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A TROPICAL COUNT OF BINODAL CUBIC SURFACES

MADELINE BRANDT - ALHEYDIS GEIGER

There are 280 binodal cubic surfaces passing through 17 gen-
eral points. For points in Mikhalkin position, we show that 214
of these give tropicalizations such that the nodes are separated on
the tropical cubic surface.

1. Introduction

Given some points in general position, one can ask for the number of va-
rieties of a fixed dimension and fixed number of nodes passing through
the points. We study tropical counts of binodal cubic surfaces over C
and R. The space P19 parameterizes cubic surfaces by the coefficients of
their defining polynomial. The singular cubic surfaces form a variety of
degree 32 called the discriminant in P19. The surfaces passing through
a particular point in P3 form a hyperplane in P19. Thus, through 18
generic points there are 32 nodal surfaces. The reducible singular locus
of the discriminant is the union of the cuspidal cubic surfaces and the
binodal cubic surfaces. Each is a codimension 2 variety in P19.

In [13, Section 7.1] Vainsencher gives formulas for the number of
k-nodal degree m surfaces in a k-dimensional family in P3. That is, for
k= 2 and m= 3 he determines the degree of the variety parameterizing
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2-nodal cubics. For k = 2 nodes, there are 2(m- 2)(4m3- 8m2+ 8m-
25)(m-1)2 such surfaces. Setting m= 3, we have the following count.

Theorem 1.1 ([13]). There are 280 binodal complex cubic surfaces passing
through 17 general points.

Mikhalkin pioneered the use of tropical geometry to answer ques-
tions in enumerative geometry [11]. Tropical methods have successfully
counted nodal plane curves over C and R [3, 11]. In [2, 3] this technique
is enriched by the concept of floor diagrams. In our setting, we ask:

Question 1.2 (Question 10 [12]). Can the number 280 of binodal cubic
surfaces through 17 general points be derived tropically?

For points in Mikhalkin position, as introduced in Definition 2.1,
tropical methods are useful because the dual subdivisions of the New-
ton polytope are very structured. This allows us to study only 39 subdi-
visions of � = Conv{(0,0,0),(3,0,0),(0,3,0),(0,0,3)}, the Newton poly-
tope of a cubic surface. This is minuscule compared to the 344,843,867
unimodular triangulations of this polytope [5, 6].

Singular tropical surfaces and hypersurfaces are studied in [4, 8].
A surface with � nodes as its only singularities is called �-nodal. The
tropicalization of a �-nodal surface is called a �-nodal tropical surface.
We say a �-nodal surface is real if the polynomial defining the surface is
real and the surface has real singularities.

If we count with multiplicities all tropical binodal cubic surfaces
through our points, we will recover the true count. We study tropical
surfaces with separated nodes, in the sense that the topological closures
of the cells in the tropical surface containing the nodes have empty
intersection. To count them, we list the dual subdivisions of candidate
binodal tropical cubic surfaces and count their multiplicities.

Theorem 1.3. There are 39 tropical binodal cubic surfaces through 17 points
in Mikhalkin position (see Definition 2.1) containing separated nodes. They
give rise to 214 complex binodal cubic surfaces through 17 points.

Proof. We distinguish five cases based on which floors (see Definition 2.5)
of the tropical cubic surface contain the nodes and count with complex
multiplicities (see Definition 2.7).

214= 20|{z}
Proposition 2.9

+ 24|{z}
Proposition 3.4

+ 90|{z}
Proposition 3.5

+ 72|{z}
Proposition 4.3

+ 8|{z}
Proposition 4.4

.
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Theorem 1.4. There exists a point configuration ! of 17 real points in P3

all with positive coordinates, such that there are at least 58 real binodal cubic
surfaces passing through !.

Proof. We count the floor plans in Theorem 1.3 with real multiplicities.
Since the real multiplicities are difficult to determine in some cases, the
propositions only give us lower bounds. We obtain that there are at
least 58 real binodal cubic surfaces passing through !.

58= 16|{z}
Proposition 2.9

+ 4|{z}
Proposition 3.4

+ 34|{z}
Proposition 3.5

+ 4|{z}
Proposition 4.3

+ 0|{z}
Proposition 4.4

.

As we conduct the counts in Theorems 1.3 and 1.4, we encounter
cases with unseparated nodes. Here, the two node germs (see Defini-
tion 2.3) are close together, and so the cells that would normally con-
tain the nodes interact and their topological closures intersect. Thus,
the node germs interfere with the conditions on producing nodes [9].
These cases account for the 66 surfaces missing from our count. Their
dual subdivisions contain unclassified polytope complexes, which we
list in Section 5.1.

Acknowledgements. The authors thank Hannah Markwig for her ex-
planations, the insightful discussions and her feedback, and Bernd Sturm-
fels for helpful remarks and recommendations for the improvement of
this article. We also thank an anonymous referee for suggestions for the
improvement of this paper.

2. Tropical Floor Plans

We now give an overview of counting surfaces using tropical geometry.
Let K = [m�1C{t1/m} and KR = [m�1R{t1/m}. We assume the reader is
familiar with tropical hypersurfaces and the corresponding dual subdi-
vision of the Newton polytope as in [7, Chapter 3.1].

