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1 Introduction

This paper develops the theory and methods for modeling a stationary discrete-valued time

series by transforming a Gaussian process. Since the majority of discrete-valued time series

involve integer counts supported on some subset of 0 1 , we isolate on this support set.

Our methods are based on a copula-style transformation of a latent Gaussian stationary

series and are able to produce any desired count marginal distribution. It is shown that the

proposed model class produces the most exible pairwise correlation structures possible,

including negatively dependent series. Model parameters are estimated via 1) a Gaussian

pseudo-likelihood approach, developed from some new Hermite expansion techniques, which

use only the mean and the autocovariance of the series, 2) an implied Yule-Walker moment

estimation approch when the latent Gaussian process is an autoregression, and 3) a particle

ltering (PF) / sequential Monte Carlo (SMC) approach that uses a state space model

(SSM) representation of the transformation to approximate the true likelihood. Extensions

to non-stationary settings, particularly those with covariates, are discussed.

The theory of stationary Gaussian time series is by now well developed. A central

result is that a stationary Gaussian series ∈Z having the lag- autocovariance ( ) =

Cov( + ) exist if and only if is symmetric about lag zero and non-negative de nite

(see Theorem 1.5.1 in [6]). However, such a result does not hold for stationary count series

having a certain prescribed marginal distribution (e.g, Poisson). In principle, distributional

existence issues are checked with Kolmogorov s consistency criterion (see Theorem 1.2.1 in

[6]); in practice, one needs a speci ed joint distribution to check for consistency. Phrased

another way, Kolmogorov s consistency criterion is not a constructive result and does not

illuminate how to build stationary time series having a particular marginal distribution

and correlation structure. Perhaps owing to this, count time series have been constructed
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from a plethora of approaches over the years, as is next reviewed.

Drawing from the success of autoregressive moving-average (ARMA) models in describ-

ing stationary Gaussian series, early count authors constructed correlated count series from

discrete ARMA (DARMA) and integer ARMA (INARMA) di erence equation methods.

Focusing on the rst order autoregressive case for simplicity, a DAR(1) series =1 with

speci ed marginal distribution ( ) is obtained by generating 1 from ( ) and then at

each subsequent time, either keeping the previous count value with probability or gen-

erating an independent copy of ( ) with probability 1 . INAR(1) series are built via

the thinned AR(1) equation = −1 + , where is an IID count-valued random

sequence and is a thinning operator de ned by = B( ) for a binomial distribution

B( ) with trials and success probability . DARMA methods were initially explored

in [23], but were subsequently discarded by practitioners because their sample paths often

remained constant for long periods, especially in highly correlated cases; INARMA series

are still used today. In contrast to their Gaussian ARMA brethren, DARMA and INARMA

models, and their extensions in [24], cannot produce negative autocorrelations.

The works [5] and [9] take a di erent approach, producing the desired count marginal

distribution by combining IID copies of a correlated Bernoulli series built from a

stationary renewal sequence. Explicit autocovariance functions when is made by

binning (clipping) a stationary Gaussian sequence into zero-one categories are derived in

[33]. While these models can have negative correlations, they do not necessarily produce the

most negatively correlated count structures possible. Also, some important count marginal

distributions, including generalized Poisson, are not easily built from these methods. The

results here easily generate any desired count marginal distribution. Other count model

classes studied include Gaussian processes rounded to their nearest integer [26], hierarchical

3



Bayesian count model approaches [2], and others (see [18] and [11] for recent reviews). Each

approach has some drawbacks.

The models here impose a xed marginal distribution for the counts. This is in contrast

to generalized ARMA methods (GLARMA), which typically posit conditional distributions

in lieu of marginal distributions, with model parameters typically being random. As [1]

shows in the Poisson case, once the randomness of the parameters is taken into account, the

true marginal distribution of the series can be far from the posited conditional distribution.

This said, the literature on GLARMA and other conditional models is extensive [3, 43].

See [16] for a recent review of GLARMA models.

A time series analyst generally needs four features in a count model: 1) general marginal

distributions; 2) the most general correlation structures possible, both positive and neg-

ative; 3) the straight-forward accomodation of covariates; and 4) a well performing and

computationally feasible likelihood inference approach. All previous count classes fail to

accommodate one or more of these tenets. This paper s purpose is to introduce and study

a count model class that, for the rst time, simultaneously achieves all four features. Our

model employs a latent Gaussian process and a copula-style transformation. This type of

construction has recently shown promise in spatial statistics [12, 21], multivariate modeling

[39, 40], and regression [35], but the theory has yet to be developed for count series ([35, 30]

provide some partial results). Our objectives here are several-fold. On a methodological

level, it is shown, through some newly derived Hermite polynomial expansions, that accu-

rate and e cient numerical quanti cation of the correlation structure of this count model

class is feasible. Based on a result in [42], the class is shown to produce the most exible

pairwise correlation structures possible, positive or negative (see Remark 2.2 below). Con-

nections to both importance sampling schemes, where the popular GHK sampler in [35] is
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adapted to our needs, and to the SSM and SMC literature, which allow natural extensions

of the GHK sampler and likelihood evaluation, are made. The methods are tested on both

synthetic and real data.

