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Abstract—This paper describes a generalizable framework for
creating context-aware wall-time prediction models for HPC
applications. This framework: (a) cost-effectively generates com-
prehensive application-specific training data, (b) provides an
application-independent machine learning pipeline that trains
different regression models over the training datasets, and (c)
establishes context-aware selection criteria for model selection.
We explain how most of the training data can be generated on
commodity or contention-free cyberinfrastructure and how the
predictive models can be scaled to the production environment
with the help of a limited number of resource-intensive generated
runs (we show almost seven-fold cost reductions along with
better performance). Our machine learning pipeline does feature
transformation, and dimensionality reduction, then reduces sam-
pling bias induced by data imbalance. Our context-aware model
selection algorithm chooses the most appropriate regression
model for a given target application that reduces the number
of underpredictions while minimizing overestimation errors.

Index Terms—AI4CI, Data Science Workflow, Custom ML
Models, HPC, Data Generation, Scheduling, Resource Estima-
tions

I. INTRODUCTION

Problem Statement: Access to high-performance comput-
ing (HPC) cyber-infrastructures (CI) like Ohio Supercom-
puter Center' (OSU), Texas Advanced Computing Center?
(TACC), or Amazon Web Services has opened up venues
for researchers/students/employees across different domains
to participate in state-of-the-art research to develop compu-
tationally intensive scientific workflows like such as genome
sequencing®, weather forecasting®, and high resolution-image
processing at scale. These users do not understand the shared
cyberspaces and the resource allocation policies. They build
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their models on commodity environments, roughly estimate
the resource allocations for HPC environments based on their
experience, and submit jobs with default, make-do, or work-
able allocation requests. Users often overestimate the resource
requirements, especially when there is no history of execu-
tions, leading to longer wait times for resource allocations. On
the other hand, underestimations can schedule the jobs sooner,
but if the application does not execute till completion within
the allocation, it gets forcefully terminated. The user ends up
re-submitting the job, but this time with a high overestimation,
so it executes till completion. The users are also billed for these
utilizations (even the terminated jobs). This work analyzes
the job scripts [18] or execution history and input features
[2] to estimate an accurate walltime. The HPC clusters get
frequent upgrades, and new software/hardware components are
deployed to make them faster. This tips off the prior user
estimations made on older environments. Hence we need a
robust framework that can capture the resource requirements
of a user application and predict its execution time given the
context’ to avoid underpredictions and reduce overestimations
[16]. This requirement leads us to the first challenge, “How can
we build a prediction model without sufficient training data?”.
We propose to build a pipeline that automatically generates
training data given to a user (target) application by profiling
its executions with different configurations to build a walltime
estimator.

Training Data Requirements: The execution time of
a target application depends on the execution environ-
ment, input data characteristics, and application configura-
tions. We broadly classify them as “application-specific” and
“environment-specific” features. In this work [1], the authors
try to estimate the execution time by instrumenting the code
against varying input and profiling the features (like no. of
loops or branches). We treat the application as a “black box”

5 An application execution context includes its configurations, input char-
acteristics, and the execution environment



and profile its characteristics by executing it with varying
application configurations and resource allocations (extrinsic
features). The task of generating data draws our attention
to the following challenges: “How many samples should we
generate before training a regression model that can accurately
predict walltime?”, “How to make these models robust to
changes in environment or application configuration?” and
“How efficiently can we generate these training samples
without incurring high data generation costs?”. We propose to
build a “context-aware” data generation module that samples
the extrinsic feature with the help of a human in the loop. We
distribute the executions such that we generate more scaled-
down and a few full-scale runs to reduce the overall generation
time and increase the sample space.

Tractability: Building a custom regression model for every
target application is expensive and time-consuming. In our
previous work [19], we explored the tractability of the ini-
tial framework by testing the application-specific regression
models trained on data gathered from different execution
environments. Applications in a family share the features but
differ in their distributions. We explored the feasibility of re-
using the pre-trained models to estimate the walltime of a
new application in the family. With the growing popularity of
the applicability of Artificial Neural Networks (ANNSs) across
domains, many scientific workflows are leaning towards incor-
porating these models into their frameworks. So the workload
from various AI/ML models has tremendously increased in the
past few years [8]. The CIs have reserved nodes customized to
work efficiently with DNN models and frameworks. Building
transferable models to predict execution times for the family
of applications in ANNs can improve the efficiency of our
framework. However, we fall back to creating application-
specific training runs and models when applications do not
share the feature space. Applications can also differ in resource
utilization and have diverse configurations that make their
walltime feature space unique. We need to select a suitable
regression model w.r.t. the training data that adapts to the
nature of its characteristics. We propose the next module of
our framework, “Building Regression Models,” for the target
application that follows through a traditional data-science
pipeline to prepare the training data and build regression
modules.

Model Selection: In our previous work [19], we manually
profiled two unique regression models against three different
applications and their feature spaces to observe their appli-
cability. In this work, a model (model;) with the best accu-
racy for environment-specific runs was identified at specific
points of new data availability. As new environment-specific
executions become available, we re-trained these models and
picked the new best model (model;11). In this paper, we how
how to automate this process to add diverse regression models
into the selection pool and select the best application-specific
model for a chosen policy that filters out less useful models
at each step.