For any 17 generic points in P3
K, the tropicalizations of the 280 bin-

odal cubic surfaces pass through the tropicalizations of the 17 points.
However, an arbitrary choice of points might lead to the tropicalizations
of the points not being distinct, or not being tropically generic. Further-
more, these surfaces would be difficult to characterize in general.

Luckily, we can choose points in Mikhalkin position (see Definition
2.1). This is a configuration of points in generic position such that their
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tropicalizations are tropically generic. Additionally, tropical surfaces
passing through such points have a very nice form, and the combina-
torics of the dual subdivision is well understood.

We can count tropical surfaces through points in Mikhalkin posi-
tion. Since the points are in generic position, we have 280=ÂS multC(S),
where we sum over all tropical surfaces S passing through the tropical-
ized points and multC(S) denotes the lifting multiplicity of S over K. At
this time, the ways in which two nodes can appear in a tropical surface
are not fully understood, so our count is incomplete. Cases we do not
understand yet are listed in Section 5.1.

We now give the definition of points in Mikhalkin position.

Definition 2.1 ([9, Section 3.1]). Let ! = (p1, ...,p17) be a configuration
of 17 points in P3

K or P3
KR

. Let qi 2 R3 be the tropicalization of pi for
i= 1, ...,17. We say ! is in Mikhalkin position if the qi are distributed with
growing distances along a line {� ·(1,⌘,⌘2)|�2R}⇢R3, where 0 < ⌘⌧ 1,
and the pi are generic.

This is possible by [11, Theorem 1]. From now on all cubic sur-
faces are assumed to satisfy point conditions from points in Mikhalkin
position.

We now summarize the recipe for constructing binodal tropical cu-
bic surfaces through our choice of 17 points. Given a singular tropical
surface S passing through ! = (p1, ...,p17) in Mikhalkin position, each
point pi is contained in the relative interior of its own 2-cell of S [9,
Remark 3.1]. Therefore, we can encode the positions of these points
by their dual edges in the Newton subdivision. Marking these edges
in the subdivision leads to a path through 18 of the lattice points in
the Newton polytope �. Thus, the path misses two lattice points in
�. Due to our special configuration, this path is always connected
for cubics [9, Section 3.4]. Moreover, satisfying point conditions in
Mikhalkin position implies that the surface is floor decomposed [1],
i.e., the dual subdivision can be considered as a union of the subdi-
vided polytopes: conv{(0,0,0),(0,3,0),(0,0,3),(1,0,0),(1,2,0),(1,0,2)},
conv{(1,0,0),(1,2,0),(1,0,2),(2,0,0),(2,1,0),(2,0,1)} and the tetrahedron
conv{(2,0,0),(2,1,0),(2,0,1),(3,0,0)}. These are the slices, see Figure 1a.
As said before, the edges dual to the 2-cells containing the points in
Mikhalkin position give rise to a path. This path leads through the tri-
angle faces of the boundary of the slices of � and connects each of them
by one step, see Figure 1b, [9, Section 3.2]. By looking at the triangle
faces of the slices independently, we obtain subdivisions of polytopes
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dual to tropical curves of degrees 3, 2, and 1. These are the floors of our
floor plans (see Definition 2.5).

(a) Floor decomposed dual subdivi-
sion

(b) The lattice path through the
points of � corresponding to a
smooth tropical cubic surface

Figure 1: Subdivision and lattice path to a smooth tropical cubic surface
through points in Mikhalkin position.

For tropical surfaces passing through points in Mikhalkin position
this process is reversible. We start with a lattice path through 18 points
in � that proceeds through the slices in the prescribed way. From this
path we reconstruct the floors of the surface. Then, we extend this to a
floor-decomposed subdivision of � by the smooth extension algorithm
[9, Lemma 3.4], thus giving rise to a tropical surface passing through
points in Mikhalkin position.

Tropicalizations of singularities leave a mark in the dual subdivision
[8]. By [8] a tropical surface is one-nodal if it contains one of the 5
circuits shown in Figure 2. A circuit is a set of affinely dependent lattice
points such that each proper subset is affinely independent.

Proposition 2.2. For the tropicalization of a nodal cubic surface passing through
points in Mikhalkin position only the circuits A, D and E can occur in the dual
subdivision (see Figure 2).

Proof. Since the Newton polytope to a cubic surface does not contain in-
terior lattice points, circuit B is eliminated. The point conditions induce
a lattice path in the dual subdivision, which eliminates the possibility
of interior points in a triangle, so circuit C cannot occur.

The lower dimensional circuits have to satisfy some additional con-
ditions such that their dual cell contains a node. Circuit A is a pen-
tatope, which is full dimensional. So its dual cell is a vertex and this
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(a) Circuit A (b) Circuit B (c) Circuit C (d) Circuit D (e) Circuit E

Figure 2: Circuits in the dual subdivision inducing nodes in the surface.

vertex is the node. To encode a singularity, circuit D must be part of a
bipyramid (see Figure 3c). The node is the midpoint of the edge dual to
the parallelogram. Circuit E must have at least three neighboring points
in special positions, forming at least two tetrahedra with the edge (see
Figure 3e). The weighted barycenter of the 2-cell dual to the edge of
length two is the node, where the weight is given by the choice of the
three neighbors. We now introduce the definition of a node germ, which
is a feature of a tropical curve appearing in a floor plan giving rise to
one of these circuits in the subdivision dual to the tropical surface.

