
Transportation Research Part D 104 (2022) 103193

1361-9209/© 2022 Elsevier Ltd. All rights reserved.

Emissions impacts of electrifying motorcycle taxis in 
Kampala, Uganda 

Max Vanatta a, Bhavesh Rathod b, Jacob Calzavara b,c, Thomas Courtright b,d, 
Teanna Sims e, Étienne Saint-Sernin f, Herek Clack g, Pamela Jagger b,h, 
Michael Craig b,* 

a Integrative Systems and Design, University of Michigan, 1075 Beal Avenue, Ann Arbor, MI 48109-2112, USA 
b School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI, 48109, USA 
c Stephen M. Ross School of Business, University of Michigan, 701 Tappan Ave, Ann Arbor, MI 48109, USA 
d A. Alfred Taubman College of Architecture and Urban Planning, University of Michigan, 2000 Bonisteel Boulevard, Ann Arbor, MI 48109, USA 
e Department of Electrical and Computer Engineering, University of Michigan, 1301 Beal Ave, Ann Arbor, MI 48109, USA 
f Zembo Electric Motorcycles, Plot 163 Mutesa II Rd, Kampala, Uganda 
g Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA 
h Gerald R. Ford School of Public Policy, University of Michigan, 735 S. State St., Ann Arbor, MI 48109, USA   

A R T I C L E  I N F O   

Keywords: 
Air pollution 
Boda-bodas 
Economic dispatch 
Electric vehicles 
Energy transitions 
Electric motorcycles 
Hydropower 
Low and middle-income countries 
Motorcycle taxis 
Transportation emissions 
Uganda 

A B S T R A C T   

Large fleets of motorcycle taxis in Kampala, Uganda, and other cities in low and middle-income 
countries (LMICs) emit significant local and global air pollutants. To reduce emissions, companies 
have started selling electric motorcycles. We quantify the use-phase emissions impact of elec
trifying motorcycle taxis by processing real-world trip and charging data from Kampala, then 
estimating charging-caused emissions with an economic dispatch model of the Ugandan power 
system. We then compare these emissions to tank-to-wheels estimates of conventional motorcy
cles over the same trips. We find that electrifying gas-powered motorcycle taxis would reduce 
carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NOx), and hydrocarbon emissions 
by 36%, 90%, 58%, and 99%, respectively, but increase sulfur oxide (SOx), particulate matter 10 
μm or less (PM10), and particulate matter 2.5 μm or less (PM2.5) emissions by 870%, 109%, and 
97%, respectively. PM and SOx emission increases stem from generation at bagasse and heavy fuel 
oil (HFO) point sources far from load centers. Additionally, we find seasonality of the charging 
associated emissions due to dominance of hydropower in the Ugandan grid. Overall, we find clear 
and potential local air pollution benefits of electrifying motorcycle taxis in Kampala.   

1. Introduction 

Emissions of air pollutants threaten the wellbeing of individuals and the climate, locally and globally (Brunetti et al., 2021; IPCC, 
2014; Maggiore et al., 2020; Richards et al., 2021). For individuals in urban regions, these multiscale threats are compounded by the 
localized effects of energy associated emissions. This is particularly true in cities across low and middle-income countries (LMICs) 
where rapid urbanization has caused an increase in poor air quality (The World Air Quality Project, 2020; World Health Organization, 
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2018), contributing to morbidity and mortality (Fann et al., 2013, 2012). In Kampala, Uganda for example, air pollution levels 
frequently exceed levels deemed safe for humans by the World Health Organization (WHO) (Airqo, 2020; World Health Organization, 
2018) reaching five to six times the WHO limits (Kampala Capital City Authority, 2018; Kirenga et al., 2015). 

The United Nations (UN) Sustainable Development Goals (SDGs) provide a framework for efforts to combat both the global and 
local crises linked to airborne pollution. At the global scale, SDG 13 (Climate Action) highlights the urgency of our climate crisis and 
the actions which must be undertaken to reverse it such as implementing climate-aware policies (United Nations, 2020). At a more 
local scale, SDG 11 (Sustainable Cities and Communities) aims to reduce premature deaths linked to pollution (United Nations, 2020), 
which are estimated at 7 million annually across the globe (World Health Organization, 2021). The primary means of reducing these 
deaths and significantly improving health outcomes is through reduced emissions (Berman et al., 2012; Fann et al., 2012; Heo et al., 
2016). SDG 9 (Industry, Innovation, and Infrastructure) provides a specific focus for accomplishing this by reducing the emissions 
intensity, primarily of carbon dioxide (CO2), for the same unit of productivity within a given industry (United Nations, n.d.). 

One of the major emitters of local air pollutants, such as particulate matter (PM), within LMICs is the transportation sector. For 
instance, Kinney et al. (2011) observed an 85% reduction in PM2.5 concentrations as they moved from a major intersection to 100 m 
away in Nairobi, Kenya. This sector includes millions of gas-powered motorcycles within cities across Africa, Southeast Asia, and South 
America (Ampersand Solar, 2020; Ehebrecht et al., 2018; Posada et al., 2011). Across the ten largest motorcycle markets in Asia in 
2010, there were over 200 million two-and three-wheelers accounting for 66% of the total number of vehicles (Law et al., 2015; Posada 
et al., 2011). This number is expected to grow around 4.2% annually with countries like China, India, Indonesia, Pakistan, and the 
Philippines growing 10.4–23.5% annually (Posada et al., 2011). In Uganda between 2007 and 2014, the total number of motorcycles 
grew from 15,979 to 405,124, a third of total vehicles (UNECE, 2018). The use of motorcycles as taxis has been growing in cities within 
LMICs. In Kampala, Uganda, estimates place the number of motorcycle taxis, known locally as boda-bodas, around 40,000, nearly a 
tenth of the total estimated motorcycles in the nation (Ehebrecht et al., 2018). The increased popularity of the motorcycle for personal 
and taxi use is due to many factors including lower upfront costs, lack of regulation, and mobility in highly congested urban contexts 
(Posada et al., 2011; UNECE, 2018). While motorcycles are often seen as a more fuel-efficient alternative (Posada et al., 2011), 
motorcycle emissions have not kept pace with that of cars. For instance, Momenimovahed et al. (2014) experimentally estimate PM 
emissions are three to three hundred times larger per kilometer from four and two stroke engine motorcycles respectively than a car. 
Other pollutant emissions can be worse from 2-wheelers than cars as well, particularly nitrogen oxides (NOx), carbon monoxide (CO), 
and hydrocarbon (HC) emissions (Ehebrecht et al., 2018; Farquharson, 2019; Vasic and Weilenmann, 2006). 

In response to these concerns, a push for the implementation of electric motorcycles is rapidly growing in sub-Saharan African cities 
(Alternet Systems, 2019; Ampersand Solar, 2020; ICLEI Local Governments for Sustainability, 2019), with Rwanda even considering 
banning gasoline motorcycles (Bright, 2020). With so many motorcycles operating and providing necessary services and employment, 
transitioning is not an easy challenge to overcome. Beyond the questions of charging infrastructure, access to electric motorcycles, and 
normalization of electric motorcycles, understanding the true air quality and health benefits of electric motorcycles is crucial for 
policymakers and companies deploying motorcycles. 

