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Abstract. In this paper, equations for the approximate synthesis of
symmetric four-bar coupler curves are formulated. Our approach specifies
a number of desired trace points, and finds a number of four-bar linkages
with a coupler trace that approximately passes through these points. The
computed linkages correspond to all the minima of the posed objective.
The objective posed simultaneously enforces kinematic accuracy, loop
closure, and leads to polynomial first order necessary conditions with a
monomial structure that remains the same for any number of specified
desired trace points. This last characteristic makes our result more gen-
eral. To simplify computations, ground pivot locations are set as chosen
parameters, and a root count analysis is conducted that shows our objec-
tive has a maximum of 73 critical points. The theoretical work is applied
to the computational design of straight line coupler paths. To perform
this exercise, the choice of ground pivots was varied, and a parameter
homotopy for each choice (504 in total) was executed. These computa-
tions found the expected linkages (Watt, Evans, Roberts, Chebyshev)
and other linkages resembling them but with sizable variations on their
dimensions. The t-SNE algorithm was employed to organize the com-
puted straight line generators into a visual atlas.

1 Introduction

The synthesis of a point path by a four-bar linkage has been addressed in [1] for
the exact case, and in [2] for the approximate case. Here we address a subcase,
that is the synthesis of symmetric coupler curves. We are motivated to study
symmetric curves as we note that many of the special straight line generators
found over time produce symmetric curves, e.g. the Watt linkage, the Evans
linkage, the Roberts linkage, the Chebyshev linkage, and the Chebyshev lambda
linkage [3]. In search of more such interesting geometries, symmetry constraints
are installed. This reduces the well known nine dimensional design space of four-
bar linkages down to seven dimensions. In addition, to aid in computational
tractability, the positions of ground pivots were set, reducing the design space
to three dimensions. The relevant kinematic constraints were formulated into an
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optimization problem which was solved completely for all minima using polyno-
mial homotopy continuation. The result is used to search for straight line gen-
erators by systematically varying ground pivot locations and computing several
parameter homotopies. Our computational search found the well known straight
line generators as well as several variants of their geometries. The resulting link-
age designs are organized into an atlas using the t-SNE unsupervised machine
learning algorithm.

2 Mathematical Formulation of Four-Bars

Fig. 1. Schematic of a four-bar linkage in the complex plane

Consider a planar four-bar linkage as shown in Fig. 1 in the complex plane. Let A
and B represent the two fixed pivots, respectively. For representing vector vari-
ables such as the fixed pivots, isotropic coordinates [4] are used here. Hence,
additional variables A∗ and B∗ denoting the conjugate variables of A and B,
respectively, are introduced. This is an alternative approach to the Cartesian
framework in order to gain certain advantages [4] during the mathematical for-
mulation stage as well as in the implementation of numerical continuation solu-
tion technique that follows. Let l1, l2, and l3 denote the lengths of the three
moving links as shown. The coupler trace point (normalized by the coupler base
length l2) is represented in the local frame of the coupler as Q and its con-
jugate counterpart Q∗. Thus, the design variables of the four-bar linkage are
summarized as d = {A, A∗, B, B∗, l1, l2, l3,Q,Q∗

}. If X and its conjugate X∗ denote
the locus of the trace point of interest in the global frame, then it satisfies the
equation f (d, X, X∗

) = 0 given by:
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where

g(X, X∗

) = −l21 + l22QQ
∗ + (A − X)(A∗

− X∗

) and

h(X, X∗

) = −l23 + l22 (−1 +Q)(−1 +Q∗

) + (B − X)(B∗

− X∗

).

As is well known for four-bar linkages, Eq. 1 is a sextic equation with circularity
3. It comprises of 16 distinct monomial terms in X, X∗, namely,

{

X3X∗3, X3X∗2, X3X∗, X3, X2X∗3, X2X∗2,

X2X∗, X2, XX∗3, XX∗2, XX∗, X, X∗3, X∗2, X∗, 1

}

in which the coefficient of the leading term X3X∗3 is equal to 1. Four-bar link-
ages that share an identical coupler locus occur as Roberts cognate triplets
in the four-bar design space (see pp. 168–176 of [5]). For a design d1 =

{A, A∗, B, B∗, l1, l2, l3,Q,Q∗

}, its other two cognates can be expressed as:

d2 =
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In our experiment, we restrict the model to four-bars that generate symmetric
coupler curves. We do this for two reasons. First, much of the straight line link-
ages reported in the literature [3] such as Watt, Evans, Roberts, and Chebyshev
linkages generate symmetric coupler curves about some axis of symmetry in the
plane. And second, the inclusion of additional conditions on the design variables
to this effect simplifies the model significantly and enables faster computations.

2.1 Symmetric Coupler Curves

The following derives the necessary and sufficient conditions for a four-bar link-
age to generate symmetric coupler curves. While some of these conditions can
be found in the literature, we present a direct proof here via analytical geometry
and subsequent algebraic analysis.

