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Abstract

We present CoursePathVis, a visual analytics tool for explor-
ing and analyzing students’ progress through a college curricu-
lum using a Sankey diagram. Focusing on four student cohorts
in a department, we group students in multiple ways (by their AP
courses, term courses, and a user-specified funnel course) to com-
prehensively understand the data. CoursePathVis helps us identify
patterns or outliers that affect student success with these flexible
grouping techniques and the funnel-augmented Sankey diagram.
Three stakeholders from the same department formulate design
requirements and provide an ad-hoc evaluation.

Introduction

Within a university, a college or department desires all stu-
dents to succeed in their coursework and complete their degree in
time. However, there can be many factors why this does not hap-
pen. Common factors include student preparedness (e.g., their
advanced placement or AP! credentials), course difficulty (e.g.,
particularly challenging required courses), and personal reasons
(e.g., health and mental issues). Suppose we can group hundreds
of students in a major and visualize how they progress through
their courses. Then, we could examine potential issues and take
action to help students succeed.

This motivates us to design and develop CoursePathVis, a
visual analytics tool for analyzing and visualizing how students
take courses over terms toward their degree completion. The data
for this study is an anonymized collection of student records from
a computer science and engineering (CSE) department, includ-
ing four cohorts (i.e., the classes of 2019, 2020, 2021, and 2022)
with an average of 143 students in each cohort. Each student
record contains various attributes, including courses the student
has taken, the term in which the course was taken, the grade for
each course, the student’s term GPA, cumulative GPA, college,
and whether the student had taken pre-college (outside the de-
partment) courses. We consider a total of 27 required courses for
the CSE major.

To analyze the collection of student records, we design dif-
ferent ways to group students based on their AP courses and term
courses. These functions allow evaluating students’ academic
success as they progress course by course or term by term. On
top of AP courses or term courses based on student grouping, we
augment the resulting visualization via a new feature called a fun-
nel course. A funnel course is usually chosen from gateway (i.e.,

AP refers to “a program in the United States and Canada created by
the College Board which offers college-level curricula and examinations
to high school students.” [1]

the first credit-bearing college-level course in a program of study)
or required courses, which allows us to combine initial student
groups into a new single group, impacting the downstream flows
of the visualization. These initial groups can be displayed using
a histogram popup over the funnel course (e.g., Fundamentals
of Computing shown in Figure 6 (a)). As such, we can generate
comprehensive visualizations for visual reasoning, helping stake-
holders identify patterns and discover insights.

Related Work

Learning analytics dashboards. Stakeholders such as
instructors, academic advisors, and administrators have previ-
ously used individual student and course data to identify areas
of struggle or success. For example, learning analytics dash-
boards [16, 24] display various information such as login fre-
quency, time on task, clickstream, and tool/resource usage by stu-
dents in an online learning environment. Early research efforts fo-
cused on highlighting potential students at risk of academic fail-
ure [4, 2, 3]. Later, researchers developed student-facing dash-
boards (i.e., dashboards used by students) to increase students’
self-awareness, promote positive behavior change, and ultimately
enhance their academic achievements [22, 5, 18]. Although the
majority of existing learning analytics dashboards are for instruc-
tors and students, a few can assist administrators in strategic
decision-making [19, 17, 6]. Some learning analytics visualiza-
tions benefit different user groups, including students, instructors,
and administrators [20, 11, 8]. Besides uncovering individual stu-
dents’ learning behavior in an isolated context, this type of vi-
sualization can also help identify how students form groups and
interact with each other in a social network context [27, 9, 7].

Course program visualization. Focusing on a single course
is not enough when considering the “flow” of all students through
their entire academic study. Moving from the course-level to
curriculum-level analysis entails a different set of design require-
ments. While there are recent works that focus on visual analytics
of student progression in the higher education setting [14, 15],
the proposed CoursePathVis aims to understand how students
progress through the curriculum and identify common patterns
and outliers for stakeholders to make better-informed decisions or
recommendations. Our work is closely related to course program
data visualization [23, 21]. Instead of using fine-grained trajec-
tories followed by clustering and composition [23] or a coarse-
grained Sankey-like radial graph showing student progression in
a university-wide setting [21], we employ the funnel-augmented
Sankey diagram to investigate course paths taken by students
within a department.