Prior research has found emission benefits of electrifying cars and buses in mostly high-income countries. In the United States, 
Choma et al. (2020) found that switching from a gas-powered car to an electric vehicle (EV) improved emissions within urban contexts 
even when a fossil fuel asset charged the EV. Similarly, in Toronto, Canada, Gai et al. (2020) found electrifying all gas-powered cars 
would improve air quality even if EV charging occurred entirely with natural gas. In Belgium, Rangaraju et al. (2015) found that EVs 
would emit less than gas-powered vehicles in a full life-cycle analysis, and that emissions benefits vary more when accounting for real- 
world driving versus standard drive cycles. Weldon et al. (2016) similarly found that driver behavior was critical in evaluating the 
implications of converting from gas to electric cars. Transit buses offer similar levels of study such as Rupp et al. (2019), which uses 
observed behaviors of gas and electric buses in Germany to compare the well-to-wheel (WTW) emissions using flat emission factors. 
Heinisch et al. (2021) similarly studied electric buses, but utilized a dispatch model which allocates electricity generators based upon 
demand, cost, and system constraints to more accurately evaluate the impacts that EV and bus charging could have on a Gothenburg’s 
heating, energy generation and storage infrastructure. 

Despite public and private shifts towards electrified motorcycle taxis and existing air quality concerns, research on environmental 
impacts of electric motorcycle deployment is lagging. Few studies quantify emissions of electric versus gas-powered motorcycles, and 
none do so while accounting for changes in power system operations induced by electric motorcycle charging. This is especially 
important for sub-Saharan African nation-wide power systems, many of which utilize generators fueled by heavy fuel oil, diesel, or 
bagasse (i.e., sugarcane or sorghum residues) with high emission rates of global and local air pollutants (IEA, 2019). Farquharson 
(2019) estimates emissions and health impacts of switching from gas-powered to electric motorcycles in Kigali, Rwanda. To estimate 
emission impacts, Farquharson uses average emission factors (AEFs), which equal total annual grid emissions divided by total annual 
electricity generation. A key disadvantage of AEFs is that they assume a given increase in load results in the same amount of emissions 
regardless of when that increase in load occurs. In reality, an increase in load will likely be served by different generators (and result in 
different emissions) depending on when it occurs. To partly address this disadvantage, Farquharson conducts sensitivities for the fuel 
types likely to be the marginal emitters in Rwanda. Farquharson finds that emissions in Kigali from NOx, CO, particulate matter 10 μm 
or less (PM10), particulate matter 2.5 μm or less (PM2.5), hydrocarbons (HC), and CO2 would all be reduced by switching to electric 
motorcycles. However, peat-burning electricity generators as the marginal emitter could cause CO2 emissions to increase from elec
trifying motorcycles. Koossalapeerom et al. (2019) compared CO2 emissions between gas-powered and electric motorcycles using one 
emission factor across the Thai power system. Cherry et al (2009) performed a similar analysis for the use of e-bikes in China and found 
the emissions associated with the use of e-bikes was lower than that of gas-powered vehicles, but over an e-bike lifecycle it had a 
greater amount of lead pollution due to the battery usage. Ji et al. (2012) carried this further and highlighted the increases in emissions 
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such as PM2.5 for e-bikes in China due to their dependance on coal. However, Ji et al. found decreased mortality from e-bikes despite 
increased emissions due to a lower intake fraction caused by emissions occurring at power plants, further from populations. 

Overall, there is a dearth of research on the emissions impact of electrifying motorcycles, including motorcycle taxis despite their 
prevalence in cities across the globe. Our literature review yielded only one such paper set in the African continent. Moreover, no 
existing research combines observed travel data with a dispatch model of the power system, which can capture generator fleet changes 
in response to charging demand. Such a dispatch model can be particularly valuable in hydropower-dominated systems such as 
Uganda’s, which generates roughly 90% of its electricity annually from hydropower (see Section 2.3.1 & SI.1 for more details). In such 
hydropower-dominated systems, sub-annual hydropower generation budgets can lead to significant heterogeneity in generator re
sponses to increased demand across time, which dispatch models can capture. These responses can lead to large differences in marginal 
emissions for increases in demand, which average emission factors cannot capture. Furthermore, data to quantify marginal emission 
factors are not available for the Ugandan system. 

To begin to fill this gap and provide much-needed information to private and public actors, we quantify the emission consequences 
of electrifying gas-powered motorcycle taxis in Kampala, Uganda. To quantify charging-related emissions, we use an economic 
dispatch model of the power system, which captures individual generator responses across the system to accommodate charging 
demands. To quantify motorcycle taxis operations, we use observed data on trips and charging from 80 motorcycle taxis operating in 
Kampala during 2020. By coupling our economic dispatch model with real-world motorcycle taxi data, we quantify and compare 
emissions associated with gas-powered and electric motorcycle taxi charging. We quantify emissions of seven pollutants: CO2, CO, SOx, 
NOx, HC, PM10, and PM2.5. We test the robustness of our results to using AEFs, on-site solar for charging, and several power system 
operational uncertainties. 

2. Materials & methods 

We use observed data on electric motorcycle taxi trips and charging in Kampala, Uganda, to generate an hourly grid demand 
schedule and an estimated gas-powered motorcycle taxi equivalent behavior. By inputting the demand schedule into our economic 
dispatch model of Uganda’s power system, we evaluate how charging affects grid emissions. The grid side emissions are then compared 
to modeled gas equivalent emissions for the same motorcycle taxi behavior to quantify the emissions consequences of electrifying 
motorcycle taxis. In both cases, we quantify on use-phase emissions, leaving a full life cycle analysis (LCA) for later work. This method 
can be broken into two processes: (1) gas-powered motorcycle taxi modeling and (2) energy demand and power system modeling 
(Fig. 1). 

2.1. Motorcycle taxi modeling 

2.1.1. Data 
We use two observational datasets related to motorcycle taxi trips- a log of all battery swaps and the raw GPS data associated with 

each motorcycle taxi. Both datasets are provided by the electric motorcycle taxi company Zembo. The log of battery swaps is a recorded 
series of entries which include the timestamp of the swap, the incoming state of charge (SOC In), outgoing state of charge (SOC Out), 
battery identifier (ID), and motorcycle taxi ID. The data is recorded to an app using a QR code reader to scan incoming battery, 
outgoing battery, and motorcycle taxi. There were nearly 55,000 swaps between November 2019 and January 2021 for over 130 
motorcycle taxis. We acquire Zembo’s GPS data for the same motorcycles through the private SinoTrack web portal (SinoTrack, 2021). 
The raw GPS data for each motorcycle taxi was collected by an onboard GPS unit which continuously recorded time, latitude, 
longitude, and device state even outside of operational hours. The device state indicates whether the data point is valid or is invalid due 
to lack of reception. Out of the 7,431,972 GPS points available, on average 98% are valid per motorcycle taxi. GPS data was collected 
from 80 motorcycle taxis starting in July 2020. 