(a) Circuit A (b) Circuit D (c) Bipyramid (d) Circuit E (e) Weight two
configuration

Figure 3: Circuits in the dual subdivision.

Definition 2.3 ([10], Definition 5.1). Let C be a plane tropical curve of
degree d passing through

�d+2
2

�
- 2 points in general position. A node

germ of C of a floor plan of degree 3 is one of the following:

1. a vertex dual to a parallelogram,

2. a horizontal or diagonal end of weight two,

3. a right or left string (see below).

If the lower right (resp. left) vertex of the Newton polytope has no
point conditions on the two adjacent ends, we can prolong the adjacent
bounded edge in direction (1,0) (resp. (-1,-1)) and still pass through
the points. The union of the two ends is called a right (resp. left) string.
See Figures 4a and 4b.

Remark 2.4. Now we can state the definition of separated nodes in
terms of the dual subdivision: two nodes are separated if they arise
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(a) Left string (b) Right string

Figure 4: Right and left strings.

from polytope complexes of the form 3a, 3c or 3e. Any such two com-
plexes might intersect in a unimodular face.

In [10] tropical floor plans are introduced to count surfaces satisfy-
ing point conditions, similar to the concept of floor diagrams used to
count tropical curves. Their definition of tropical floor plans requires
node germs to be separated by a smooth floor. This neglects surfaces
where the nodes are still separated but closer together, because that is
enough to count multinodal surfaces asymptotically [10, Theorem 6.1].

Definition 2.5 (Specialized from [10], Definition 5.2). Let Qi be the pro-
jection of qi along the x-axis. A two-nodal floor plan F of degree 3 is a tuple
(C3,C2,C1) of plane tropical curves Ci of degree i together with a choice
of indices 3� i2 � i1 � 1, such that ij+1 > ij+1 for all j, satisfying:

1. The curve Ci passes through the following points:

if i⌫ > i > i⌫-1 : QÂ3
k=i+1 (

k+2
2 )-2+⌫, ...,QÂ3

k=i (
k+2
2 )-4+⌫

if i= i⌫ : Q⌫-1+Â3
k=i+1 (

k+2
2 ), ...,Q-4+⌫+Â3

k=i (
k+2
2 ).

2. The plane curves Cij have a node germ for each j= 1,2.

3. If the node germ of Cij is a left string, then its horizontal end
aligns with a horizontal bounded edge of Cij+1.

4. If the node germ of Cij is a right string, then its diagonal end
aligns either with a diagonal bounded edge of Cij-1 or with a
vertex of Cij-1 which is not adjacent to a diagonal edge.

5. If i2 = 3, then the node germ of C3 is either a right string or a
diagonal end of weight two.

6. If i1 = 1, then the node germ of C1 is a left string.

The information contained in a floor plan defines a unique tropical
binodal cubic surface [10, Proposition 5.9].
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Remark 2.6. This definition only allows node germs in floors that are
separated by a smooth floor. To count all surfaces with separated singu-
larities, we have to allow node germs in adjacent or the same floors and
hence we need to extend this definition to the new cases, that cannot
occur in the original setting.

As soon as adjacent floors can contain node germs, a new alignment
option for the left string is possible: analogous to the second alignment
option for the right string, a left string in Ci can also align with a vertex
of Ci+1 not adjacent to a horizontal edge.

(a) Left string align-
ing with a horizontal
bounded edge

(b) Right string align-
ing with a diagonal
bounded edge

(c) Parallelogram in
subdivision dual to
floor

Figure 5: Node germs giving a circuit of type D.

We now describe how the node germs from Definition 2.3 together
with the alignment conditions described in Definition 2.5 produce one
of the circuits from Figure 3 inside the dual subdivision.

Figure 5 shows all node germs which lead to a parallelogram in the
subdivision of the Newton polytope. If the node germ in a curve is dual
to a parallelogram we have a picture as in Figure 5c. The right vertex
of the floor of higher degree and the left vertex of the floor of lower
degree form a bipyramid over the parallelogram as in Figure 3c. Figure
5a depicts the alignment of the horizontal end of the left string with a
bounded horizontal edge of a curve of higher degree. In the floor plan,
this translates to the dual vertical edges in the subdivisions forming a
parallelogram. Since the string passes through the two vertices bound-
ing the horizontal edge it aligns with, the dual polytope complex is a
bipyramid over the parallelogram. The two top vertices of the pyramids
are the vertices forming triangles with the vertical bounded edge in the
dual subdivision to the floor of higher degree. Analogously, a right
string aligning with a diagonal bounded edge (see Figure 5b) produces
a bipyramid in the dual subdivision.

Figure 6a shows the alignment of a left string with a vertex not
adjacent to a horizontal edge. The 5-valent vertex in this figure is dual
to a type A circuit, as in Figure 3a. The analogous alignment of a right
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(a) Intersection dual to
a pentatope

(b) Horizontal end of
weight two

(c) Diagonal end of
weight two

Figure 6: Node germs leading to circuits of type A and type E.

string with a vertex not adjacent to a diagonal edge is very rare in
our setting, since we consider surfaces of degree 3 and a smooth conic
contains no such vertex. The occurring cases in our count are due to
node germs in the conic and lead not to a pentatope as in Figure 3a, but
to different complexes considered in Section 5.1.

