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Abstract

Federated Learning, as a popular paradigm for collabora-
tive training, is vulnerable against privacy attacks. Differ-
ent privacy levels regarding users’ attitudes need to be sat-
isfied locally, while a strict privacy guarantee for the global
model is also required centrally. Personalized Local Differ-
ential Privacy (PLDP) is suitable for preserving users’ vary-
ing local privacy, yet only provides a central privacy guar-
antee equivalent to the worst-case local privacy level. Thus,
achieving strong central privacy as well as personalized local
privacy with a utility-promising model is a challenging prob-
lem. In this work, a general framework (APES) is built up
to strengthen model privacy under personalized local privacy
by leveraging the privacy amplification effect of the shuffle
model. To tighten the privacy bound, we quantify the hetero-
geneous contributions to the central privacy user by user. The
contributions are characterized by the ability of generating
“echos” from the perturbation of each user, which is care-
fully measured by proposed methods Neighbor Divergence
and Clip-Laplace Mechanism. Furthermore, we propose a re-
fined framework (S-APES) with the post-sparsification tech-
nique to reduce privacy loss in high-dimension scenarios. To
the best of our knowledge, the impact of shuffling on per-
sonalized local privacy is considered for the first time. We
provide a strong privacy amplification effect, and the bound
is tighter than the baseline result based on existing meth-
ods for uniform local privacy. Experiments demonstrate that
our frameworks ensure comparable or higher accuracy for the
global model.

1 Introduction
Federated Learning (FL) (McMahan et al. 2017) is an
emerging machine learning paradigm that allows multiple
clients to train a global model collaboratively while keep-
ing the private raw data of each client locally. While not di-
rectly sharing private data, recent works indicate that FL by
itself is insufficient to preserve privacy of users’ data. By ob-
serving the global model or intermediate parameters during
the training process, adversaries can infer the membership
of users or even reconstruct training records (Fredrikson,
Jha, and Ristenpart 2015; Zhu, Liu, and Han 2019; Nasr,
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Methods Personalization FL Process
Local Central

PLDP ! ! Weak
Uni-Shuffle % ! !

APES ! ! !

S-APES ! ! Strong

Table 1: Comparison of related work. !denotes protected,
%denotes unprotected.

Shokri, and Houmansadr 2019). These attacks can lead to se-
vere data leakage, hence it is necessary to provide additional
protection with strict privacy guarantees for both the global
model and local parameters. Moreover, in practice, different
local privacy levels may be desired depending on users’ pri-
vacy preferences. A one-size-fits-all approach would either
downgrade the model utility or sacrifice privacy protection
for certain users. Thus, an open problem in FL is how to
provide strong central privacy as well as personalized local
privacy while maintaining model utility.

Several recent works have attempted to address this prob-
lem. Personalized Local Differential Privacy (PLDP) pro-
tects both local gradients and the global model by perturb-
ing gradients with heterogeneous parameters (Chen et al.
2016; Li et al. 2020; Shen, Xia, and Yu 2021; Yang, Wang,
and Wang 2021). The central privacy of the global model is
equivalent to the weakest local privacy. For achieving both
strong central and local privacy, a potential solution is the
shuffle model (Bittau et al. 2017). It amplifies central pri-
vacy by permuting data points randomly after local pertur-
bation. However, existing studies on shuffle model only fo-
cus on the scenarios where local privacy requirements are
assumed uniform (Uni-Shuffle for short) (Erlingsson et al.
2019; Balle et al. 2019; Girgis et al. 2021; Feldman, McMil-
lan, and Talwar 2022). To the best of our knowledge, there
is no work that provides both strong central privacy for
the global model and personalized local privacy guarantees,
while achieving strong utility of global model (cf. Tab.1).

To narrow this gap, we propose APES, a privacy
Amplification framework for PErsonalized private federated
learning with Shuffle model (cf. Fig. 1). APES gains a strong



privacy amplification effect. Unlike previous works that just
permute data, both data points and privacy parameters are
randomly shuffled in APES. Clip-Laplace Mechanism is
also introduced to implement the framework without dam-
aging model utility. In order to mitigate the privacy-loss ex-
plosion problem caused by high dimensions, we propose S-
APES which improves APES with the post-Sparsification.
The basic idea is to select only informative dimensions of
gradients after perturbation and pad the rest, which saves
privacy cost.

To bound the privacy of APES and S-APES, we carefully
quantify the obfuscation effects contributed by users with
heterogeneous privacy parameters. First, inspired by Feld-
man, McMillan, and Talwar, the central privacy of a specific
user is boosted by the rest of the users who generate “echos”
of her with heterogeneous probabilities; next, to measure the
probabilities, we propose Neighbor Divergence and Clip-
Laplace Mechanism for limited output range and bounded
divergence among distinct output distributions by users’ lo-
cal randomizers; then “echos” are transformed into certain
form, and a tight privacy bound is derived.

Our main contributions are summarized as follows:
(i) We propose privacy amplification frameworks via

shuffle model for personalized private federated learning.
APES strikes a better balance between central privacy and
model utility with Neighbor Divergence and Clip-Laplace
Mechanism. Based on it, improved S-APES enhances the
privacy for the high-dimension scene.

(ii) We provide theoretical analysis for both privacy and
convergence bound of the proposed frameworks. To the best
of our knowledge, the shuffling effect on personalized lo-
cal differential privacy is considered for the first time and
a strong privacy amplification effect is yielded. The central
privacy bound is tighter than the bound derived by naı̈vely
adopting existing methods for unified privacy.

(iii) Comprehensive experiments are conducted to con-
firm that APES and S-APES achieve comparable or higher
accuracy for the global model with stronger central privacy
compared to the state-of-the-art methods without downgrad-
ing personalized local privacy guarantee.

2 Preliminaries
In this section, we illustrate the privacy definition, shuffle
model and several properties of differential privacy, all of
which are prepared for the proposed methods.

2.1 Central and Local Differential Privacy
Differential privacy (DP) (Dwork, Roth et al. 2014) is a de
facto standard that is widely accepted to preserve privacy in
FL. The notion is typically built up in a central setting where
a trusted server can access the raw data. Local differential
privacy (LDP) (Erlingsson, Pihur, and Korolova 2014), on
the other hand, offers users a stronger privacy guarantee for
the settings without assumption of a trusted server.
Definition 1 (Differential Privacy) For any ϵ, δ ≥ 0, a
randomized algorithm M : D → Z is (ϵ, δ)-differential pri-
vacy if for any neighboring datasets D,D′ ∈ D and any
subsets S ⊆ Z ,

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ

Figure 1: Procedure of APES. Gradients gi trained by user
data xi are randomized locally, then privacy parameters ϵi
and gi are shuffled separately. Analyzer acts as the curator
to aggregate and calibrate gradients g̃i for global model.

Definition 2 (Local Differential Privacy) For any ϵ, δ ≥
0, an algorithm M : D → Z is (ϵ, δ)-local differential pri-
vacy if ∀g, g′ ∈ D and ∀z ∈ Z ,

Pr[M(g) = z] ≤ eϵ Pr[M(g′) = z] + δ

2.2 Shuffle-based Privacy
Shuffle model (Bittau et al. 2017) was proposed to
strengthen central privacy while preserving local user pri-
vacy. Given n datapoints as the dataset D = {g1, g2, ..., gn},
each gi ∈ D owned by user ui is perturbed locally by a ran-
domizer M : D → Z to ensure (ϵl, δl)-LDP before being
sent to shuffler. Shuffler, a trusted third party, permutes and
releases all the datapoints by algorithm S : Z → Z to ana-
lyzer. Untrusted analyzer aggregates all the datapoints. The
process P = S ◦M satisfies at least (ϵl, δl)-DP against an-
alyzer (cf. Lemma 1). Recent works (Erlingsson et al. 2019;
Balle et al. 2019; Girgis et al. 2021; Feldman, McMillan, and
Talwar 2022) achieve a much stronger central privacy guar-
antee, which is considered as privacy amplification effect
by shuffling. Among existing works, Feldman, McMillan,
and Talwar provides a tight privacy upper bound for single-
message summation. Take neighboring datasets D and D′

that only differ at g1 (or g′1), any perturbed datapoint g̃i can
be regarded as a sampling from the distribution of a specific
perturbed point g̃1 or g̃′1 with probability exp(−ϵl). By this
observation, the privacy bound is yielded.

2.3 Privacy Tools
As a general technique to implement DP, Laplace Mecha-
nism (Dwork, Roth et al. 2014) perturbs numerical values.