The works [35, 30] are perhaps the closest papers to this study. While the general latent

Gaussian construct adopted is the same, our work di ers in that explicit autocovariance re-

lations are developed via Hermite expansions, exibility and optimality issues of the model

class are addressed, Gaussian pseudo-likelihood and implied least-squares parameter esti-

mation approaches are developed, and both the importance sampling and SSM connections

are explored in detail. Additional connections to [35, 30] and to the spatial count modeling

papers [21, 22] are later made.

The rest of this paper proceeds as follows. The next section and Appendix A intro-

duce our Gaussian transformation count model and establish its basic mathematical and

statistical properties. Section 3 and Appendix B move to estimation, developing three

techniques: a Gaussian pseudo-likelihood approach, implied Yule-Walker estimation, and

PF/SMC methods. Section 4 and Appendix C present simulation results. Section 5 and

Appendix D analyze soft drink sales counts at one location of the now defunct Dominicks

Finer Foods retail chain. This series exhibits overdispersion, negative lag one autocorrela-

tion, and dependence on a price reduction (sales) covariate, which illustrates the exibility

of our approach. Section 6 concludes with comments and suggestions for future research.

2 Theory

We seek to construct a strictly stationary time series having marginal distributions

from any family of count distributions supported in 0 1 , including the Binomial,
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Poisson, mixture Poisson, negative binomial, generalized Poisson, and Conway-Maxwell-

Poisson distributions. The later three distributions are over-dispersed (their variances are

larger than their respective means), which is the case for many observed count time series.

Let ∈Z be the stationary count time series of interest. Suppose that one wants

the marginal cumulative distribution function (CDF) of for each of interest to be

( ) = P[ ], depending on a vector θ containing all CDF model parameters. The

series will be modeled through

= ( ) where ( ) = −1( ( )) R (1)

and ( ) is the CDF of a standard normal variable and −1( ) = inf : ( ) ,

(0 1), is the generalized inverse (quantile function) of the CDF . The process

∈Z is standard Gaussian for each xed , but possibly correlated in time:

E[ ] = 0 E[ 2] = 1 ( ) =: Corr( + ) = E[ + ] (2)

This approach has been used in [39, 35, 21, 30] with good results. The autocovariance

function (ACVF) of , denoted by ( ), is the same as the autocorrelation function

(ACF) due to standard normality and depends on another vector η of ACVF parameters.

As expanded on in Section 2.3, (1) can be viewed as a SSM:

State equation : ( −1 1) governing latent Gaussian dynamics;

Observation equation : P( = ) = 1
k
( ) with the set de ned below.

Here, ( ) is notation for an arbitrary conditional distribution.

This model has alternative names in other literature. For example, [7] call this setup

the normal to anything (NORTA) procedure in operations research, whereas [20] calls this
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a translational model in mechanical engineering. Our goal is to give a reasonably complete

analysis of the probabilistic and statistical properties of these models.

The construction in (1) ensures that the marginal CDF of is indeed ( ). E-

laborating, the probability integral transformation theorem shows that ( ) has a uni-

form distribution over (0 1) for each ; a second application of the result justi es that

has the marginal distribution ( ) for each . Moreover, temporal dependence in

will induce temporal dependence in as quanti ed below. For notation, let

( ) = E[ + ] E[ + ]E[ ] denote the ACVF of .

2.1 Relationship between autocovariances

The autocovariance functions of and can be related using Hermite expan-

sions (see Chapter 5 of [37]). In particular, using the Hermite polynomials ( ) =

( 1)
2 2 k

k (
− 2 2), R we can expand the 2 function as

( ) = E[ ( 0)] +
∞∑
=1

( ) (3)

where the Hermite coefficients are given by

=
1

!

∫ ∞
−∞

( ) ( )
− 2 2

2
=

1

!
E[ ( 0) ( 0)] (4)

for a standard normal variable 0. The relationship between ( ) and ( ) is key and is

extracted from Chapter 5 of [37]:

( ) =
∞∑
=1

! 2 ( ) =: ( ( )) (5)
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where ( ) =
∑∞

=1 ! 2 . For = 0, (5) yields Var( ) = (0) =
∑∞

=1 ! 2, which

depends only on the marginal parameters in θ. Moreover, the ACF of is

( ) =
∞∑
=1

! 2

(0)
( ) =: ( ( )) (6)

where

( ) =
∞∑
=1

! 2

(0)
=:

∞∑
=1

(7)

and = ! 2 (0). The function maps [ 1 1] into (but not necessarily onto) [ 1 1].

For future reference, note that (0) = 0 and (1) =
∑∞

=1 = 1. Using (3) and

E[ ( 0) ( 0)] = ( 1) !1[ = ] gives ( 1) = Corr( ( 0) ( 0)); however, ( 1)

is not necessarily 1 in general. As such, ( ) starts at ( 1 ( 1)), passes through

(0 0), and connects to (1 1). Examples are given in Figure 2 of Appendix A.

We call the quantity ( ) a link function, and the coe cients , 1, link coefficients.

(Sometimes, slightly abusing terminology, we also use these terms for ( ) and 2 !, respec-

tively.) A key feature in (5) is that the e ects of the marginal CDF ( ) and the ACVF

( ) are decoupled in the sense that the correlation parameters in do not in uence

the coe cients in (5) this is useful later in estimation.

Further properties and the numerical calculation of the link function and the Hermite

coe cients are discussed in Appendix A. The computation of the Hermite coe cients, in

particular, is feasible due to the following lemma, which is proved in Appendix A.