Fig. 1. Model Diagram of Our Emissions Modeling Pathways.  
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We clean the GPS datasets before converting them into trips in two steps. First, we ignore datapoints with a device state of ‘invalid’ 
for the remainder of the analysis because each GPS device defaults to a single GPS location when signal is lost regardless of where the 
previous accurate reading occurred. This step removes 2% of GPS entries on average from each motorcycle taxi’s dataset and 1% of 
GPS entries across all motorcycle taxis, which we do not anticipate changing the overall understanding of driving behavior. Second, we 
assume that any point with a speed less than 2 km/hr is stationary but appearing as movement due to GPS drift. We choose this 
threshold because it accurately reproduces a driver’s handwritten trip report. We find the speed between two time-adjacent valid 
points using the Haversine function. 

To quantify and compare emissions from gasoline motorcycle taxis, which arise during trips, and electric motorcycle taxis, which 
arise during charging, we use internally-consistent GPS and battery swap data. To create internally-consistent data, we use working 
weeks in this study, which we define as a week with GPS and battery swap data. This yields GPS and charging data for 1,263 working 
weeks from 80 motorcycle taxis spanning July 13, 2020 to December 31, 2020. While there are social and cultural events that could 
result in non-representative operations in some of the working weeks in our sample set, e.g., around Christmas, our data suggests the 
distance traveled by drivers and variation within these weeks are similar to rest of the year (see boxplot in SI.3). Therefore, we do not 
treat any week uniquely. We characterize each existing motorcycle taxi by the average of its working weeks, providing an understanding 
of number of trips in a given timeframe, distance traveled per trip or timeframe, and charging demand per swap or timeframe. 

2.1.2. Defining trips 
We use GPS distances and speeds calculated above to divide our GPS data into discrete trips, where a trip is defined as a continuous 

period of time where a motorcycle taxi would be turned on and consuming energy. We assume this movement-based trip definition 
because we are primarily focused on the energy and fuel usage, and we do not have pick-up and drop-off data for most days. To create 
our trips, we progress through the GPS points until a speed value above 2 km/hr occurs, where we assume a trip has begun. We 
continue through the points until the speed value has been below 2 km/hr for over one minute, at which time the trip has ended. The 
process begins again, looking for the start of the next trip. We ground-truthed our cut-off period of 1 min with motorcycle taxi drivers, 
who stated that gas-powered motorcycle taxi drivers would shut their engines off beyond 1 min of not moving. 

Once trips are separated, we calculate each trip’s distance traveled, start time, end time, time duration, and time spent stationary (i. 
e., idle time). Additionally, for each trip we use start and end times to calculate the amount of time a motorcycle taxi is stationary 
before the trip and therefore whether the engine of a gas-powered motorcycle taxi would have a hot or cold start. 

2.1.3. Motorcycle taxi charging data 
Using real-world reported battery swap data, we build an hourly charging demand series for an entire year of motorcycle taxi usage. 

Motorcycle taxis used in this study use a 72 V 30 Ah Lithium Iron Phosphate (LFP) battery, which fully charges within two hours. Over 
this two-hour period, we assume a linear charge profile. The typical reported round trip efficiency (RTE) of LFP batteries is 92%, with 
non-ideal discharges sometimes incurring an RTE of 90% or lower (Bala et al., 2012; Eddahech et al., 2015; Pereirinha et al., 2012). We 
assume 90% to account for losses within the system. The LFP batteries used by the observed motorcycle taxis are 2.16 kWh. At a 90% 
RTE, these batteries require 2.4 kWh to charge from 0% to 100% state of charge (SOC). We leave incorporating the float charge or 
nonlinear charging of LFP batteries to future research, as changes in hourly demand due to these factors would be small and, due to the 
small battery size, dominated by uncertainty in how soon after the battery swap timestamp the battery is connected to the charger. 

For each swap, we assume the battery starts charging at the swap timestamp at a constant rate of 1.2 kW until fully charged. We sum 
all the demand across motorcycle taxis and charging location into a total end-use demand for each hour of 2020 and incorporate an 
assumed 3.6% transmission loss (ERA, 2021a) and 16.4% distribution losses (Ministry of Energy and Mineral Development, 2020) 
resulting in 8,760 hourly demands on electricity generators. 

2.2. Gas-powered emissions calculation 

To understand emissions benefits of electric motorcycle taxi, we calculate what the emissions would have been if the defined trips 
were served by a gas-powered motorcycle taxi. The moving emissions are calculated using a per km emission factor, but the value of 
this depends on the stationary time prior to the trip beginning. If the vehicle had been stationary for more than 6 h, we assume a cold- 
start and therefore the initial emissions are higher than a hot-start condition (Yao et al., 2009). We also assume the emission rate 

Table 1 
Emission Factors for Gas-Powered Motorcycle Taxis.  

Gas-Powered Motorcycle Taxi Emission Factors, 100 cc  

CO2 CO NOX SOX PM10, PM2.5 HC 

Hot Start [g/km] 55.5 2.17 0.08 0.0106*** 0.018* 0.016* 0.38 
Cold Start [g/km] 59.3 2.42 0.20 0.0106*** 0.018* 0.016* 0.49 
Idle [g/sec] 0.15** – – – - – – 

All factors from Yao et al. (2009) unless otherwise noted. 
* EPA MOVES Model (Office of Transportation and Air Quality, 2020). 
** Nguyen et al., 2021. 
*** Chester and Horvath, 2009. 
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linearly progresses from the cold-start emission rate to the hot-start emission rate over a period of 4 km (distance traveled in Yao et al. 
(2009)) due to lack of a more detailed relationship. All other trips are assumed to be hot-start emissions rates for the full duration. We 
calculate idle emissions based on a single time-based emission factor rather than hot or cold start values regardless of the location of 
the idle within a trip or the amount of stationary time prior to the trip (Table 1). Finally, we sum all moving emissions and idle 
emissions for a trip to find the total trip emissions. The values we present in Table 1 are not specific to motorcycles in Uganda but are 
instead primarily based upon experimentally observed vehicles abiding by Taiwan Environmental Protection Administration, Phase IV 
standards (Yao et al., 2009). We use these values for our analysis for two reasons: (1) they were the only readily available hot/cold start 
emissions parameters for the majority of pollutants, and (2) more specific emissions rates based upon model and age of typical mo
torcycles in Uganda were not available. Draft Ugandan motorcycle emissions standards for three of our pollutants (CO, NOx, and HC) 
(UNBS, 2021), exceed the values from Yao et al. However, those standards are still in draft form and it is uncertain how well mo
torcycles adhere to those standards (Ayetor et al., 2021). Given these shortcomings, we use the values from Yao et al., possibly 
underestimating conventional motorcycle taxi emissions and emissions benefits of electrification. 