Definition 3 (Laplace Mechanism) Given any function f :
D → Zd and neighboring datasets D and D′, let ∆f =
max ||f(D) − f(D′)||1 be the sensitivity function, Laplace
mechanism M(D) = f(D)+Y d satisfies ϵ-DP, where Y d is
random variable i.i.d drawn from distribution Lap(0, ∆f

ϵ ).

Composition theorems provide tight bounds for the algo-
rithm combined with several DP blocks.



Lemma 1 (Parallel Composition) (Yu et al. 2019) Given
an (ϵi, δi)-DP algorithm Mi : D → Z for i ∈ [m], a class of
{Mi}i∈[m] on disjoint subsets of D is (max ϵi,max δi)-DP.
Lemma 2 (Advanced Composition) (Dwork, Roth et al.
2014) Given an (ϵi, δi)-DP algorithm Mi : D → Z for
i ∈ [m], the sequence of {Mi}i∈[m] on the same dataset
D under m-fold composition is (ϵ′, δ′ + mδ)-DP where
ϵ′ = ϵ

√
2m log 1/δ′ +mϵ(eϵ − 1).

No matter what dataset or query is adopted, any privacy
mechanism can be reduced to a basic random response with
the same privacy level (Kairouz, Oh, and Viswanath 2015).
Lemma 3 (Degraded Privacy) For any ϵ-DP mechanism
M , for X : {x, x̄}, ∃M̃ dominates M where:

Pr[M̃(x) = z] =

{
eϵ

1+eϵ
, z = x

1
1+eϵ

, z = x̄

3 Proposed Methods
This section illustrates our methods for a strong privacy am-
plification effect. We first introduce Clip-Laplace Mecha-
nism to implement the effect. Then two frameworks are pro-
posed. APES is a general framework which shuffles both pri-
vacy parameters and gradients, the improved S-APES spar-
sifies dimensions without downgrading shuffling effect.

3.1 Clip-Laplace Mechanism
To make bounding privacy while maintaining model accu-
racy possible, it is necessary to introduce a mechanism for
LDP with a finite and fixed output range. Existing works
on this task provide non-fixed output ranges (Geng et al.
2018), or increase noise scale when ranges of input and out-
put are not overlapped (Holohan et al. 2018; Croft, Sack,
and Shi 2022). To address this issue, we introduce a variant
of Laplace Mechanism, Clip-Laplace, which provides ϵ-DP
for continuous real values with the same finite output ranges.
Definition 4 (Clip-Laplace Mechanism) Given any func-
tion f : X → Yd and sensitivity ∆f = max ||f(X) −
f(X ′)||1 for any neighboring datasets X and X ′. Clip-
Laplace Mechanism is M : Yd → Zd. Each Z ∈ Zd is a
r.v. i.i.d. drawn from distribution CLap(f(x), λ, A) of which
the probability density function is defined as follows:

p(z) =

{
1

2λS
exp (− |z−f(x)|

λ
), −A ≤ z ≤ A
0, otherwise

where normalization factor S = 1 − 1
2 exp(

−A+f(x)
λ ) −

1
2 exp(

−A−f(x)
λ ) and A ≥ ∆f/2.

Theorem 1 Clip Laplace mechanism preserves ϵ-LDP
when the f(x) ∈ [−∆f/2,∆f/2], and λ = ∆f/ϵ.
The proof is provided in Appendix A.

Discussion. (i) When achieving the same level of ϵ-LDP,
the variance of Clip-Laplacian outputs is smaller than classic
Laplacian outputs. This property is based on the assumption
of symmetric limited range of inputs (cf. Theorem 1), which
is reasonable for many fields such as gradients aggregation,
location statistics, financial analysis and so on. (ii) The Clip-
Laplacian outputs are biased. A feasible solution for correc-
tion is to calibrate the outputs with the expectation, which
can be estimated when privacy parameters are given.

3.2 APES Framework
We formalize APES, a privacy Amplification framework for
PErsonalized private federated learning with Shuffle Model.
The framework includes three procedures: local updating,
shuffling and analyzing process with three parties separately.
Convergence upper bound of APES is given at last.

Architecture Consider 3 parties: (i) n users, each holds a
dataset Xi and a randomizer Mi satisfying ϵli-LDP. (ii) A
shuffler with algorithm S. (iii) An analyzer, trains global
model with shuffled messages. The process P = S ◦
M ensures (ϵc, ϵc)-DP for global model, where M =
(M1, ...,Mn) with ϵl = (ϵl1, ..., ϵ

l
n) for dimension level.

Basic Framework Algorithm 1 outlines the procedures of
APES. We denote clip bound by C, learning rate by α and
training epochs by T . Main procedures are as follows:

• Local Updating. Each user randomizes each dimension
of model gradient gi with ϵli by applying Clip-Laplace
Mechanism. Both perturbed gradient g̃i and ϵli are sent
to Shuffler. To keep the order of dimensions, dimension
index k of g̃i is sent as well.

• Shuffling Process. Shuffler shuffles {g̃i}i∈[n] within the
same dimension, {ϵli}i∈[n] is also permuted.

• Analyzing Process. Considering Clip-Laplace Mecha-
nism is biased, the average gradient g̃ needs to be cali-
brated. We cannot calibrate g̃i one by one as the corre-
spondence of ϵli and gi is invisible to analyzer. Empiri-
cally, we observe that the value of g̃ is close to the value
of E[˜̄g] (cf. Fig. 6 in Appendix C), where ḡ = 1

n

∑n
i=1 gi,

E[˜̄g] = 1
n

∑n
i=1 E[˜̄gi] and ˜̄gi ∼ CLap(ḡ, 2C/ϵli, C).

Hence we can estimate the clean gradients ḡ by approxi-
mating E[g̃] with E[˜̄g]. Specifically, E[g̃] is estimated by
g̃, and each term of E[˜̄g] with ϵli is as follows:

E[˜̄gi] =
(C + λi) · (e1 − e2) + 2ḡ

2− e1 − e2
(1)

where e1 = e
−C−ḡ

λi , e2 = e
−C+ḡ

λi and λi = 2C/ϵli.

Convergence Analysis To demonstrate the performance
of global model under Clip-Laplace perturbation, we pro-
vide the upper bound of convergence of Algorithm 1 with
the objective function h(w;w(0)) = F (w)+ µ

2 ||w−w(0)||2.
The regularization term µ

2 ||w−w
(0)||2 of h is introduced for

the ease of calculation (Li et al. 2020).

Theorem 2 (Convergence Upper Bound) After T aggre-
gations, the expected decrease in the global loss function
f(w) = 1

n

∑
i Fi(w) of APES is bounded as follows:

E[f(w̃(T ))− f(w∗)] ≤ aT
1 (E[f(w̃(0))]− f(w∗))

+
aT
1 − 1

a1 − 1
(O(a2C/min(ϵli)) +O(a3C

2/min(ϵli)
2))

where a1 = 1 + 2β(αB−1)
µ + 2βLB(α+1)

µµ̄ +
2βLB2(1+α)2

µ̄2 , a2 = L( 1µ + BL(1+α)
µ̄ ), a3 = L

2 .



Algorithm 1: Basic Framework: APES

Input T , {(Xi, ϵ
l
i)}i∈[n], h(w), C, α.

Output model w
Analyzer initializes and broadcasts w(0).
for t = 1, 2, ..., T do

▷ Local Updating
for each user i ∈ [n] do

wi ← w̃(t) ▷ Update local model
gi ← ∇wi

L(wi, Xi)
ḡi ← Clip(gi,−C,C)
g̃i ← Randomize(·) ▷ Local perturbation
user i uploads (g̃i, ϵli) to Shuffler

▷ Shuffling Process
for each dimension k ∈ [d] do

generate permutation πk over [d]
{(g̃i,πk(k), k)}i∈[n] ← Shuffle(πk, {g̃i,k}i∈[n])

generate permutation π over [n]
{ϵlπ(i)}i∈[n] ← Shuffle(π, {ϵli}i∈[n]) ▷ Shuffle ϵ

Sends {{(g̃i,πk(k), k)}i∈[n]}k∈[d] and {ϵlπ(i)}i∈[n]

▷ Analyzing Process
for each dimension k ∈ [d] do

g̃k ← 1
n

∑
i g̃i,k ▷ Aggregate by dimension

ĝ ← Calibrate(g̃, {ϵi}i∈[n])

w(t+1) ← w(t) − αĝ and broadcast.
return w(T )

The proof refers to Appendix B.
Discussion. The convergence upper bound increases as

the bias and variance (the second and the third term) of
Clip-Laplace perturbation grow, of which the influence is
the same as classic Laplace Mechanism.

3.3 S-APES Framework

To strengthen privacy in the high-dimension scenario, we
propose S-APES framework, which improves APES with
post-Sparsification technique.

