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8 ABSTRACT9
10

Correlated time series data arise in many applications. This paper describes and compares sev-11

eral prominent single and multiple changepoint techniques for correlated time series. In the12

single changepoint problem, various cumulative sum (CUSUM) and likelihood ratio statistics,13

along with boundary cropping scenarios, and scaling methods (e.g., scaling to an extreme value14

or Brownian Bridge limit) are compared. A recently developed test based on summing squared15

CUSUM statistics over all time indices is shown to have controlled Type I error and superior16

detection power. In the multiple changepoint setting, penalized likelihoods drive the discourse,17

with AIC, BIC, mBIC, and MDL penalties being considered. Binary and wild binary segmen-18

tation techniques are also compared. A new distance metric is introduced which is specifically19

designed to compare two multiple changepoint segmentations. Algorithmic and computational20

concerns are discussed and simulations are give to support all conclusions. In the end, the mul-21

tiple changepoint setting admits no clear methodological winner, performance depending on the22

particular scenario. Nonetheless, some practical guidance emerges.23

24

1. Introduction25

Changepoints (abrupt shifts) arise in many time series due to changes in recording equipment, observers, etc. In26

climatology, temperature trends computed from raw data can be misleading if homogeneity adjustments for station27

relocation moves and gauge changes are not a priori made to the record. Lu and Lund (2007) give an example where28

trend conclusions reverse when changepoint information is neglected. Cases with multiple changepoints are also29

frequently encountered; for example, in climatology, United States weather stations average about six station moves30

and/or gauge changes per century of operation (Menne, Williams, and Vose, 2009).31

This paper intends to guide the researcher on the best changepoint techniques to use in common time series scenar-32

ios. Assumptions are crucial in changepoint analyses and can significantly alter conclusions; here, correlation issues33

take center stage. It is known that changepoint inferences made from positively correlated series can be spurious if34

correlation is not taken into account. Even lag one correlations as small as 0.25 can have deleterious consequences on35

changepoint conclusions (Lund, Wang, Lu, Reeves, Gallagher, and Feng, 2007).36

This paper’s primary contribution is to extend/modify many of the popular changepoint methods for IID data to37

correlated settings. Much of our work lies with developing methods that put all techniques, to the best extent possible,38

on the same footing in time series settings. For example, we will see that single changepoint tests generally work best39

when applied to estimated versions of the series’ one-step-ahead prediction residuals, computed under a null hypothesis40

of no changepoints. Because of this, tests that handle one-step-ahead prediction residuals need to be developed. Two41

other novel contributions in this article are: (1) developing and proposing a new single changepoint test based on42

the square of the cumulative sum of one-step-ahead prediction residuals (see Section 2.2), and 2) presenting a new43

distance that compares multiple changepoint segmentations (see Section 5.1). The comparative aspect of the paper is44

yet another contribution— and there is much to compare. In addition to comparing different statistics via Type I errors45

and powers, the paper also compares different asymptotic scaling methods.46
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Comparing Changepoint Techniques for Time Series

Academic changepoint research commenced with the single changepoint case for independent and identically dis-47

tributed (IID) data in Page (1955). The subject is now vast, with hundreds of papers devoted to the topic. With our48

lofty objectives, some concessions are necessary. Foremost, this paper examines mean shift changepoints only; that49

is, while series mean levels are allowed to abruptly shift, the variances and correlations of the series are held constant50

(stationary) in time. Changepoints can also occur in variances (volatilities) (Chapman, Eckley, and Killick, 2020),51

in the series’ correlation structures (Davis, Lee, and Rodriguez-Yam, 2006; Aue and Horváth, 2013; Picard, 1985),52

or even in the marginal distribution of the series (Gallagher, Lund, and Robbins, 2012). Secondarily, the simulation53

results reported here are for Gaussian series only. Robust and non-parametric changepoint methods for non-Gaussian54

dependent data exist and can be based on the spectrum Picard (1985), empirical characteristic functions Hušková and55

Meintanis (2006), -estimators (Hušková and Marušiaková, 2012; Hušková, 2013; Chochola, Hušková, Prášková,56

and Steinebach, 2013; Prášková and Chochola, 2014), or bootstrapping (Hušková and Kirch, 2008, 2012; Kirch, 2008).57

Thirdly, we compare the most common types of techniques within the literature, notably excluding those based on en-58

ergy statistics (Matteson and James, 2014), moving sums (Eichinger and Kirch, 2018), and statistics (Dehling, Fried,59

Garcia, and Wendler, 2015).60

The rest of this paper proceeds as follows. Section 2 overviews single changepoint detection methods, typically61

referred to as at most one changepoint (AMOC) tests. Here, a variety of test statistics and their scalings are reviewed62

and adapted to the time series setting. Akin to the classifications in Aue and Horváth (2013), we specifically discuss63

two methods for modifying changepoint techniques based on IID data: 1) retain the IID test statistic and modify64

the limiting distribution for any correlation; and 2) modify the test statistic to account for the correlation; similar65

discussions appear in Robbins, Gallagher, Lund, and Aue (2011) and Aue and Horváth (2013). Section 3 compares66

AMOC detectors in a simulation study. Thereafter, we move to the case of multiple changepoints, where performance67

assessment becomes more challenging. Here, a novel changepoint configuration distance specifically designed for our68

comparisons is developed. Simulations in Section 4 consider a variety of multiple changepoint configurations. We69

summarize results in Section 6 with recommendations for practitioners.70

2. Single Changepoint Techniques71

Let be the observed time series and Cov be the lag autocovariance of the series. We
wish to test whether there exists a change in the mean structure while assuming the second order structure is constant
over time. An AMOC model with the changepoint occurring at the unknown time is

for ,
for , (1)

where is an unknown location parameter, is the magnitude of mean shift at time , and is a stationary time
series with zero mean and lag autocovariance . A hypothesis test for this scenario is:

versus for some (2)
72

When the are independent, cumulative sum (CUSUM) and likelihood ratio tests (LRT) are well understood,73

see Csörgo and Horváth (1997) and Chen and Gupta (2011). When incorporating general stationary autocovariance74

aspects into a changepoint testing framework, there are two common strategies: 1) keep the IID test statistic and75

identify any changes in the limiting distribution induced by the correlation; and 2) incorporate the autocovariance76

within the test statistic. Antoch, Hušková, and Prášková (1997) provide a summary of the first approach for many77

common changepoint statistics and provide simulations indicating how autocorrelation impacts the performance of78

the hypothesis tests; Kirch (2007) uses resampling techniques to improve the finite sample performance of these tests.79