Model Evaluation: Regression models learn to estimate
target values by being trained against standard loss functions

such as mean square error. These standard loss functions are
indifferent to negative and positive predictions and only aim
to get the loss as close to zero as possible. That is, a slight
underprediction is also considered an accurate estimation.
This approach, however, does not fit our goals because an
underprediction of walltime will terminate the run, incurring
the sunk cost of execution as well as the added cost of re-
execution. Therefore, we need new metrics for evaluating
the performance of walltime prediction models i.e. those that
treat the direction of the errors differently. In other words,
we aim to reduce underpredictions while still minimizing
overestimation errors. To this end we present a “policy” that
compares the regression models against this requirement when
we evaluate their prediction performance.

In our prior work [19], we demonstrated the feasibility
of “democratizing” an automated training data generation
pipeline that can easily accommodate new target applications.
We demonstrated the generalizability of the predictions with
changes in the computational environment by using a train-
ing approach that mixes scaled-down and limited full-scale
training. This paper proposes a more streamlined pipeline
to explore the entire data science life-cycle for generating,
analyzing, pre-processing, building and, finally, using these
prediction models. In particular, we present model selection
criteria to pick the best regression model from the candidate
pool given a target application and the policy it must operate
in. This research pipeline has three modules with unique
functionality and concrete goals :

1) The “Generating and Preparing Training Data” mod-
ule automatically and systematically generates com-
prehensive, diverse “scaled-down,” along with limited,
selective “full-scale” runs with minimal human inter-
vention.

2) The “Building Regression Models” module standard-
izes and prepares the data, trains the selected regres-
sion models with the appropriate hyper-parameters, and
stores them for later use.

3) The “Selecting Appropriate Prediction Model” mod-
ule selects the most appropriate model from a pool of
pre-trained models for a given policy.

Our work simultaneously explores the three dimensions
influencing execution time -execution environment, application
hyperparameters, and input data. Similar to Ernest [20], our
work explores an application-independent approach to predict
the execution time based on the history of executions. Unlike
Ernest, we build only one regression model for different
execution environments by characterizing their compute and
memory features. To limit the control features, we explored the
applications whose execution times are minimally influenced
by the distribution of input samples, like Trimmomatic or
unaffected by them, like training individual DNN models,
unlike applications like CameraTraps [21] where the resolution
and distribution of images would influence the training time.
Our previous work [19] showed that existing models within a
family could be used to make predictions for similar models in
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Fig. 1. Visualising the Modules in our Research Pipeline applied per Target
Application

a family (like training on VGG16 and predicting for Resnet50).
However, suppose the network’s architecture has considerable
changes; we need to treat the model as a unique application,
generate scaled-down and full-scale data, and build customized
predictive models.

Note that when submitting batch jobs, the (requested) wall-
time refers to the maximum amount of resource allocation time
needed for execution. Throughout this work, we use the terms
walltime and execution terms interchangeably. The datasets
and code could be found at GitHub®

II. TARGETED APPLICATIONS AND EXECUTION
ENVIRONMENTS

This section describes the characteristics of the three tar-
geted applications and their execution environments.

A. Targeted Applications

These three applications were selected in order to represent
different points in the HPC application spectrum, with respect
to the intensity of their compute, input-output (IO), and
memory requirements.

1) Gray-Scott [5] is a chemical diffusion simulator based
on Gray Scott equations. It takes the diffusion coefficient
of two reacting chemical substances, their densities,
feed/kill rate, and the number of time steps in the
reaction to simulate diffusion using a 3D array. This
simulator initializes and manipulates the array to imitate
the diffusion over a large range of time steps, and is
therefore compute-intensive.

2) Trimmomatic: Pre-cleaning is essential in genome se-
quencing and assembly to achieve higher-quality assem-
blies. It is a popular “pre-cleaning” tool used to remove
impurities from Illumina [6] genome sequencing short
reads by trimming/removing the “noisy” bases that do
not meet quality requirements while retaining the higher
quality bases. Trimmomatic reads a set of short reads,

Shttps://github.com/manikyaswathi/PreditingExecutionTime

processes them, and writes them back to the file. This
application is therefore both compute and I/O-intensive.

3) Family of DNNs: We target three large sequential Con-
volutional Neural Network (CNN) models (each with
a few million tuneable parameters) provided by Keras
API on the TensorFlow Framework [9] for image clas-
sification (VGG16 [10], ResNet50 [11], and InceptionV3
[12]). For each of these models we pre-load the training
data as red, green, and blue (RGB) values into memory
before initializing and training them. These applications
are therefore both compute and memory intensive.

B. Execution environments

Table I describes the execution environments (Linux work-
station and OSC [17]) used for the generation of training data.

TABLE I
EXECUTION ENVIRONMENTS FOR DATA GENERATION

Description
Linux 2.3 GHz 8-Core Intel Core 19 with 16 GB
workstation | 2400 MHz
Owens D;ll PowerEdge C6320 two-socket servers
(CPU): with Intel Xeon E5-2680 v4 (Broadwell,
14 cores, 2.40GHz) 28 processors, 128GB mem
Owens Dual Intel Xeon 6148s Skylakes 40
(GPU) cores per node @ 2.4GHz, 192GB mem
Pitzer Dual Intel Xeon 8268s Cascade Lakes
(CPU) 48 cores per node @ 2.9GHz 192GB mem
Pitzer Dual Intel Xeon 8268s - Dual NVIDIA Volta
(GPU) V100 w/32GB GPU memory 48 cores per node
@ 2.9GHz, 384GB mem

III. METHODOLOGY

In this section, we describe the three modules of our
research pipeline (Figure 1) viz. Generating and Preparing
Training Data, Building Regression Models, and Selecting
Appropriate Prediction Model. We profile three kinds of
applications, as noted in Section II. Given an application and
its input, the framework automatically profiles it in different
execution contexts ’. This training data then undergoes feature
engineering, data preparation, prediction model building and
model selection. We describes these steps next.

