrix A, achieves full column rank when r = 2.

With k > 2, we can assign multiple paths to each source-
destination pair and treat them as distinguishable new source-
destination pairs. The routing matrix A thus becomes fatter and
using higher-order empirical cumulants becomes beneficial.

For example, when £ = 2, we have L = 182 source-
destination paths, the column rank of As is 162 and A3 has
full column rank. Thus, using this example we focus on third-
order MGF matching.

The network with & = 2 and a 21 x 182 routing matrix
A could also be seen as a super-network in the Tebaldi-West
sense [10] for a network with L = 91 source-destination pairs
operating under a random routing regime with two possible
paths per each source-destination pair. The accuracy of the rate
estimation for the random routing network is determined by
the accuracy of the rate estimation in the deterministic routing
super-network. Thus, it suffices to focus on rate estimation in
the deterministic routing network with the 21 x 182 routing
matrix A.

In our numerical examples the source-destination rates
comprising the arrival rate vector A are drawn independently
from a uniform distribution on the interval [0, 4], i.e.,

A ~U0,4], j=1,...,L. 24)

In this case, the mean and variance of each component of A
are given by 2 and 16/12 = 1.333, respectively.

In each of T' = 500 simulation runs, a rate vector A was
generated according to (24). The rate vector was subsequently
used in generating N statistically independent identically
distributed Poisson vectors {X,,} which were transformed
into the vectors {Y,, = AX,} using the assumed known
routing matrix A. The N statistically independent identically
distributed Poisson vectors {Y,} were used in estimating
the rate vector in the current run. Equations (6) and (10)-
(12) were used for MGF matching, and Equations (19)-(23)
were used for characteristic function matching. For the third-
order derivative we have used the regularization value of

€3 = .01. The least squares regularization factor was set to
~v = .0005. The iteration (17) was initialized uniformly with
each \; = .01. It was terminated at the conclusion of 300

iterations. We experimented with N = 5000, N = 10000
and N = 20000 samples. Since the matrix A is binary
{0,1}, the matrix .4, in (14) may contain duplicate rows. All
duplicates were removed before the rate vector was estimated.
The parameter 6 of the MGF is generated randomly in each
run. It is drawn uniformly from [0, 0.001].

Let \;(j) and A\ (j) denote, respectively, the jth component
of X\ and its estimate at the ¢th run where 7 = 1,..., L and
t=1,...,T. For each estimate we evaluated the normalized
MSE defined by

LS nG) — A()?

2
RS AW e =
and the averaged normalized MSE defined by
_ 1 &
E=7>¢ (26)
Jj=1

The MSE in estimating \; is approximately &5 - E{\*(j)}
when T is sufficiently large.
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Fig. 1. NSFnet topology with link weights as in [20, Fig. 4].

MGF Characteristic function Cumulants Characteristic function
N 5K 10K 20K 5K 10K 20K N 5K 10K 20K 5K 10K 20K
£2 0.1585 0.0960 0.0629 | 0.1517 0.0898  0.0579 £2 0.1934  0.0950 0.0625 | 0.1517 0.0898  0.0579
Percent Neg. | 6.4055 4.2582  3.0560 | 7.4440 4.9956 3.4363 Percent Neg. | 6.2418  4.2275 3.0626 | 7.4440 49956 3.4363
TABLE I TABLE 11

COMPARISON OF MGF AND CHARACTERISTIC FUNCTION MATCHING IN
ESTIMATING THE RATES OF SOURCE-DESTINATION PATHS IN THE
NSFNET. 7 = 3 IN THIS EXPERIMENT. £2 IS THE AVERAGED NORMALIZED
MSE IN LEAST SQUARES ESTIMATION. PERCENT NEG. IS THE PERCENT
OF RATES THAT WERE ESTIMATED AS NEGATIVE RATES BY THE LEAST
SQUARES ESTIMATOR

Our numerical results are shown in Tables I-V. Table I
provides a comparison between the rate accuracy in least
squares MGF matching and least squares characteristic func-
tion matching where in both cases the function and its
three derivatives are matched. Clearly, rates estimated by the
characteristic function matching approach are more accurate
for the three values of N. Table II provides a comparison
between rate accuracy in the cumulant matching approach
of [6] and the least squares characteristic function matching
discussed here based on three derivatives, i.e., 7 = 3. The table
shows lower averaged normalized MSE for the least squares
characteristic function matching approach. We emphasize that
similar results are obtained when the characteristic function
matching equations (19)-(23) are replaced by the moment
matching equations (13) evaluated at # = 0. This suggests
that the better results obtained by the characteristic function
matching approach are due to its use of the complete available
data without removal of inconsistent equations as was done in
[6]. Table III provides the averaged normalized MSE and per-
cent of negative estimates for the least squares characteristic
function matching approach using r» = 1,2, 3 derivatives and
N = 5000, 10000 and 20000 link traffic vectors. Generally,
the accuracy improves with increasing r and N.