Robbins et al. (2011) shows that estimating and using the autocorrelation (the second approach) is preferable with80

CUSUM and LRTs.81
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2.1. CUSUM Tests82

The CUSUM method was first introduced by Page (1955) and compares sample means before and after each ad-
missible changepoint time via the statistic

CUSUM (3)

CUSUM tests have relatively poor detection power when the changepoint occurs near the boundaries (times 1 or83

). Conversely, false detection is more likely to be signaled near the boundaries (i.e., when one of the segment84

sample means has a comparatively high variance). Because of this, cropped-CUSUMmethods, which weight or ignore85

observations close to the two boundaries, were developed. Simulations for cropped settings analogous to those below86

are presented in the supplementary material; in general, one loses power by cropping. See Csörgo and Horváth (1997)87

for generalities on cropping.88

In our first scenario, where the IID test statistic described in (3) is used, its asymptotic distribution for correlated89

data, under the null hypothesis of no changepoints, is known from MacNeill (1974) and Csörgo and Horváth (1997).90

Theorem 1. (Csörgo and Horváth, 1997)91

Assume that follows (1), admits the causal linear representation where ,
and is a null hypothesis -based consistent estimator of , the long-run variance parameter

→
Var (4)

Then under ,

CUSUM ←←←←←←←←←←←←←→ (5)

Here, it is assumed that is IID with zero mean, variance , a finite fourth moment, and .92

Moreover, denotes a standard Brownian bridge process obeying , where93

is a standard Wiener process.94

Theorem 1 requires estimation of , which is challenging by itself (Stoica and Moses, 2005).95

While this result provides an asymptotic test, strong correlation often degrades CUSUM performance (Robbins96

et al., 2011). That is, convergence to the limit law is faster for independent data than for positively correlated data. As97

such, it is often beneficial to decorrelate heavily dependent data before using CUSUM methods. This brings us to our98

second approach, which incorporates the correlation within the test statistic. For CUSUM methods, this is achieved99

by replacing the data by one-step-ahead linear prediction residuals.100

The autoregressive moving average (ARMA) one-step-ahead linear prediction residuals are defined as:
(6)

where , are the estimated autoregressive coefficients, and are the estimated moving-101

average coefficients. Here, the edge conditions take for any . Our notation uses as the variance102

of any . We do not delve into ARMA order selection issues, taking and as known. For the CUSUM and103

SCUSUM tests described below, parameters are estimated under the no changepoint null hypothesis; in particular,104

is used to in demeaning the time series. To evaluate Gaussian likelihoods, the innovations105

form of the likelihood is used; see Brockwell and Davis (1991). ARMA parameters are estimated in standard ways106

(for example, Yule Walker methods for autoregressions); again see Brockwell and Davis (1991) for additional detail.107

The quantity is used to estimate the variance of . The residual CUSUM statistic is

CUSUM (7)
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where our notation appends a subscript of to indicate use of prediction residuals.108

The asymptotic distribution of the CUSUM of the one-step-ahead prediction residuals was studied in Robbins et al.109

(2011).110

Theorem 2. (Robbins et al., 2011) Suppose that is a causal and invertible ARMA series with IID having
zero mean, variance , and with . Let be the estimated one-step-ahead prediction residuals in (6).
Then under the null hypothesis of no changepoints,

CUSUM CUSUM (8)

when all ARMA parameters and are estimated in a - consistent manner. It hence follows that

CUSUM ←←←←←←←←←←←←←→ (9)

Both of these statistics are compared in Section 3.111

2.2. SCUSUM Tests112

As an alternative to using partial sums to detect mean shifts, several authors have considered summing the squares
of these partial sums. The resulting test statistic converges to the integral of the square of a Brownian Bridge. With
SCUSUM denoting the test’s acronym, for IID data, the test statistic is

SCUSUM CUSUM (10)

The statistic in (10) has Bayesian interpretations under a discrete uniform prior over the changepoint time set113

and is similar to the average likelihood ratio test considered in Chan and Walther (2013). The squared CUSUM114

(SCUSUM) test does not by itself yield an estimate of the changepoint location. If the SCUSUM test indicates that115

a changepoint is preferred, then its location is estimated as that argument(s) that maximizes the absolute CUSUM116

statistic.117

We again consider two approaches for modifying the SCUSUM test for correlation. First, the distribution of the118

statistic in (10) for autocorrelated data under the null hypothesis can be quantified. The following result follows from119

Theorem 1 via an application of the continuous mapping theorem.120

Theorem 3. Assume that follows (1), admits the causal linear representation in Theorem 1, and is a null
hypothesis based -consistent estimator of , the long-run variance in (4). Then under ,

SCUSUM CUSUM
←←←⟶ (11)

Our second approach for incorporating correlation uses the one-step-ahead prediction residuals in place of the
original data. The SCUSUM test statistic for this scheme is

SCUSUM CUSUM (12)

The asymptotic distribution of (12) can be derived from Theorem 2 via the continuous mapping theorem.121

Theorem 4. With CUSUM defined as in Theorem 2 and under the same assumptions stated in Theorem 2, under the
null hypothesis of no changepoints,

SCUSUM CUSUM
←←←⟶ (13)
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The distribution of was investigated in Tolmatz (2002). We note that Bai (1993) proposed using the122

sum of the square of partial sums of ARMA residuals to detect a single changepoint in autocorrelated data; this test123

statistic converges to the integral of a squared Brownian Motion rather than the integral of the square of a Brownian124