Since gradients are usually high-dimensional, limiting the
number of dimensions helps to save the privacy cost (Ye and
Hu 2020; Duan, Ye, and Hu 2022). Selecting part of dimen-
sions with large magnitude keeps majority of information
(Aji and Heafield 2017) and reduces privacy loss, but needs
extra protection since the selection itself is data-dependent
process. To select informative dimensions without breach-
ing privacy, we propose post-parsification technique.

Post Sparsification Algorithm 2 demonstrates the local
process of S-APES with post-sparsification. Concretely,
each user ui is asked to select the largest b absolute val-
ues over d dimensions of g̃i. To keep the selected dimension
index private, the selection is executed after local perturba-
tion. For avoiding the shuffling effect degradation caused by
members reduction, user pads the rest of (d− b) dimensions
with perturbed 0. Denotes sparsification process by K, then
the whole process of S-APES is defined as Ps = S ◦K ◦M .

Algorithm 2: Randomize(·) for S-APES

Input {(gi, ϵli)}i∈[n], C.
Output perturbed gradient g̃i
g̃i ← CLap(0, (d∆f)/ϵli, C) ▷ Clip-Laplace perturbing
Ib ← {k|k ∈ max(|g̃i,k|k∈[d])}

b ▷ Post-top-b index set
for each index k /∈ Ib do

g̃i,k ← CLap(0, (d∆f)/ϵli, C) ▷ Dummy padding
return g̃i

4 Privacy Analysis
In this section, we first derive a naı̈ve privacy bound based
on existing works, then show the local and central privacy
bound of our frameworks. The sketch of privacy amplifica-
tion effect analysis is provided at last.

4.1 Baseline Results
To analyze the privacy amplification effect of shuffling under
personalized LDP, the most naı̈ve way is applying existing
shuffling bounds (Erlingsson et al. 2019; Balle et al. 2019;
Girgis et al. 2021; Feldman, McMillan, and Talwar 2022)
on heterogeneous local privacy budgets, i.e., ϵli, with clas-
sic Laplace Mechanism. However, different ϵli lead to dif-
ferent scales of the Laplacian distributions and their diver-
gence may be infinite. As a result, the central privacy may
be unbounded. Hence based on the previous work (Feldman,
McMillan, and Talwar 2022) we can only approximate the
true bound by using the same maximum ϵli for all users:

ϵc ≤ ln(1+
emax(ϵli) − 1

emax(ϵli) + 1
(
8(emax(ϵli) log(4/δ))1/2

n1/2
+
8emax(ϵli)

n
))

(2)
Intuitively, the mixture distribution formed by all the users’
output distributions w.r.t ϵli after shuffling is still “confused”
to attacker. Hence it is possible to obtain an exact bound.

4.2 Main Results
Without loss of generality, we suppose two neighboring
datasets D = {g1, g2, ..., gn} and D′ = {g′1, g2, ..., gn} that
only differs at g1 or g′1 of user u1.
Theorem 3 (Local Bound) Given ϵl = (ϵl1, ..., ϵ

l
n), the lo-

cal process M = (M1, ...,Mn) of APES on d-dimension
gradients satisfies ϵli-LDP in dimension level, dϵli-LDP in
user level for each user ui.
Discussion. Our frameworks achieve personalized LDP for
each user. This comes from Theorem 1.
Theorem 4 (Central Upper bound) Let i, j ∈ [n],
δs ∈ [0, 1],

∑n
i=2

∑n
j=1

pij

n ≥ 16 ln(4/δs), P = S ◦M of

APES satisfies (ϵc, δc)-DP where δc ≤ e
ϵlj−1

e
ϵl
j+1

δs,

ϵc ≤ ln(1 +
emax(ϵlj) − 1

emax(ϵlj) + 1
(
8(ln(4/δs))

1/2

(
n∑

i=2

n∑
j=1

pij
n
)1/2

+
8

n∑
i=2

n∑
j=1

pij
n

))

when
∑n

i=2

∑n
j=1

pij

n ≥ 16 ln(4/δs), δs ∈ [0, 1] and pij =

ϵli
ϵlj
· 1−e

−ϵlj

1−e−ϵl
i
· e−max(ϵli,ϵ

l
j).



Discussion. APES gains a strong central privacy for dimen-
sion level. Theorem 4 indicates most users are provided with
much stricter central privacy as ϵc than their local privacy ϵli.
A sketch of the proof is provided in section 4.3.
Proposition 1 (User Level Central Bound) With δ′

uc
> 0

and 0 < b < d, the process Ps = S ◦K ◦M of S-APES with
b-dimension sparsification is (ϵuc, δuc)-DP where ϵuc =

ϵc
√
4b ln(1/δuc)+2bϵc(exp (ϵc)−1) and δuc = δ′

uc
+2bδc.

Discussion. S-APES achieves the same dimension-level ϵc
as APES. Considering dimensions of a gradient are not in-
dependent and extracting b dimensions leads to 2b sensitiv-
ity, we derive the user-level privacy amplification effect by
composition theorems. Note that ϵuc grows linearly with b,
which implies privacy loss reduces when fewer dimensions
are uploaded by post-sparsification.

4.3 EoN: Privacy Amplification Analysis
To analyze privacy of proposed frameworks, we first intro-
duce Neighbor Divergence, then present the sketch of Echo
of Neighbors (EoN) analysis for privacy amplification effect.

Neighbor Divergence We introduce Neighbor Divergence
for characterizing how well a user’s output distribution
closes the gap between itself and other users’ distributions.
Concretely, it defines the distance among output distribu-
tions of local randomizers of users with heterogeneous pri-
vacy budgets and different raw datapoints.
Definition 5 (Neighbor Divergence) Consider any g0,
g1 ∈ D and randomizers Mi, Mj satisfying ϵi, ϵj-LDP
separately. Let µ

(0)
i and µ

(1)
j be distributions of Mi(g0)

and Mj(g1) respectively, U (0)
i ∼ µ

(0)
i , U (1)

j ∼ µ
(1)
j , the

neighbor divergence between µi and µ′
j is defined as:

DN (µ
(0)
i ||µ(1)

j ) = max
S⊆Supp(U

(0)
i )

[ln
Pr[U

(0)
i ∈ S]

Pr[U
(1)
j ∈ S]

]

In particular, the neighbor divergence under Clip-Laplace
Mechanism is demonstrated as follows.
Lemma 4 Let f(x) ∈ [−C,C], λ = ∆f/ϵ and ∆f =

2C, the neighbor divergence between distribution µ
(0)
i and

µ
(1)
j under Clip-Laplace Mechanism is DN (µ

(0)
i ||µ

(1)
j ) ≤

ln(α ϵi
ϵj
e(

(ϵi+ϵj)

2 +
A|ϵi−ϵj |

2C )). Specifically, DN (µ
(0)
i ||µ

(1)
j ) ≤

ln( ϵiϵj ·
1−e−ϵj

1−e−ϵi
· emax(ϵi,ϵj)) when A = C. α denotes

(1− 1
2 exp(

ϵj(−A+C)

2C )− 1
2 exp(

ϵj(−A−C)

2C ))

(1− 1
2 exp(

ϵi(−A+C)

2C )− 1
2 exp(

ϵi(−A−C)

2C ))

A sketch of EoN Analysis We analyze the central privacy
bound in Theorem 4 with the observation of Echos of Neigh-
bors. There are three main steps: (i) After shuffling, output
distributions of the rest of the users are converted into the
same distribution from u1 which can be seen as “echos”
by neighbor divergence. (ii) Then all the “echos” are trans-
formed into certain distributions which disentangle from dif-
ferent ϵli by degraded privacy. These distributions form a
mixed distribution. (iii) Finally, we measure the divergence
between the mixed distributions on D and D′.

Step (i). Recall that LDP mechanism Mi : Y → Z
satisfying ϵli-LDP for any i ∈ [n]. Based on neighbor di-
vergence, for any µ

(s)
i and µ

(t)
j by local randomizers we

have pij ≤ µ
(s)
i /µ

(t)
j where pij = e−DN (µ

(t)
j ||µ(s)

i ) by

Lemma 4. Specifically, for any user’s distribution µ
(i)
i on

gi ∈ D\{g1, g′1}, “echo” µ
(1)
j (or µ′(1)

j ) from u1 with g1 (or
g′1) is generated as follows:

µ
(i)
i =

pij
2

µ
(1)
j +

pij
2

µ′(1)
j + (1− pij)γ

(i)
i (3)

The distribution γ
(i)
i = µ

(i)
i −pij/2·(µ

(1)
j +µ′(1)

j )/(1−pij).
The idea is inspired by a prior work (Feldman, McMillan,
and Talwar 2022). Consider the situation that both g and ϵl

are shuffled, the correspondence between gi and ϵli is broken.
An adversary cannot decide which ϵlj is used for perturbing
g1, hence any value in {ϵli} is possible. Based on it we derive
a general bound, then consider the worst-case situation with
the largest ϵj on g1 for the upper bound at step (iii).