Lemma 2.1. If E[ ] for some 1, then the coefficients satisfy

=
1

! 2

∞∑
=0

− −1( n)2 2
−1(

−1( )) (8)

where = P[ ]. (When −1( ) = (that is, = 0 or 1), the summand

− −1( n)2 2
−1(

−1( )) is interpreted as zero.)
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Returning to the relationship between ( ) and ( ), from (6), one can see that

( ) ( ) (9)

which implies that a positive ( ) leads to a positive ( ). A negative ( ) produces a

negative ( ) since ( ) is, in fact, monotone increasing (see Proposition A.1 in Appendix

A) and crosses zero at = 0 (the negativeness of ( ) when ( ) 0 can also be deduced

from the nondecreasing nature of via an inequality on page 20 of [41] for Gaussian

variables).

Remark 2.1. The short- and long-range dependence properties of can be extracted

from those of . Recall that a time series is short-range dependent (SRD) if∑∞
=−∞ ( ) . According to one de nition, a series is long-range dependent

(LRD) if ( ) = ( ) 2 −1, where (0 1 2) is the LRD parameter and is a slowly

varying function at in nity [37]. The ACVF of such LRD series satis es
∑∞

=−∞ ( ) =

. If is SRD, then so is by (9). On the other hand, if is LRD with

parameter , then can be either LRD or SRD. The conclusion depends, in part, on

the Hermite rank of ( ), which is de ned as = min 1 : = 0 . Speci cally, if

(0 ( 1) 2 ), then is SRD; if (( 1) 2 1 2), then is LRD with

parameter ( 1 2) + 1 2 (see [37], Proposition 5.2.4).

The model in (1) admits the following structure: if and are independent, then

so are and . It follows that if is stationary and -dependent, than both

and must be th order moving-average time series. Unfortunately, no analogous

autoregressive structure holds; in fact, if is a rst order autoregression, then

may not be an autoregression of any order (this can be inferred from [28]).
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Remark 2.2. The construction in (1) yields models with the most exible correlations

possible for Corr( 1 2) for two variables 1 and 2 with the same marginal distribution

. Indeed, let − = min Corr( 1 2) : 1 2 and de ne + similarly with

min replaced by max. Then, as shown in Theorem 2.5 of [42],

+ = Corr( −1( ) −1( )) = 1 − = Corr( −1( ) −1(1 ))

where is a uniform random variable over (0 1). Since
D
= ( ) and 1

D
= ( ) for

a standard normal random variable , the maximum and minimum correlations + and −

are indeed achieved with (1) when 1 = 2 and 1 = 2 , respectively. The preceding

statements are non-trivial for − only since + = 1 is attained whenever 1 = 2 . It

is worthwhile to compare this to the discussion following (7). Finally, all correlations in

( − +) = ( − 1) are achievable since ( ) in (7) is continuous in . The exibility of

correlations for Gaussian copula models in the spatial context was also noted and studied

in [21], especially in comparison to a class of hierarchical, e.g. Poisson, models.

The preceding remark settles autocovariance exibility issues for stationary count series.

Flexibility is a concern when the series is negatively correlated, an issue arising, for example,

with hurricane counts in [33] and chemical process counts in [26]. Since any general count

marginal distribution can also be achieved, the model class is quite general.

2.2 Covariates

There are situations where stationarity is not desired. Such scenarios can often be ac-

commodated by simple variants of the above setup. For concreteness, consider a situation

where a vector M of non-random covariates is available to explain the series at time .

If one wants to have the marginal distribution θ( )( ), where θ( ) is a vector-valued
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function of containing marginal distribution parameters, then simply set

= −1
θ( )( ( )) (10)

and reason as before. We do not recommend modifying for the covariates as this may

bring process existence issues into play.

Generalized linear models link functions (not to be confused with ( ) in (6) (7)) can

be used when parametric support set bounds are encountered. For example, a Poisson

regression with correlated errors can be formulated via a parameter vector β of regression

coe cients with θ( ) = E[ ] = exp(β′M ). Here, the exponential link guarantees that

the Poisson parameter is positive. The above construct requires the covariates to be non-

random; should covariates be random, marginal distributions may change from θ( ).

2.3 Particle filtering and state space model connections

This subsection studies the implications of the latent structure of our model, especially as

it relates to SSMs and importance sampling approaches. This will be used to construct

PF/SMC approximations of various quantities, and in goodness-of- t assessments. Our

main reference is [14]. As in that monograph, let 0: = 0 = 0 = , 0: =

0 = 0 = , and ( ) and ( ) denote joint and conditional probabilities (or

their densities, depending on the context). For example, ( 0: 0: ) denotes the conditional

density of 0: given 0: . Similarly, let E[ 0: ] denote conditional expectation given 0:

The SSM formulation starts by specifying ( +1 0: ) and ( ). While is often rst

order Markov, implying that ( +1 0: ) = ( +1 ), this is not necessary.

To specify ( +1 0: ) in our stationary Gaussian case, we compute the best one-step-

ahead linear prediction of +1 from 0: given by +1 = 0 + + 0. The coe cients
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, 0 , can be computed recursively in from the ACF of via the classical

Durbin-Levinson (DL) or the Innovations algorithm, for examples. As a convention, we

take 0 = 0. Let 2 = E[( )2] be the corresponding unconditional mean squared

prediction error. With this notation,

( +1 0: )
D
= N ( +1

2
+1) (11)

where +1 = 0 + + 0. Again, does not have to be Markovian (of any order).