Bridge. To our knowledge, the variant in (12) has not previously been proposed nor studied in the literature.125

The differences between CUSUM and CUSUM statistics were investigated in Robbins et al. (2011) and their126

simulations indicate that the latter statistic is superior to the former in terms of type I error and power. Our simulations127

confirm this finding. As such, in the remainder of the paper, we do not consider SCUSUM tests (without the subscript128

) further.129

2.3. Likelihood Ratio Tests130

While CUSUM tests are non-parametric, LRTs are inherently parametric. Several error distributions have been131

considered by previous authors, by far the most common being normal — this is the distribution considered here.132

The LRT compares the likelihood under the null hypothesis to likelihoods under alternatives with a changepoint.
The LRT statistic for a changepoint has the general form

(14)

where denotes a null hypothesis likelihood and is an alternative likelihood when the changepoint occurs at time133

. Elaborating, is the maximum likelihood estimator (MLE) for under , and and are the MLEs for134

the means of the two segments under the alternative when there is a mean shift at time . The end statistic is then135

the maximum over all admissible changepoint locations . When correlation exists in , the form of the Gaussian136

likelihood can be found in Brockwell and Davis (1991); this form may contain additional ARMA or other correlation137

parameters that have to be estimated.138

When the errors are from a causal and invertible Gaussian ARMA process, Jandhyala, Fotopoulos, MacNeill, and139

Liu (2013); Aue and Horváth (2013) develop asymptotics, scaling to an extreme value limit. While the asymptotics140

require one to estimate the ARMA parameters in calculation of the statistics, the limit distribution does not depend141

on the ARMA parameters, nor does the scheme require any cropping of the boundary times.142

Theorem 5. (Jandhyala et al., 2013) Suppose that is a causal and invertible ARMA series with IID satisfying
the assumptions in Theorem 2. Then the LRT statistic is

(15)

Here, is the MLE estimate of the ARMA white noise process variance when there is a changepoint at time and
is an estimate of this same variance under the null hypothesis of no changepoints. This statistic can be scaled to

a Gumbel extreme value limit:

Then under ,

→
ℙ (16)

Specifically, is rejected when is too large to be explained by the distribution in (16).143

Another way of scaling the statistics involves cropping boundary times. Like the CUSUM test, the LRT is
volatile at times near the boundaries. In fact, → as → should the maximum be taken over the entire range

under the null hypothesis of no changepoints. A common cropped LRT simply truncates admissible times
near the boundaries; for example, with , being close to zero and being close to unity, set

(17)
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Robbins et al. (2011) shows that

←←←⟶ (18)

As the next section shows, LRTs are not competitive in changepoint detection problems. While simulations are144

presented for the above extreme value test in the next section, simulations for cropped LRTs are delegated to the145

supplementary material — both methods perform poorly.146

As a final comment here, deriving a LRT test for independent data, and then replacing the data with one-step-147

ahead prediction residuals, another avenue for dealing with dependence, does not yield a methodologically distinct148

path. Specifically, if one derives a LRT statistic for independent series and then substitutes one-step-ahead prediction149

residuals in place of the original data, the limit law in (18) again arises. The boundaries again must be cropped to ensure150

a proper limiting distribution. The discussion around (1.4.22)— (1.4.27) in (Csörgo and Horváth, 1997) provides more151

detail on this route; see also Lavielle and Moulines (2000) for more on LRTs for correlated data.152

3. AMOC Simulations153

This section investigates the finite sample performance of the Section 2 tests (cropped CUSUM , CUSUM ,154

SCUSUM , LRT) through simulation. Results for the cropped test statistics are delegated to the supplementary ma-155

terial; results for the other tests are presented here.156

Desirable tests have reasonable (non-inflated) false detection rates when no changepoints exist, and large detection157

powers when a changepoint is present, regardless of the degree of correlation. For each statistic under consideration,158

the impact of autocorrelation on the Type I error is first explored. We then examine detection powers of the tests when159

a changepoint exists. First order Gaussian autoregressions (AR ) are considered here with ; other structures160

are examined in the supplementary material.161

Figure 1 summarizes results with across varying values of the AR correlation parameter . Ten162

thousand independent simulations were run for each considered value of to produce the figure. Our conclusions do163

not vary for different — see the supplementary material. Figure 1 shows that the only method to retain a controlled164

Type I error across all is the SCUSUM . The LRT is the worst performing method, being far too conservative165

except when , when it becomes highly inflated. The poor performance of the LRT is likely due to the slow166

convergence to its extreme value limit, which has been previously pointed out (see page 25 of Csörgo and Horváth167

(1997)). The CUSUM method is also slightly conservative, becoming more so as increases. We would expect the168

type I error to be reasonably maintained when .169

We now consider test detection powers. In general, the detection power of an AMOC test depends on the degree170

of correlation, the size of the mean shift, and the location of the changepoint time (Robbins, Gallagher, and Lund,171

2016). It is reasonable to expect power to be a function of the quantity Var — the magnitude of the mean172

shift scaled to the series standard deviation. Figures 2 ( ) and 3 ( ) show empirical powers based173

on independent Gaussian simulated series of length . Sample powers are plotted as a function174

of when the mean shift lies in the center of the series (time ). The figures demonstrate the drastic effects of175

autocorrelation on the power of changepoint tests. While the LRT had the highest empirical power when , the176

estimated changepoint location of LRT is biased and more variable than that for the CUSUM and SCUSUM tests,177

see Figures 4 and 5. The LRT test also has a Type I error far exceeding 0.05; as such, its higher power does not imply178

better overall performance. Overall, the CUSUM and SCUSUM tests are more powerful than the others. Note179

also that SCUSUM has higher power than CUSUM for each considered. Additional simulations (not shown)180

duplicate this conclusion for other sample sizes. The SCUSUM statistic is clearly the best test.181

The variance of an AR series is and changes with . We have also conducted analogous simulations182

to the one above where is taken to make Var the same for all values of . This would makes power183

comparisons perhaps fairer across varying . The results are shown in the supplementary material. The performance184

orderings of the methods in the above figures does not change.185

Finally, we examine the effect of the changepoint location. Simulation specifications are as above, but the location186

of the changepoint is now varied and is fixed as 0.5. Figure 6 displays empirical powers. The largest detection powers187

occur when the changepoint is near the center of the record, as expected, with power decreasing as the changepoint188

time moves towards a boundary. The SCUSUM appears to be the most accurate overall; however, the LRT test is189

preferable when the changepoint occurs near the beginning of the record.190
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φ

Figure 1: Type I Errors for an AR(1) Series with Different 𝜙 When 𝑁 = 1000. The grey band is the 95% confidence band
based on the binomial standard errors

√
𝑝(1 − 𝑝)∕𝑁 assuming 𝑝 = 0.05.
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Figure 2: Detection Powers for an AR(1) Series with Different 𝜙. Here, 𝑁 = 1, 000 and Δ = 0.15.