The execution time of an application depends on
“application-specific” configurations such as the hyperparam-
eters (e.g. the batch size, the number of training epochs,
optimizer etc.) and input data characteristics (such as its size).
It also depends on “environment-specific”’ characteristics such
as the configurations of the compute nodes (e.g. GPU/CPU,
no. of cores, memory, and 10 bandwidth). We also capture
features from the application’s run-time “profiling”, such
as the max read/write bytes and bandwidth consumed. To
build a machine learning model that accurately predicts an
application’s execution time, we need ‘“sufficient” training
data with a good distribution of these features. We run the
targeted application against different inputs, hyperparameters,
and environments to generate training data over a reasonable
distribution over user-defined configurations. Note that these
configurations consist of extrinsic parameters, i.e., parameters

7Tsystem configurations, inputs, and application hyperparameters



that change the application’s behavior (execution time) without
visibility into or modifying its implementation. A regression
model must learn to predict continuous values (in this case,
walltime) from these features. We captured 29 features for
Gray-Scott, 26 features for Trimmomatic, and 16 features for
our family of DNNs. Figure 2 shows the features influencing
the execution time for each targeted application. Note that the
feature space comprises both numerical and categorical values.

A. Research Pipeline

We use the following automation tools to execute and profile
the target application against a set of configurations:

e The Cheetah Experiment Harness and Campaign
Management System (Cheetah®) [3] enables running a
target application with different application and system
configurations. Configurations are specified in a campaign
file for each job. Cheetah’s runtime module, Savannah,
converts the meta-data in the campaign files into ex-
ecution configurations (“experiments”) and runs these
experiments on the target systems. Each experiment/run
has a unique workspace endpoint, where it writes the
experiment execution script and its configurations, ex-
periment information logs, profile traces, and outputs.
Cheetah also has a post-processing script that can be
executed after each experiment to collect features from
the workspace endpoint.

 Tuning and Analysis Utilities (TAU®) [4] is used within
Cheetah to profile the runtime features that capture the
performance-related information of a target application.
We use the TAU command-line argument ’-i0’ to observe
the port and memory-mapped IO read/write bandwidths
along with the maximum bytes written/read per execu-
tion. We also used Pytools'® to capture static profiling
information such as processor cores, memory, and other
environment-related configurations.

[J§ Environment- Application Specific o> (yE
E Specific #Total steps Gray-scott #step size.
~=  #cores per node #Diffusion Coefficients U & V  #Matrix #Noise
#nodes #memory #Feed and kill rates of U and V #Timesteps
#Processor Type i _
#Clock Speed |||@SRA Type mMmomatic #Adapters #window
@CPU/GPU @Lleading @Trailing #Min length #sequences
" @Max info @Max Quali @Window Quali
e Profiling 1 o
#Read/Write Bandwidth |||#Learning rate Family of DNNs #Training Images
#Read/Write Bytes @Optimize @model. #Batch size #Epochs

Fig. 2. Features used to predict walltime. # marks numerical values and @-
marks categorical values
1) Generating and Preparing Training Data:
a) Feature Engineering: The primary goal of this module
is to generate enough training data for our regressions models
to predict appropriate execution time for a given an application

8https://github.com/CODARcode/cheetah
“https://www.cs.uoregon.edu/research/tau/home.php
10https://github.com/inducer/pytools

context. Executing resource-intensive applications on shared,
production research cyberinfrastructures (CI) to generate large
amounts of training data is expensive in terms of resources,
cost and time, especially when the application context keeps
changing causing the need to regenerate the training data. To
reduce the cost of data generation, we studied the feasibility
of generating training samples on commodity environments
like workstations or on low contention resources like single-
node allocations. To reduce the execution time of the runs, we
limited the input configurations and application features that
influence execution time. For example, while training DNNss,
we reduced the number of images in the training data. We call
these runs “scaled-down” (SD) runs. We also ran the target
applications for a few iterations at “full-scale” (FS) on every
new CI to capture Cl-specific information in training samples.
We then ran and profiled the targeted application against a
set of pre-identified configurations for both SD and FS runs.
The SD executions cover more feature distributions and over
several iterations (to exclude errors) and the FS executions
are intended to capture the Cl-specific characteristics. Graph
3 shows the estimated cost of generating the entire training
data with FS configurations'! vs. the actual cost of generating
the combination of SD and FS runs. In III-A2, we generate
different regression models with this combination of SD and
FS training data.

Expected VS generated Training data
per Target Application

One DNN
VGG16

Training data
mEE  with Full-Scale
Runs

Training data with both
@z Scaled-Down Runs
R®® Full-Scale Runs

Trimmomatic

Family of
DNNs

Target Applications

Gray-Scott

84

0 0 10* 10? 107
Time to generate training data (hours)

Fig. 3. The cost for preparing the training data with sufficient “full-scale”
(FS) runs VS a combination of sufficient “scaled-down” (SD) and “full-scale”
runs

An overview of the “extrinsic” control features used in
generating training data is shown below!'?:

1) Gray Scott: We ran this simulator with different array
dimensions, diffusion coefficients of the reaching chem-
icals, feed/kill rate, and number of steps, in different
environments with different numbers of processor allo-
cations. The SD and FS runs also differ in the array
dimensions and in the time steps.