Event sequence data visualization. The large-scale, high-



dimensional, and heterogeneous nature of event sequence data has
motivated many recent research activities in the visual analysis of
event sequence data [13]. Examples include visualizations based
on the chart, timeline, hierarchy, Sankey, and matrix. Prior work
on Sankey-based event sequence data visualization includes Out-
flow [26], DecisionFlow [10], CAVA [28], and EventThread [12].
Our design of the “funnel” course is similar to the notions of “sen-
tinel” [25] (e.g., the first occurrence of a given symptom type) or
“milestone” [10] (e.g., temporal query constraints) events to aid
with aligning temporal event sequences. However, instead of se-
quence alignment, we leverage the funnel course to investigate
its impact on students’ course progress and performance by chan-
neling students into the designated course and presenting filtered
visualization results.

(b)

©

Figure 1. Comparison of three design alternatives. (a) to (c): Sankey di-
agram, parallel coordinates, and stacked area chart. Students are grouped
by AP courses taken. The horizontal axis or column represents individual
courses (inner four axes for parallel coordinates). Vertically, we display stu-
dent groups, course grades, and student counts, respectively, for these three
visual mappings.

Design Requirements

CoursePathVis was driven by a CSE department’s need
to look at how undergraduate students take required courses
throughout the curriculum. The department has offered B.Sc. in
Computer Science and B.Sc. in Computer Engineering degrees

and has started to offer B.A. in Computer Science degrees. With
the increase in degree offering and steady enrollment growth, it
is crucial to investigate past students’ course paths to identify
strengths and weaknesses to serve current and future students bet-
ter.

As such, we had several discussions with three stakeholders
from the CSE department: the Director of Undergraduate Studies
S1, the Chair of Undergraduate Curriculum Committee S2, and
an introductory course instructor S3. They would like the pro-
posed CoursePathVis to fulfill the following needs: (1) provid-
ing an overview of how student cohorts take the required courses
throughout the terms (e.g., the common paths and the patterns
over terms); (2) enabling the investigation of how students with
different preparedness levels take the introductory courses and
the implications to their academic performance and time to de-
gree; (3) studying how students perform for a required course and
how this would impact their subsequent course taking. Based on
these needs, together, we formulate the following design require-
ments: R1: Provide an overview of course paths. The tool should
provide a good overview for users to understand the overall pat-
terns and complexity to start with, triggering the consequent ex-
ploration by grouping and filtering. R2: Group students flexibly.
The tool should enable users to group students by AP courses
(math, science, or all AP courses) or term courses to compare
different student groups visually. To help investigate student per-
formances, we should show the average GPA of student groups
and allow ordering groups based on the GPA. R3: Filter courses
or students. The tool should allow users to filter the data by stu-
dent graduation year, grade level (freshman, sophomore, junior,
senior), or courses. Furthermore, users need to filter the visual
results based on the range of group size to spot common patterns
(large groups) and outliers (small groups). R4: Enable the fun-
nel course. The tool should allow users to funnel multiple student
groups into a single course to study how students get through a
gateway course [23]. Displaying these student groups’ grade dis-
tributions further helps investigate their performances and possi-
ble impact on the subsequent course taking.

Design and Implementation

Design choices. We consider three popular visual mappings:
Sankey diagram, parallel coordinates, and stacked area chart, to
display sequence data. As shown in Figure 1, parallel coordi-
nates do not show student groups in an aggregated manner, mak-
ing it challenging to estimate student counts and track student
groups across the axes. The stacked area chart is good at revealing
group-wise information based on AP courses (horizontal: individ-
ual courses, vertical: student counts). However, it has difficulty
showing term courses which are varying over terms (horizontal:
individual terms, vertical: term courses) and does not support
sorting by GPA. The Sankey diagram does not have such limi-
tations (refer to Figure 2) and is the most suitable choice for our
application.

Grouping students by AP courses. One way of student
grouping is based on AP courses. This is often needed as the
stakeholders would like to examine the impact of AP courses
on student course-taking and their resulting performance differ-
ences. We first identified students who had certain AP credits
by the courses they had taken. We grouped students according
to the various AP course combinations. The certain AP credits
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Figure 2. Comparison of two graduation years (a) 2019 and (b) 2020 using “Courses by Term,” which shows how student groups in the CSE major bundled
courses in each term. Sorting the student groups by GPA is turned on. Node labels are hidden for clarity.

include Calculus I, Calculus II, Physics I, Physics II,
and General Chemistry. One example of a course combination
would be a group of students who have AP credits in Calculus I
and General Chemistry. We then identified the list of courses
in the sequence they were taken. We ordered these courses and
drew them as nodes (from left to right) in the Sankey diagram.
Each student group uses a different color for differentiation. Fi-
nally, we created the links between nodes by iterating through
the previous collections of groups and uniquely identifying the
student group’s flow from course to course, term by term. Note
that this is the exact flow for each student within a group from
course to course. Each student within a group took the course.
They are then further grouped in a link that connects to the next
course. Besides grouping students based on all AP courses, we
split AP courses into math courses and science courses. Each of
these additional student groupings reduces groups’ variations as
there are fewer courses to consider. We further provide filtering

AP groups, allowing users to filter overprepared or underprepared
student groups (i.e., incoming students with more or less AP cred-
its than anticipated). For example, when “Math AP Courses” is
selected for grouping students, users can further choose (no math
AP), Calculus I (CI), or Calculus I and Calculus II (CI-
CII) to filter AP groups.