Figures 6b and 6c show the node germs coming from an undivided
edge of length two in the subdivision, as shown in Figure 3d. The node
is contained in the dual 2-cell of the length two edge. Every intersection
point of the weight two diagonal (resp. horizontal) end with the lower
(resp. higher) degree curve of the floor plan can be selected to lift the
node [9]. In the dual subdivision this corresponds to choosing three
neighboring vertices which could form the polytope complex shown
in Figure 3e. With our chosen point condition the neighboring vertex
in the dual subdivision of the floor containing the undivided edge is
always one of the three neighboring vertices. If the length two edge is
diagonal (resp. vertical) the other two vertices have to form a vertical
(resp. diagonal) length one edge in the boundary of the subdivision
dual to the lower (resp. higher) degree curve of the floor plan.

The complex lifting multiplicity of the node germs in the floors can
be determined combinatorially using [9].

Definition 2.7 (Specialized from Definition 5.4, [10]). Let F be a 2-nodal
floor plan of degree 3. For each node germ C⇤

ij
in Cij , we define the

following local complex multiplicity multC(C⇤
ij
):

1. If C⇤
ij

is dual to a parallelogram, then multC(C⇤
ij
) = 2.

2. If C⇤
ij

is a horizontal end of weight two, then multC(C⇤
ij
) = 2(ij+1).

3. If C⇤
ij

is a diagonal end of weight two, then multC(C⇤
ij
) = 2(ij-1).

4. If C⇤
ij

is a left string, then multC(C⇤
ij
) = 2.



636 MADELINE BRANDT - ALHEYDIS GEIGER

5. If C⇤
ij

is a right string whose diagonal end aligns with a diagonal
bounded edge, then multC(C⇤

ij
) = 2.

6. If C⇤
ij

is a right string whose diagonal end aligns with a vertex not
adjacent to a diagonal edge, then multC(C⇤

ij
) = 1.

The multiplicity of a 2-nodal floor plan is multC(F) = ’2
j=1 multC(C⇤

ij
).

To determine the real multiplicity, we have to fix the signs of the
coordinates of the points in !, as they determine the existence of real
solutions of the initial equations in [9]. The dependence on the signs
of the coordinates of the points is shown by including s in the notation
multR,s for the real multiplicity. Here we only consider points where
every coordinate is positive.

Definition 2.8 ([10], Definition 5.10). For a node germ C⇤
ij

in Cij , we
define the local real multiplicity multR,s(C⇤

ij
):

1. If C⇤
ij

is dual to a parallelogram, it depends on the position of the
parallelogram in the Newton subdivision:

• if the vertices are (k,0), (k,1), (k-1,l) and (k-1,l+1), then

multR,s(C⇤
ij
) =

�
2

0
if (

3

2
ij+1+k+ l)(ij-1)⌘

�
1

0
modulo 2.

• if the vertices are (k,3- ij-k), (k,3- ij-k-1), (k+1,l) and
(k+1,l+1), then

multR,s(C⇤
ij
) =

�
2

0
if

1

2
· (ij+2+2l)(ij-1)⌘

�
1

0
modulo 2.

2. If C⇤
ij

is a diagonal edge of weight two, multR,s(C⇤
ij
) = 2(ij-1).

3. If C⇤
ij

is a left string, then it depends on the position of the dual
of the horizontal bounded edge of Cij+1 with which it aligns. As-
sume it has the vertices (k,l) and (k,l+1). Then

multR,s(C⇤
ij
) =

�
2

0
if ij-k⌘

�
0

1
modulo 2.

4. If C⇤
ij

is a right string whose diagonal end aligns with a a vertex
not adjacent to a diagonal edge, then multR,s(C⇤

ij
) = 1.
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A tropical 2-nodal surface S of degree 3 given by a 2-nodal floor
plan F has at least multR,s(F) = ’2

j=1 multR,s(C⇤
ij
) real lifts with all pos-

itive coordinates satisfying the point conditions [10, Proposition 5.12].
Several cases are left out of the above definition because the number of
real solutions is hard to control. We address this in Section 5.2. This
is why we can only give a lower bound of real binodal cubic surfaces
where the tropicalization contains separated nodes.

We now count surfaces from the floor plans defined in [10, Defini-
tion 5.2], which have node germs in the linear and cubic floors. Since
we adhere exactly to Definition 2.5 the nodes will always be separated.

Proposition 2.9. There are 20 cubic surfaces containing two nodes such that
there is one node germ in the cubic floor and one in the linear floor. Of these
binodal surfaces at least 16 are real.

Proof. By Definition 2.5 a floor plan consists of a cubic curve C3, a conic
C2, and a line C1, where the tropical curves C3 and C1 contain node
germs. Recall that the notation C⇤

i stands for the node germ in Ci.
By Definition 2.5 (6) the node germ of C1 is a left string as in Fig-
ure 8a, which always aligns with the horizontal bounded edge in C2, so
multC(C⇤

1) = 2. The node germs in C3 possible by Definition 2.5 (5) are
depicted in Figures 7b-7d and each one gives a different floor plan.

(7b) There is a right string in the cubic floor. In the smooth conic,
there is no vertex which is not adjacent to a diagonal edge. So, the
right string of the cubic must align with the diagonal bounded
edge. This gives multC(F) = multC(C⇤

3) ·multC(C⇤
1) = 2 · 2 = 4. In

this case, multR,s(F) is undetermined, see Section 5.2.