Step (ii). Except for u1, the mixed distributions of mul-
tiple µ

(1)
j with different ϵj from n − 1 users is still hard to

bound. Hence, with the help of degraded privacy (cf. Lemma
3) we transform (µ

(1)
j + µ′(1)

j ) into (ρ(1) + ρ′
(1)

) for any

j ∈ [n] to disentangle ϵj from µ
(1)
j .

Lemma 5 (Transformation) Let ρ(1) and ρ′
(1) denotes the

distribution of a function G : g1 → Z and G′ : g′1 → Z
respectively, µ(i)

i be the distribution of Mi(gi), and γ
(i)
i be

the rest part of µ(i)
i except ρ(1) and ρ′

(1), then µ
(i)
i is mapped

as follows.

µ
(i)
i =

1

n

n∑
j=1

(
pij
2

ρ(1) +
pij
2

ρ′
(1)

+ (1− pij)γ
(i)
i ) (4)

where pij = exp(−DN (µ
(1)
j ||µ

(i)
i )).

Proof By Lemma 3, we have µ
(1)
j = (eϵ/(1 + eϵ))ρ(1) +

(1/(1 + eϵ))ρ′
(1) and µ′(1)

j = (1/(1 + eϵ))ρ(1) +

(eϵ/(1 + eϵ))ρ′
(1). The influence of ϵj on µ

(i)
i is isolated:

µ
(i)
i =

1

n

n∑
j=1

(
pij
2

µ
(1)
j +

pij
2

µ′(1)
j + (1− pij)γ

(s)
i )

=
1

n

n∑
j=1

(
pij
2

ρ(1) +
pij
2

ρ′
(1)

+ (1− pij)γ
(s)
i )

Step (iii). Now we can bound the divergence of the trans-
formed distributions on D and D′.
Lemma 6 (Generalized Central Bound) Let i, j ∈ [n],
δs ∈ [0, 1],

∑n
i=2

∑n
j=1

pij

n ≥ 16 ln(4/δs), P = S ◦ M
of APES on D and D′ is (ϵc, δc)-distinguishable where
δc ≤ eϵj−1

eϵj+1
δs,

ϵc ≤ ln(1 +
eϵ

∗
− 1

eϵ∗ + 1
(
8(ln(4/δs))

1/2

(
n∑

i=2

n∑
j=1

pij
n
)1/2

+
8

n∑
i=2

n∑
j=1

pij
n

))



Proof By Lemma 5, any output distribution µ
(i)
i can be

mapped into ρ(1) or ρ′(1) with probability pij/2n, into γ
(i)
i

with (1− pij)/n. Consider (n− 1) outputs of users, we get
a set of mapping distributions including n(n− 1) elements.

With any T ⊆ [n(n − 1)], we define an mapping event
UT = {u1, ...un(n−1)} where

ut =

{
ρ(1)or ρ′(1), t ∈ T

γ
(t)
t , t ∈ [n(n− 1)]\T

The effect of γi is removed in process P under the same
UT :

Pr[P (D) = z]

Pr[P (D′) = z]
=

Pr[UT ] Pr[P (D) = z|UT ]

Pr[UT ] Pr[P (D′) = z|UT ]
=

Pr[P (DT ) = z]

Pr[P (D′
T ) = z]

Then we define T0 ⊆ T , any element ut ∈ UT is mapped
to ρ(1) for t ∈ T0, to ρ′

(1) for t ∈ T\T0. Put aside the ran-
domness on g1 and g′1 for now, to reach the mixed output z
with the same number of ρ(1) or ρ′(1), mapping event T0 on
D and T ′

0 on D′ should be different as |T ′
0| − |T0| = 1.

Recall that |T | ∼
∑n

i=2

∑n
j=1 Bern(pij/n) and |T0| ∼

Bin(1/2, |T |) according to Lemma 5, we can bound the di-
vergence between P (DT ) and P (D′

T ) as follows:

Pr[P (DT ) = z]

Pr[P (D′
T ) = z]

=
Pr[P (DT,T0) = {ρ1 ∈ T0, ρ

′
1 ∈ T\T0}]

Pr[P (D′
T,T ′

0
) = {ρ1 ∈ T ′

0, ρ
′
1 ∈ T\T ′

0}]

· Pr[UT0 ]

Pr[U ′
T ′
0
]
=

( |T |
|T0|

)
( 1
2
)|T0|( 1

2
)|T |−|T0|( |T |

|T ′
0|

)
( 1
2
)
|T ′

0|( 1
2
)
|T |−|T ′

0|
=

|T0|+ 1

|T | − |T0|
(5)

With Chernoff bound and Hoeffding’s inequality, when∑n
i=2

∑n
j=1

pij

n ≥ 16 ln(4/δs), Eq. (5) is bounded as
|T0|+1
|T |−|T0| ≤ ln(1 + 8(ln(4/δs))

1/2

(
∑n

i=2

∑n
j=1

pij
n )1/2

+ 8∑n
i=2

∑n
j=1

pij
n

).

At last, we consider the randomness on g1 and g′1 with
certain privacy budget ϵ∗, the rest of the proof follows ex-
isting work (Feldman, McMillan, and Talwar 2022) and the
general bound is proved. The full proof of Lemma 6 is pro-
vided to Appendix A.

From the analysis above, it is realized that which ϵ∗

adopted by g1 or g′1 is crucial for the bound. For the worst
case that ϵ∗ = max(ϵj) for j ∈ [n], the divergence is upper
bounded as Theorem 4. The proof refers to Appendix A.

5 Experiments
We conduct comprehensive experiments on APES and S-
APES with the public dataset and various privacy settings.

5.1 Experiment Settings
Dataset and Implementation QMNIST (Yadav and Bot-
tou 2019) is an extended version of MNIST dataset (LeCun
et al. 1998), which consists of 120,000 28-by-28-pixel im-
ages with 10 classes. We set users as n=10,000 and parti-
tion the dataset evenly for users. The frameworks are evalu-
ated with a Logistic Regression model with d=7850. All the
experiments are implemented on a workstation with an In-
tel(R) Xeon(R) E5-2640 v4 CPU at 2.40GHz and a NVIDIA
Tesla P40 GPU running on Ubuntu.

Baselines We compare the proposed methods with the
following schemes. (i) Baseline frameworks include: Non-
Private: FedProx (Li et al. 2020) without privacy protection.
LDP-Min: all users adopt min ϵli as privacy budget com-
pulsively, which preserves privacy of all the users. PLDP:
FedProx with personalized LDP. UniS: FedProx with shuffle
model under personalized LDP, the privacy bound refers to
Eq. (2). All the baseline frameworks exploit classic Laplace
Mechanism as local randomizer. (ii) Baseline bounds of pri-
vacy amplification effect include: the numerical generic re-
sult of BBGN’19 (Balle et al. 2019), the nemurical result
of FMT’22 (Feldman, McMillan, and Talwar 2022), the up-
per bound of GDDTK’21 (Girgis et al. 2021) and Erlings-
son’19 (Erlingsson et al. 2019).

Parameter Selection We stimulate the personalized pri-
vacy preference ϵl for several situations as Tab. 2. δs for
shuffling is set to 10−8 and δuc after dimension composi-
tion is 3.6× 10−5, smaller than 1/n.

5.2 Experiment Results
We first show the effectiveness of the total frameworks, then
confirm the privacy amplification effect, Clip-Laplace, and
post-sparsification adopted in frameworks separately.

Effectiveness of frameworks Tab. 3 demonstrates that
our frameworks achieve stronger central privacy with com-
parable or higher utility under the same personalized LDP.
we compare the model accuracy and central privacy budgets
of one epoch under Uniform2. (i) APES gains stricter pri-
vacy and the highest accuracy than baseline private frame-
works. Dimension-level ϵc and user-level ϵuc reduce by
more than 21% compared to UniS and PLDP. LDP-min gets
tighter bound, yet the model performs poorly. There is no
baseline framework achieves both better sides. The perfor-
mance of APES benefits from privacy amplification effect
of EoN and Clip-Laplace perturbation. (ii) S-APES provides
the same ϵc as APES and further enhances user-level privacy.
ϵuc diminishes by 55.6%, 66.7%, 99.6% compared to APES,
UniS, and PLDP separately, It is noticed that local ϵul also
drops by dimension reduction. Though S-APES sacrifices
accuracy of APES by 1.8%, it is still higher than baselines.
The post-sparsification in S-APES substantially boosts pri-
vacy with this tolerable utility reduction.