On the other hand, with (1),

( ) = ( t)( ) =

 1 if = ( )

0 otherwise
(12)

where ( ) is a unit point mass at . The equations in (11) and (12) constitute the SSM

representation of (1).

In inference and related tasks for SSMs, the basic goal is to compute the condition-

al expectation E[ ( 0: ) 0: ] for some function . This is often carried out through an

importance sampling algorithm such as sequential importance sampling (SIS), which gen-

erates independent particle trajectories 0: 1 , from a proposal distribution

( 0: 0: ) and approximates the conditional expectation as

E[ ( 0: ) 0: ]
∑
=1

( 0: ) ˜ =: E[ ( 0: ) 0: ] (13)

where ˜ =
( 0: )∑

=1 ( 0: )
( 0: ) =

( 0: 0: )

( 0: 0: )
(14)

are the (normalized) importance weights (see [14] and [32]). Furthermore, in SIS,

˜ ˜ −1 ( 0: ) ( 0: ) =
( ) ( 0: −1)

( 0: −1 0: )
(15)
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(see (1.6) in [14], which is adapted to a possibly non-Markov setting by replacing ( −1)

with ( 0: −1)). The two probability terms in the numerator of ( 0: ) in (15) constitute

the SSM, whereas the denominator relates to the proposal distribution.

We suggest the following proposal distribution and the resulting SIS algorithm for our

model. Take

( 0: −1 0: )
D
= N xt

( 2) (16)

where N denotes a normal distribution restricted to the set , and

= : −1( −1)
−1( ) (17)

The role of stems from the fact

= ( ) (18)

(i.e., the count value is obtained if and only if ; see the expression (A.2) for ( )).

In particular, for generated from the proposal distribution (16), the term ( ) in

the incremental weight ( 0: ) of (15) is always set to unity. The rest of the incremental

weights are calculated as

( 0: ) =
( 0: −1)

( 0: −1 0: )
=

− (zt−ẑt)
2

2r2t (2 2)1 2

− (zt−ẑt)
2

2r2t [(2 2)1 2 P( ( 2) t)]

= P(N ( 2) t) =
( −1( t)

) ( −1( t−1)
)
=: ( ) (19)

The choice of the proposal distribution is largely motivated by P( = ) = 1
k
( ) and

the explicit form in (19) for the incremental weights ( 0: ). Optimality considerations are

mentioned in Remark B.3.

The following steps summarize our SIS algorithm.
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Sequential Importance Sampling (SIS): For 1 , where represents the

number of particles, initialize the weight 0 = 1 and the latent series 0 by

0
D
= N x0

(0 1) (20)

Then, recursively over = 1 , perform the following steps:

1: Compute with the DL or other algorithm using the previously generated values of

0 −1.

2: Update the series and the importance weight via

D
= N xt

( 2) = −1 ( ) (21)

where ( ) is de ned in (19).

Remark 2.3. For 1 , the constructed path =0 is one of the independent

particles used to approximate the conditional expectation in (13). Equation (21) ensures

that for each , the path =0 obeys the restriction ( ) = and matches the temporal

structure of . These two properties show that =0 is a realization of the latent

Gaussian stationary series producing = for all . Finally, we note where the model

parameters enter into the SIS algorithm. The marginal distribution parameters θ enter

through the form of in (19), whereas the temporal dependence parameters η enter

through the one-step-ahead prediction coe cients 0 , in the calculation of

in Step 1 of the algorithm, and through the prediction error .

To compute the model likelihood, several known formulas applicable in the (general)

SIS setting are needed. The relation

( 0: 0: )

( 0: 0: )
=
∏
=0

( 0: )
( 0)

( 0: )
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produces

E[ ( 0: ) 0: ] ( 0) = E[ ( 0: ) 0: ] ( 0: )

In particular (with ( ) 1),

E[ ] ( 0) = ( 0: ) (22)

To conduct prediction, we use Equation (1.2) in [14] to get

E[ ( +1) 0: ] = E
[
E[ ( ( +1)) 0: ] 0:

]
=: E[ +1( +1) 0: ] (23)

where

+1( ) = E
[
( (N ( 2

+1)))
]
=

∫
R

( ( +1))
1√

2 2
+1

− (zt+1−z)2

2r2t+1 +1 (24)

since +1 0:
D
= N ( +1

2
+1). In view of (23) and (13), the following prediction approxi-

mation arises:

E[ ( +1) 0: ]
∑
=1

+1( +1) =: E[ ( +1) 0: ] =
∑
=1

(25)

Appendix B further connects our model and algorithm to the popular GHK sampler,

hidden Markov models (HMMs), and PF and SMC techniques.

The SIS algorithm has a fundamental weakness called weight degeneracy : as the

algorithm propagates through an increasing number of iterations, a large number of the

normalized weights become negligible. As a result. only a few particles contribute in

the likelihood approximation. Following the developments in the SMC (see [14], [31] and

[8]) and HMM literatures (Sections 10.4.1 and 10.4.2 in [13]), we modify the SIS algorithm

by adding a resampling step (all future simulations and computations use resampling).