(7c, 7d) The cubic has a weight two diagonal end. We have 2 ·multC(F) =
2 ·multC(C⇤

3) ·multC(C⇤
1) = 2 · (2(3- 1) · 2) = 16. By Definition 2.8

(3) the real multiplicity of the left string depends on coordinates
of the dual of the edge it aligns with: (1,0) and (1,1). This gives
2 ·multR,s(F) = 2 ·multR,s(C⇤

3) ·multR,s(C⇤
1) = 2 · (2(3-1) ·2) = 16.

Notice that having node germs separated by a floor only accounts
for 20 of the 280 tropical cubic surfaces through our 17 points. As we
will show, our extension of Definition 2.5 captures many more surfaces.
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(a) (b) (c) (d)

Figure 7: The triangulation dual to a smooth cubic floor and the three
possible subdivisions dual to a tropical cubic curve with one node germ.

(a) Left string in C1
(b) A triangulation dual to
a smooth conic

Figure 8: The triangulations dual to linear and conic curves appearing
as part of the floor plans to Proposition 2.9.

3. Nodes in adjacent floors

We now study cases where node germs are in adjacent floors of the floor
plan, extending Definition 2.5, and check that the nodes are separated.

Lemma 3.1. If a floor plan of a degree d surface in P3 contains a diagonal or
horizontal end of weight two and a second node germ leading to a bipyramid in
the subdivision, such that the bipyramid does not contain the weight two end,
the nodes are separated.

Proof. The bipyramid and the weight two end share at maximum one
vertex. The neighboring points of the weight two end can be part of the
bipyramid. This causes no obstructions to the conditions in [9] for the
existence of a binodal surface tropicalizing to this.

Lemma 3.2. If a floor plan of a degree d surface in P3 has separated nodes, C2

cannot have a right string.

Proof. By Definition 2.5 (4) a right string in C2 would have to align with
a diagonal bounded edge of C1 or with a vertex of C1 not adjacent to a
diagonal edge. Since C1 is a tropical line, both cases can never occur.

We now give the lemma used to eliminate cases with polytope com-
plexes in the Newton subdivision that cannot accommodate two nodes.
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We use obstructions arising from dimensional arguments, which are
independent of the choice of generic points.

Lemma 3.3. Let � ⇢ Z3 be finite, and let B� be the variety of binodal hyper-
surfaces with defining polynomial having support � . If the dimension of B�

is less than |� |- 3, then any tropical surface whose dual subdivision consists
of unimodular tetrahedra away from Conv(�) is not the tropicalization of a
complex binodal cubic surface.

Proof. If a binodal cubic surface had such a triangulation and satisfied
our point conditions, then we could obtain from it a binodal surface
with support � satisfying |� |- 3 point conditions. However, if the di-
mension of B� is less than |� |-3 we do not expect any such surfaces to
satisfy |� |-3 generic point conditions.

Typically the dimension of B� is the expected dimension |� |-3. For
some special point configurations � the dimension is less than this, and
these are the cases we want to eliminate.

To apply the lemma, suppose conv(�) is a subcomplex of the sub-
division of �. If apart from conv(�) the subdivision of � only contains
unimodular simplices, cutting � down to conv(�) corresponds to re-
moving the lattice points of � \ conv(�), loosing one point condition
each. Thus, if conv(�) cannot accommodate 2 nodes, neither can �.

Proposition 3.4. There are 24 cubic surfaces containing two nodes such that
the tropical cubic has two separated nodes and the corresponding node germs
are contained in the conic and linear floors. Of these, at least 4 are real.

Proof. Here a floor plan consists of a smooth cubic curve C3 (see Fig-
ure 7a), a conic C2 and a line C1, both with a node germ. The node
germ of C1 is by Definition 2.5 (6) a left string, see Figure 8a. For C2 all
possibilities from Definition 2.3 are depicted in Figure 9. We examine all
choices for the floor plan F and check whether the nodes are separated.

(9a)-(9c) By Definition 2.5 (3) the left string in C1 must align with the hor-
izontal bounded edge of C2, which is dual to a face of the paral-
lelogram in the subdivision. We obtain a prism polytope between
the two floors, and by completion of the subdivision, we get two
pyramids sitting over those two rectangle faces of the prism, that
are not on the boundary of the Newton polytope. This complex
may hold two nodes, see Section 5.1.

(9d) By Definition 2.5 (3), the left string of C1 aligns with the horizon-
tal bounded edge of C2, giving a bipyramid in the subdivision,
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with top vertices the neighbors to the dual of the bounded diag-
onal edge in C2. The length two edge dual to the horizontal end
of weight two is surrounded by tetrahedra that only intersect the
bipyramid in a unimodular face. So, the nodes are separated and
we count their multiplicities: multC(F) = multC(C⇤

1) ·multC(C⇤
2) =

2 ·2(2+1) = 12. In this case, multR,s(F) is undetermined, see Sec-
tion 5.2.

(9e) The left string in C1 must align with the vertex in C2 not adja-
cent to a horizontal edge, but this vertex is dual to the area two
triangle in the subdivision. The resulting volume two pentatope
contains the neighbors of the length two edge. This configuration
is eliminated using Lemma 3.3.