2.3. Power system modeling 

To quantify power system emissions associated with charging the electric motorcycle taxis, we model power system operations 
using an economic dispatch (ED) model of the Ugandan power system. We use an ED model rather than an average emission factor 
method because the emissions associated with charging are not evenly distributed across all generators operating throughout the year, 
but instead are caused by the marginal generator at the time of charging which cannot be captured by the AEF. Additionally, there is no 
readily available data for the marginal emission factor (MEF) in Uganda which would capture this time temporally specific emission 
rate. Therefore, using the ED model we are able to more accurately link additional emissions to the additional load. This is particularly 
important for the Ugandan power system because it generates most of its electricity from emission-free hydropower, but also includes 
high emission peaking plants (see Section 2.3.1) that may disproportionately serve increasing load. The difference between these two 
methods is demonstrated in Section 3.3.1. The ED model is a linear optimization that minimizes total system variable costs while 
enforcing generator- and system-level constraints. Our ED is formulated as follows: 

minimize
∑

t
ct (1)  

s.t. : ct =
∑

i
xi,t × (VOMi + HRi × FCi) ∀i ∈ I, t ∈ T (2)  

Dt ≤
∑

i
xi,t ∀i ∈ I, t ∈ T (3)  

0 ≤ xi,t ≤ XMAX
i ∀i ∈ I, t ∈ T (4)  

xis ,t ≤ XSMAX
is ,t ∀is ∈ Is, t ∈ T (5)  

∑

tq

xih ,tq ≤ XHMAX
ih ,q ∀ih ∈ Ih, tq ∈ Tq, q ∈ Q (6)  

where i, t, is, ih, tq, and q index electricity generators, hours, solar generators, hydropower generators, hours per quarter, and quarters, 
respectively; c = hourly system operational costs [$]; x  = electricity generation [MWh]; VOM = variable operation and maintenance 
cost [$/MWh]; HR = heat rate [MMBtu/MWh]; FC = fuel cost [$/MMBtu]; D = system-wide hourly demand [MWh]; XMAX = maximum 
generation capacity [MWh]; XHMAX = quarterly (3-month) hydropower electricity generation budget [MWh]; and XSMAX = hourly 
maximum solar generation [MWh]. 

We run our ED model for each hour of the year but divide the year into quarters to accommodate seasonal hydrological budgets (see 
Section 2.3.1). We ignore ramping and reserve margins in this study due to data limitations. We implement our ED model in Python 
and solve it using the interior-point method in Scipy (Virtanen et al., 2020). Key inputs to the ED model are the generator fleet, 
generation limits, and demand, which we describe below. Validation of the ED model is located in Supplemental Materials SI.2. 

2.3.1. Uganda power system description 
The Ugandan fleet is composed of large hydroelectric power plants (LHPPs) (855 MW in total), small hydroelectric power plants 

(SHPPs) (148 MW in total), heavy fuel oil thermal power plants (HFO) (100 MW in total), bagasse cogeneration (combustion of the 
byproduct pulp residue of sugarcane) (44 MW in total), and grid connected solar (60 MW in total) (London Economics International, 
2021). We do not consider import and export directly within the model, but export is already encapsulated in the hourly and yearly 
generation data described later in this section. Furthermore, Ugandan imports did not exceed 10.5 MWh in any of the 54 h of imports in 
2017 (Bujagali Energy Limited and Government of Uganda, 2019), a small share of total generation. Due to data limitations, we es
timate variable costs for generators based on their technology type. We estimate variable costs for solar, SHPP, LHPP, bagasse, and 
HFO as $2.4/MWh (World Bank, 2007), $3.5/MWh (World Bank, 2007), $4.41/MWh (World Bank, 2007), $52.53/MWh (IRENA, 
2012; Isabirye et al., 2013; World Bank, 2007), and $451.01/MWh (Engineering ToolBox, n.d.; IEA, 2020; Qatar Petroleum, n.d.; 
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Table 2 
Generation emission factors for all emitting fuel types on the Ugandan grid.  

Emission Factors (kg/MWh)   

CO2 CO NOX SOX PM10 PM2.5 HC 

Bagasse 
Cogeneration 

Primary 
Value 

1,950 (EPA, 1993) 16.3 
(Quintero et al., 
2008) 

1.52 
(Quintero et al., 
2008) 

0.45c 

(Irfan et al., 
2014) 

2.29a 

(EEA, 2019) 
1.96a 

(EEA, 
2019) 

0.27a,d 

(Eggleston et al., 2006) 

Low Value 1,520 
(EPA, 1993) 

8.13b 0.6 
(EPA, 1993) 

0.10a 

(EEA, 2019) 
1.14a 

(EEA, 2019) 
0.97a 

(EEA, 
2019) 

0.09b 

(Eggleston et al., 2006) 

High Value 2,380 
(EPA, 2018) 

31.0 
(Irfan et al., 2014) 

6.43 
(Irfan et al., 2014) 

0.68b 4.57a 

(EEA, 2019) 
3.92a 

(EEA, 
2019) 

0.90b 

(Eggleston et al., 2006)  

HFO Thermal Plant Primary 
Value 

696 
(Eggleston et al., 2006) 

0.22 
(EEA, 2019) 

2.09 
(EEA, 2019) 

7.30 
(EEA, 2019) 

0.37 
(EEA, 2019) 

0.28 
(EEA, 
2019) 

0.03d 

(Eggleston et al., 2006) 

Low Value 635 
(Bujagali Energy Limited and Government of 
Uganda, 2019) 

0.13 
(EEA, 2019) 

0.92 
(EPA, 2010) 

6.61 
(EPA, 2010) 

0.28e 

(Lehtoranta et al., 
2019) 

0.02 
(EEA, 
2019) 

0.01d 

(Eggleston et al., 2006) 

High Value 718 
(Juhrich, 2016) 

0.32 
(Sandmo, 2013) 

6.75 
(Sandmo, 2013) 

28.7 
(Sandmo, 2013) 

0.85e 

(Lehtoranta et al., 
2019) 

2.21 
(EEA, 
2019) 

0.09d (Eggleston et al., 
2006) 

We use the primary value for all scenario results and the low/high values for the emission factor sensitivity analysis (Section 3.3.2). 
a Non-bagasse specific, instead is labelled ‘Agricultural Byproducts’ and ‘Biomass’. 
b When multiple values were not found for the pollutant, the single value had a 50% buffer added on either side. 
c SO2 value used for SOx emissions. 
d Using CH4 reported values. 
e Shipping emissions rather than stationary source. 
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Table 3 
Sensitivity analyses descriptions and rationales.  

Sensitivity Analysis Parameters or Methods Varied Rationale 

AEF-Derived Results ED model emissions results vs. 2019 system-wide AEF (102 kg CO2/ 
MWh) derived emissions for the 1,000 motorcycle taxi scenario. 

We quantify the AEF-derived emissions and compare them to the ED model results to evaluate and demonstrate the 
utility of a power system model compared to method used in previous studies (Section 1) 

Generation Emission 
Factors (EFs) 

HFO & bagasse generation emission factors (values in Table 2) Since we do not have observed all generator EFs, we use generic EFs by plant-type from the literature. These generic 
EFs vary significantly across references, so we quantify how different assumed EFs change charging emissions. 

On-Site Solar 
Utilization 

Installed capacity of on-site solar directly charging batteries: 0 to 5 
kWSolar/motorcycle taxi in 0.5 kWSolar/motorcycle taxi increments. 

On-site solar is increasingly common, so we evaluate how on-site installation for charging batteries changes charging 
emissions. 