Sequential Importance Sampling with Resampling (SISR): Proceed as in the SIS

algorithm, but modify Step 2 and add a resampling Step 3 as follows:
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2: Modify Step 2 of the SIS by setting

˜ D
= N xt

( 2) ˜ = −1 ( ) ˜ =
∑
=1

˜ (26)

3: For each particle 1 , draw, conditionally and independently given

( ) 1 and ˜ , a multinomial trial 0 1 for each and with

the success probabilities ˜ ˜ and set = ˜ i
t and = 1.

While the resampling step removes particles with low weights, mitigating degeneracy issues,

it introduces additional estimator variance. We follow standard practice and resample only

when the variance of the weights exceeds a certain threshold, quanti ed by the so-called

effective sample size de ned as ESS( ) = (
∑

=1( )2)−1, and the resampling step is

executed when ESS( ) 2 as in [15]. See also Section 2.5.3 in [31] for a justi cation

of the ESS based on the Delta method.

3 Inference

The model in (1) contains the parameters θ in the marginal count distribution and η

in the dependence structure of . This section addresses inference questions, including

parameter estimation and goodness-of- t assessment. Three methods are presented for

parameter estimation: Gaussian pseudo-likelihood, implied Yule-Walker moment methods,

and full likelihood. Gaussian pseudo-likelihood estimators, a time series staple, pretend

that the series is Gaussian and maximize its Gaussian-based likelihood. These estimators

only involve the mean and covariance structure of the series, are easy to compute, and

will provide a comparative basis for likelihood estimators. They can also be used as initial
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guesses in gradient step-and-search likelihood optimizations. Implied Yule-Walker tech-

niques are moment based estimators applicable to the commonly encountered case where

is a causal autoregression. Likelihood estimators, the statistical gold standard and

the generally preferred estimation technique, are based on the PF and SMC methods of

the last section. Finally, we will not delve into a detailed statistical inference for the afore-

mentioned methods: while consistency and asymptotic normality are expected in some

of the examined cases (e.g. likelihood estimation with an autoregressive ), a rigorous

theoretical treatment is beyond the scope of this paper.

3.1 Gaussian pseudo-likelihood estimation

As in Section 2.3, we work with observations for the times 0 and set

X = ( 0 )′. Denote the likelihood of the model in (1) by

L (θ η) = P( 0 = 0 1 = 1 = ) = ( 0: ) (27)

While this likelihood is a multivariate normal probability, it is di cult to calculate or

approximate when is large. For most count model classes, true likelihood estimation is

di cult to conduct as joint distributions are generally intractable [11]. While Section 3.3

below devises a well performing PF/SMC likelihood approximation (see also [39]), we rst

consider a simple Gaussian pseudo-likelihood (GL) approach. In a pseudo GL approach,

parameters are estimated via

(θ η) = argmax
θ η

− 1
2
(X−µθ)

′
T (θ η)−1(X−µθ)

(2 )( +1) 2 (θ η) 1 2
(28)

where µθ = ( θ θ)
′ is a ( + 1)-dimensional constant mean vector. These estimators

maximize the series likelihood assuming the data are Gaussian, each component having
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mean θ, and all components having covariance matrix (θ η) = ( ( )) =0. Time

series analysts have been maximizing Gaussian pseudo likelihoods for decades, regardless of

the series marginal distribution, with often satisfactory performance. The next section and

Appendix C present a case where this approach works reasonably well, and one where it does

not. For large , the pseudo GL approach is equivalent to least squares estimation, where

the sum of squares
∑

=0( E[ 0 −1])
2 is minimized (see Chapter 8 in [6]). The

covariance structure of was e ciently computed in Section 2; the mean θ is usually

explicitly obtained from the marginal distribution posited. Numerical optimization

of (28) yields a Hessian matrix that can be inverted to obtain standard errors for the

model parameters. These standard errors can be asymptotically corrected for distributional

misspeci cation via the sandwich methods of [19].

3.2 Implied Yule-Walker estimation for latent AR models

Suppose that follows the causal AR( ) model = 1 −1 + + − + , where

consists of IID N (0 2) variables. Here, 2 depends on the autoregressive coe cients

1 in a way that induces E[ 2] = 1. The Yule-Walker equations are

φ = Γ−1γ (29)

where Γ = ( ( )) =1, γ = ( (1) ( ))′, and φ = ( 1 )′. From (6), note

that

( ) = −1( ( )) (30)

the inverse being justi ed via the strictly increasing nature of ( ) in .

Equations (29) and (30) suggest the following estimation procedure. First, estimate the

CDF parameter θ directly from the counts; standard methods (e.g. method of moments) are
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typically available for this task. The estimated parameter θ de nes an estimated link ( )

through its estimated power series coe cients. From a numerical power series reversion

procedure, one can now e ciently construct the inverse estimator −1( ).

Next, in view of (30) and (29), set

( ) = −1( ( )) φ = Γ
−1
γ (31)

where ( ) is the lag- sample autocorrelation of , and Γ and γ are de ned anal-

ogously to the above using ( ) in place of ( ).