Fig. 3 confirms that our frameworks perform well on mul-
tiple distributions and ranges of ϵl locally (cf. Tab. 2). (i)
Accuracy of APES and S-APES is higher than UniS for the
most settings. An exception is in Gauss1 LDP, which im-
plies that S-APES may bot be appropriate for small ϵl. Too
much perturbation strengthens the privacy, but makes select-
ing informative dimensions harder. (ii) APES performs more
stable than UniS for different ϵl. A reasonable deduction is
that outputs of Clip-Laplace is not as sensitive as Laplace to
varying parameters, which is verified in Fig. 9 in Appendix.

1Since the true central privacy under classic Laplace Mecha-
nisms with varied ϵli is unbounded, ϵc of UniS in Tab. 3 is best
considered as an approximation when the ϵli of different users are
very similar to each other.



Name Distribution of ϵl = (ϵl1, ..., ϵ
l
n) Clip range

Uniform1 U(0.05, 0.5) [0.05, 0.5]
Uniform2 U(0.05, 1) [0.05, 1]
Gauss1 N (0.1, 1) [0.05, 0.5]
Gauss2 N (0.2, 1) [0.05, 1]
MixGauss1 N (0.1, 1) 90%, N (0.5, 1) 10% [0.05, 0.5]
MixGauss2 N (0.2, 1) 90%, N (1, 1) 10% [0.05, 1]

Table 2: Distributions of Personalized LDP Budgets ϵl. U ,N
represents Uniform and Gaussian Distribution respectively.
Clip range [a, b] denotes any value g outside the range [a, b]
is clipped by max(a, g) or min(b, g).

Frameworks ϵul ϵc ϵuc Accuracy

Non-Private ∞ ∞ ∞ 84.35%
LDP-Min 392.5 0.05 40.1 56.11%
PLDP 392.5 ∼ 7850 1 7850 77.54%
UniS 392.5 ∼ 7850 0.0691 76.9 77.54%
APES 392.5 ∼ 7850 0.057 57.6 79.67%
S-APES 78.5 ∼ 1570 0.057 25.6 78.14%

Table 3: Privacy and Utility under Unifrom2 LDP. ϵul: local
user level, ϵc: central dimension level, ϵuc: central user level
privacy budgets.

Privacy Amplification Effect In Fig. 2, we provide nu-
merical evaluations for privacy amplification effect under
fixed personalized LDP settings. Given dimension-level lo-
cal privacy ϵl ∈ [0.05, 1], we observe following results: (i)
our bounds achieve the strongest central privacy with the
smallest value of ϵc compared to baseline bounds under the
same n. The bound gets sharper especially when ϵl con-
centrates on smaller values. E.g., for the same range that
ϵl ∈ [0.05, 1], most ϵli in Gauss2 are smaller than ϵli in Uni-
form2, which leads to lower ϵc. This effect comes from the
EoN analysis, by which privacy contribution of each local
perturbation is taken into consideration. (ii) The amplifica-
tion effect gets stronger when more datapoints are shuffled,
as more randomness is introduced for obfuscation. When n
grows, almost all the privacy bounds ϵc reduce. Moreover,
Fig. 7 and 8 in Appendix C demonstrate EoN gives a more
obvious amplification effect when the range of ϵl gets larger.

Stability of Clip-Laplace Mechanism Fig. 4 shows a rel-
atively mild impact of clip bound C on Clip-Laplace per-
turbation. We compare model accuracy by adopting Clip-
Laplace Mechanism (CLap for short) and classic Laplace
mechanism (Lap for short) in APES separately. Overall, the
highest accuracy is obtained with CLap when C = 0.1.
CLap performs well especially for large C, while Lap is only
good at small C. It implies CLap may be suitable for per-
turbing gradients with larger norms. Fig. 9 in Appendix C
explores why CLap adapts to varying parameters. The vari-
ance of CLap is more stable compared to Lap for the same
level of LDP when C changes. As a price of low variance
resulting from the limited output range, a larger bias is in-
troduced (cf. Fig. 10 in Appendix C).

Figure 2: Privacy Bounds Figure 3: Impact of ϵl

Figure 4: Impact of C Figure 5: Impact of ps

Performance of Post-Sparsification We evaluate the pa-
rameters and the effectiveness of post-sparsification tech-
nique (ps for short) with Uniform2. (i) The trade-off between
accuracy and privacy of ps is discussed above, while the
knob is sparsification ratio b/d. In Fig. 5, the model with ps
achieves almost optimal accuracy as APES when b/d = 0.2,
hence only smaller ratios are evaluated. As b/d grows, fewer
dimensions are uploaded and the accuracy falls. In return,
privacy cost is saved. (ii) Then we observe that ps is more
effective than random-sparification (rs for short) which ran-
domly select dimensions with b/d. Specifically, model ac-
curacy based on rs is lower than ps for all the ratios, and
dramatically drops when b/d gets larger, as fewer informa-
tive dimensions are uploaded by rs.

6 Conclusion

This work focuses on personalized private federated learn-
ing. To balance privacy and utility, we propose privacy am-
plification frameworks with shuffle model under personal-
ized LDP. Comprehensive evaluations on the public dataset
confirm that our frameworks improve central privacy by re-
ducing ϵC up to 66% compared to existing work with com-
parable or higher accuracy.

In the future, we intend to extend the work for several di-
rections. First, we will explore the effectiveness of the work
for larger models as sharing more parameters requires higher
standards for both LDP performance and communication ef-
ficiency. Future improvements on sparsification techniques
may alleviate the concern. Second, it may be possible to
adapt the work to non-IID data distribution settings. Further
efforts in optimizing personalized models without exposing
local privacy parameters is needed, and more elaborate cal-
ibration for skewed gradients due to non-IID data may also
be required.
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Appendix
This Appendix includes: (i) Section A: omitted proofs of pri-
vacy theorems. (ii) Section B: omitted proofs of convergence
analysis. (iii) Section C: additional experiment results.

A Privacy Analysis
In this section, we temporarily mix the symbol ϵli with ϵi for
briefness.

Proof of Theorem 5 Let x and x′ ∈ Dd be such that
||x− x′|| ≤ 1, f(x) and f(x′) ∈ [−∆f/2,∆f/2], f(x′) =
f(x) + a.
Pr[M(x) = z]

Pr[M(x′) = z]

=

d∏
k=1

(
1/S · exp(−|f(x)k − zk|/λ)
1/S′ · exp(−|f(x′)k − zk|/λ)

)

=

d∏
k=1

(
1− 1

2
exp( ϵ(−A+f(x)k+ak)

∆f
)− 1

2
exp( ϵ(−A−f(x)k−ak)

∆f
)

1− 1
2
exp( ϵ(−A+f(x)k)

∆f
)− 1

2
exp( ϵ(−A−f(x)k)

∆f
)

· exp( ϵ|f(x)k − f(x′)k|
∆f

)) (6)

≤ exp(
ϵ · ||∆f/2− (−∆f/2)||1

∆f
)) (7)

≤ exp(ϵ)

The inequation (7) is derived based on ∂l
∂f(x) ≤ 0 and

∂l
∂f(x) ≥ 0 where l denotes the right hand of Eq. (6).

Proof of Lemma 4 Let g0 and g1 ∈ Dd be such that ||g0−
g1|| ≤ 1, f(g0) and f(g1) ∈ [−C,C] and ∆f = 2C, we
have

DN (µ
(0)
i ||µ(1)

j ) =
Pr[Mi(g0) = z]

Pr[Mj(g1) = z]

=

d∏
k=1

(
1/(biS

(0)
i ) · exp(−|f(g0)k − zk|/bi)

1/(bjS
(1)
j ) · exp(−|f(g1)k − zk|/bj)

)

≤
d∏

k=1

(
1− 1

2
exp(

ϵj(−A+f(g1)k)

∆f
)− 1

2
exp(

ϵj(−A−f(g1)k)

∆f
)

1− 1
2
exp( ϵi(−A+f(g0)k)

∆f
)− 1

2
exp( ϵi(−A−f(g0)k)

∆f
)

· exp( |ϵjf(g1)k − ϵif(g0)k|+ |zk(ϵi − ϵj)|
∆f

) · ϵi
ϵj
) (8)

When ϵjf(g1)k ≥ ϵif(g0)k, we define l(u) = (1 −
1
2 exp(

ϵ(−A+u)
∆f ) − 1

2 exp(
ϵ(−A−u)