In Table IV we have constructed the matrix A, in (14) by
stacking Ny = 10 sets of equations (19)-(23) where each set is
evaluated at a different 6. This approach represents an attempt
to complete the column rank of the matrix A, and thus aim
at a unique least squares estimate. The results show that this

COMPARISON OF CUMULANTS MATCHING AND CHARACTERISTIC
FUNCTION MATCHING IN ESTIMATING THE RATES OF
SOURCE-DESTINATION PATHS IN THE NSFNET. = 3 IN THIS
EXPERIMENT. £2 IS THE AVERAGED NORMALIZED MSE IN LEAST
SQUARES ESTIMATION. PERCENT NEG. IS THE PERCENT OF RATES THAT
WERE ESTIMATED AS NEGATIVE RATES BY THE LEAST SQUARES

ESTIMATOR
£2 Percent Neg.

N r=1 r=2 r=3 r=1 r=2 r=3
5K 0.3037  0.1476  0.1517 | 0.1934  7.1571 7.444
10K | 0.3037 0.0897 0.0898 | 0.1890 4.8110 4.9956
20K | 03037 0.0595 0.0579 | 0.1868 3.3945  3.4363

TABLE III

AVERAGED NORMALIZED MSE (£2) AND PERCENT NEGATIVE ESTIMATED
RATES IN LEAST SQUARES CHARACTERISTIC FUNCTION MATCHING
ESTIMATION AS A FUNCTION OF THE NUMBER OF DERIVATIVES () AND
NUMBER OF LINK TRAFFIC MEASUREMENTS

approach is not warranted. Using Ny = 1 outperformed the
case with Ny = 10 in all working points of interest. Table
V provides the averaged normalized MSE in estimating the
rate vector A by applying the minimum /—divergence iteration
(17) to the characteristic function and its r derivatives for r =
1,2,3 and N = 5000, 10000 and 20000. Comparing with

£2 Percent Neg.
Ny r=1 r=2 r=3 r=1 r=2 r=23
1 0.3037 0.0897 0.0897 | 0.1890 4.8110  4.9956
10 | 0.3003  0.0900 0.1928 | 0.1791 4.8484  9.1407
TABLE IV

AVERAGED NORMALIZED MSE (£2) AND PERCENT NEGATIVE ESTIMATED

RATES IN LEAST SQUARES ESTIMATION AS A FUNCTION OF THE NUMBER

OF DERIVATIVES (r) OF THE MGF USING Ny = 10 DIFFERENT 6 VECTORS
AND N = 10000 SAMPLES



£2
N r=1 r=2 r=23
5K | 02293 0.1534  0.1638
10K | 0.2293  0.0996  0.1035
20K | 0.2293 0.0703 0.0704
TABLE V

AVERAGED NORMALIZED MSE (?) IN MINIMUM I-DIVERGENCE RATE
ESTIMATION (17) AS A FUNCTION OF THE NUMBER OF DERIVATIVES () OF
THE MGF

Table III shows that the results are generally comparable but
the least squares estimator is better at the important working
point of » = 3, N = 20000. The advantage of the iteration
(17) is that the rate estimates are always positive.

IV. CONCLUDING REMARKS

We have developed a framework for MGF matching ap-
proach for estimating the rates of source-destination Poisson
traffic flows from link traffic flows. The approach is equally
applicable to networks operating under deterministic as well as
random routing strategies. Under independent Poisson source-
destination traffic flows, the approach boils down to a set
of linear equations relating values of the MGF of the link
measurements Y, and its derivatives, to the rate vector A\,
via a matrix involving Khatri-Rao products of the routing
matrix. We studied least squares rate estimation as well as
iterative minimum I-divergence estimation. We demonstrated
that the related characteristic function matching approach out-
performs the MGF matching approach. It also outperforms the
cumulant matching approach of [28] while being conceptually
simpler. The advantage of the characteristic function matching
approach follows from its tolerance to equations that are
considered inconsistent in the MGF matching approach.
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