3.3 Particle filtering and sequential Monte Carlo likelihoods

Using (23) and its notation, the true likelihood in (27) is

L (θ η) = ( 0)
∏
=1

( 0: −1) = ( 0)
∏
=1

E[1{ s}( ) 0: −1] = ( 0)
∏
=1

E[ ( ) 0: −1]

(32)

where (23) was used with 1{xs}
( ) = ( ) and ( ) is de ned and numerically com-

puted akin to (19). The particle approximation of the likelihood is then

L (θ η) = ( 0)
∏
=1

E[ ( ) 0: −1]; (33)

this uses the notation in (13) and supposes that the particles are generated by one of the

methods in Section 2.3. The approximate PF maximum likelihood estimates satisfy

(θ η) = argmax
θ η

L (θ η) (34)

Remark 3.1. With the SIS algorithm, (33) reduces to

L (θ η) = ( 0)
1 ∑

=1

(35)
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which is consistent with (22). The work [35] also essentially implements (35). In contrast

to [35], our approach includes a resampling step in the likelihood approximations, considers

other estimation approaches (pseudo GL and implied Yule-Walker), and provides model

diagnostic tools more speci c to count series (the PIT histograms in Section 3.4 below).

To optimize the estimate L (θ η), we employ a large number of particles (growing

linearly with ) and common random number (CRN) techniques, a standard practice

that serves to smooth L (θ η) somewhat by expressing its random quantities through

parameter-dependent transformations of uniform random variables that remain constant

for likelihood evaluations across distinct parameters. While the CRN procedure works well

in SIS, it fails to ward against discontinuous L (θ η) in our preferred SISR algorithm.

An elegant solution to this issue for univariate state processes is proposed in [34]: rst re-

order the (real-valued) particles and then replace the discontinuous resampling CDF with a

piecewise linear approximation. More recent and well performing (but less straightforward)

approaches such as the sequential quasi Monte Carlo and the SMC2 algorithm are reviewed

in detail in Chapters 13, 14, and 18 of [8] (see also the Chapter 19 references on controlled

sequential Monte Carlo methods). We do not pursue these issuees further here.

In our numerical implementations, gradient-free algorithms from the R package optimx

[36] are used, which follows standard practices in optimizing noisy objective functions.

These routines allow for boundary constraints and performed well in modest computing

times for our sample sizes. On the other hand, we found less success with the more

popular gradient-based quasi-Newton algorithm L-BFGS-B (gradients were computed via

nite di erences) as convergence instabilities and high-variance estimates were encountered.

However, promising recent developments for optimizing noisy objectives in [4] and [38] were

not explored. A comprehensive investigation of these approaches and of the rich gradient-
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based SMC inference literature for our framework as in [27] is deferred to future work.

3.4 Model diagnostics

The goodness-of- t of count models is commonly assessed through probability integral

transform (PIT) histograms and related tools [10, 29]. These are based on the predictive

distributions of , de ned at time by

( ) = P( 0 = 0 −1 = −1) = P( 0: −1) 0 1 (36)

This quantity can be estimated through the PF/SMC methods in Section 2.3 as

( ) =
∑
=0

E[1{ }( ) 0: −1] =
∑
=0

E[ 1{`} ( ) 0: −1] (37)

which uses (24) and (25) and supposes that the particles are generated by the SIS, SISR,

or other algorithms. Similar to 1{xs}
( ) = ( ), note that 1{x} ( ) = ˜ ( ), where

˜ ( ) =
( −1( ) ) ( −1( −1)

)
(38)

and ˜ t ( ) = ( ).

The (non-randomized) sample mean PIT is de ned as

( ) =
1

+ 1

∑
=0

( ) [0 1] (39)

where

( ) =


0 if ( 1)

− t( −1)
t( )− t( −1) if ( 1) ( )

1 if ( )

(40)
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which is estimated by replacing by in practice. The PIT histogram with bins is

de ned as a histogram with the height ( ) (( 1) ) for bin 1 .

Another possibility considers model residuals based on

= E[ = ] =
exp( −1( t−1)

2 2) exp( −1( t)
2 2)

2 ( t t−1)
(41)

which is the estimated mean of the latent Gaussian process at time given only (not

the entire past), where (41) follows by direct calculations for the model (1) (using the

estimated parameters θ of the marginal distribution in the s). For a tted underlying

time series model with parameter η, the residuals are then de ned as the standard time

series residuals of this model tted to the series , after centering by the sample mean.

3.5 Nonstationarity and covariates

As discussed in Section 2.2, covariates can be accommodated by allowing a time-varying

parameter θ in the marginal distribution. With covariates, θ at time is denoted by θ( ).

The GL and PF/SMC procedures are modi ed for θ( ) as follows.

For the GL procedure, the covariance Cov( 1 2) = Cov( θ( 1)( 1) θ( 2)( 2)) is

needed, where is subscripted to signify dependence on θ( ). But as in (5),

Cov( 1 2) = Cov( θ( 1)( 1) θ( 2)( 2)) =
∞∑
=1

! θ( 1) θ( 2) ( 1 2) (42)

where again, the subscript θ( ) is added to the s to indicate dependence on . Numerically,

evaluating (42) is akin to the task in (5); in particular, both calculations are based on the

Hermite coe cients .

For the PF/SMC approach, the modi cation is somewhat simpler: one just needs to

replace θ by θ( ) at time when generating the underlying particles. For example, for the
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SIS algorithm, θ( ) enters only through the s in (19), (20), and (21). This is because

the covariates enter only through θ, the parameter controlling marginal distributions.