Grouping students by term courses. Another way of stu-
dent grouping is based on term courses. This allows the stake-
holders to investigate how students taking a course group would
impact their subsequent course group taking and figure out the
most or least popular course group to take each term (a help-
ful feature for course recommendation). We identify students
who took the same group of courses within the same term. For
example, many freshmen took Calculus I, Engineering, and
General Chemistry in their first term. In the Sankey diagram,
these students are grouped to form a node along the first col-
umn. Each student may then take another set of courses for the
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Figure 3. Grouping students based on “Math AP Courses.” Only math courses are displayed in the Sankey diagram. Sorting the student groups by GPA is

turned on.

next term, so the group splits and flows into the next set of term
courses. We achieve such a grouping by first iterating through
the student records and creating all unique term-course groups.
We then associate students with these groups to access their data,
such as cumulative GPA and more. Next, the term-course groups
are linked together, ordered by term. This processing allows users
to see all scenarios of courses taken, term by term, by all students
within a major.

Grouping students by a funnel course. Besides grouping
students based on AP courses or term courses, we allow addi-
tional grouping by a funnel course. There are certain required
courses that all students should take in a given term. Users can
funnel existing student groups (either by AP or term courses) into
such a gateway course. This enables the stakeholders to explore
how a particular funnel course impacts subsequent course taking
or how students progress up to the funnel course. When the fun-
nel course is selected, it builds a larger collection of all existing
groups that include the funnel course and replaces each with the
new funnel course group. Each AP course or term-course group is
preserved within the funnel course group, along with a histogram
showing each unique group’s GPA for the funnel course. The
funnel course comes with a cutoff feature. When the cutoff is
disabled, we continue the Sankey diagram flow out from the fun-
nel course as usual. When the cutoff is enabled, we hide groups
after the funnel course. The cutoff does not function completely
in some term-course group displays because students may have
taken the funnel course in various terms due to transferring in or
changing majors. In this case, we only generate the funnel course
for the chosen course’s first occurrence.

Results and Discussion

We present selected CoursePathVis results to show that it has
met the design requirements and offered insight into the curricu-
lum. In addition, we have deployed a version of CoursePathVis
at https://wuw.nd.edu/~cwangll/cpvis/, where users can
load randomized data to test the functions.

We meet R1 by providing an overview of all course paths
for a curriculum. Figure 2 shows a comparison of all course
paths for two cohorts of students, graduating in the years 2019
and 2020, respectively. Using the “Courses by Term” grouping,

each column in the Sankey diagram represents a term, and each
node in a column represents a term-course group. The width of
the link or flow between two nodes in the adjacent columns indi-
cates the number of students taking both term-course groups. We
can see that there are larger (“taller”’) nodes in the first two years
of study for each cohort, showing that students group similar re-
quired courses together for these terms (i.e., they have less flexi-
bility in taking elective courses). As students move to their junior
and senior years, we see the average size of nodes decrease. This
indicates that students have a more varied way of grouping their
required courses by term (i.e., they have more flexibility in taking
elective courses as more required courses are completed). One
notable difference between 2019 and 2020 is in the sophomore
spring term. In 2019, there are three large nodes, while 2020 has
four nodes of slightly smaller sizes for the same term. This im-
plies more variety of required courses offered in the sophomore
spring term for 2020, which is true as the department started to
provide more required courses in both terms from the 2017-2018
academic year.

CoursePathVis meets R2 by grouping students flexibly. Fig-
ures 2 and 3 show flexible grouping by term courses and AP
courses, respectively. As shown in Figure 3, using the “Math AP
Courses” grouping, we form three student groups: no math AP
credit (pink), Calculus I credit (purple), and Calculus I and
Calculus II credit (teal). In the Sankey diagram, nodes from
left to right in the same group (shown in the same color) represent
the courses taken by the student group in sequence. We order the
nodes along each column by their average GPA from top to bot-
tom (mousing over each node displays the GPA information). We
can see that students with Calculus I and Calculus II credit
(teal) maintained the highest GPA overall. We also notice that
among these courses, students with no math AP credit (pink) took
more courses overall.