Following the isotropic coordinates convention, points (P, P∗

) on a generic
line in the complex plane satisfy:

L(P, P∗

) = K∗P + KP∗ + c = 0, (3)
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where K,K∗ (� 0) are isotropic parameters and c is a real parameter. If (X, X∗

)

is any point in the plane, then its symmetric reflection about the axis given by
Eq. 3 is

(Xm, X
∗

m) =

(

−

c + KX∗

K∗

,−
c + K∗X

K

)

. (4)

It follows that, for a four-bar coupler curve to be symmetric about an
axis L(P, P∗

) = 0, (Xm, X∗

m) given by Eq. 4 must also satisfy Eq. 1, that is,
f (d, Xm, X∗

m) = 0. Since the equation and its reflection must be identical, the
coefficients of the 16 monomial terms in X, X∗ can be equated element-wise to
arrive at 15 conditions (disregarding the unit leading term of the monomial
X3X∗3) on the design variables d and the axis parameters K,K∗, c. As the sym-
metric behavior is unaffected by scaling, rotation, and translation, the fixed
pivots can be plugged in as A = A∗ = 0 and B = B∗ = 1 which further simplifies
the conditions. Note that this choice of fixed pivots is made only for enabling
the derivation of the conditions of symmetry and is not a global choice for the
latter sections. The conditions corresponding to the monomials X3X∗2, X3X∗, X3

are, respectively, as follows:

3c + K + K∗ + K∗Q + KQ∗ = 0, (5)

−3c2 − 2cK∗

− 2cK∗Q − K∗2Q + K2Q∗ = 0, (6)
c(c + K)(c + KQ∗

) = 0. (7)

The conjugate of these conditions also occur for the monomials X2X∗3, XX∗3, X∗3.
Equation 7 shows that either c = 0, c = −K, or c = −KQ∗. Each of these three

conditions can be analyzed separately in conjunction with Eqs. 5 and 6, and then
with the other 12 coefficient conditions (not all independent). The algebra is not
included for brevity and we present only the results:

Four-bar linkages with design variables d = {A, A∗, B, B∗, l1, l2, l3,Q,Q∗

} that
generate coupler curves symmetric about an axis K∗P + KP∗ + c = 0 can
be of the following two classes:

Class A c = 0,K = −K∗,Q = Q∗. These correspond to four-bars whose
trace point lies along the line that connects the two floating pivots. For
these, the reflection of the linkage about its ground link in any given con-
figuration is also part of its configuration space, thus enabling the occur-
rence of symmetric coupler curves. The cognates of such four-bars also
meet these conditions with the ground-pivots of all three cognates lying
along the axis of symmetry.

Class B This class can be split into three types which themselves form a
Roberts cognate triplet.

1. c = 0,Q = −
K
K∗

= 1
Q∗
, l1 = l2

2. c = −K = −K∗,Q +Q∗ = 1, l1 = l3
3. c = −KQ∗ = −K∗Q,Q∗ =

Q
Q−1, l2 = l3
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Fig. 2. Two classes of four-bar linkages which generate symmetric coupler curves

In Fig. 2, examples of the two classes of four-bars that generate symmetric
coupler curves are shown as cognate triplets. Arguably, four-bars of Class B are
more interesting because, unlike Class A, the symmetric curves generated by
them are not simply reflections about the ground link. The two classes of four-
bars overlap in the design space in some cases, notably the Chebyshev and Watt
straight line linkages. Another well-known symmetric straight line linkage, the
Roberts linkage, is of Class B. The axis of symmetry in the four-bars of Class
B is the perpendicular bisector of the fixed link corresponding to the cognate
#2, while passing through the ground pivot shared between the cognates #1
and #3. For more geometric description of the four-bars of Class B and their
conditions, refer to [6].

In this work, we limit the following design procedure to the four-bars of
Class B based on the reasoning above. In particular, we solve for cognate #2
of Class B and compute cognates #1 and #3 based on the transformations
presented in Eq. 2.

3 Optimization Model for Approximating Straight Lines

For four-bar linkages of Class B and cognate #2, a generic design is represented
by d = {A, A∗, B, B∗, l, l2, l,Q, 1 − Q}. Note that l1 = l3 = l and Q∗ = 1 − Q
based on the conditions derived earlier. This simplifies the coupler equation in
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terms of {A, A∗, B, B∗, l, l2,Q}. As the variables l and l2 occur only in the form
of squares, l2s = l22 and ls = l2 − l22Q(1 − Q) are introduced to simplify the
equation further and to reduce the total degree. At this stage, a decision is made
to treat A, A∗, B, B∗ as specified design parameters instead of treating them as
variables. This brings down the number of variables to 3, namely, ls, l2s and Q,
as opposed to being 7 which would be a much harder problem outside the scope
of this work.

As mentioned earlier, the coupler curve of a four-bar linkage is degree six.
Hence, if the exact synthesis approach is taken, a maximum of only six design
positions along a straight line can be specified. Approximate synthesis process
allows for as many design specifications as desired. The optimization problem is
one of minimizing the error residue of the coupler equation over all the design
positions. We chose the L2-norm to retain the polynomial nature of the objective
function, thus allowing the use of a numerical continuation approach to solve any
resulting polynomial system.