(9f) The left strings in C1 and C2 lead to two bipyramids in the subdi-
vision. For each of the 3 alignment possibilities of the left string
in C2, the resulting bipyramids are disjoint and the nodes sepa-
rate. We get 3 ·multC(F) = 3 ·multC(C⇤

1) ·multC(C⇤
2) = 3 ·(2 ·2) = 12.

By Definition 2.8 (3) we need to consider the positions of the dual
edges the left strings align with in order to compute the real multi-
plicities. The left string in C1 aligns with the edge given by the ver-
tices (1,0),(1,1) in the conic floor, it has multR,s(C⇤

1) = 2. For the
conic, two of the three choices have x-coordinate k= 1 in the cubic
floor, so multR,s(C⇤

2)= 0. The last alignment is dual to x-coordinate
k= 2, so we have multR,s(C⇤

2) = 2. We obtain multR,s(F) = 4.

(a) (b) (c) (d) (e) (f)

Figure 9: The possible subdivisions dual to a tropical conic curve with
one node germ appearing as part of a floor plan of a nodal cubic surface.

Proposition 3.5. There are 90 cubic surfaces containing two nodes such that
the tropical binodal cubic has separated nodes and the node germs are contained
in the cubic and conic floors. Of these, at least 34 are real.
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Proof. A floor plan consists of a cubic C3 with a node germ (Figures
7b-7d), a conic C2 with a node germ (Figure 9), and a smooth line C1.
There are 18 combinations.

(7b, 9a-9b) The cubic contains a right string, which must align with a diago-
nal bounded edge by Definition 2.5 (4). The resulting subdivision
contains a triangular prism with two pyramids. This complex may
contain two nodes, see Section 5.1.

(7b, 9c) The right string in the cubic must align with the vertex of the conic
dual to the square in the subdivision, giving rise to the polytope
complex shown in Section 5.1.

(7b, 9d) The right string in the cubic must align with the vertex dual to
the left triangle in the conic containing the weight two edge. The
resulting complex may hold 2 nodes, see Section 5.1.

(7b, 9e) The resulting subdivision contains a bipyramid and a weight two
configuration only overlapping in vertices, so the nodes are sepa-
rated. We have multC(F) = multC(C⇤

3) ·multC(C⇤
2) = 2 ·2(2-1) = 4.

In this case, multR,s(F) is undetermined, see Section 5.2.

(7b, 9f) The left string in C2 has to align with a horizontal bounded edge
of C3 by Definition 2.5 (4). There are 3 possibilities. If it aligns
with the bounded edge adjacent to the right string in the cubic,
we obtain a prism with two pyramids as in (7b, 9a). See Section
5.1. If it aligns with either of the other two horizontal bounded
edges, we obtain two bipyramids in the dual subdivision. Be-
cause the diagonal bounded edge of C2 is part of the left sting
aligning with a horizontal bounded end not adjacent to the right
string of C3, we cannot align the right string with the diagonal
edge, such that the end of the right string contains the whole hor-
izontal bounded edge of C2. Instead the end meets the bounded
edge somewhere in the middle and passes only through one ver-
tex. Therefore, in the subdivision the second pyramid over the
alignment parallelogram must have its vertex in C3 instead of
in the C2, see Figure 10. In total, we get two bipyramids that
only share an edge, so the node germs are separated. We have
2 ·multC(F) = 2 ·multC(C⇤

3) ·multC(C⇤
2) = 2 · (2 ·2) = 8. In these two

cases, the edge the string aligns with has x-coordinate k= 1 in the
cubic floor and thus by Definition 2.8 they both give multR,s(F)= 0.
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Figure 10: The two bipyramids for one alignment of (7b, 9f). The gray
(resp. black) dots are the lattice points of the dual polytope to C3 (resp.
C2). The shared edge of the bipyramids is marked blue and red.

(7c, 9a-9b) We obtain a bipyramid only overlapping with the configuration of
the weight two end in vertices or edges. So the nodes are sepa-
rated and 2 ·multC(F) = 2 ·multC(C⇤

3) ·multC(C⇤
2) = 2(2(3-1) ·2) =

2 · 8. The parallelogram has vertices as in the first case of Defini-
tion 2.8 (1) with k= 1,l= 1 and ij = 2, so multR,s(F) = 0.

(7c, 9c) As in (7c, 9a) we have multC(F) = 8. For the real multiplicity we
need the vertices of the parallelogram. They are as in the first case
of Definition 2.8 (1) with k= 1,l= 0 and ij = 2, so multR,s(C⇤

2) = 2.
The weight 2 end in C3 has multR,s(C⇤

3) = 4, so multR,s(F) = 8.

(7c-7d, 9d) This subdivision contains a tetrahedron which is the convex hull
of both weight two ends. We also need a choice of the neighboring
points of the two weight two edges. By their special position to
each other, it only remains to add the two vertices neighboring the
edges in the respective subdivisions dual to their floors. Whether
it can contain 2 nodes is so far undetermined, see Section 5.1.

(7c-7d, 9e) The nodes are separated, since the weight two ends with any
choice of their neighboring points intersect in one vertex. So
2 ·multC(F) = 2 ·multC(C⇤

3) ·multC(C⇤
2) = 2 ·(2(3-1) ·2(2-1)) = 2 ·8

and 2 ·multR,s(F) = 2 ·multR,s(C⇤
3) ·multR,s(C⇤

2) = 2 · (2(3-1) ·2(2-
1)) = 2 ·8.