4. Multiple Changepoint Techniques191

Now suppose that {𝑋𝑡}𝑁𝑡=1 has an unknown number of changepoints, denoted by 𝑚, occurring at the unknown

ordered times 1 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚 ≤ 𝑁 . Boundary conditions take 𝜏0 = 1 and 𝜏𝑚+1 = 𝑁 + 1. These 𝑚
changepoints partition the series into 𝑚+1 distinct regimes, the 𝑖𝑡ℎ regime having its own distinct mean and containing

the data points {𝑋𝜏𝑖+1,… , 𝑋𝜏𝑖+1
}. The model can be written as 𝑋𝑡 = 𝜅𝑡 + 𝜖𝑡, where 𝜅𝑡 = 𝜇𝑟(𝑡) and 𝑟(𝑡) denotes the

regime index at time 𝑡, which takes values in {0, 1,… , 𝑚}, and {𝜖𝑡} is a stationary causal and invertible ARMA(𝑝, 𝑞)
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Figure 3: Detection Power for an AR(1) Series with Different 𝜙. Here, 𝑁 = 1000 and Δ = 0.3.

•

Figure 4: Boxplots of Detected Changepoint Locations for an AR(1) Series with Different 𝜙. Here, 𝑁 = 1, 000 and
Δ = 0.15.

time series that applies to all regimes. Observe that

𝜅𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝜇0, 1 ≤ 𝑡 ≤ 𝜏1,

𝜇1, 𝜏1 + 1 ≤ 𝑡 ≤ 𝜏2,

⋮
𝜇𝑚, 𝜏𝑚 + 1 ≤ 𝑡 ≤ 𝑁

.

There are many challenges in the multiple changepoint problem. Here, estimation of a global autocovariance192

function that applies to all regimes — considered further in Section 4.2 — is difficult. One also has to estimate an193

unknown number of changepoints, their locations, and all segment parameters in a computationally feasible manner194
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•

Figure 5: Detected Changepoint Location for an AR(1) Series with Different 𝜙. Here, 𝑁 = 1000 and Δ = 0.3.
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Figure 6: A Graph of 𝜏∕𝑁 Against Detection Power with 𝑁 = 500 and Δ = 0.5 for an AR(1) Series with 𝜙 = 0.5.

for some of the techniques.195

While many authors have considered multiple changepoint issues, most assume IID {𝜖𝑡}. For IID errors, dynamic196

programming based approaches (Auger and Lawrence, 1989; Killick, Fearnhead, and Eckley, 2012), model selection197

methods using LASSO (Harchaoui and Lévy-Leduc, 2010; Shen, Gallagher, and Lu, 2014), and moving sum statistics198

(Eichinger and Kirch, 2018) have all been applied to multiple changepoint problems — this list is not exhaustive. As199

in the AMOC setting, techniques for independent data may not work well for dependent series (Davis et al., 2006; Li200

and Lund, 2012; Chakar, Lebarbier, Lévy-Leduc, and Robin, 2017).201

The multiple changepoint techniques considered here can be put into two broad categories: 1) recursive segmenta-202

tion and algorithmic methods using AMOC techniques, and 2) direct approaches that fit all series subsegments jointly.203

The two approaches are completely different in their perspective. Elaborating, recursive techniques employ AMOC204
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single changepoint methods in an iterative manner, identifying at most one additional changepoint in each subseg-205

ment at each recursion level. In contrast, direct techniques model and estimate the multiple changepoint configuration206

jointly; here, penalization methods typically drive the discourse. No hypothesis testing paradigm underlies any direct207

approach. Some multiple changepoint techniques apply only to special time series structures. For example, Chakar208

et al. (2017) is exclusively designed for AR series. Their techniques are not considered here as they cannot be209

applied to all of our considered scenarios.210

4.1. Recursive Segmentation211

Recursive segmentation approaches first focus on finding a single chagepoint (usually the most prominent one),212

thereafter iterating in some manner to identify additional changepoints. The primary tool here is binary segmentation213

(Scott and Knott, 1974), which provides a multiple changepoint configuration estimate via any AMOCmethod. Binary214

segmentation first tests the entire series for a single changepoint. Should a changepoint be found, the series is split215

about the changepoint time into two subsegments that are further analyzed for additional changepoints using the AMOC216

strategy. The process is repeated until no subsegment tests positive for a changepoint. Binary segmentation works best217

when the changepoints are well separated and the segment means are distinct. In our comparisons, the AMOC statistic218

adopted for binary segmentation is the SCUSUM test applied to one-step-ahead prediction residuals, which won our219

AMOC comparisons in the previous section.220

Extensions of binary segmentation abound and include circular binary segmentation (Olshen, Venkatraman, Lucito,221

and Wigler, 2004), which seeks to identify a segment of data that has a distinct mean from the rest of the series. A222

popular binary segmentation extension considered here is wild binary segmentation (WBS) Fryzlewicz (2014). WBS223

samples subsegments of the entire data of varying lengths and performs an AMOC test on each sampled subsegment.224

Fryzlewicz (2014) suggests sampling at least subsegments, where is the minimum spacing225

between changepoints (see Assumption 3.2 of Fryzlewicz (2014)) as this produces a high probability of drawing a226

favorable subsegment. WBS is a randomized search and hence may return different segmentations on different runs.227