2) Trimmomatic: We use six different genome sequences
as input “short-reads”. A unique trim quality can be
obtained by changing the leading and training quality,
minimum quality per window size, strictness, and mini-
mum length. A high-quality genome takes lesser time to
be pre-processed than a low-quality one to achieve the

Hestimated as (no. of scaled-down samples)*(avg full-scale execution time)
12we used more application specific configurations than those listed here



same trim configurations. The FS and SD run differ in
the size of the genome sequence, the number of threads
and configurations of the execution environments.

3) Family of DNNs: We train the three CNN models with
different numbers of training samples and batch sizes.
We run them on CPU and GPU nodes with different core
allocations and observe the execution times as average
epoch time. The SD and FS runs differ in the number
of training samples, batch size, epochs, and number of
cores used. FS runs are obtained by training the models
on the entire dataset and larger batch sizes on all cores
of a single-node CPU (or a GPU) HPC allocation.
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Fig. 4. Per Base Sequence Quality visualization using “fastqc” - Trimming
time with constant configurations

Each experiment leaves its output traces in its workspace
folder. A post-processing script collects the training data entry
per experiment by parsing the different files in the workspace.
Job scripts, input metadata, and logs have application-specific
feature values; TAU profile logs provide runtime I/O values,
and the CI database or the allocation history provides the
values of the environment-specific features. Finally, we collect
all the training data entries and store them as a “.csv” file that
is used in the “Building Regression Models” component.

2) Building Regression Models: We generated training
data that could be used to estimate walltime. This data is
noisy and needs to be carefully cleaned/transformed to be
usable by ML models. Data-Science workflow defines a set
of rules are crafted to prepare the data after visualizing and
analyzing it to identify noise and interesting patterns(features).
Models trained on this data are analyzed, and data is adjusted
or reprocessed to get better results. We replicate our pipeline to
automate this process in two pieces - preparing the data and
training models and selecting the best model by analyzing
the accuracies (metrics). This section provides an overview
of the selected regression models and evaluation metrics and
describes the machine learning components used to prepare
the generated data for training.

Several off-the-shelf regression models (Table II) may be
trained to predict execution time. However, the choice of the
regression model depends on the characteristics of the training
data i.e. the types of its features, feature correlations, the
distribution of the data (i.e. the ratio of SD and FS runs), and
the model’s sensitivity to outliers. We split the FS datasets
into training, validation, and test sets in a 50:25:25 ratio.
The FS training data is used along with SD samples to make

predictions for the FS runs. We use a validation dataset con-
sisting of only FS runs to adjust the predictions with respect
to the FS feature distributions. Graph 5 (without upsampling)
shows the difference in the distribution of execution times
for SD and FS runs for the three applications. Given the
nature of these datasets(SD-FS sample imbalance, availability
of additional FS runs, feature types), training a single off-
the-shelf regression model cannot accurately predict execution
time (predictions with fewer errors) for all applications. Table
IT shows the sensitivity of regression models with respect to
multicollinearity of features (i.e. features that are strongly cor-
related), outliers, categorical features, and linear separability of
features for the Gray-Scott application. The machine learning
pipeline pre-processes the training data, removes the sampling
bias (through upsampling - see following section), and trains
and stores a selected set of regression models over different
training data distributions.

We use the following metrics to score the prediction per-
formance of each regression model:

1) Under Prediction Percentage (UPP): percentage of test
samples that have predicted value (walltime) less than
actual value (execution time).

2) Mean Absolute Error (MAE): Mean of absolute errors
between the predicted value (walltime) and the actual
value (execution time). Outliers do not drastically affect
this error.

3) Mean Square Error (MSE): Mean of absolute errors
between the predicted value (walltime) and the actual
value (execution time). A single outlier can drastically
increase this error. We compute Root Mean Square Error
RMSE from the MSE.

4) Mean Absolute Percentage Error (MAPE): Mean of
absolute percentage errors between the predicted value
(walltime) and the actual value (execution time).

The following are the components of our machine learning
pipeline (Module (2) in Figure 1):

a) Feature Encoding & Dimensionality Reduction:
Feature encoding converts categorical information into a nu-
meric format. A unique genome is encoded with a number
such that the genome with the highest quality gets 1, and
the one with the lowest quality gets a 6 when we have six
genomes in the sample space'. We encoded model types from
VGG16, ResNet50, and InceptionV3 to 1, 2, and 3 for the
Family of DNNs. Correlation analysis helps remove redundant
features. By creating new independent features called principal
components, Principle Component Analysis (PCA) reduces
the feature dimensions and removes multicollinearity with
minimal information loss. The feature space is reduced to 14
for Gray-Scott(29), 14 for Trimmomatic(24), and 9 for the
Family of DNNs(16) principal components.

b) Up-sampling: From Graph 3, we intentionally limit
the FS runs to save time and cost of data generation. The
ratio of SD and FS runs in training data [41:1 (Gray-Scott),
51:1 (Trimmomatic), and 13:1 (Family of DNNs)] shows the