4 A simulation study

To evaluate our estimation methods, a simulation study considering several marginal dis-

tributions and dependence structures was conducted. Here, the classic Poisson count dis-

tribution P is examined (mixed Poisson and negative binomial simulations are presented

in Appendix C), with taken from the ARMA( ) class. All simulation cases are

replicated 200 times for three distinct series lengths: = 100 200, and 400. For notation,

estimates of a parameter from Gaussian pseudo-likelihood (GL), implied Yule-Walker

(IYW), and PF/SMC methods are denoted by , , and , respectively.

We now consider the classical case where has a Poisson marginal distribution for

each with mean 0. To obtain , the AR(1) process = −1 + (1 2)1 2 ,

was simulated and transformed via (1) with = P ; E[ 2] 1 was induced by taking

Var( ) 1. Twelve parameter schemes resulting from all combinations of 2 5 10

and 0 25 0 75 were considered.

Figure 1 displays box plots of the parameter estimates when = 2. In estimating , all

methods perform reasonably well. When the lag-one correlation in (and hence also

that in ) is negative (right panel), , , and have smaller variability than

the positively correlated case (left panel note the di erent y-axis scales on the panels).

This is expected: the mean of is , and the variability of the sample mean, one good

estimator of the mean for a stationary series, is smaller for negatively correlated series than

for positively correlated ones. Note that is biased toward zero for both negatively and
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positively correlated series, whereas φ̂IY W and φ̂PF only show bias when φ is positive for

the sample sizes T = 100 and T = 200. Overall, the PF/SMC estimates were the least

biased. All estimates of φ have roughly similar variances. Simulations with λ = 5 and

λ = 10 produced analogous results with smaller values of λ yielding less variable estimates.

This is again expected as the variance of the Poisson distribution is also λ. Graphics of

these box plots are omitted for brevity’s sake.
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Figure 1: Gaussian likelihood, implied Yule-Walker, and PF/SMC parameter estimates for 200

synthetic Poisson–AR(1) series with lengths T = 100, 200, and 400. The true parameter values

(indicated by horizontal dashed lines) are λ = 2 and φ = 0.75 (left panel), and λ = 2 and

φ = −0.75 (right panel).

5 An application

This section applies our methods to a weekly count series of product sales at Dominicks Fin-

er Foods, a now defunct U.S. grocery chain that operated in Chicago, IL and adjacent areas
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from 1918 - 2013. Soft drink sales of an unnamed brand from a single store will be analyzed

over a two-year span commencing on September 10, 1989. The series is plotted in Figure

2 (leftmost plot) and is part of a large and well-studied retail dataset, publicly available at

https://www.chicagobooth.edu/research/kilts/datasets/dominicks (Source: The James M.

Kilts Center for Marketing, University of Chicago).1. Our goal here is not an in-depth retail
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Figure 2: Left: Weekly sales of a soft drink product sold at a single store of the grocery store

Dominick’s Finer Foods from 09-10-1989 to 09-03-1991. The dots indicate the weekly sales were

at least one “Buy one and get one free” (BOGO) sales promotion event took place. Middle:

Boxplots of sales grouped by the BOGO covariate (0: weekly sales with no BOGO event, 1: weekly

sales with at least one BOGO day during the week). Right: Sample ACF of the series with 95%

pointwise bands for zero correlation.

analysis, but to illustrate our methods with a real world example of an overdispersed time

series of small counts that has negative autocorrelation and dependence on a covariate.

The covariate we use is a zero-one “buy one get one free” (BOGO for short) sales

promotion event St, St = 1 implying that the BOGO promotion was offered at least one

day during week t. The dots in the left plot of Figure 2 signify that the week had at

1In the dataset manual, the series in Figure 2 (leftmost plot) is the sales of the product with universal

product code (UPC) 4640055081 from store 81.
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least one BOGO day. The middle plot shows the soft drinks sales distribution grouped by

, visually suggesting that a BOGO event increases soft drink sales. The rightmost plot

shows the sample ACF of the series and reveals negative dependence at lag one. The lag

one sample autocorrelation of the residuals after a linear regression of the series on the

BOGO covariate is also negative, but comparatively smaller in magnitude.

To model overdispersion, negative binomial and generalized Poisson marginal distri-

butions will be considered. Although similar, these two distributions can yield di erent

conclusions [25]. Following standard generalized linear modeling practice, both distribu-

tions are parametrized via the series mean (although our setup allows covariates to enter

through other parameters as well). More speci cally, for the negative binomial marginal,

the standard pair ( ) used in Appendix C is now mapped to the parameter pair ( ),

where = (1 ) is the mean of the process and = 1 is the overdispersion parame-

ter. Similarly, the generalized Poisson distribution of Appendix C is parametrized through

the pair ( ) as in [17], relation (2.4). In this parametrization, is the mean of the

series, whereas the sign of controls the type of dispersion, with positive values indicating

overdispersion. To incorporate the BOGO covariate into the model, the mean of the se-

ries is allowed to depend on time through the typical GLM log-link = exp ( 0 + 1 ),

while the parameters and are kept xed in time .