In our simulations, WBS employs a standard CUSUM test rather than the cropped CUSUM or SCUSUM since its228

threshold was developed particularly for standard CUSUM methods. In addition, the threshold constant is229

used as suggested in Fryzlewicz (2014).230

Binary segmentation approaches and their variants are simple to implement and are computationally fast. How-231

ever, they are not guaranteed to achieve the global optimal solution as they essentially are a “greedy algorithm" that232

sequentially makes decisions based solely on information during the current step. Also inherent in these approaches is233

the need for the AMOC statistic to behave appropriately when multiple mean shifts are present — this may not happen.234

To apply segmentation methods in the presence of autocorrelation, we develop estimates of the time series auto-235

correlation parameters that are robust to mean shifts.236

4.2. Global Autocovariance Estimation237

For our work, the autocovariance of the series is assumed constant across time, applying to all series subsegments.238

This autocovariance function will be needed to decorrelate the series before applying any binary segmentation search239

methods to the one-step-ahead prediction residuals. Unfortunately, accurate estimation of the autocovariance function240

requires knowledge of the underlyingmean structure. In the single changepoint case, the long-run covariance parameter241

in (4) arises in the limit laws; however, this does not extend to multiple changepoint settings as no theoretical equivalent242

of (5) exists.243

In our setup, the second order (covariance) model parameters are deemed nuisance parameters and are estimated
using the entire data sequence. To account for the impact of unknown mean shifts on these estimators, Yule-Walker
type moment equations will be used on the first order difference of . The first order difference is used
because unless a changepoint occurs at time . Define and note that
except when time is a changepoint. Let Cov , and .
For the AR( ) case, which is our primary interest, estimators of the AR( ) parameters formed from have the form

(19)
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where and

The elements in and simply replace with

While Gallagher, Killick, Lund, and Shi (2021) study these AR( ) estimators in detail, the intuition behind them is244

that if is small relative to , then the mean shifts will have negligible impact on the estimated covariance structure245

of the differences since except at times that are changepoint times. Gallagher et al. (2021)246

demonstrate that this estimate of the covariance outperforms alternatives such as direct and windowed estimation. Due247

to this, the Yule-Walker moment estimators in (19) will be used in our simulations to decorrelate the series for binary248

segmentation and wild binary segmentation.249

4.3. Direct Modelling250

Direct modelling approaches analyze the whole series at once, optimizing an objective function with a penalty term
that controls the number of changepoints. The techniques seek a changepoint configuration that minimizes

(20)
where is the cost of putting changepoints at the times and is a penalty term to prevent over-fitting.
There are many ways to define the cost and penalties. A frequently used cost is the negative log-likelihood. Here, we
will use

where is the time series likelihood (Gaussian based) optimized over all parameters given that251

changepoints occur at the times . From a given changepoint configuration, finding this optimal likelihood252

is a simple time series model fitting exercise that can be rapidly computed.253

Penalties can be constructed in a variety of ways. Common penalties include minimum description lengths (MDL),254

modified Bayesian Information Criterion (mBIC), and the classic BIC penalty. AIC is another popular penalty, despite255

it not providing consistent estimates of the number or locations of the changepoint(s). Of these four penalties, AIC and256

BIC are simple multiples of the number of changepoints, while the MDL and mBIC further incorporate changepoint257

time information. The form of these penalties are listed in the following table. Note that the mBIC and MDL penalties258

are multiplied by two to keep consistent with AIC and BIC definitions that use twice the negative log-likelihood.259

Here, is the estimated white noise variance of the process that drives the ARMA errors.260

MDL penalties are based on information theory and are discussed further in Davis et al. (2006) and Li and Lund261

(2012). The mBIC penalty is developed in Zhang and Siegmund (2007). These two penalties are taken as zero when262

. The mBIC penalty tends to be larger for the same changepoint configuration than the MDL penalty; as such,263

MDL will often select models with more changepoints than mBIC.264

With penalized likelihood approaches, a computational bottleneck arises. Since there are different admis-265

sible changepoint configurations in a series with changepoints (time cannot be a changepoint), there are266

different changepoint configurations to consider when analyzing the entire series. This huge count makes an exhaus-267

tive model search — one that evaluates all admissible changepoint configurations — virtually impossible to conduct,268

even when is a small as 100. Unfortunately, PELT (Killick et al., 2012) and FPOP (Maidstone, Hocking, Rigaill,269

and Fearnhead, 2017), two rapid dynamic programming based techniques, require the objective function to be additive270

over distinct regimes. The presence of global parameters like the autocovariance function violates this restriction.271
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Table 1
Penalized Likelihood Objective Functions

Criteria Objective Function

AIC

BIC

mBIC

MDL

Regime-additive likelihoods will not arise when is ARMA( ), although Bai and Perron (1998) argues that any272

boundary contribution is negligible if the ARMA parameters are allowed to change at each changepoint time (this is273

not the case here). Unfortunately, the objective function in (20) is not convex, and its optimization is delicate. We will274

use a genetic algorithm (GA), which have successfully dealt with this and similar changepoint optimization problems275

(Davis et al., 2006; Li and Lund, 2012).276

A GA is an intelligent random walk search that is unlikely to evaluate suboptimal changepoint configurations.277

Research indicates that genetic algorithms perform well in nonconvex optimization problems (Hajela, 1990). Our GA278

encodes the changepoint configuration into a binary string and uses the R GA package from Scrucca (2013). This GA279

has proven reliable with our problems.280

5. Multiple Changepoint Simulations281

In presenting simulation results for different scenarios, the main body of the text will only present graphic(s) that282

are judged informative. In general, for each simulation case considered, graphics of configuration distances to truth,283

average number of detected changepoints, and empirical probabilities of estimating the correct number of changepoints284

were produced. The supplementary material contains any graphics that are not included in the main body. Similarly,285

we focus on unit shift mean sizes in the main text body unless otherwise noted; results for different mean shift sizes286

are presented in the supplementary material.287

The changepoint configurations that we consider are illustrated in Figure 7, which shows sample time series gener-288

ated with the variousmean shift configurations. These configurations range from scenarios with no or few changepoints289

to those with a large number of changepoints. All series have length .290

AIC performs miserably in all our scenarios, always selecting an excessive number of changepoints. Since plotting291