13we manually encoded this information by looking at the fastqc files4



TABLE II
THE LIST OF REGRESSION MODELS AND THE OBSERVED CHARACTERISTICS®

Regression Model Handle Needs Huge 1, Sensitive C;;I:gri)(i'liial Handle Needs
Non-linearity? | Training Data? to Outliers? Data? multicollinearity? | Standardization?
(simple) Linear (SLR) No No Yes No No Opt
LASSO (LAR)® No No Yes No Yes Opt
Decision Tree (DTR) Yes No Yes Yes Yes No
Support Vector (SVR) Yes No No No No Opt
Neural Network (NNR)d Yes Yes No No Yes Yes
aRefer Section “Feature Encoding Dimensionality Reduction” under IV-B1 to see the models behaviour with respect to input data characteristics III

bHuge training data is needed to train DNNs.
d0ne Hidden Layer Neural Network

imbalance of this sample space. This training and FS test
datasets have different distributions ((a) in Graph 5). Some
regression models could treat these values as outliers and
ignore them. Up-sampling FS runs in training to match the
SD runs eliminates this sampling bias. Graph 5 (b) shows a
more similar distribution between training and test data after
upsampling.

c) Select Unique Regression Models Given a list of
available off-the-shelf regression models: (Table II), we select
only those models that exhibit unique behavior with respect
to the predictions in terms of the evaluation metrics. After
applying PCA and upsampling, LASSO and RIDGE regression
model has the same accuracies as a simple Linear Regression
model and could be removed from the candidate regression
models (RMs). We finetune the model’s hyperparameters by
analyzing the bias-variance tradeoff using cross-validation
over the training data.

d) Train Regression Models (RMs) on Different Train-
ing Data (TDs): We train each regression model on three
subsets of generated training data to study the influence of
the limited number of full-scale runs. The first training data
set has only “scaled-down” (SD) runs. Then we add a few
“full-scale” (FS) samples from the FS Training data (25%)
after upsampling. Then we add more “full-scale” (FS) samples
(50%) to training data after upsampling. Training models on
these datasets caliber model’s performance against unseen
test datasets, i.e., FS Test data when the training samples
have no (SD) to limited exposure (SD+50%FS) to Test data
distribution. This study tests the model’s scalability to new and
unseen execution environments. It helps us answer another
question, “how frequently should we add the available full-
scale runs to training data?”. For example, if a model predicts
better than the previous model (built on SD+25%FS data)
by adding more FS samples (going from 25%FS to 50%FS),
then the newly added FS runs add information to our model.
However, if the previous model’s predictions are better than
these predictions, the added FS samples are inducing noise
and are not helpful at this point. The model should wait for
the availability of more FS runs before retraining the model.
We validate the models against the FS validation dataset.

e) Validation Adjustment (VA=xAF): Upsampling FS
training samples reduces the prediction errors by eliminating
the oversampling bias from the SD runs. However, a model can
still scale w.r.t SD distributions (50% of upsampled training

“Linear Model trained with L1 prior as regularizer

comes from SD runs). We need to scale the predictions to the
FS distribution further to reduce the potential underpredictions.
Validation data'* is used to obtain the adjustment factor, which
is the MAPE of the validation data underpredictions. This
Adjustment Factor (AF) increases the FS test data predictions
to reduce underpredictions potentially. AF (as shown in (1))
always upscales all the FS test predictions (2), increasing the
MAE. MSE and MAPE, especially for the overestimations.
If adjusting predictions is not significantly reducing the un-
derpredictions but increases these overestimation errors for a

model, then we do not adjust its predictions.
AF =1+ MAPE(y,9),V§ <y (1
new y =9 AF 2

Family of DNNs Trimmomatic

Gray-Scott
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Fig. 5. Distribution of execution times for the scaled-down data (training)
and full-scale data (test) without and with upsampling

We run all the selected regression models RMs={SLR,
NNR, DTR, SVR} against the different training datasets
TDs={SD, SD+25%FS, SD+50%FS} with and without val-
idation adjustments (VA)={YES, NO} for an application and
store the models and their metrics as “model commons”.

3) Selecting an Appropriate Prediction Model: We have
a set of candidate models that can predict the execution time
for a given application. Using the FS validation dataset, we
pick the best model using the “policy” (as shown in Figure6).
We call this Optimal Predicted Model (OPM).

When we need to estimate the execution time for an applica-
tion, provided the target environment and input configurations
(inference data), this module looks through the existing pre-
trained candidate models (TMs) for this application. Figure 7

4has the same distribution as test data



TABLE III
CHARACTERISTICS OF DIFFERENT COMBINATIONS OF “SCALED-DOWN” AND “FULL-SCALE” GENERATED SAMPLES WHEN USED AS TRAINING AND TEST

SETS.
Train & Test
FS & FS SD & SD SD & FS SD+n%FS & FS
T b
-limited training data -unseen data still has unseen dgta .
No PCA - C . L -no feature standardization
« o -multicollinearity -no feature -no feature standardization R, , .
Raw . . L o . . -multicollinearity exists
- exists standardization - multicollinearity exists . ..
Generated Training . T Lo . . . -imbalanced SD and FS training
- limited distribution of -multicollinearity exists -training and test data .
Datasets -training and test data

samples over feature space

have different distribution . T
have different distribution

e .. b ]
Features as ll.lm.lteéi gam.l];]g .data ; H.)F.;AL o nseer(li data d -imbalanced SD and FS training
Principle Components - limited distribution o Training and —tralmng an t.est‘ atg -training and test data
samples over feature space Test Data have different distribution

-still has unseen data

have different distribution

-limited training data
-outliers exist
- limited distribution of
samples over feature space

Principle Components
+
Training Data Outliers

-outliers exist

-still has unseen data
-outliers exist
-imbalanced SD and FS training
training and test data
have different distribution

-unseen data
-outliers exist
-training and test data
have different distribution

& This is the training data generated through our pipeline, and we want to train highly accurate regression models on this.

b The ideal characteristics for training data. We process the training data intending to achieve some of their characteristics.