‘Must-run’ HFO HFO minimum power: 0 MW (scenarios) and 2.5 MW (5% CF minimum) Our model assumes purely economic dispatch, but HFO is considered ‘must-run’ by the ERA (Bujagali Energy Limited 
and Government of Uganda, 2019). We evaluate the impacts a minimum generation requirement has on charging 
emissions. 

Hydrological Budgets Generation Budgets for LHPP, SHPP, and Bagasse ranging from a typical 
Wet year to 2x Dry year. 
Wet year budget: Based on 2018 Quarterly Generations (ERA, 2019). 
Dry year budget: Based on 2014 Quarterly Generations (ERA, 2019). 
For detailed budgets, see Supplemental Materials SI.4.4 

Meteorological, hydrological, and policy factors drive the generation budgets underlying the ED model. We evaluate 
how inter-annual variability in these budgets changes charging emissions.  
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Rossol et al., 2018; World Bank, 2007), respectively. We also allow for non-served energy in the ED model at a cost of $1,000/MWh. 
For more generator fleet and cost details, see Supplemental Materials SI.1. 

Potential electricity generation from hydropower plants, which provide the backbone of the Ugandan power system, vary with 
meteorological, hydrological, and policy conditions. Uganda has two rainy seasons, March to May and September to November, and 
two dry seasons (Kyatengerwa et al., 2020). To limit potential hydropower generation given observed natural and policy driven 
seasonality, we define quarterly generation budgets: Q1, Jan-Mar; Q2, Apr-Jun; Q3, Jul-Sep; Q4, Oct-Dec for each of the four LHPPs 
and aggregate SHPP. We sum available 2020 monthly generation data for the three of the four LHPPs (Isimba, Bujagali, and Eskom) to 
estimate quarterly generation per LHPP (UETCL, 2020a). There is not 2020 monthly data available for the fourth LHPP (Achwa II). To 
estimate the quarterly generation of Achwa II, we find the quarterly capacity factor for each of the other three LHPPs; average the three 
LHPPs’ capacity factors each quarter; then multiply the quarterly average capacity factor by the nameplate capacity of Achwa II and 
the hours in a quarter. Unlike LHPPs, no 2020 data exists for SHPPs. Instead, the most recent year of generation data for SHPP is 2018. 
To estimate SHPP quarterly generation, we first quantify 2018 quarterly capacity factors across all operating SHPP generators, then 
multiply these capacity factors by the 2020 total nameplate capacity of SHPP and the number of hours in each quarter. 

Potential generation from bagasse combustion and solar power are also constrained by biomass feedstock and solar resources, 
respectively, which we capture. For bagasse, we use the 2018 reported quarterly generation (ERA, 2019) for our budgets. For solar, we 
estimate hourly resource limits using the National Solar Radiation Database (NSRDB) (Sengupta et al., 2018) and PVWatts (NREL, n. 
d.). We obtain site-specific solar resources from NSRDB using the latitude and longitude of each solar plant. Using site-specific hourly 
solar resource and nameplate capacities, we calculate site-specific hourly generation using PVWatts. In the absence of plant-specific 
data, we use default PVWatt assumptions regarding plant parameters, including a 1.1 inverter loading ratio (ILR), 96% inverter ef
ficiency, and 14% system losses. While HFO is considered ‘must-run’ by the ERA (2019) and seen to operate at a fairly consistent 7% 
capacity factor throughout the year (UETCL, 2020a), we assume a purely economic dispatch model and as such HFO behaves as a 
peaking generator, but we test the sensitivity of our results to enforcing a must-run HFO policy (see Section 3.4.2). 

For the power system model, we balance supply and demand each hour, requiring hourly total system demand. Since hourly 
demand is not available, we estimate it as historical hourly generation accounting for transmission and distribution losses. Thus, we 
neglect existing unserved loads, which have been reported (UETCL, 2020b). Unserved load is a nonnegligible issue for the Ugandan 
power system and is linked with transmission and distribution limitations more often than generator capacity (Akena, 2020). Modeling 
transmission and distribution limitations is beyond the scope of this work and therefore left for later investigation. To estimate historic 
demand, we use the most recent publicly available hourly generation profile from 2017 (Bujagali Energy Limited and Government of 
Uganda, 2019), then scale 2017 hourly generation in each quarter to match 2020 quarterly generation (UETCL, 2020a). This scaling 
maintains consistency between quarterly generation budgets and demand. 

Our ED model yields hourly generation by generator. To calculate annual emissions, we sum generation by generator, then multiply 
annual generation by each generator’s fuel-type-specific emission factor (Table 2). Only one emission factor is specific to generators in 
Uganda is publicly available, CO2 from HFO. This value is 7% below the lower end of the range estimate of HFO CO2 emissions factors 
from the IPCC (Eggleston et al., 2006). As a result, we use the Uganda-specific value as the low value in our sensitivity analysis and use 
the higher IPCC emission factor as our primary EF. For the remaining EFs, we collect emission factors from a variety of sources in high 
income nations and LMICs and evaluate the sensitivity of our results to these parameters in Section 3.3.2. 

2.4. Scenarios and sensitivities 

To quantify emissions benefits of electric versus gas-power motorcycle taxis, we run our analysis for four scenarios of motorcycle 
penetrations: 80, 250, 1,000, and 10,000. The existing penetration, 80 motorcycle taxis, is based upon each motorcycle’s observed data 
over their own partial year scaled up to a full year of operation. Given ongoing growth in the electric motorcycle taxi fleet, we also 
consider the emissions consequences of larger motorcycle fleets, specifically of populations of 250, 1,000, and 10,000 motorcycles. As 
we do not have data available for these larger motorcycle fleets, we generate synthetic trip and charging data for them through a 
bootstrapping procedure. Specifically, we create annual trip and charging profiles for each motorcycle in the larger fleets by randomly 
sampling with replacement 52 working weeks of the 1,263 available. We repeat this process with a new random seed value for each 

Fig. 2. Distance traveled per trip. All values greater than 30 are counted in the last column.  
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synthetic motorcycle within the larger populations. For each of these scenarios, we compare CO2, CO, NOx, sulfur oxides (SOx), PM10, 
PM2.5, and HC emissions associated with charging the electric motorcycle taxis to the emissions of a gas-powered motorcycle taxi on 
the same trips. We calculate the emissions associated with electric motorcycle taxis by adding the hourly generation demand for the 
charging in each scenario to the base Ugandan hourly demand, then running our ED model with this combined demand. We quantify 
charging emissions as the difference between annual emissions from base with the charging demand minus annual emissions from base 
demand alone. Given emission and power system uncertainties, we conduct several sensitivity analyses (Table 3). 

3. Results 

3.1. Motorcycle taxi trips and charging 

Fig. 2 provides a histogram of distance traveled per motorcycle taxi trip using our observed data from 135,220 trips totaling 
661,502 km. The average motorcycle taxi trip length was 4.92 km (4.89–4.94, 95% CI) and lasted 17.04 min (17.03–17.06, 95% CI). 
The distribution of trip distances is right-skewed, with a median value of 3.2 km (versus an average of 4.9). Motorcycle taxi trips are 
primarily short distances, with 1–2 km length trips accounting for the highest percent (20%) of trips. Based on personal observations, 
these short trips could capture trips easier via motorcycle than walking due to inadequate pedestrian infrastructure, movement from 
neighborhoods to larger arterial routes with minibuses, and non-customer trips such as moving from passenger drop-off to pick-up. 