AIC results would degrade our other graphical comparisons, AIC results are not presented to accentuate differences292

between the remaining methods.293

5.1. Comparing Multiple Changepoint Segmentations294

Before presenting our simulations, we discuss how to compare an estimated multiple changepoint segmentation to295

its true value. The estimated multiple changepoint configuration could have a different number of changepoints than296

the true configuration. For a single changepoint method, such a comparison is easy: examine first whether the method297

flags a changepoint, and then its distance from the true changepoint time. With multiple changepoint configurations,298

this comparison is complicated by the fact that different segmentations may have different numbers of changepoints:299

which changepoint times in one particular configuration correspond to those in another may be nebulous.300

To compare different methods, a distance between the two changepoint configurations and301

will now be developed. Several distances have been utilized by the multiple changepoint field.302

Some, such as the mean squared error (MSE) of the fitted means, V-measure, or Hausdorff distance, are not specific303

to changepoint problems. Others, such as the number of changepoints or true/false positive detection rates, are more304

tailored to the changepoint problem. However, each of these statistics quantifies only one aspect of the fit. For example,305

theMSE could be low, but the number of changepoints could still be overestimated; or the total number of changepoints306

could be good, but their locations inaccurate. As such, we introduce a new changepoint-specific distance balancing the307

two key components of multiple changepoint analysis: 1) the number of changepoints and 2) their individual locations.308
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Figure 7: AR Time Series with Different Changepoint Settings

To balance the number and location aspects of changepoint configurations, two components in our distance are
needed. The first measures the discrepancy in the numbers of changepoints in the two configurations, for which we
use absolute difference. The second component measures discrepancies in the changepoint times. This is trickier
to quantify as the number of changepoints may be different in the two configurations and some sort of “matching
procedure" is needed. For two changepoint segmentations, and , the distance used here is

(21)
The term assigns the difference in changepoint numbers for any mismatch in the total number of changepoints.
The term reflects the smallest cost that matches changepoint locations in to those in . This term
can be computed via the following linear assignment methods:

which is subject to the constraints , for and for . Here, the
cost of assigning to is taken simply as and is the decision variable

if is assigned to
otherwise

This linear assignment problem can be efficiently computed from algorithms in Burkard, Dell’Amico, and Martello309

(2012).310
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•

Figure 8: Empirical False Positive Detection Rates for an AR(1) Series with Various 𝜙. Truth: No Changepoints.

One can verify that (21) defines a legitimate distance satisfying the triangle inequality. The larger the distance is, the311

worse the two configurations correspond to one another. The term min(1,2) can be shown to be bounded by unity312

and measures how closely the two changepoint configurations match up to one another. When both configurations have313

many changepoints, the distance is dominated by the |𝑚−𝑘| term. In our simulations, estimated multiple changepoint314

configurations will be compared to the true changepoint configuration with this distance.315

5.2. No Changepoints316

Many modern multiple changepoint simulation studies increasingly focus on cases with a large number of change-317

points, eschewing single and no changepoint scenarios. We include such scenarios here to help illuminate the differ-318

ences between the methods.319

Our first simulation considers the changepoint free case in an AR(1) Gaussian series having various correlation320

parameters 𝜙 and 𝜎2 = 1. Figure 8 shows probabilities of falsely declaring one or more changepoints over 1,000321

independent simulations. Unlike the single changepoint case, the methods here do not control any false positive rate.322

The results show that BIC, mBIC, and binary segmentation perform best, with WBS and MDL performing signif-323

icantly worse. It is worth noting that WBS has a signicantly higher false positive rate, an issue discussed further in324

Lund and Shi (2020). Binary segmentation is arguably best here, an expected finding since there are no changepoints325

(an AMOC test applied to the series’ one-step-ahead prediction residuals should not see a changepoint and stop any326

recursion at its onset). All methods perform better with negative 𝜙 than with positive 𝜙; performance of all methods327

degrades as 𝜙 moves towards unity (as expected).328

5.3. A Single Changepoint in the Record’s Middle329

We now move to simulations with one changepoint in the same AR(1) setup above. The changepoint is placed in the330

middle of the series, 𝑡 = 251. Figure 9 shows the average distances between the estimated changepoint configurations331

and the true configuration. While there are no huge discrepancies between the methods, for heavily correlated series,332

binary segmentation is the worst and MDL and mBIC the best. Again, all tests degrade as 𝜙 approaches unity. MDL333

has the least variability across 𝜙. Comparing to the single changepoint results, the multiple changepoint penalties are334

more conservative than the LRT. Also, since the average distance is less than unity, the correct number of changepoints335

is often being identified.336

5.4. A Three Changepoint Staircase337

Our next case moves to a setting with three mean shifts, partitioning the series into four equal-length regimes. The338

changepoints occur at times 126, 251, and 376, with each changepoint shifting the series upward by one unit (up-up-339

up). As before, Figure 10 reports average distances. MDL performs the worst for negative 𝜙, while the other methods340

perform similarly. Perhaps surprisingly, binary segmentation starts to degrade when 𝜙 becomes positive, with the341

others also degrading, but to a lesser extent. BIC performs best across all 𝜙.342

Shi et al.: Preprint submitted to Elsevier Page 14 of 21



Comparing Changepoint Techniques for Time Series

•

Figure 9: Average Distances for an AR(1) Series with Varying 𝜙. Truth: One Changepoint in the Middle Moving the Series
Upwards.

•

Figure 10: Average Distances for AR(1) Series with Different 𝜙. Truth: Three Equally Spaced Changepoints Moving the
Series Up-Up-Up.