The objective of the optimization problem is a sum of squares of the residue
of the coupler equation over all the design positions, j = 1, 2, ..., N:

1

2

N∑

j=1

η2
j , (8)

where ηj = f (A, A∗, B, B∗, ls, l2s,Q, Xj, X∗

j ). The design variables are ls, l2s, Q,
while A, A∗, B, B∗ are the design parameters and Xj, X∗

j are the design positions.
The first-order necessary conditions of optimality are then derived symbolically
as:

N∑
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This system of 3 equations in 3 unknowns has a monomial structure that is
invariant to the number of design positions N. This allows us to specify more
design positions without increasing the complexity of the system. In particular,
the total degree of this polynomial system is 648, which forms a trivial upper
bound of the number of critical points of the objective function. One can com-
puter tighter bounds such as a 2-homogeneous Bézout bound [4] of 186 and
the BKK bound [4] of 73. This is confirmed by explicitly solving a randomly
chosen ab initio system using the numerical continuation solver Bertini [7,8]
via a 2-homogeneous homotopy of 186 startpoints. Such a start system is usu-
ally constructed by forming a polynomial system respecting the same multi-
homogeneous structure using linear expressions which are easily solved to form
the startpoints [1,9]. Then, using a predictor-corrector numerical path tracking,
the startpoints are deformed continuously to the target points of the ab initio
system. Solving this ab initio system yielded 73 solutions matching the BKK
bound, while the rest diverged off to infinity as expected. Thus, one can use a
parameter homotopy [8] and track 73 solution paths to solve any other system
with the same monomial structure.
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4 Design of Experiments

Fig. 3. Design specification for approximate straight line generating four-bar linkages

Parameter homotopy runs are carried out for the design of approximate straight
line generating four-bar linkages with cognate #2 symmetric four-bars of Class B
being the primary focus. The design specification is chosen to be discrete points
of equal step-length along the x-axis in the range [−0.5, 0.5]. Specifying a high
number of design positions (N = 100 in this work) reduces the possibility of
undesirable coupler curve behavior between the desired positions. The ground
link is described by four parameters, two for each fixed pivot. We add a constraint
that restricts the ground link such that the axis of symmetry passing through
the mid-point of the design specification as shown in Fig. 3 resulting in three
parameters r, θ, and s as illustrated. The parameter θ can be restricted to be
within [0◦, 90◦] as the other values are topologically equivalent. We sample the
space by employing a discretization scheme as follows:

r ∈ {0.25i}8i=0 θ ∈ {15◦ j}6j=0 s ∈ {0.25k}8k=1, (10)

which yields a total of 9 · 7 · 8 = 504 distinct problems. The computation time
required for solving a single parameter homotopy run of 73 paths is about 15s
and only the solutions that correspond to physical linkages are investigated.
Moreover, since this computation yields all critical points, only the local minima
for each computation are retained while all saddle points are rejected. This yields
2461 linkages which are then further refined based on an allowable structural
error tolerance of 1

100 of unity in the y direction of the desired segment and
a maximum link length constraint of 2. This results in 59 linkages of which
cognates #1 and #3 are computed based on Eq. 2.

For exhibiting these 59 · 3 = 177 linkages, we used the machine learning tech-
nique t-SNE [10], a nonlinear dimensional reduction tool to allow us to visualize
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Fig. 4. An atlas of four-bar linkages that generate an approximate straight line segment
visualized using t-SNE. Of these, cognate #2 symmetric four-bars (shown in red) are
found via numerical continuation experiments while the other two Roberts cognates
are readily computed using the appropriate transformations.

data in 2D. Using the link dimensions to represent each four-bar linkage and
setting the hyper-parameter of t-SNE, namely, perplexity, at 5, Fig. 4 is pro-
duced. It shows bunches of linkages that qualitatively resemble classical straight
line generators as observed in the representative set of nine four-bar linkages
displayed to scale. This computational approach produced many that serve as a
useful atlas for designers.
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5 Conclusion

In this paper, the synthesis equations were formulated, characterized, and solved
for a four-bar linkage with ground pivots specified to produce a desired symmet-
ric coupler curve approximately. The solution is applied to search for four-bar
approximate straight line generators by solving an optimization problem. The
mathematical model is restricted to one particular class of four-bars which gener-
ate symmetric coupler curves to reduce the computational challenges associated
with solving a generic four-bar linkage system. The validity of our approach is
affirmed by rediscovering the classical approximate straight line generators by
solving an easier system. In addition, we found more approximate straight line
generators, each of which seems to be a variant of the classical linkages, but
with substantially different dimensions. Using the t-SNE algorithm, our results
are organized into a 2D atlas, which could be a useful reference for mechanical
designers in need of more straight line options. A future direction related to this
paper would be to more thoroughly investigate what we term as Class A linkages
as well as extending to generic four-bar linkages.
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