Fig. 3. Distribution of trips and charging throughout the day. These values are cumulative over the entire working week dataset. Trips, hatched, 
correspond to the left axis and Charge [kWh], grey, corresponds to the right axis. 

Fig. 4. Generation mix associated with the additional charging load. All data values on the bars are in MWh/year/motorcycle taxi.  
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Only 2% of trips were longer than 20 km. Trips were distributed throughout the day growing sharply from 6 AM until 9 AM and 
remaining high until 7 PM, then declining to negligible levels through 11 PM. This aligns with the daily charging pattern, which peaks 
in morning and evening and negligible charging at night (Fig. 3). Based on observations in Kampala, the trips serve many purposes 
including deliveries and commuting, so occur at high levels throughout the entire day. 

Fig. 5. Annual emissions (in kg) per motorcycle taxi across scenarios. Note differing y-axis scales between pollutants.  

Fig. 6. Hourly difference in generation [kWh/motorcycle taxi] by source to charge a single motorcycle taxi in the 1,000 motorcycle taxis scenario. 
In Q2 and Q4, increased LHPP generation in some hours is offset by decreased generation in other (typically nighttime) hours due to quarterly 
hydrological budgets (not shown). In Q3, the same occurs for SHPP. Additionally, the SHPP in Q3 is displaced from other days in the quarter, as 
SHPP sees no change overall due to charging. 

M. Vanatta et al.                                                                                                                                                                                                       



Transportation Research Part D 104 (2022) 103193

11

On a weekly basis (n = 1,263), motorcycle taxis average 105 trips (97–113, 95% CI). Over these trips, each observed motorcycle 
taxi travels 516 km/week (471–561, 95% CI) and charges 22.6 kWh/week (20.3–24.9, 95% CI). The average distance traveled between 
battery swaps was 35.8 km 11.8–58.9 km, 5th-95th percentile) and the average SOC difference was 64.6% or 1.5 kWh (23%-94%, 5th- 
95th percentile). To generate a synthetic annual series of motorcycle taxi trips throughout a full year, we randomly sample from our 
population of motorcycle taxi working weeks (see Section 2.4). Based on these synthetic annual series, each motorcycle taxi in our 
existing population of 80 would travel 26,757 km over 5,482 trips (Supplemental Materials SI.3). This requires 1,210 kWh/year/ 
motorcycle taxi of charging. Given transmission/distribution (T/D) losses (Section 2.3.1), this charging demand leads to 1,504 kWh/ 
year/motorcycle taxi of additional demand on the Ugandan power system. As we model increasing numbers of motorcycle taxis, the 
above per-motorcycle taxi metrics remain fairly constant with only slight variation caused by the random sampling process (Sup
plemental Materials SI.3). 

3.2. Motorcycle taxi emissions 

Given charging demand of 1.50 MWh/year/motorcycle taxi, we run our ED model with and without this charging demand to 
estimate the electricity source for charging. We find charging demand is met by LHPP, bagasse and HFO generators, with each 
generator type meeting charging demand in a particular quarter in all scenarios except 10,000 motorcycle taxis. LHPP generators serve 
motorcycle taxi demand in Q1 and Q3, bagasse generators serve it in Q2, and HFO generators serve it in Q4. This seasonal allocation is 
due to the quarterly budgets and is discussed in Section 3.2.1. With the charging demand fairly evenly distributed throughout the year, 
LHPP, bagasse, and HFO serve 0.75 MWh, 0.38 MWh, and 0.37 MWh respectively (Fig. 4). As the load is served by primarily a single 
generator type in each season, the ratio of energy provided by these fuel types remains fairly constant as we increase the number of 
motorcycle taxis to 1,000. 

Due to electricity generation changes, each motorcycle taxi’s annual charging emissions total 1,002 kg CO2, 6.2 kg CO, 1.3 kg NOx, 
2.9 kg SOx, 1.0 kg PM10, 0.8 kg PM2.5, and 0.1 kg HC. Annual charging emissions per motorcycle taxi vary little (by ±6.6 kg CO2, ±0.1 
kg all others) between the 80, 250 and 1,000 motorcycle taxi scenarios. Gas-powered motorcycle taxis annually emit 1,560 kg CO2, 61 
kg CO, 3.1 kg NOx, 0.3 kg SOx, 0.5 kg PM10, 0.4 kg PM2.5, and 11.2 kg HC with little variation (by ±1 kg CO and ±5 kg CO2). Fig. 5 
displays these annual emissions results. Thus, we estimate switching from gasoline to electric motorcycle taxis would reduce emissions 
of CO2 by 36%, CO by 90%, NOx by 58%, and HC by 99%, but would increase emissions of SOx by 870%, PM10 by 109%, and PM2.5 by 
97%. On an annual basis, for every motorcycle taxi converted to electric, emissions would be reduced by 558 kg CO2, 55 kg CO, 1.8 kg 
NOx, and 11.0 kg HC but would be increased by 2.6 kg SOx, 0.5 kg PM10, and 0.4 kg PM2.5. 

In the 10,000 motorcycle taxi scenario, bagasse provides a greater share of electricity for charging than in the other scenarios. 
Specifically, of the 1.50 MWh charging demand per motorcycle per year, LHPP, bagasse, and HFO would contribute 0.51 MWh, 0.62 
MWh, and 0.37 MWh respectively. An increasing share of bagasse-fired generation alters the emissions benefits of switching to electric 
motorcycle taxis: switching from gasoline to electric motorcycle taxis would reduce emissions of CO2 by 6%, CO by 83%, NOx by 44%, 
and HC by 98% but would increase emissions of SOx by 900%, PM10 by 225%, and PM2.5 by 209%. 

3.2.1. Seasonality of emissions 
Generation seasonality strongly influences emissions associated with charging motorcycle taxis. In the 80, 250, and 1,000 

motorcycle taxis scenarios, charging emissions only occur during low hydroelectric budget quarters (Q2, Q4) when bagasse and HFO 
generation served charging demand (Figs. 6 and 7). Furthermore, charging-induced grid emissions mostly occur in Q2 when bagasse 
contributes to meeting charging demand. In the 1,000 motorcycle scenario, for example, 74%, 99%, 86%, 86%, and 90% of annual 
CO2, CO, PM10, PM2.5, and HC emissions occur during Q2 (Fig. 7). Conversely, 94% of SOx emissions occur during Q4 due to HFO’s 
high SOx emissions rate relative to bagasse. Similar results occur for the 10,000 motorcycle taxis scenario, but bagasse generation also 
serves charging demand in Q1, increasing grid emissions in that quarter. Even at 10,000 motorcycle taxis, though, all charging demand 
in Q3 is met by LHPP and SHPP, resulting in no charging-induced emissions in that quarter. 