(7c, 9f) There are two possibilities to align the left string in C2 with a
horizontal bounded edge in C3. If we select the left edge, we
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have a bipyramid, which does not contain the weight two end. By
Lemma 3.1 the nodes are separate. However, we need to adjust the
multiplicity formula from Definition 2.7 (3) to this case, because
due to the alignment of the left string we obtain one intersection
point less of the diagonal end of weight two with C2. So instead of
3-1= 2 intersection points to chose from when lifting the node we
have 3-2= 1. Thus, we obtain multC(F)=multC(C⇤

3) ·multC(C⇤
2)=

2(3- 2) · 2 = 4. Since the left edge has x-coordinate k = 1, we ob-
tain multR,s(F) = 0. If we select the right edge, then the bipyramid
contains the weight two end. See Section 5.1.

As the cubic floor contains a vertex of C3 not adjacent to a hor-
izontal edge, it is also possible to align the left string with this.
In the dual subdivision this gives rise to a pentatope spanned
by the triangle dual to the vertex in C3 and the vertical edge in
the conic floor dual to the horizontal end of the left string, see
Figure 3a. The nodes dual to the length two edge and the pen-
tatope are separated. By [9] we have multC(C⇤

2) = multR,s(C⇤
2) = 1.

We count: multC(F) = multC(C⇤
3) ·multC(C⇤

2) = 2(3-2) ·1 = 2 and
multR,s(F) = multR,s(C⇤

3) ·multR,s(C⇤
2) = 2(3-2) ·1= 2.

(7d, 9a-9b) We obtain a bipyramid overlapping with the weight two config-
uration in one or two vertices, so the nodes are separated and
2 ·multC(F) = 2 ·multC(C⇤

3) ·multC(C⇤
2) = 2(2(3-1) ·2(2-1)) = 2 ·8.

With the same parallelogram as in (7c,9a): multR,s(F) = 0.

(7d, 9c) This follows (7d, 9a), and we have multC(F) = 8. The real multi-
plicity follows (7c, 9c), and we have multR,s(F) = 8.

(7d, 9f) For each of the two choices for the alignment of the left string of
the conic with a horizontal bounded edge of the cubic, we obtain
a bipyramid which may share two vertices with the neighbors of
the edge of weight two. As in (7c, 9f) we need to adjust the multi-
plicity formula for the weight two end to multC(C⇤

3) = 2(3-2) = 2.
We have 2 ·multC(F) = 2 · 4. For both alignments the dual edges
have x-coordinate k= 1 in the cubic floor, giving multR,s(F) = 0.
As C3 also contains a vertex not adjacent to a horizontal edge,
this opens a third alignment possibility. However, this vertex is
adjacent to the weight two, so the nodes are not separated. The
polytope complex can be seen in Figure 14.
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4. Nodes in the same floor

We now examine cases where both node germs are in the same floor of
the floor plan. By Lemma 3.2 we cannot have a right string in the conic
part of the floor plan, if the nodes are separated. A few more cases,
depicted in Figure 11, can be eliminated with the following Lemma 4.1.

Lemma 4.1. The ways of omitting 2 points in the floor path in the conic floor
shown in Figure 11 do not give separated nodes.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11: Conics through 3 points eliminated by Lemma 4.1.

Proof. If the conic in a floor plan has two node germs, it passes only
through 3 points of the point configuration. In order to fix our cubic
surface, every point we omit in the lattice path of the conic floor needs
to compensate for the omitted point condition on our cubic surface.

A vertical weight two end does allow our conic to be fixed by fewer
points. But our point configuration ensures the end has no interaction
with the other floors and thus cannot give rise to a node-encoding cir-
cuit as in Figure 3. So, combined with a classical node germ this does
not encode two separated nodes, dealing with 11a, 11b, 11c and 11d.

If the top vertex of the Newton polytope of C2 is omitted in the floor
path, we always obtain an upwards string. If the upwards string is to
be pulled vertically upwards, it can never be aligned with any part of
the other floors, thus not fixing the curve, eliminating 11h, 11j and 11l.

If the direction to pull the upwards string has some slope, as in 11e
and 11f, or in the 2-dimensional strings in 11i and 11k, we still cannot
align with any bounded edges of the other cubic, since we are above the
line through the points due to our chosen point configuration. In 11g
on the other hand we can align the vertical end of the string, but since
we have two degrees of freedom this does not fix the curve, as we can
still move the first vertical end.
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Remark 4.2. The last issue in the proof of Lemma 4.1 can be fixed,
if we allow alignments with ends. These however do not give rise to
separated nodes [9]. Therefore the cases 11a, 11e, 11f, 11g, 11i and
11k require further investigation, see Section 5.1. In this light the non-
existence of right strings in the conic floor needs to be investigated.

Proposition 4.3. There are 72 cubic surfaces containing two nodes, such that
the tropical binodal conic has separated nodes and the corresponding node
germs are both contained in the conic floor. Of these, at least 4 are real.

Proof. See Figure 12.

(12a) Since the end of the left string, which aligns with a bounded hor-
izontal edge of the conic, is of weight two, we obtain a bipyramid
over a trapezoid. We get two different complexes depending upon
the alignment, see Section 5.1.