SD and FS samples have different distributions for some environment-specific features and input-features.

SD data represents “huge” training data with good sample space. FS data has “limited” sample distributions over feature-space.

visualizes this model selection pipeline. This would replicate
the model analysis part of the data-science lifecycle and check
if the components added to address the noise induced by FS
data (%FS inclusion, XAF) are helpful with respect to the
validation data.

MAE(A) < MAE(B) n
Better | A, MSE(A) < MSE(B)n
Model ~— MAPE(B) < MAPE(B)
B, otherwise

(a) Default
Criteria (DC)

MAE hange(B,A) <w * UPPcpgnge(A,B) N
Better _ ) A, RMSE nange(B,A) <w * UPPcpange(4,B) N

Model | MAPEchange(B,A) <w * UPPcnange(A, B)
B, otherwise
(b) Selection Criteria (SC)
Where: w=1

(TM1,TM2),

UPP(TM1) < UPP(TM2)
(4,B) = {(TMZ, T™Y),

otherwise.

Fig. 6. The Default and Selection Criteria for a defined “Policy” for com-
paring two pre-trained models (TM1, TM2) selected from model commons
to fetch a better model

Filter Components: To select the best performing model
per application from the “model commons”, we need to follow
through an order of decisions w.r.t validation adjustment
(xAF), availability of full-scale training runs, and finally, the
regression models.

1) Filter 1- Validation Adjustment Check: This tests
if “Adjusting predictions w.r.t. validation data is Better
than No Adjustment?”

2) Filter 2 - FS Training Runs Inclusion Check: This
tests if “Adding new FS samples to training data is Better
than not adding them?”

3) Filter 3 - Select Better Regression Model: We know

1010 APP: [GS, TM, FDNN..] :g:g
1010 TDs: [FS, SD, SD+n%FS], .
@@ | RMs: [NNR, SLR, DTR, SVR,.], |« app:APP
-‘ VA: [1.x, 1.0], UU
Metrics: UPP, MAE, MSE, MAPE
™s |

Filter 1
Validation Adjustment Check V{td: TDs, rm: RMs}

Filter 2 Vagq,rmy = 1.0 or 1L.x

FS Training Runs Inclusion Check v{rm: RMs}
Filter 3
Select Better Regression Model{rm: tdtrmvageg, rmp)}

td(m‘ya{t armg} =T for %nFS?

OPM (Optimum Prediction Model)

Fig. 7. The Per Application Model Selection Pipeline which selects the
Optimal Prediction Model (OPM) by using “policy (Fig 6)” and validating
the choices made in during Building Regression Models module.

which training dataset works better, along with the
adjustment factor (xAF) for each model. Select the
model with the best accuracy.

The “default” policy 6 criteria could be used, or an
environment-specific policy could be configured. The current
policy has two comparison criteria w.r.t the scores generated
on the (FS) validation dataset:

o If one model has fewer underpredictions and better over-
estimations (lower errors), select this model as the “Better
Mode”(DC) (Figure 6(a)).

o If one model has a lower no. of underpredictions, and
the other has more accurate predictions, apply (SC) and
select the “Better Model” Figure 6 (b).

The given “policy” 6 tolerates overestimation errors of the
selected model as long as the reduction in underpredictions
is higher than the other model. When comparing two models
(TM1, TM2) using SC, we pick a model with lower UPP if



TABLE IV
THIS TABLE COMPARES THE ACCURACY OF THE SELECTED REGRESSION MODELSII WITH RESPECT TO THE TYPE OF TRAINING AND TEST DATA SETS

Train & FS & SD & SD &
Test FS SD FS
RM MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE
NNR 18.22 513.00 18.76 | 14309.90 23197633 31798547 | 125.65 16381.18  123.35
Raw DTR 2.18 35.06 2.07 1.53 18.67 7.72 49.19 3301.52 46.85
Training Data®** SLR 10.05 208.58 10.69 15.00 379.00 244.73 27.51 1095.06 24.97
LAS 9.52 198.77 10.07 15.03 380.16 244.74 27.22 1078.22 24.67
NNR 8.574 134.68 8.74 3.91 50.92 32.00 11.99 286.02 12.39
Processed DTR 3.09 58.14 3.22 513 171.90 43.09 50.54 3085.47 48.86
Training Data SLR* 10.05 208.58 10.69 15.51 409.35 252.09 20.54 721.49 18.24
(Principle Components) LAS* 10.05 208.45 10.69 15.51 409.35 252.05 20.54 721.66 18.25
SVR 9.65 209.77 10.17 14.53 470.64 208.80 30.81 1283.43 28.11
Principle Components NNR 491.82  4529327.55  373.27 5.27 94.24 31.02 25.16 1444.78 26.47
+ DTR 4.28 115.95 4.09 6.07 442.67 68.44 5347 3620.91 52.09
Training Data SLR* 195.27 61032.37  197.77 18.00 482.75 347.06 16.73 518.62 14.98
with Outliers LAS* 192.72 60341.17  193.31 18.00 482.72 347.00 16.73 518.75 14.99
SVR 11.39 249.09 12.30 14.61 441.88 217.17 27.47 1084.32 24.83
Table III shows the characteristics of these “raw” datasets and the processed training data - principle components (PCs)
** Could not converge while training SVRs on “raw” training data.
* After standardizing the features, SLR and LASSO seem to have similar accuracies specially with large no of training samples.

the decrease in the no. of predictions is not increasing the
overestimation errors drastically. In other terms, if the change
in underprediction percentage from TM1 to TM2 is more
significant than the change in overestimation errors (MSE,
MAE, and MAPE) from TM2 to TMI1.