Fig. 7. Distribution of emissions between quarters. 80, 250, and 1,000 motorcycle taxis scenarios are all within a few percent and therefore solely 
the 1,000 motorcycle taxis scenario is presented as the representative scenario. Pre-charging, system-wide emissions are labeled as ‘Grid’ and shown 
for comparison to the additional loads of charging. 
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3.3. Sensitivity analysis 

3.3.1. AEF derived results 
We calculate the AEF as: 

AEF =

∑
iEFi × xi
∑

ixi
(7)  

where i indexes generator technology; AEF = average emission factor [kg/MWh]; EF = emission factor [kg CO2/MWh]; and x =
electricity generation [MWh]. In 2019, the most recent year of data, bagasse, HFO, and hydropower (LHPP and SHPP) electricity 
generation totaled 197, 104, and 4,113 GWh, respectively (ERA, 2021b). Based on emission rates in Table 2, this generation mix yields 
which we used to calculate AEFs of 103 kg CO2/MWh, 0.73 kg CO/MWh, 0.12 kg NOx/MWh, 0.19 kg SOx/MWh, 0.11 kg PM10/MWh, 
0.09 kg PM2.5/MWh, and 0.01 kg HC/MWh. Using this simplified AEF method, we find that charging a single motorcycle taxi for a year 
would cause the emission of 155 kg CO2, 1.10 kg CO, 0.18 kg NOx, 0.29 kg SOx, 0.17 kg PM10, 0.14 kg PM2.5, and 0.02 kg HC, versus our 
ED model result of 972 kg CO2, 6.2 kg CO, 1.3 kg NOx, 2.9 kg SOx, 1.0 kg PM10, 0.8 kg PM2.5, and 0.3 kg HC. Thus, using an AEF to 
calculate charging-induced emissions would underestimate emissions by 82–90% depending on the pollutant. 

3.3.2. Generation emission factors 
Uncertainty in bagasse and HFO emission factors (EFs) (Table 2) most affect the relative value of electrifying motorcycle taxis for 

NOx and PM emissions (Supplemental Materials SI.4.1). All other EF uncertainties do not qualitatively change our results. Using the 
high estimate for HFO NOx EF would largely eliminate the NOx benefits of electrifying motorcycle taxis that we previously observed 
(Section 3.2). The high estimate bagasse NOx EF would increase NOx emissions by 3%. With respect to PM2.5 and PM10, EF un
certainties do not qualitatively change our prior finding that electrifying motorcycle taxis would increase total PM2.5 and PM10 
emissions. However, the low range PM EFs for bagasse bring charging-induced emissions to within 19% and 10% of gas-powered 
motorcycle emissions for PM10 and PM2.5 respectively. 

3.3.3. On-site solar utilization 
Using on-site solar for charging roughly equally displaces generation from LHPP, bagasse, and HFO generation sources, so reduces 

charging-induced emissions. Installation of 1 kWSolar/motorcycle taxi reduces charging-induced emissions by roughly 60% (Supple
mental Materials SI.4.2). Increasing solar deployment exhibits diminishing returns for the current charging schedule, such that 
deploying 5 kWSolar/motorcycle taxi reduces charging-induced emissions by roughly 70%. These additional emission reductions occur 
during morning and evening charging times. 

3.3.4. ‘Must-run’ HFO 
HFO is considered ‘must-run’ by the ERA (ERA, 2019) and operates at a fairly consistent capacity factor throughout the year 

(UETCL, 2020a). Enforcing HFO as must-run in our ED model by setting its hourly minimum power output at 5% of its nameplate 
capacity (or at 2.5 MW) does not affect our results except in the 10,000 motorcycle taxis scenario. In that scenario, the must-run policy 
reduces charging-induced emissions to the level of the other three taxi scenarios (Supplemental Materials SI.4.3). The must-run policy 
increases HFO generation during Q1 by displacing LHPP generation, which frees up LHPP generation budget to charge the 10,000 
motorcycle taxis. Q2 and Q4 emissions per motorcycle taxi remain the same due to the complete reliance on either bagasse or HFO for 
battery charging during these times. 

Fig. 8. Emissions under varying hydrological conditions for 1,000 motorcycle taxis scenario. SOx emissions correspond to the right axis, all other 
pollutants to the left. The grey line shows the gas equivalent emissions for all pollutants except SOx which has its reference line in red. 
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3.3.5. Hydrological budgets 
Given the reliance of the Ugandan power system on hydropower, we test the sensitivity of our results to varying hydrological years. 

We find that motorcycle taxi charging can be served completely by hydropower in a Wet year compared to the 50% hydropower in our 
study results (Section 3.2). Once we hit a Dry year, only 25% of the charging load is served by hydropower with 50% served by Bagasse 
and 25% by HFO (Supplemental Materials SI.4.4). In drier conditions than the Dry budget, LHPP generation for charging continues to 
decline and is replaced first by bagasse generation and second by HFO generation. In conditions twice as dry as the Dry year, all 
charging load is served by HFO alone. 

These changes in generation lead to changes in emissions. Across hydrological years, emissions of CO, NOx, and HC would remain 
lower than or equal to gas-powered emissions (Fig. 8). Charging-induced emissions would be zero in the Wet year for all pollutants. CO2 
emissions could be greater than but within 10% of gas-powered emissions in a 2x Dry year. In the 2x Dry year, the SOx emissions would 
reach their maximum at 3,800% of gas-powered equivalent. PM10 and PM2.5 emissions would grow to above 350% during a Dry year 
due to the increased use of bagasse generation but would drop to nearly equal to the gas-powered equivalent in a 2x Dry year as all 
generation is served by the HFO generators. 

4. Discussion 

In this study, we quantified how the transition from gas-powered to electric motorcycle taxis in Kampala, Uganda, would impact 
emissions by coupling real-world trip and charging data from 80 electric motorcycle taxis in 2020 with a power system dispatch model. 
For fleets of electric motorcycle taxis up to 1,000 taxis, we found that converting a gas-powered to electric motorcycle taxi would 
reduce annual emissions by roughly 588 kg CO2, 55 kg CO, 2 kg NOx, and 11 kg HC, but would increase annual emissions by 2.6 kg SOx, 
0.5 kg PM10, and 0.4 kg PM2.5. As a percent of gas-powered motorcycle taxi emissions, these changes equal reductions of roughly 38% 
of CO2, 90% of CO, 58% of NOx, and 97% of HC, and increases of roughly 870% SOx, 109% PM10, and 97% PM2.5. For a fleet of 10,000 
electric motorcycle taxis, emissions from electrified taxis are significantly greater for most pollutants, particularly PM10 and PM2.5, due 
to greater bagasse-fired generation for charging. 