We support filtering courses or students to meet R3. As
shown in Figure 4, we first select students from the graduation
year of 2019. We then add another filter to select only courses stu-
dents took in their freshman and sophomore years. After that, we
turn on the grouping of students by “All Math courses.” We can
see that underprepared students (the teal group shown at the top)
take significantly more math courses than overprepared students
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Figure 4. A variety of filters with grouping students by “All AP Courses.” Grade levels are filtered by selecting only “Fr” (freshman) and “So” (sophomore) years.
Nine courses from 27 required courses are selected. Sorting the student groups by GPA is turned off. The display range for both group and link is narrowed to

[5, 200] students.

(the orange group displayed at the bottom) in their first two years.
By hovering over the nodes, we can also see the average GPA for
each group to compare similar courses by different groups. Aca-
demic advisors can then use this knowledge to advise students
concerning which courses to take and when to take them.

As another example highlighting R3, Figure 5 shows
the comparison of the most and least popular course paths
for students graduating in 2022. From Figure 5 (a), we can
see that the most popular term-course groups for the four
terms from the freshman and sophomore years are, respec-
tively, (Calculus I, Engineering, General Chemistry),
(Calculus II, Physics I), (Calculus III, Discrete
Math, Fundamentals of Computing, Physics II), and
(Data Structures, Linear Algebra, Logic Design,
Systems Programming). Clicking on the links shows that
there are 36, 36, and 37 students taking the course paths across
these four term-course groups, which accounts for around 25%
of the cohort. In contrast, there are many more least popular
course paths, as shown in Figure 5 (b). Students taking these
outlier course paths could be either ahead of or behind schedule.
Some students are “ahead of schedule,” taking a required course
(e.g., Calculus III, Discrete Math, or Fundamentals of
Computing) in their first term, which the majority takes in their
third term. Other students are “behind schedule,” either taking a
smaller set of required courses in their first term or catching up
on a course such as Writing and Rhetoric which the majority
has taken as a pre-college course. Furthermore, we also see mul-
tiple cases where students take a non-least popular term-course
group (the corresponding node is hidden) in one term and then
take a least popular term-course group (the diverging links are
shown) next term. This pattern can be observed throughout the
terms, indicating fairly dynamic changes of term-course groups.
Given these findings, academic advisors could further track
these students to understand these least popular course paths and

provide a more informed recommendation for current and future
students.

We also meet R4 by enabling the funnel course. Fig-
ure 6 shows the term-course flexible grouping funneled into
Fundamentals of Computing for the cohort graduating in
2019. In addition to showing how term-course groups funnel
into this course, mousing over the funnel course displays the his-
togram that shows bins of grades (A-F) for each term-course group
for the funnel course. We see that the largest group of students (42
students) took the courses Calculus III, Discrete Math, and
Physics II simultaneously as the funnel course. Within that
group, more students received a C or lower for the funnel course.
We also see that 19 out of 20 students who paired only Discrete
Math with the funnel course received an A in Fundamentals
of Computing. This finding may help academic advisors bet-
ter guide students in planning their course paths to achieve a more
desirable GPA. In Figure 7, we show another example of funnel-
ing the course Data Structures for the same cohort. Grouping
students by all AP courses is employed. Unlike Figure 6 where
the cutoff does not function completely, in this case, the cutoff
hides groups after the funnel course. Academic advisors can ob-
serve the primary course paths leading to Data Structures and
investigate the GPA variations along these paths.

Limitations. Currently, CoursePathVis has two limitations.
First, simultaneous comparison of different years is not available
due to limited screen space. Users need to switch between dif-
ferent settings and get screenshots for side-by-side comparison.
We can resolve this by developing a juxtaposed view to enabling
direct comparison. Second, the current tool may not scale well
if we include elective courses and include all student data at the
college level. More research is needed to reduce visual occlusion
and clutter while supporting large data input and adaptive visual
reasoning.
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Figure 5. (a) and (b): the most and least popular course paths for students graduating in 2022. Grade levels are filtered by selecting only “Fr” (freshman) and
“So” (sophomore) years. Sorting the student groups by GPA is turned off. The display ranges for both group and link are [15, 200] and [1, 4] students, for the

most and least popular course paths, respectively.

