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This paper probabilistically explores a class of stationary count time series models built
by superpositioning (or otherwise combining) independent copies of a binary stationary
sequence of zeroes and ones. Superpositioning methods have proven useful in devising
stationary count time series having prespecified marginal distributions. Here, basic prop-
erties of this model class are established and the idea is further developed. Specifically,
stationary series with binomial, Poisson, negative binomial, discrete uniform, and multi-
nomial marginal distributions are constructed; other marginal distributions are possible.
Our primary goal is to derive the autocovariance function of the resulting series.
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1. INTRODUCTION

There has been significant recent interest in modeling stationary series with prescribed
discrete marginal distributions; see Kachour and Yao [16], Weiß [31,32], Davis, Holan, Lund,
and Ravishanker [6]. Often, the discreteness arises in the form of counts taking values in
{0, 1, 2, . . .}. Count series arise when describing storm numbers, accident tallies, wins by
a sports team, disease cases, etc. While series having Gaussian marginal distributions are
often parsimoniously described by the autoregressive moving-average (ARMA) model class
and its variants (Holan, Lund, and Davis [11]), no one model class dominates the count
series literature. In fact, the autocovariance function of many commonly used count models
is deficient in some sense (only non-negative correlations can be produced, for example). The
purpose of this paper is to probabilistically develop and explore the covariance properties
of a flexible class of count series built from stationary binary series.
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A recently proposed class of count time series models involves combining binary series
in various ways to achieve the desired marginal distribution (see [4,19]), extending the idea
that any discrete random variable can be built from Bernoulli trials. From the flexibility
of binary autocovariances, this model class inherits flexible autocovariances. Many of the
series can be written in the superpositioned form

Xt =
Mt∑
i=1

Bt,i, (1)

where Xt is the count at time t, {Bt,i} are independent and identically distributed (IID)
copies of stationary but time-correlated Bernoulli processes in i, and {Mt} is a sequence
of IID count-valued random variables with finite first moment that is independent of the
{Bt,i}s. The sum in (1) is taken as zero if Mt = 0. Superpositioning was advocated by Blight
[3] and used further in Cui and Lund [4] to build stationary series with binomial and Poisson
marginal distributions. Here, we expand upon this paradigm and construct series having
a wide range of marginal distributions, including negative binomial, discrete uniform, and
multinomial. The autocovariances of these series can be positive or negative and/or have
long-memory features.

There is no known result characterizing autocovariances of stationary count series.
Elaborating, if γ(·) is a symmetric non-negative definite function on the integers, then there
exists a stationary Gaussian sequence {Xt} having cov(Xt,Xt+h) = γ(h) for all integers h.
Unfortunately, no analogous result exists for say, a stationary series with Poisson marginal
distributions. In fact, restrictions on autocovariance functions of count time series are often
more stringent than just non-negative definiteness. For example, it may not be possible to
have a stationary count series with a specific marginal distribution that is highly negatively
correlated at some lags.

It is common to specify the marginal distribution or other specific features in count
time series models and applications. For example, Poisson ARMA models are introduced
in McKenzie [23] and Weiß [30] posits Poisson marginals for IP address and claim counts.
Binomial marginal distributions are adopted in Weiß [31,32]. Negative binomial applica-
tions are pursued in Hilbe [10] and Ver Hoef and Boveng [29] compare negative binomial
and generalized Poisson marginal distributions. Negative binomial marginals are further
discussed in Zhu and Joe [38] from a thinning-based self-decomposable approach. Integer-
valued GARCH models are studied in Zhu [36]; Zhu [37] considers overdispersed count
distributions such as negative binomial and generalized Poisson.

The rest of this paper proceeds as follows. The next section reviews stationary count
time series, discussing several classic count time series models of the past. Section 3 intro-
duces several ways of modeling stationary binary sequences. Section 4 superimposes these
zero/one sequences to obtain our class of count time series models. Section 5 builds sta-
tionary binomial, Poisson, negative binomial, and multinomial models via superpositioning.
Section 6 presents non-stationarity extensions of the methods and Section 7 closes with
comments.