∆f )) · exp( ϵu
∆f ), the maxi-

mum and minimum of l(u) is l(C) and l(−C) separately
when C ≤ A. Then the right hand of Eq. (8) is bounded
by:

DN (µi||µ′
j) ≤

ϵ
(0)
i

ϵ
(1)
j

·
1− 1

2
exp(

ϵj(−A+C)

2C
)− 1

2
exp(

ϵj(−A−C)

2C
)

1− 1
2
exp( ϵi(−A+C)

2C
)− 1

2
exp( ϵi(−A−C)

2C
)

· exp( (ϵi + ϵj)

2
+

A|ϵi − ϵj |
2C

)

In particular, when A = C, the bound is tight as follows:

DN (µi||µ′
j) ≤

ϵi
ϵj

· exp( |ϵi − ϵj |
2

) · exp(ϵj/2)− exp(−ϵj/2)

exp(ϵi/2)− exp(−3ϵi/2)

≤ ϵi
ϵj

· 1− e−ϵj

1− e−ϵi
· emax(ϵi,ϵj) (9)

Similarly, we get the same bound as Eq. (9) when
ϵjf(g1)k < ϵif(g0)k. Thus, the proof is completed. This
Lemma allows us to transform echos in the following part.
Proof of Lemma 6 From the proof in main body, we have
the intermediate result as Eq. (5), which is the following
equation:

Pr[P (DT ) = z]

Pr[P (D′
T ) = z]

=
|T0|+ 1

|T | − |T0|
(10)

Recall that |T | ∼
∑n

i=2

∑n
j=1 Bern(pij/n) and |T0| ∼

Bin(1/2, |T |), by Chernoff bound and Hoeffding’s inequal-
ity , T and T0 are concentrated to certain values. Specifically,
when

∑n
i=2

∑n
j=1

pij

n ≥ 3 ln(4/δs),

|T −
n∑

i=2

n∑
j=1

pij
n

| ≤ (3 ln(4/δ)

n∑
i=2

n∑
j=1

pij
n

)
1
2 (11)

|T0 − T/2| ≤ (T/2 ln(4/δ))
1
2 (12)

Based on Eq. (11) and (12), when
∑n

i=2

∑n
j=1

pij

n ≥
16 ln(4/δs), the following equation is established with the
probability (1− δs).

|T0|+ 1

|T | − |T0|
≤ |T |/2 + (|T |/2 ln(4/δs))

1
2 + 1

|T |/2− (|T |/2 ln(4/δs))
1
2

≤ 1 +
8(ln(4/δs))

1
2

(
n∑

i=2

n∑
j=1

pij
n
)
1
2

+
8

n∑
i=2

n∑
j=1

pij
n

= eϵ0 (13)

Hence the divergence between P (DT ) and P (D′
T ) is

bounded without considering the randomness of user 1.
Next, we take the randomness of the mechanism on g1

and g′1 with certain privacy budget ϵj into consideration,
according to previous work (Kairouz, Oh, and Viswanath
2015; Feldman, McMillan, and Talwar 2022). Formally, we
assume G (or G′) as the index of the mapping element from
g̃1 (or g̃′1), and also apply degraded privacy (cf. Lemma 3)
on g̃1 and g̃′1. The mapping event on the g̃1 (or g̃′1) is de-
fined as UG = {ρ(1) for p1, ρ′(1) for 1 − p1} and U ′

G =

{ρ(1) for p′1, ρ′(1) for 1 − p′1}, where p1 = eϵ
∗
/(1 + eϵ

∗
)

and p′1 = 1/(1 + eϵ
∗
).

Then we consider the mapping event Us from (n − 1)
users of process P except for g̃1 (or g̃′1). To reach the mixed
output z with the same number of ρ(1) or ρ′(1), Us needs to
satisfy the following situation:

Us = {UT with p1, U ′
T with 1− p1}

U ′
s = {UT with p′1, U ′

T with 1− p′1, }

which can be written as:
Us = {UT ∪ U ′

T with 1− p1, UT with 2p1 − 1}
U ′

s = {UT ∪ U ′
T with p′1, U ′

T with 1− 2p′1}

Hence we can bound the divergence between Us and U ′
s:

Pr[P (D) = z]− δc

Pr[P (D′) = z]
=

Pr[UG] Pr[US |UG]− δc

Pr[U ′
G′ ] Pr[U ′

S |U ′
G′ ]

=
p1(2(1− p1)(

1
2
) Pr[UT ∪ U ′

T ] + (2p1 − 1)Pr[UT ])− δc

(1− p′1)((2p
′
1(

1
2
) Pr[UT ∪ U ′

T ] + (1− 2p′1) Pr[U
′
T ]))

(14)



For convenience, we define the probabilities as A1 =
( 12 ) Pr[UT ∪U ′

T ], A2 = Pr[UT ], A′
2 = Pr[U ′

T ], 2(1−p1) =
2p′1 = (1 − p) and (2p1 − 1) = (1 − 2p′1) = p. Con-
sider the bound by Eq. (13) that A2 ≤ eϵ0A′

2 + δs, and
A2 ≤ eϵ0A1 + δs according to hockey-stick divergence, we
can rewrite Eq. (14) as
Pr[P (D) = z]− δc

Pr[P (D′) = z]
=

p1((1− p)A1 + pA2)− pδs
(1− p′1)((1− p)A1 + pA′

2)

≤ p1((1− p)A1 + p(min{A1, A
′
2}+ eϵ0 min{A1, A

′
2}))− pδs

(1− p′1)((1− p)A1 + pA′
2)

≤ p1((1− p)A1 + p(A′
2 + eϵ0((1− p)A1 + pA′

2)))− pδs
(1− p′1)((1− p)A1 + pA′

2)

≤ (1 + p(eϵ0 − 1))((1− p)A1 + pA′
2))

(1− p)A1 + pA′
2

= 1 + p(eϵ0 − 1)

= 1 +
eϵ

∗
− 1

eϵ∗ + 1
(
8(ln(4/δs))

1/2

(
n∑

i=2

n∑
j=1

pij
n
)1/2

+
8

n∑
i=2

n∑
j=1

pij
n

)

As ϵc ≤ ln(Pr[P (D)=z]−δc

Pr[P (D′)=z] ), the general bound of process

P in APES is proved, and δc ≤ eϵ
∗
−1

eϵ∗+1
δs.

Proof of Theorem 4 For the worst case, user 1 adpots
max(ϵj) as her privacy budget ϵ∗, which leads to an up-
per bound ϵc derived from Lemma 6. Therefore, P (D) and
P (D′) are (ϵc, δc)-DP:

ϵc ≤ ln(1 +
emax(ϵj) − 1

emax(ϵj) + 1
(
8(ln(4/δs))

1/2

(
n∑

i=2

n∑
j=1

pij
n
)1/2

+
8

n∑
i=2

n∑
j=1

pij
n

))

when
∑n

i=2

∑n
j=1

pij

n ≥ 16 ln(4/δs), δs ∈ [0, 1] and

δc ≤ emax(ϵj)−1

emax(ϵj)+1
δs. Given Lemma 4, pij equals ( ϵiϵj ·

1−e−ϵj

1−e−ϵi
·

e−max(ϵi,ϵj)).

B Convergence Analysis
To give the final convergence upper bound of the frame-
works after T aggregations, we make the following analysis:
(i) Show the assumptions on loss function. (ii) Derive a gen-
eral form for APES with general perturbation. (iii) Consider
the perturbation of Clip-Lalpalce Mechanism in bound. (iv)
Bring the effect of calibration into the bound.

Step (i) Assumptions To analyze the convergence of
APES, we first make following assumptions of loss function
(Schmidt and Roux 2013; Li et al. 2020; Wei et al. 2020).
1. The functions {Fi} of users ui for i ∈ [n] are non-

convex, L-Lipschitz smooth, and there exists L > 0, such
that ∇2Fi ⪰ LI with µ̄ := L+ µ > 0.

2. The functions {Fi} satisfy β-Polyak-Lojasiewicz(PL)
condition, which implies f(w̃)−f(w∗) ≤ 1

2β ∥∇f(w̃)∥
2,

and w∗ is the optimal parameters for loss function.
3. f(·) satisfies l-Lipschitz continuous condition.
4. w∗ is the optimal solution for minimum objective func-

tion: w∗ = minw h(w;wt). We assume h(w;wt)
is α-close to minimum function: ∥∇h(w∗;wt)∥ ≤
α∥∇h(w;wt)∥ where h(w;wt) = Fi(w)+

µ
2 ∥w−wt∥2.

We also measure the dissimilarity between users in Defini-
tion (6), which is also assumed in previous works that we
refers above.