An exploratory examination of the sample ACFs and PACFs of the series along with

diagnostic plots of residuals obtained by tting all ARMA( ) models with 5 suggest

an AR(3) model as a suitable choice for . Table 1 in Appendix D shows the AICc and

BIC for both marginal distributions obtained via PF/SMC and GL methods (we omit

IYW results for simplicity). The AR(3) model was selected by AICc and BIC in both ts.

Interestingly, both the sample ACF and PACF of the series show one large non-zero value
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at lag one, but relatively smaller values at other lags (except perhaps the lag two value,

which barely exceeds the 95% 1 96 dashed con dence threshold for zero correlation).

We also considered a white noise latent series (labeled as WN Table 1 in Appendix

D), which renders our model a standard GLM. The PF/SMC WN estimates from both

distributions (omitted here for brevity) closely agree with parameter estimates obtained

from exact generalized linear model ts (using, for example, functions from the R package

MASS ). As expected, the WN model yielded the highest AICc and BIC values among

all considered dependence structures, thus con rming the need for a model with temporal

dependence.

Table 1 shows parameter estimates and standard errors from tting a negative binomial-

AR(3). (Table 2 in Appendix D is for a generalized Poisson-AR(3) model.) All marginal

distributions and estimation methods yielded 1 0. Although a formal asymptotic theory

is beyond the scope of our presentation here, asymptotic normality is expected. Assum-

ing this, the PF/SMC standard errors (the ones believed most trustworthy) suggest that

all parameters are signi cantly non-zero at level 95%. The ndings suggest the negative

binomial distribution is preferred over the generalized Poisson, that the correlation in the

series at lag one is negative, and that a BOGO event indeed increases sales.

1 2 3 0 1

Table 1:

Turning to residual diagnostics, the plots in Figure 3 for the negative binomial-AR(3)
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fit suggest that the model has captured both the marginal distribution and the dependence

structure. The residuals here were computed using (41).
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Figure 3: The leftmost plot displays the estimated residuals against time. The middle graph is a

QQ plot for normality of the estimated residuals. The shaded region in the QQ plot shows100 real-

izations from a normal distribution with size, mean and standard deviation matching the residual

sample counterparts. The right plot displays the sample autocorrelations of the estimated residuals.

We next assess the predictive ability of the two fits via the non-randomized histograms

shown in Figure 4 and discussed in detail in Section 3.4. We selected ten bins at the

points h/10, h = 1, . . . , 10 as is typical in the literature. The negative binomial PIT plot

suggests a satisfactory predictive ability with most bar heights being close to 0.1 (1 over

the number of bins). In comparison, the generalized Poisson fit deviates more from the

uniform distribution, with somewhat more pronounced peaks and valleys. We remind the

reader here that PIT plots are known to be sensitive for smaller series lengths. Quantifying

this uncertainty (for each bin) through a statistical test is beyond the scope of this paper.

Nevertheless, we gauged the variability of the uniform distribution’s bin heights through

a small experiment. Specifically, 500 synthetic realizations of sample size T = 104 were

generated and the percentiles of all bin heights were collected. The 5th and 95th percentiles
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ranged in the intervals (0 048 0 058) and (0 145 0 154) respectively, suggesting that the

peaks and valleys of the negative binomial PIT plot (which are within these percentiles)

are mild; that is, uniformity is plausible and the marginal distribution ts seems adequate.
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Figure 4:

6 Conclusions and comments

This paper developed the theory and methods for a stationary count time series mod-

el made from a latent Gaussian process. By using Hermite expansions, a very general

model class was devised. In particular, the autocorrelations in the series can be positive

or negative, and in a pairwise sense, span the range of all achievable correlations. The

series can have any marginal distribution desired, thereby improving classical DARMA

and INARMA count time series methods. On inferential levels, autocovariances of the

model were extracted from Hermite expansions, allowing for Gaussian pseudo-likelihood

and implied Yule-Walker inference procedures. A PF/SMC likelihood approach was also

developed and produced estimators that were demonstrated to outperform the Gaussian
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pseudo-likelihood and implied Yule-Walker estimators in most cases. These results com-

plement the importance sampling methods for copula likelihoods in [39]. The methods

were used in a simulation study and were applied in a regression analysis of a count se-

ries of weekly grocery sales that exhibited overdispersion, a negative lag one correlation,

and dependence on a buy one get one free covariate. Model ts and predictive abilities

of the methods were illustrated with generalized Poisson and negative binomial marginal

distributions.

While the paper provides a reasonably complete treatment for count time series mod-

els, additional research is needed. Some statistical issues, like asymptotic normality of

parameter estimators, were not addressed here. PF/SMC algorithms that optimize model

likelihoods, which can be unwieldy, also merit further exploration. The paper only consid-

ers univariate methods. Multivariate count time series models akin to those in [40] could

be developed by replacing the univariate with a multivariate Gaussian process Z ,

whose components have a standard normal marginal distribution, but are cross-correlated

for each xed . The details for such a construction would proceed akin to the methods de-

veloped here. Also, while the count case is considered here, the same methods will produce

stationary time series having any general prescribed continuous distribution. Finally, the

same methods should prove useful in constructing spatial and spatio-temporal processes

having any prescribed marginal distribution. While [12, 21] recently addressed this issue in

the spatial setting, additional work is needed, including exploring spatial Markov proper-

ties and likelihood evaluation techniques. To the best of our knowledge, no comprehensive

analogous work has been conducted for space-time count modeling to date.
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