(12b) We have a string with two degrees of freedom, because we can
pull on both horizontal ends and vary their distance. Hence, we
can align them both with the horizontal bounded edges of the
cubic. There are three ways to do this. In the dual subdivisions
this gives rise to two bipyramids. In all three cases they inter-
sect maximally in two 2-dimensional unimodular faces, and thus
are separated. Since the bipyramids arise not from classical node
germs, we check their multiplicities via the underlying circuit.
By [9, Lemma 4.8] we obtain multiplicity 2 for each, and thus
3 ·multC(F) = 3 ·multC(C⇤

2) = 3 · 2 · 2 = 12. We get multR,s(F) = 0,
since one end has to align with a bounded edge in C3 with dual
edge of x-coordinate k= 1.

(12c-12d) The conic floor has a left string and a parallelogram. This gives
two bipyramids in the subdivision which, depending on the choice
of alignment for the left string, have a maximal intersection of an
edge. We obtain 2 · (3 ·multC(F)) = 2 · 12. The vertex positions of
the parallelogram give multR,s(F) = 0 as in Proposition 3.4 (9a).

(12e) As in (12c), we obtain 3 ·multC(F) = 12. The formulas for real
multiplicities in Definition 2.8 do not match this case, see Section
5.2.

(12f) The bipyramids arising from the different alignment options only
intersect with the neighboring points of the weight two end in one
vertex, so 3 ·multC(F)= 12. Only the alignment with the horizontal
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bounded edge of C3 dual to the vertical edge of x-coordinate k= 2
has non-zero real multiplicity, giving multR,s(F) = 4.

(12g) The two sets of neighboring points to the two weight two ends
intersect in one vertex. So the nodes are separated and multC(F) =
6 ·2= 12, while multR,s(F) is undetermined, see Section 5.2.

(a) (b) (c) (d) (e) (f) (g)

Figure 12: Dual subdivisions of conics with two node germs.

Proposition 4.4. There are 8 cubic surfaces containing two nodes, such that
the tropical binodal cubic surface has separated nodes and the corresponding
node germs are both contained in the cubic floor.

So far the number of real surfaces is undetermined.

Proof. Only two types of node germs may occur in C3, see Figure 13.

(13a) Since the weight two end is not contained in the bipyramid the
two nodes are separated by Lemma 3.1, giving multC(F) = 2 ·4= 8.
In this case, multR,s(F) is undetermined, see Section 5.2.

(13b) The classical alignment condition of the right string with diagonal
end of weight two can not be satisfied, since the direction vector of
the variable edge has a too high slope. Due to the point conditions
the diagonal end of weight two and the diagonal bounded edge
of the conic curve never meet.

(13c) Here we have a two-dimensional string. By the same argument as
in (13b) we cannot align the middle diagonal end with the diago-
nal bounded edge of the conic. Aligning the right string with the
diagonal bounded edge of the conic does not fixate our floor plan,
since we can still move the middle diagonal end of the cubic.

(13d) We have three tetrahedra in the subdivision containing the weight
three edge. This could contain two nodes, see Section 5.1.

In (13b), (13c) alignments with ends are an option, see Section 5.1.
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(a) (b) (c) (d)

Figure 13: Cubics with two node germs.

5. Next steps

5.1. Dual complexes of unseparated nodes

In previous sections, we encountered cases where two distinct node
germs did not give rise to separated nodes. The dual complexes arising
from these cases are shown in Figure 14.

We also encountered the floors which do not give separated nodes
in Figure 11 and in the proof of Proposition 4.4. By new alignment con-
ditions, they might encode unseparated nodes, see Remark 4.2. Align-
ment with ends is not allowed for separated nodes, because circuit D
(Figure 3b) is then contained in the boundary of the Newton polytope
and cannot encode a single node [9]. However, with one point condi-
tion less than for one-nodal surfaces, we can obtain strings with one
degree of freedom more and this makes not only the alignment of two
ends possible, but additionally the alignment of the vertices the ends
are adjacent to. This leads to a triangular prism shape in the subdivi-
sion, which has at least one parallelogram shaped face in the interior of
the Newton polytope. At this time, we do not yet know whether any of
these cases can contain two nodes or with what multiplicity they should
be counted with, but in total they ought to give the 66 missing surfaces
from our count.

5.2. Undetermined real multiplicities

In the previous sections, we encountered cases in which the real mul-
tiplicity was undefined. This happens when C⇤

ij
is a horizontal edge

of weight two ((9d) and (12g)), and C⇤
ij

is a right string whose diago-
nal end aligns with a diagonal bounded edge ((7b), (7b, 9e), (12e), and
(13a)). There might be real lifts satisfying the point conditions coming
from floor plans containing these node germs, but the number of real
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(9a-9c), (7b, 9a), (7b, 9b), (7b, 9f) (7b, 9d) (7c, 9d), (7d, 9d)

(7b, 9c) (7c, 9f) (7d,9f)

(12a) (12a) (13d)

Figure 14: Complexes whose duals could have to two nodes.

solutions is hard to control. An investigation of these cases is beyond
the scope of this paper, so we leave Theorem 1.4 as a lower bound under
these assumptions.

We may compute the real multiplicity of (12e), as well as of right
strings aligning with diagonal bounded edges as follows. Shift the par-
allelogram to a special position used to prove [9, Lemma 4.8]. The
equations of the proof of [9, Lemma 4.8] applied to our exact example
then need to be checked for the existence of real solutions.
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