Definition 6 (User Dissimilarity) The local loss func-
tions Fi of users are B-locally dissimilar at w if
Ei[∥∇Fi(w)∥2] ≤ ∥∇f(w)∥2B2. Here B(w) =√

Ei[∥∇Fi(w)∥2]
∥∇f(w)∥2 for ∥∇f(w)∥ ≠ 0.

Step (ii) Proof of General Form We give the general for
of convergence upper bound by yielding the bound in one
aggregation and inducting to T aggregations.

Lemma 7 (Bound of Single Aggregation) For a global
function f(w) = E[Fi(w)] in analyzer, the expectation of
difference of f(w) for a single aggregation between t-th and
(t+ 1)-th round is bounded as follows:

E[f(w̃(t+1))− f(w̃(t))]

≤ (
αB − 1

µ
+

LB(α+ 1)

µµ̄
+

LB2(1 + α)2

2µ̄2
)E[∥∇f(w̃(t))∥2]

+ (
1

µ
+

BL(1 + α)

µ̄
)E[∥∇f(w̃(t))∥∥η(t+1)∥] + L

2
E[∥η(t+1)∥2]

where η denotes the perturbation term introduced by DP

mechanisms, and η(t) = 1
n

∑
i(

˜
w

(t)
i − w

(t)
i ).

Proof According to the assumption 1, Fi is L-Lipschitz
smooth,

f(w̃(t+1)) ≤ f(w̃(t))+ < ∇f(w̃(t)), w̃(t+1) − w̃(t) >

+
L

2
∥w̃(t+1) − w̃(t)∥2 (15)

where w̃(t+1) = E[Fi(w̃
(t+1))],w̃(t) = 1

η

∑n
i=1 w

(t+1)
i +

η(t+1) and η(t) =
∑n

i=1 η
(t)
i . To bound f(w̃(t+1))−f(w̃(t)),

we have to bound ∥w̃(t+1)− w̃(t)∥ and (w̃(t+1)− w̃(t)) sep-
arately.

First, we focus on ∥w̃(t+1) − w̃(t)∥.
From assumption 3 with α-clossness we have

∥∇hk(w
(t+1); w̃(t))∥ ≤ α∥∇Fk(w̃

(t))∥ (16)

Since ∇2hk(w; w̃
(t)) = µ̄ > 0, hk is µ̄-strong convex. Let

w∗
k = argminw hk(w; w̃

(t)), we have

µ̄∥w(t+1)∗

i − w
(t+1)
i ∥

≤ ∥∇hi(w
(t+1)∗ ; w̃(t))−∇hi(w

(t+1); w̃(t))∥

= ∥0−∇hi(w
(t+1); w̃(t))∥ = α∥∇Fi(w̃

(t))∥ (17)

From the strong convexity of hk, we also know that

µ̄∥w(t+1)∗

i − w̃
(t)
i ∥

≤ ∥∇hi(w
(t+1)∗ ; w̃(t))−∇hi(w̃

(t); w̃(t))∥

= ∥0−∇hi(w̃
(t); w̃(t))∥

= ∥∇Fi(w̃
(t)) + µ(w̃(t) − w̃(t))∥

= ∥∇Fi(w̃
(t))∥ (18)



Based on triangle inequality, B-user dissimilarity and Eq.
(15)(17)(18), ∥w̃(t+1) − w̃(t)∥ is bounded:

∥w̃(t+1) − w̃(t)∥

≤ ∥w̃(t+1) − w̃(t+1)∗∥+ ∥w̃(t+1)∗ − w(t)∥+ ∥η(t+1)∥

≤ Ei[∥w(t+1)
i − w

(t+1)∗

i ∥+ ∥w(t+1)∗

i − w
(t)
i ∥] + ∥η(t+1)∥

≤ 1 + α

µ̄
Ei[∥∇Fi(w̃

(t))∥] + ∥η(t+1)∥ (19)

Then, let us bound (w̃(t+1) − w̃(t)). Differentiate hi, we
obtain

w̃(t+1) − w̃(t) = w(t+1) − w̃(t) + η(t+1)

≤ 1

µ
(E[∇hi(w

(t+1); w̃(t))−∇Fi(w
(t+1))]) + η(t+1)

=
1

µ
(E[∇hi(w

(t+1); w̃(t))−∇Fi(w
(t+1)) +∇Fi(w̃

(t))

−∇Fi(w̃
(t)))] + η(t+1) (20)

By triangle inequality and Eq. (16)(19), Lemma 6
and the L-Lipschitz condition on Fi, We can bound the
part (∇hi(w

(t+1); w̃(t)) − ∇Fi(w
(t+1)) + ∇Fi(w̃

(t))) of
Eq.(20).

∥(E[∇hi(w
(t+1); w̃(t))−∇Fi(w

(t+1)) +∇Fi(w̃
(t))]∥

≤ E[∥∇hi(w
(t+1); w̃(t))∥+ ∥∇Fi(w

(t+1))−∇Fi(w̃
(t))∥]

= (αB +
LB(1 + α)

µ̄
)E[∥∇Fi(w

(t+1))|]

= (αB +
LB(1 + α)

µ̄
)∥f(w̃(t))∥ (21)

At last, substitute Eq. (19), (20), and (21) into (15),
Lemma 7 is proved.

E[f(w̃(t+1))− f(w̃(t))]

≤ (
αB − 1

µ
+

LB(α+ 1)

µµ̄
+

LB2(1 + α)2

2µ̄2
)E[∥∇f(w̃(t))∥2]

+ (
1

µ
+

BL(1 + α)

µ̄
)E[∥∇f(w̃(t))∥∥η(t+1)∥]

+
L

2
E[∥η(t+1)∥2] (22)

The proof is completed.

By lemma 7, we can derive the convergence upper bound
for T aggregations.

Lemma 8 (General Form of Convergence Upper Bound)
The expected decrease in the global loss function
f(w) = 1

n

∑
i Fi(w) after T aggregations is bounded

as follows:

E[f(w̃(T ))− f(w∗)] ≤ aT
1 E[f(w̃(0))− f(w∗)]

+
aT
1 − 1

a1 − 1
(a2E[∥η∥] + a3E[∥η∥2]) (23)

where a1 = 1 + 2β(αB−1)
µ + 2βLB(α+1)

µµ̄ +
2βLB2(1+α)2

µ̄2 , a2 = l( 1µ + BL(1+α)
µ̄ ), a3 = L

2 .

Proof To bound E[f(w̃(T )) − f(w∗)], we first transform it
as follows:

E[f(w̃(T ))− f(w∗) + f(w∗)− f(w̃(t))]

≤ (
αB − 1

µ
+

LB(α+ 1)

µµ̄
+

LB2(1 + α)2

2µ̄2
)E[∥∇f(w̃(t))∥2]

+ (
1

µ
+

BL(1 + α)

µ̄
)E[∥∇f(w̃(t))∥∥η(t+1)∥] + L

2
E[∥η(t+1)∥2]

From assumption 3 and 4, we have E[f(w̃(t)) − f(x∗)] ≤
1
2β ∥∇f(w̃

(t))∥2 and ∥∇f(·)∥ ≤ l. Substract f(w∗) from
Eq.(22) in both sides, we have

E[f(w̃(t))− f(w∗)]

≤ (1 +
2β(αB − 1)

µ
+

2βLB(α+ 1)

µµ̄
+

2βLB2(1 + α)2

µ̄2
)

· E[f(w̃(t))− f(w∗)] + l(
1

µ
+

BL(1 + α)

µ̄
)E[∥η(t+1)∥]

+
L

2
E[∥η(t+1)∥2] (24)

Considering expectations of perturbation term η is the same
in each epoch, we define E[∥η(t)∥] = E[∥η∥] for t ∈ [0, T ].
By Eq. (24) we have

E[f(w̃(t))− f(w∗)] ≤ a1E[f(w̃(t))− f(w∗)] + a2E[∥η(t+1)∥]

+ a3E[∥η(t+1)∥2] (25)

where a1 = 1 + 2β(αB−1)
µ + 2βLB(α+1)

µµ̄ +
2βLB2(1+α)2

µ̄2 , a2 = l( 1µ + Bh(α+1)
µ̄ ), a3 = L

2 .
The bound of T aggregations is inducted with Eq.(25).

E[f(w̃(T ))− f(w∗)]

≤ a1(...(a1(a1(E[f(w̃(0))− f(w∗)]))))

+ (a0
1 + a1

1 + ...+ aT−1
1 )(a2E[∥η∥] + a3E[∥η∥2])

= aT
1 E[f(w̃(0))− f(w∗)] +

T−1∑
t=0

at
1(a2E[∥η∥] + a3E[∥η∥2])

= aT
1 E[f(w̃(0))− f(w∗)] +

aT
1 − 1

a1 − 1
(a2E[∥η∥] + a3E[∥η∥2])

Theorem 8 is proved.