Ad-Hoc Evaluation

CoursePathVis was evaluated by the three stakeholders (S1:
the Director of Undergraduate Studies, S2: the Chair of Under-
graduate Curriculum Committee, and S3: an introductory course
instructor) who previously formulated design requirements. We
first demonstrated the tool and showed the results gathered in
the paper to them. Then, they used the tool for free exploration
(each lasted about 30 minutes). We found they could navigate
the Sankey diagram and interpret the visual results even though
they were not familiar with this visualization form. In the end,
we asked them to answer three questions: (1) does CoursePathVis
meet the requirements? (2) what insights were you able to find us-
ing CoursePathVis? and (3) any suggestions to expand or improve
CoursePathVis? Their review is as follows.

S1 stated that “As the director of undergraduate studies in
the department, I often have to deal with evaluating and advis-
ing students based on the path of courses they have taken, both in
high school and then in college. The CoursePathVis tool provides

many of the features that make it much easier to advise the stu-
dents better.” S3 added that “Some of the features we were looking
for had to do with giving us abilities to (1) assess the flexibility of
pathways in our curriculum, (2) better advise students with differ-
ent levels of high school preparedness, (3) spot potential problem
areas in the curriculum and assess them for their workload, and
(4) help in finding if there are ideal combinations of courses to im-
prove student success. The tool helps serve more significant ques-
tions, e.g., do general engineering course grades affect or predict
grades in independent computing courses?” S2 pointed out that
“With a quick assessment, I found that AP experience, especially
for Calculus courses, was a predictor for higher grade perfor-
mance in freshman engineering courses.” This confirmed the in-
sight previously discovered by an assistant dean of the College of
Engineering (COE) who had not used CoursePathVis. S3 stated
that “Surprisingly, I found that AP experience also correlated with
lower grade performance in downstream computing courses that
did not depend on any AP courses’ knowledge.” This led her to
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Figure 6. (a): the cropped view of the Sankey diagram showing the funnel course Fundamentals of Computing and various filters with grouping students by
term courses. All grade levels and courses are selected. The cutoff is enabled. Groups are sorted by GPA, and the range for both group and link is set to [5,

200]. (b): the histogram of term-course groups GPA for the funnel course.
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investigate whether term-course workload affects grades. Using
the tool, she examined what course combination students with
AP Calculus experience typically took in their first two years and
compared that with non-AP students, using different courses as
funnels or just staying with the term-course view. S3 added that “/
found that students having AP experience could skip some courses
that led to busy terms. They took a less heavy combination of
intensive math- and computing-courses in their sophomore year,
especially in those terms that students have anecdotally claimed
are overwhelming.”

Students had only a handful of possible pathways to get
through their curriculum in the past. As the department has of-
fered the required courses in both terms, the number of pathways
multiplies. Allowing some freshmen to get started early with the
curriculum further complicates the pathways. S1 further com-
mented that “With CoursePathVis, we can see all these pathways,
and we can identify those pathways that have resulted in better
outcomes or those that resulted in more problematic ones. This

The funnel course Data Structures with grouping students by all AP courses. All grade levels and courses are selected. The cutoff is enabled.
Groups are sorted by GPA, and the range for both group and link is set to [5, 200].

tool will soon become essential in identifying early on which po-
tential pathways some students should not pursue.”

In terms of improvement, S1 added that “CoursePathVis
shows the flows for a given graduation year; adding a feature
to see the flows for multiple consecutive years could help.” S2
commented that “The tool has allowed us to focus on times when
students’ grades see drops and prompted a deeper qualitative in-
vestigation into the reasons. The COE has used these results to
examine if the performance of students from underrepresented mi-
norities, especially students of color, are disproportionately af-
fected by this drop.” S3 echoed that “If the tool could include
data about gender, race, and ethnicity, that would allow for an-
other type of exploration into our curriculum’s effectiveness.”

Finally, the three stakeholders agreed that overall, the tool
serves as an excellent barometer of the health of the curriculum,
advising, and potential curricular changes.



Conclusions and Future Work

We have presented CoursePathVis, a visual analytics tool for
investigating how students take courses to enable stakeholders to
find patterns, spot outliers and discover insights. The four design
requirements are built in the visual interface and interactions, as
demonstrated by the results. Three stakeholders joined the design
and evaluation of CoursePathVis, and their feedback confirms the
usefulness of the tool. In the future, we will address the tool’s
current limitations and incorporate the stakeholders’ suggestions
into revision. Besides the required courses, we will include elec-
tive courses to provide a holistic picture of the CSE department’s
course paths. We will apply CoursePathVis to other COE depart-
ments and deploy it for student advising and curriculum develop-
ment. Finally, we will extend this tool to handle other event se-
quences, such as career paths, tourist paths, and patient treatment
records.
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