5.5. Three Alternating Changepoints343

Next, we consider another three changepoint configuration, the changepoint times again being equally spaced, but344

this time moving the series up, then down, and then up again (up-down-up). Figure 11 reports the distances. All345

methods have a harder time than with the last up-up-up changepoint configuration. In this setting, binary segmentation346

becomes fooled and estimates too few changepoints; mBIC is also not doing as well as the other methods. MDL and347

WBS work better, the surprise winner being BIC.348

5.6. A Nine Changepoint Staircase349

Next, we move to cases with nine changepoints. Our first set of simulations equally spaces all changepoint times350

in the record, each moving the series higher (All Up). Because the changepoints are more difficult to detect, we351

have increased the absolute mean shift magnitude to two units — this induces more separation between the methods,352

allowing for an easier comparison. Figure 12 displays distances for this setting. The winners are BIC and MDL; losers353

are WBS and binary segmentation.354
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•

Figure 11: Average Distances for an AR(1) Series with Varying 𝜙. Truth: Three Equally Spaced Changepoints Moving
the Series Up-Down-Up.

•

Figure 12: Average Distances for an AR(1) Series with Varying 𝜙. Truth: Nine Changepoints, All Up.

5.7. Nine Alternating Changepoints355

Our next set of simulations again considers nine changepoints, but the directions of the equally spaced mean shift356

sizes of magnitude two are now alternated in an Up-Down-Up-Down-Up-Down-Up-Down-Up fashion (Alternating).357

Figure 13 displays results. The best method here is BIC again with WBS doing better than in the previous setting;358

mBIC is a laggard and binary segmentation is again the worst.359

5.8. Nine Keyblade Changepoints360

As a different type of setup, we next consider the nine changepoint setting where the sizes of the nine mean shifts361

vary, their shift directions vary, and the changepoint times are not equally spaced. Figure 7(d) shows our chosen pattern362

for 𝐸[𝑋𝑡], which we call a “keyblade". The distances in Figure 14 reveal BIC and MDL as winners, and WBS and363

binary segmentation as inferior.364

5.9. Random Changepoints365

We now consider settings with a random number of changepoints simulated from a Poisson distribution with a366

mean of five. The locations of any mean shifts are placed uniformly in the set {2,… , 𝑁} without replacement. The367
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•

Figure 13: Average Distances for an AR(1) Series with Varying 𝜙. Truth: Nine Alternating Changepoints.

•

Figure 14: Average Distances for the Keyblade AR(1) Series with Varying 𝜙. Truth: Nine Changepoints.

mean of each segment is simulated from a normal distribution with a zero mean and a standard deviation of 1.5. Figures368

15 summarizes the results: BIC and MDL are again superior and binary segmentation inferior.369

5.10. Varying Series Lengths370

The performance of the simple BIC penalty so far was surprising to us — especially since this penalty does not371

depend on the changepoint times. To examine this issue further, we fix the AR(1) parameter at 𝜙 = 0.5 and compare372

BIC and mBIC distances as 𝑁 varies with one and three changepoints. Here, the changepoints induce equal length373

regimes, all mean shift sizes are of a unit magnitude, and their directions alternate with the first direction being upwards.374

Table 2 reports average BIC and mBIC distances when 𝑁 ∈ {500, 1000, 2500}. As the sample size increases, the375

additional penalty the mBIC places on the length of the segments results in fewer changepoints identified than BIC.376

As 𝑁 grows, there is a tendency for BIC to add (erroneous) changepoints in some samples. Thus, as the number of377

changepoints and 𝑁 grows, mBIC does tend to beat BIC. This leads us to recommend mBIC over BIC for larger 𝑁 or378

numbers of changepoints.379

Shi et al.: Preprint submitted to Elsevier Page 17 of 21



Comparing Changepoint Techniques for Time Series

•

Figure 15: Average Distance between the Estimated and True Changepoint Locations.

Table 2
Comparison of BIC and mBIC. Truth: 𝑚 changepoints, all of a unit magnitude, placed in alternating directions that equally
space the record length for an AR(1) series with varying lengths 𝑁 . Here, 𝜎2 = 1 and 𝜙 = 0.5.

Avg. Distance 𝑚 = 1 𝑚 = 3
BIC mBIC BIC mBIC

𝑁 = 500 0.227 0.125 1.270 2.420
𝑁 = 1000 0.126 0.066 0.311 0.921
𝑁 = 2500 0.121 0.047 0.123 0.066

Table 3
Average Distance for an AR(1) Series with Varying Mean Shift Magnitudes.

Δ BIC+GA mBIC+GA MDL+GA BS(SCUSUM𝑍) WBS(C=1.3)

Δ = 1 1.269 2.424 1.948 2.702 1.686

Δ = 2 0.140 0.051 0.209 0.843 0.149

Δ = 3 0.126 0.042 0.188 0.077 0.079

380

Before moving to non-AR(1) settings, we examine method performance as the mean shift magnitudes increase.381

Here, we fix 𝑁 = 500, 𝜙 = 0.5, and 𝜎2 = 1 and consider three alternating changepoints placed at the times 126, 251,382

and 376. Mean shift magnitudes Δ are varied from 1 to 3. Average distances over 1, 000 simulations are reported in383

Table 3. As the mean shift magnitudes increases, all methods improve. BIC and MDL, two frequent winners of past384

scenarios, perform worst when the mean shift size is largest; moreover, WBS and binary segmentation, two frequent385

past losers, perform best. mBIC reports the smallest average distance when Δ ≥ 2.386

Our final simulation task considers other autoregressive error structures. We begin with AR(2) errors and the case387

of no changepoints. Table 4 shows false positive rates of signaling one or more changepoints when in truth none388

exist for various AR(2) parameters 𝜙1 and 𝜙2. In this and all four tables below, 1,000 independent simulations are389

conducted, 𝑁 = 500, 𝜎2 = 1, and all mean shift sizes are two units (this adds additional information to the above unit390

mean shift simulations). The structure of the four tables below are discussed in tandem after their presentation.391

Table 5 reports average distances for the AR(2) scenario of the last table, but now with three changepoints. The392

three shifts induce four equal length regimes and shift the series mean in an up-down-up manner.393
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Table 4
False Positive Rates for an AR Series with Varying . Truth: No Changepoints.