Step (iii) Proof after CLap perturbation The specific
perturbation bias and variance introduced by Clip-Laplace
Mechanism is considered in this section. We have g̃i ∼
CLap(gi, bi, C) where bi = ∆f/ϵi, and gi = ∇f(xi;w).
Thus, local perturbed term ηi equals g̃i− gi, and aggregated
perturbed term η is 1

n

∑
i ηi.

Lemma 9 (Bound with Clip-Laplacian perturbation) By
personalized privacy level ϵl = (ϵl1, ..., ϵ

l
n), the convergence

bound of APES with Clip-laplacian noises is given as:

E[f(w̃(T ))− f(w∗)] ≤ aT1 ∆

+
aT1 − 1

a1 − 1
(O(a2C/min(ϵli)) +O(a3C

2/min(ϵli)
2))

where E[f(w̃(0))− f(w∗)] is denoted by ∆.



Proof Consider local perturbation for each user ui,

E[η2
i ] =

1

2S
((b2i − (gi + C + bi)

2)e
−C−gi

bi

+ (b2i − (−gi + C + bi)
2)e

−C+gi
bi ) + 2b2i

≤ (−4C2 − 4biC)e
−2C
bi

1− e
−2C
bi

+ 2b2i

We can obtain the bound of E[∥η∥2].

E[∥η∥2] = E[ 1
n

n∑
i=1

η2
i ] =

1

n

n∑
i=1

E[η2
i ] ≤ E[η2

i ]max

=
−4C2 − 8C/min(ϵli)

emin(ϵli) − 1
+

8C2

min(ϵli)
2

(26)

Then E[∥η∥] is also bounded as:

E[∥η∥]) = (E[∥η∥2])− D[∥η∥]))
1
2 ≤ (E[∥η∥2]))

1
2

= (
−4C2 − 8C/min(ϵli)

emin(ϵli) − 1
+

8C2

min(ϵli)
2
)
1
2 (27)

Substituting equation (26) and (27) into (23), the conver-
gence bound is provided:

E[f(w̃(T ))− f(w∗)] ≤ aT
1 E[f(w̃(0))− f(w∗)]

+
aT
1 − 1

a1 − 1
(a2(

−4C2 − 8C/min(ϵli)

emin(ϵli) − 1
+

2C2

min(ϵli)
2
)
1
2 )

+ a3(
−4C2 − 8C/min(ϵli)

emin(ϵli) − 1
+

8C2

min(ϵli)
2
)))

The proof is completed.

Step (iv) Proof after Calibration Besides local pertur-
bation, analyzer will also calibrate the noisy gradients cen-
trally, which increases the convergence rate empirically. We
provide the theoretical bound in this section.
Lemma 10 (Bound after Calibration) After Clip Lapla-
cian perturbation with ϵl and Calibration in server, the con-
vergence rate of APES is bounded as:

E[f(w̃(T ))− f(w∗)] ≤ aT1 ∆

+
aT1 − 1

a1 − 1
(O(a2C/min(ϵli)) +O(a3C

2/min(ϵli)
2))

Proof In calibration, we estimate ḡ by approximating E[g̃]
with E[˜̄gi] for i ∈ [n]. The bias introduced by g̃ is removed
with estimated ḡ mostly, we denote the residual bias for each
user by ∆ηi, which equals to ηi − η(ḡ). Note that η(ḡ) ∈
[−C,C], the norm of ∆ηi is bounded:

E[∆η2
i ] = E[η2

i ] + E[η2
i ]− 2E[ηi]E[ηi] ≤

(−8C2 − 8biC)e
−2C
bi

1− e
−2C
bi

+
(−8C2 + 8biC)e

−4C
bi − 8biCe

−2C
bi

(1− e
−2C
bi )2

+ 6b2i

Therefore we obtain the bound of E[∥∆ηi∥2].

E[∥∆ηi∥2] = E[ 1
n

n∑
i=1

∆η2
i ] =

1

n

n∑
i=1

E[∆η2
i ] ≤ E[∆η2

i ]max

= − 8C2

emin(ϵli) − 1
+

8C2

(emin(ϵli) − 1)2
+

24C2

min(ϵli)
2

(28)

Then E[∥∆ηi∥] is also bounded as:

E[∥∆ηi∥]) = (E[∥η∥2])− D[∥η∥]))
1
2 ≤ (E[∥η∥2]))

1
2

= (− 8C2

emin(ϵli) − 1
+

8C2

(emin(ϵli) − 1)2
+

24C2

min(ϵli)
2
)
1
2 (29)

Substituting Eq. (28) and (29) into (23), the bound is pro-
vided:

E[f(w̃(T ))− f(w∗)] ≤ aT
1 E[f(w̃(0))− f(w∗)]

+
aT
1 − 1

a1 − 1
(a2(− 8C2

emin(ϵli) − 1
+

8C2

(emin(ϵli) − 1)2
+

24C2

min(ϵli)
2
)
1
2 )

+ a3(− 8C2

emin(ϵli) − 1
+

8C2

(emin(ϵli) − 1)2
+

24C2

min(ϵli)
2
)

Ideally, when estimated gradient ḡ is accurate, we have a
better bound as follows:

E[f(w̃(T ))− f(w∗)] ≤ aT
1 E[f(w̃(0))− f(w∗)] +

(aT
1 − 1)a2

a1 − 1

· (
−8C2 − 32C2

min(ϵli)

emin(ϵli) − 1
− 8C2

(emin(ϵli) − 1)2
+

4C2

min(ϵli)
2
)
1
2

+ a3(
−8C2 − 32C2

min(ϵli)

emin(ϵli) − 1
− 8C2

(emin(ϵli) − 1)2
+

4C2

min(ϵli)
2
)

≤ aT
1 ∆+

aT
1 − 1

a1 − 1
(O(a2C/min(ϵli)) +O(a3C

2/min(ϵli)
2))

The proof is completed.

Given Lemma 10, the upper bound of convergence of
the whole APES framework is obtained, as demonstrated in
Theorem 2.

C Experiment Supplements
In this section, we provide error evaluation for calibration
during analyzing process of APES and S-APES (Fig. 6), ad-
ditional comparison on privacy amplification effects (Fig. 7,
8), and the output evaluation of Clip-Laplace Mechanism
(Fig. 9, 10). At last, the model accuracy and ϵuc for all the
LDP settings is demonstrated in Tab. 4.

Figure 6: Error of approximation for calibrating noisy gradi-
ents. Most values of (g̃ − E[˜̄g]) concentrate around zero.



Framework Uniform1 Gauss1 MixGauss1 Uniform2 Gauss2 MixGauss2
ϵuc acc ϵuc acc ϵuc acc ϵuc acc ϵuc acc ϵuc acc

Non-Private ∞ 84.35% ∞ 84.35% ∞ 84.35% ∞ 84.35% ∞ 84.35% ∞ 84.35%
LDP-min 40.1 56.11% 40.1 56.11% 40.1 56.11% 40.1 56.11% 40.1 56.11% 40.1 56.11%
PLDP 3925 75.64% 3925 63.77% 3925 67.75% 7850 77.54% 7850 64.81% 7850 73.84%
UniS 17.4 75.64% 17.4 63.77% 17.5 67.75% 79.6 77.54% 76.9 64.81% 76.9 73.84%
APES 15.5 78.77% 15.3 78.33% 15.4 79.06% 57.6 79.67% 52.7 79.29% 53.7 79.97%
S-APES 8.5 75.7% 8.5 56.64% 8.5 77.01% 25.6 78.14% 23.6 73.4% 23.9 76.12%

Table 4: Comparison with baseline frameworks on user-level central privacy budget and accuracy under the all the personalized
privacy budget settings. δuc = 3.6× 10−5.

Figure 7: Privacy Bounds with smaller privacy budget range.
The difference between EoN and baselines becomes smaller,
but absolute value of ϵc of EoN is lower than larger range.

Figure 8: Privacy Bounds with larger privacy budget range.
EoN gains more obvious amplification effect. Uniform3 de-
notes U(0.05, 3), Gauss3 denotesN (0.5, 1), MixGauss3 de-
notes 90%N (0.5, 1) and 10%N (3, 1). All the clip range of
ϵl is in [0.05, 3].

Figure 9: Variance of outputs of CLap on different C and ϵl.
Smaller variance leads makes CLap more stable for varying
parameters, which benefits from limited output ranges .

Figure 10: Bias of CLap outputs on different C and ϵl. Bias
of CLap perturbation is larger than Lap perturbation, hence
calibration is necessary.