IV. ANALYZING THE GENERATED TRAINING DATA AND
COMPONENTS OF THE RESEARCH PIPELINE

This section analyzes the generated training data against the
selected regression models with different sampling configura-
tions. This analysis exposes the importance of applying the
machine learning components used in the Build Regression
Models. Then we show how the Selecting Appropriate Pre-
diction Model works to fetch the Optimum Prediction Model
(OPM) for each target application.

A. Analyzing the Generated Training Data

Table III shows the configurations and characteristics of
“scaled-down”(SD) and “full-scale”(FS) runs used for training
and testing datasets. We train the selected regression models
Il on these configurations to understand their applicability.
See the section IV-B1 “Feature Encoding and Dimensionality
Reduction” below for more details.

B. Analysing Build Regression Models

1) Feature Encoding Dimensionality Reduction: The fol-
lowing are the joint observations made on the applicability of
selected regression models before and after applying feature
encoding and dimensionality reduction (Tables III and IV):

e SLR models are sensitive to outliers in small training
datasets (FSFS with Principle Components+Outliers) and
cannot handle the sampling bias with SD+50%FS training
data. LAS and SLR models have similar error patterns,
especially after applying PCA. LAS uses L1 regulariza-
tion over SLR to avoid overfitting the model to training
data. But it still cannot make predictions for unseen test
data (SD&FS)

¢ SVR models cannot handle multicollinearity. SVRs are
sensitive to unseen test samples (SD&FS). They are not
sensitive to outliers even when we have limited training
data(FS&FS with Principle Components+Training Data
Outliers). So they treat FS samples in SD+50%FS train-
ing data as outliers and are ignored. They do not learn
anything about the FS runs and do not scale to FS test
data.

« DTR models can handle multicollinear non-standardized
data(’raw” training data). They work well with small
training datasets (FS&FS) but are sensitive to outliers in
training data (Principle Components+Outliers in training).
They fail to make predictions for unseen data(SD&FS).
As long as they see few samples in distribution, they
fair reasonably well with the sample imbalance prob-
lem(SD+50%FS in training data).

o NNR do not scale better when we have extremely limited
data (FS) and outliers influence the model when there are
no enough samples to learn from. There work really well
with SD data with ample training data and these models
scale relatively well for under data.

2) Up-sampling: Table V shows that Up-sampling reduces
regression errors (MAE MSE, MAPE) for all the models
across applications. It also tries to reduce the no. of under-
predictions (UPP). We apply upsampling to the training data
with FS runs for all the subsequent experiments.

3) Selecting Unique Regression Models: By looking at the
previous experiments Table IV and Table V and observations
(in the section “Feature Encoding Dimensionality Reduc-
tion”), we see that Linear, RIDGE", and LASSO models
have similar behavior when training or large sample or on
the pre-processed dataset. Reducing the models in selection
spaces reduces the time complexity for training these models,
subsequently picking the optimal model in the “Selecting
Appropriate Prediction Model” phase. Similarly, when new

150mitted RIDGE scores from tables to save space



TABLE V
TABLE 3: PERCENTAGE REDUCTION IN MAE, MSE, MAPE AND UPP
AFTER UP-SAMPLING FS RUNS. TRAINING DATA = SD+50%FS

Percentage Change after Up-sampling
(rounded to nearest int)

Apllicartion RM | MAE MSE MAPE UPP
NNR -64 -76 -54 -5
DTR -11 -16 -7 34
Gray-Seott | g1 | 26 .52 13 64
SVR -54 -66 -52 -46
NNR -43 -66 -50 -11
Trimmomatic DTR 0 16 0 -13
SLR -55 =77 -50 55
SVR -65 -86 -74 -13
NNR =77 -90 -82 33
. DTR -28 -52 -25 4
Family of DNNs SIR 20 32 -49 _16
SVR -20 -20 -70 -12

models are added to the selection pool, we can train and ana-
lyze them on different sampling configurations and eliminate
redundant models.

4) Validation Adjustment: This adjustment aims to reduce
the no. of underpredictions by multiplying the prediction g
with xAF (1.x). Increasing the predictions forces the model
to overestimate and increase the positive errors (MSE, MAPE,
and MAPE). We observe this change in Table X; we see that
the adjustment factors lead to a positive change (increase) in
the mean errors for overpredictions and reduce the underpre-
dictions (percentages).

From now on, we report the MAE, MSE, and MAPE on
only overpredictions along with UPP, as our goal is to reduce
underprediction and minimize overestimation errors.

TABLE VI

This baseline represents the dataset, just the history of runs
(FS) and no SD data availability.

Table VII shows that our model performs better than the
the baseline w.r.t ’policy” for all the three applications. Each
application has a different regression model fetching optimal
scores with different training data configurations (TDS).