BIC+GA mBIC+GA MDL+GA BS(SCUSUM ) WBS(C=1.3)
{0.6, 0.35} 21.5% 2.5% 38.8% 22.6% 50.0%
{0.6, 0.3} 17.5% 2.6% 33.2% 10.2% 36.6%
{0.6, -0.1} 5.9% 1.1% 15.6% 0.3% 17.4%
{0.5, -0.2} 4.1% 1.6% 13.6% 0.0% 11.7%
{0.2, -0.5} 3.0% 0.6% 9.4% 0.1% 9.1%

Table 5
Average Distances for an AR Series with Varying . Truth: Three Alternating Changepoints of Size .

BIC+GA mBIC+GA MDL+GA BS(SCUSUM ) WBS(C=1.3)
{0.6, 0.35} 2.757 2.932 2.759 2.633 2.265
{0.6, 0.30} 2.484 2.895 2.510 2.742 2.337
{0.6, -0.1} 0.167 0.052 0.182 0.818 0.193
{0.5, -0.2} 0.131 0.032 0.163 0.072 0.101
{0.2, -0.5} 0.086 0.023 0.111 0.040 0.068

Table 6
False Positive Rates for an AR Series with Varying . Truth: No Changepoints.

BIC+GA mBIC+GA MDL+GA BS(SCUSUM ) WBS(C=1.3)
{0.5, 0.25, 0.15, 0.05} 66.5 % 44.8% 76.4% 29.7% 54.4%
{0.6, 0.3, 0.1, -0.3} 16.7 % 8.5% 42.0% 0.6% 21.5%
{0.6, 0.3, -0.3, -0.1} 9.9% 4.9% 32.5% 0.1% 14.8%
{0.6, -0.4, -0.2, -0.1} 5.0% 2.5% 27.0% 0.2% 10.3%
{0.6, -0.4, 0.3, -0.2} 5.3% 1.6% 22.9% 0.2% 17.4%

Table 7
Average Distances for AR Errors with Varying . Truth: Three Alternating Changepoints of Size .

BIC+GA mBIC+GA MDL+GA BS(SCUSUM ) WBS(C=1.3)
{0.5, 0.25, 0.15, 0.05} 2.723 2.420 3.360 2.516 2.151
{0.6, 0.3, 0.1, -0.3} 0.615 1.582 1.292 2.318 1.256
{0.6, 0.3, -0.3, -0.1} 0.205 0.107 0.251 0.834 0.211
{0.6, -0.4, -0.2, -0.1} 0.127 0.055 0.319 0.031 0.079
{0.6, -0.4, 0.3, -0.2} 0.161 0.066 0.246 0.228 0.101

Table 6 shows false positive rates of signaling one or more changepoints when in truth there are none for various394

parameter choices in an AR series.395

Finally, Table 7 reports average distances over 1,000 independent simulations for the same AR scenario above.396

The mean shift specifications are repeated from Table 5.397

In the above tables, when there are no changepoints, binary segmentation appears best and MDL and WBS worst,398

as was the case for AR errors. In the tables with three changepoints and heavily positively correlated errors, MDL,399

BIC, and WBS all do comparatively well; when the correlation becomes negative, the situation reverses and mBIC400

and binary segmentation are best. These aspects also held for AR series, although we did not remark about the401

negatively correlated results.402

To summarize our overall conclusions on multiple changepoints, the following points emerge:403

• AIC and binary segmentation are not competitive. Binary segmentation worked well only when no or few404

changepoints existed and worsened when multiple mean shifts act in opposite directions. We do not recommend405

either of these techniques.406

• Although its penalty does not depend on the changepoint times, BIC is surprisingly good across a wide range of407

scenarios. However, as gets larger, mBIC becomes superior.408
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• MDL was often the best performing penalized likelihood technique in heavily correlated scenarios, but does not409

work as well with negatively correlated series. MDL also tends to lose to mBIC when the changepoint mean410

shift sizes are large or when changepoints are infrequent.411

• MDL and WBS techniques should be used with caution if there is a possibility that no changes are present, as412

they have high false positive rates.413

• BIC and mBIC perform well in the low frequency changepoint settings.414

We close with one more comment that is not apparent from the reported results. The MDL penalty works reasonably415

in a large variety of positively correlated scenarios. However, when it is wrong, it has a tendency to put changepoints416

times in pairs very near each other. This is an attempt by the method to flag an outlier. If one imposes a minimum417

spacing between changepoint times to combat this, the method may perform better.418

6. Comments and Conclusions419

This paper presented a systematic comparison of common single andmultiple changepoint techniques in time series420

settings. Previous work had demonstrated how applying techniques that assume IID to data could lead to erroneous421

conclusions. Here, we focused on how IID methods could be modified for the time series setting, either by correcting422

the asymptotic distribution, or by modifying the test statistic.423

In constructing our comprehensive approach, a summary of the major different techniques available was made in424

a single manuscript; hence, this paper has utility as a reference. A new changepoint distance was also developed that425

combines the two important features of changepoint detection, identification of the correct number and location(s) of426

the changepoints, within a single metric.427

In the single changepoint case, it was found that the best techniques apply IID methods to the time series of one-428

step-ahead prediction residuals. The best performing single changepoint detection method was the sum of CUSUM429

statistic in Bai (1993). Extreme value based asymptotic tests exhibited poor detection power.430

In the multiple changepoint case, conclusions were more nebulous; however, binary segmentation and AIC are not431

recommended. The penalized likelihoods MDL, mBIC, and BIC all are worthy of additional study. WBS methods432

also performed reasonably and deserve additional attention, especially given their relatively recent entrance into the433

literature. At this point, it is still not clear whether pure algorithmic techniques can beat penalized likelihood methods.434

It is our view that one should use BIC penalized likelihood methods for the case of large numbers of changepoints435

and/or small data lengths, with mBIC recommended for smaller numbers of changepoints and/or longer lengths of436

data.437
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