2. BACKGROUND

Initial attempts to model stationary count series used the discrete-valued autoregressive
moving-average (DARMA) methods introduced in Jacobs and Lewis [12,13]. For example,
a first order discrete autoregressive (DAR(1)) series {Xt} is built from IID count variables
{Yt}, with marginal cumulative distribution F (·), and an IID Bernoulli sequence {Vt} with
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P(Vt = 1) := p ∈ [0, 1]. The count series is initialized with X0 = Y0 and then recursively
updated via

Xt = VtXt−1 + (1 − Vt)Yt, t = 1, 2, . . . . (2)

Induction will show that Xt has distribution F (·) for every t ∈ {1, 2, . . .}.
While one can have any marginal distribution for a DAR(1) series (in addition to

discrete structures), there are some undesirable properties of DARMA series. Foremost, in
a DAR(1) model, Xt and Xt−1 are either equal or independent. Since P(Xt = Xt−1) ≥ p,
sample paths can remain constant for long runs, especially for larger p. To resolve this
‘repeating property’, a recent modification is introduced in Gouveia, Möller, Weiß, and
Scotto [8]. Secondly, DAR(1) models cannot produce negatively correlated series. This is
because p must lie in [0, 1]. In fact, one can show that DAR(1) autocorrelations have the
form corr(Xt,Xt+h) = ph for all h ≥ 0. While higher order autoregressions can be built
by introducing additional IID Bernoulli trial sequences, negative correlations cannot be
achieved with any DAR formulation. See Livsey, Lund, Kechagais, and Pipiras [18] for
a hurricane example where negatively correlated count series are encountered. In short,
DARMA models do not span all stationary count autocovariances. For these reasons and
more, DARMA models fell out of favor in the 1980s.

Another count model class, and one that is still popular today, is the integer ARMA
(INARMA) models. INARMA models were introduced in Steutel and Van Harn [27] and
studied further in Al-Osh and Alzaid [1] and McKenzie [21–23]. For example, a first-order
integer autoregressive (INAR(1)) model for {Xt} obeys the recursion

Xt = p ◦ Xt−1 + εt. (3)

Here, ◦ denotes a thinning operator that acts on a count-valued random variate Y via
p ◦ Y :=

∑Y
i=1 Bi, where {Bi}∞i=1 is a sequence of Bernoulli trials with P(Bi = 1) = p ∈ [0, 1]

and {εt} is a sequence of IID count-valued random variables with a finite second moment.
Unlike DARMA series, INARMA sample paths do not tend to stay constant for long

runs; however, like the DARMA class, most INARMA-based models cannot have negative
correlations. In fact, the INAR(1) model has corr(Xt,Xt+h) = ph for any h ≥ 0. One can
construct higher order integer autoregressions and even add moving-average components as
in McKenzie [21–23]. Modifications can be made in some settings to INARMA models to
allow for negative autocorrelations, such as the binomial AR models in McKenzie [21] and
Weiß [31,32]. Unlike DARMA series, it is not clear how to obtain any marginal distribu-
tion with INARMA methods—this may be hard or impossible, depending on the marginal
distribution desired.

Another count series model type was proposed in Joe [15] and easily produces stationary
series whose marginal distribution lies in the so-called convolution-closed infinitely divisible
class. Suppose that Fθ is a family of marginal distributions whose convolution, denoted by
*, satisfies Fθ1 ∗ Fθ2 = Fθ1+θ2 . For the first order autoregressive case, the count series {Xt}
obeys the recursion

Xt = At(Xt−1;α) + εt, (4)

where {εt} are IID variables with a finite second moment having the marginal distribution
F(1−α)θ, α ∈ [0, 1], and εt is independent of Xj for j < t. The stochastic operator At, which is
IID in time t, is defined so that At(Y ;α) is a random variable whose marginal distribution
is Fαθ (see Joe [15] for details). These models capably describe many marginal distribu-
tions—both discrete and continuous—and include gamma, beta, normal, Poisson, negative
binomial, and generalized Poisson. However, the marginal distribution must come from the
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convolution-closed class. Unfortunately, again the correlations of these models cannot be
negative.