Table VIII shows the influence of the policy over the
selection of OPM in the given context. For example, if we want
our model to be sensitive towards errors in overpredictions
(MAPE_change <= 10), models with no validation adjust-
ment (VA) were chosen as better models. For Trimmomatic
and Family of DNNs, the framework picks models without
validation adjustment (no xAF). Moreover, this behavior is
as expected when we have FS samples (upsampled) in the
training data. However, when we have no FS runs in training,
like in Gray-Scott, the framework chooses a model that adjusts
the predictions to match the distribution of FS test data.
We also observe that the framework is sensitive to the FS
samples added to the training data with respect to the selected
policy. The regression models trained on fewer FS samples
(training data SD+25%FS) were selected as better models
(Trimmomatic for MAPE_change <= 10) even though we
have an additional 25% FS samples available. Since by adding
these samples to the training, the model tends to overestimate,
causing the constraint MAPE_change <= 10 to fail, our
framework chooses to use an older pre-trained model than
its re-trained version.

TABLE VII
COMPARING THE OPTIMUM PREDICTION MODEL (OPM) TRAINED AND
SELECTED BY OUR PIPELINE WITH THE BASELINE - SELECTED BASELINE

THE TABLE SHOWS THE SELECTING APPROPRIATE PREDICTION MODEL MODEL(SMB)
PER TARGET APPLICATION ALONG WITH THE INTERMEDIATE SELECTIONS
USING DEFAULT POLICY APP APP TDS RM VA | UPP MAE
10.44
SD+ Gray- Trimmo- Family of Gray- OMB | 50%FS | SVR | No | 3830 | 186.83
Scott matic DNNs Scott 12.62
FS | VA [ FI | F2 [ F3 | FI [F2 [ F3 | FI [ F2 | F3 D 3.87
NNR OPM | (ot | DTR | No | 3298 | 120.57
NO Y (0] - - (0] - - [0) - - 4.34
s LN | - [ - [ -[Oo - -1-T1T-71- 9.23
Y O] -] -|-1]-]-]0O0]-71- Trimmo- | OMB | 50%FS | SLR | No | 36.84 | 165.82
50% N - - - (6] (6] - - - - matic 3.52
Y | 0| - - . n - 0] 0|0 SDr 34.42
DTR ™ | s00,ps | SVR | Yes | 7.89 1840.32
SD Y (¢} - - (0] - - (¢] - - 6.58
N [e) [e) - - - - - - - 163.321
B% —~T-T-T-Tolol-Tol-]- Family | OMB | FS | DTR | No | 35.00 | 105159.259
N [0) 0 [4) N N N N N N of DNNs 176.672
0% —~vT— T - T - To T - T - To o SDr 50.359
*removing SLR and SVR from the list to save so cannot OPM 50%FS NNR | Yes | 15.09 | 5294.590
see results or Trimmomatic, Training Data = SD+n%FS 11.800

Adjusted w.r.t. Validation Y=Yes and N=NO

C. Optimal Prediction Model Selection

Table VI traces the “Selecting Appropriate Prediction
Model” filtering steps to select an optimum prediction model
per application.

After selecting the optimal model for a targeted application,
we compare the accuracies with the baselines. The baseline
model - Selected Baseline Model(SMB): Train all “selected”
regression models on 50%FS training runs and evaluate w.r.t.
FS test data. Fetch the best model w.r.t “Selection Criteria.”

VA - Validation Adjustment **QOverestimation errors only
TM-Target Regression Model TDS-Type of training data

V. CONCLUSION AND FUTURE WORK

We demonstrate a robust pipeline that can generate training
data, train a pool of selected regression models, and pick
the best one to predict execution time for any given ap-
plication. We propose selection criteria that compare these
trained models to select one that reduces underpredictions
while minimizing the overestimation. With the help of only
a few validation samples representative of new execution



TABLE VIII

CHANGING THE POLICY TO SUIT THE CHARACTERISTICS OF THE EXECUTION ENVIRONMENT CHANGES THE BEST MODEL SELECTION (OPM)

Gray-Scott Trimmomatic Family of DNNs
Policy TDS VA? RM TDS VA? RM TDS VA? RM
Default(w=1) SD+50%FS NO DTR | SD+50%FS | YES | SVR SD+50%FS YES | NNR
MAPE_change <= 10 SD YES | SVR | SD+25%FS | NO | NNR | SD+50%FS | NO | NNR
MAPE_change <= 100 | SD+50%FS | NO | DTR | SD+25%FS | NO | NNR | SD+25%FS | YES | NNR
MAPE_change <= 50 | SD+50%FS | NO | DTR | SD+25%FS | NO | NNR | SD+50%FS | NO | SVR

configurations for an existing application, our pipeline can
dynamically pick a suitable regression model that generalizes
to the new configuration.

We plan to extend the current work in the following direc-
tions:

Deploy the pipeline and models into production use
within an HPC center.

Integrate the scheduling policies of target environments
into the selection criteria to include HPC policies into the
feature space, to be able to include policy consequences,
such as wait times into our predictions.

Propose a new cost function that mimics the model
selection criteria as loss functions that could be directly
used in a regression model.

Evaluate our pipeline for distributed applications. For
example, evaluate whether the pipeline can appropriately
generate training data for distributed executions and
whether it can capture the communication-related features
that influence execution time.

By analyzing the internal execution of DNNSs, explore
the generalization to new DNNs in a family without
generating additional training data.
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