Our results indicate that transitioning from gas-powered to electric motorcycle taxis would introduce trade-offs related to sus
tainability. Across all electric motorcycle taxi scenarios studied, we found electrifying motorcycle taxis would reduce CO2 emissions. 
Thus, electrifying motorcycle taxis would make progress towards UN SDG 9.4 (United Nations, n.d.) and help mitigate climate change 
per UN SDG 13 (United Nations, n.d). Given that millions of gas-powered motorcycles are in use in cities across Africa, Southeast Asia, 
and South America (Ampersand Solar, 2020; Ehebrecht et al., 2018; Posada et al., 2011), our results suggest electrifying motorcycles in 
these locations could make a significant contribution to climate mitigation. Unlike for CO2 emissions, we found electrifying motorcycle 
taxis would have mixed effects on local air pollutants. In particular, we found emissions of PM10 and PM2.5 associated with charging 
electric motorcycles are close to double those of gas-powered motorcycles. These emission increases might undermine SDG 11.6.2, 
which aims to reduce PM levels in cities (United Nations, n.d), but this depends on the source of the emissions. In the case of electric 
motorcycles, bagasse power plants primarily responsible for PM emissions are located farther from population centers than gas- 
powered motorcycles, which are at street level. The closest bagasse plant to a population center is Kakira Sugar, which sits approx
imately 5 miles from Jinja and 40 miles from Kampala. Because power plants are farther from population centers than gas-powered 
motorcycles, the intake fraction of PM emissions would likely be lower from power plants than gas-powered motorcycles (Greco et al., 
2007; Humbert et al., 2011). As a result, electrifying motorcycle taxis could improve health outcomes despite increasing total PM 
emissions. To that end, Ji et al. (2012) found electrifying bicycles increased total PM2.5 emissions but improved health outcomes due to 
increased PM emissions occurring at coal-fired power plants far from population centers. 

Similar to PM emissions, we found charging electric motorcycles increases emissions of SOx compared to gas-powered motorcycles. 
This primarily comes down to the sulfur content of the two fossil fuels generating the energy for the motorcycle taxis. The international 
trend for gasoline is decreased sulfur content to prevent SOx emissions. Many nations have regulations set at 30–300 ppm sulfur 
content in gasoline, correlating to a 0.03–0.3% sulfur composition of the fuel itself (Jaganathan, 2014; Transport Policy, n.d.). This is 
almost an order of magnitude smaller than the typical range of HFO sulfur composition of 0.1–4.5% (ExxonMobil, n.d.; Woodyard, 
2009). However, HFO emissions (and bagasse emissions) can be controlled through point source emission controls, e.g. flue gas 
desulfurization, a more promising control route than improving emissions of hundreds of thousands of motorcycle taxis. 

We performed several sensitivity analyses related to hydrological and power system uncertainties. Using AEFs instead of our ED 
model significantly underestimated CO2 emissions associated with electric motorcycle taxis, as the AEFs miss seasonal hydropower 
generation constraints that require HFO and bagasse generation to meet some charging demand. This difference in ED model and AEF- 
derived results highlights the value of modeling the power system to evaluate charging emissions. Sensitivity analyses related to on-site 
solar deployment and a must-run HFO policy indicate both would reduce emissions from electric motorcycle taxis, making them more 
favorable relative to gas-powered motorcycles. Analyses related to variable hydrological years indicate significant sensitivity of 
electric motorcycle taxi emissions to hydrology with the exception of CO, NOx, and HC emissions. Wet years generally reduce emis
sions, with the potential for near-zero charging emissions, while dry years generally increase emissions, with SOx emissions exhibiting 
the greatest possible increase of up to 3,800% of gas-powered emissions in the driest conditions. Thus, the relative emission advantages 
of electrifying motorcycle taxis could vary significantly between years depending on hydrology, and could be significantly affected by 
future climate change. 

Our results have several implications for policymakers in Uganda and other countries aggressively pursuing electric motorcycles 
like Rwanda (Bright, 2019). First, while our research quantifies emissions, air quality impacts are most relevant to human health. 
Understanding air quality impacts should therefore be a priority for future efforts sponsored by policymakers. However, our results 
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suggest electrifying motorcycle taxis would likely yield air quality benefits in Kampala, justifying support from policymakers. Second, 
we found that nuances of not only meteorological but also human-driven variations in hydropower usage throughout the year are of 
key importance when evaluating the emissions benefits of electrification. Given limited hydropower budgets, electrification of mo
torcycles will only yield deep emissions cuts for all pollutants if accompanied by supply-side actions. This interaction is crucial for 
policymakers to account for when considering electrification 

5. Conclusions 

Our research quantifies emissions for motorcycle taxis in Kampala, Uganda. Due to the specificity of our power system assumptions 
and underlying trip data, our results cannot be directly extrapolated to private motorcycles or other nations. However, our methods 
can be applied to private motorcycles or other nations by incorporating local parameters, and in turn improve our understanding of the 
factors that decision makers can or cannot manipulate to improve environmental and human health outcomes resulting from electric 
motorcycles. 

Many opportunities for further research exist. In studying an electrified fleet of 10,000 motorcycle taxis, we assume no changes to 
the power system from its current composition. Given the time required for this number of electric motorcycle taxis to enter operation, 
this assumption will likely not hold. Additional emission-free hydropower or solar capacity could help meet the demand from these 
electrified motorcycle taxis and improve charging-associated emissions, which future research should explore. To that end, the 
generator fleet is rapidly growing, including 774 MW of hydropower and 50 MW of thermal construction in the next four years (London 
Economics International, 2021) though the long-term balance of fossil fuel versus hydroelectric could be impacted by recent oil and gas 
discoveries (U.S. Energy Information Administration, 2016). Transmission and distribution (T&D) limits can result in sub-optimal use 
of electricity generators in Uganda (Akena, 2020), which future research can embed within a dispatch model. New T&D projects in 
construction and planning will likely ameliorate these limits (UETCL, 2020c, 2020d); 51 million USD in T&D investments occurred 
during 2020 (Ministry of Energy and Mineral Development, 2020). Additionally, future research should move beyond emissions es
timates to quantify air quality and public health benefits from electrifying motorcycle taxis. Finally, previous work has highlighted the 
concerns around resources and materials used in electric vehicles such as Cherry et al. (Cherry et al., 2009). Further research into the 
impacts of motorcycle electrification should incorporate a full life cycle analysis as our study solely considered use-phase emissions. 

Overall, this research had three objectives: (1) quantify the emissions impact of transitioning from conventional gas powered to 
electric motorcycle taxis, (2) evaluate the benefits of calculating these impacts using an ED model, and (3) evaluate the robustness of 
these results across key uncertainties in EFs, grid constraints, and hydropower budgets. With respect to objective 1, our methods 
indicate electrifying motorcycle taxis can, at the system level, yield CO2, CO, NOx, and HC emission reductions concurrent with PM2.5, 
PM10, and SOx emission increases. Through high spatiotemporal resolution, our methods further indicate PM2.5 and PM10 emission 
increases will occur at a few point sources far from population centers, shifting PM and SOx emissions away from populations and to 
point sources that decisionmakers could fit with emission controls. With respect to objective 2, we demonstrated that the use of an ED 
model for quantifying charging-induced emissions yields values six times higher than solely relying on average emission factors, which 
further provide a more complete assessment of charging associated emissions and allow for seasonality of emissions to be found. With 
respect to objective 3, we demonstrated our results are robust to uncertainties in EFs, generator policies, and yearly hydropower 
budgets with the opportunity to drive charging emissions even lower. Overall, these results indicate electrifying motorcycle taxis in 
Kampala can yield global sustainability benefits and, depending on air quality and health impacts, potentially local sustainability 
benefits. 
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