Recently, Kachour and Yao [16] produced negatively correlated count series models by
rounding Gaussian series. For example, a rounded autoregressive model of order p with
location parameter μ and autoregressive parameters φ1, . . . , φp obeys

Xt =

〈
μ +

p∑
j=1

φjXt−j

〉
+ εt, (5)

where 〈x〉, for x ≥ 0, rounds x to its nearest integer (round down should this be non-unique),
and {εt} is count-valued IID noise. While such {Xt} can have negative correlations, due to
the rounding, it is difficult to construct a pre-specified marginal distribution in this model
class.

While the above models all have some attractive features and individualized drawbacks,
none of them easily generate negatively correlated count time series with pre-specified
marginal distributions. While autocovariances of a stationary count series can indeed be
negative, there are bounds on the degree of negativity possible. Elaborating, if {Xt} is a sta-
tionary count time series with marginal distribution F (·), define ρ+ = max{corr(Xt1 ,Xt2)}
and ρ− = min{corr(Xt1 ,Xt2)} as the maximum and minimum achievable correlations.
Theorem 2.5 of Whitt [34] shows that

ρ+ = corr(F−1(U), F−1(U)) = 1, ρ− = Corr(F−1(U), F−1(1 − U)), (6)

where U is a uniform random variable on (0,1). In a pairwise sense, ρ− is the most negative
correlation possible for the marginal distribution F (·). This bound is studied further below.
More about bivariate distributions and correlation bounds are discussed in Lin, Dou, Kuriki,
and Huang [17].

3. STATIONARY ZERO-ONE SERIES

Our count time series will be built from a stationary zero-one (binary) random sequence
{Bt}. This strategy was used in Blight [3] and further developed in Cui and Lund [4] and
Lund and Livsey [19]. The idea can be viewed as the time series extension of the fact that
any discrete-valued distribution can be constructed from independent fair coin flips (how
to efficiently do this is another matter).

For notation, let pB = E[Bt] ≡ P(Bt = 1) be the mean of {Bt} and denote its lag h
autocovariance by γB(h) = cov(Bt, Bt+h). Of course,

γB(h) = P(Bt = 1 ∩ Bt+h = 1) − p2B = pB [P(Bt+h = 1|Bt = 1) − pB ]. (7)

Two quantities that will be important later are the h-step-ahead transition probabilities
to a unit point: p1,1(h) := P(Bt+h = 1|Bt = 1) and p0,1(h) := P(Bt+h = 1|Bt = 0). The h-
step-ahead transition probabilities to a “zero point” are p1,0(h) := P(Bt+h = 0|Bt = 1) =
1 − p1,1(h) and p0,0(h) := P(Bt+h = 0|Bt = 0) = 1 − p0,1(h).

In the following subsections we discuss two models for {Bt}; others are possible.

3.1. Discrete Renewal Processes

One method for a Bernoulli process construction uses the renewal times in a stationary
discrete-time renewal process as in Blight [3], Cui and Lund [4], and Lund and Livsey [19]. A
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stationary renewal process employs an initial random “lifetime” L0 ∈ {0, 1, . . .} (delay) and
a sequence of IID aperiodic lifetimes {Li}∞i=1 supported in {1, 2, . . .} with μL := E[L1] < ∞.
In what follows, L will denote a lifetime whose distribution is equivalent to any of L1, L2, . . ..
The random walk {Sn}∞n=0 associated with the renewal process obeys Sn =

∑n
i=0 Li for

n ∈ {0, 1, . . .}. A renewal is said to have occurred at time t if Sn = t for any n. The zero-one
process {Bt} is simply set to unity at all renewal times: Bt = 1[∪∞

n=0{Sn=t}]. To have {Bt}
stationary, L0 needs to have the so-called first-derived distribution from the tails of L1 [9]:

P(L0 = k) =
P(L1 > k)

μL
, k ∈ {0, 1, . . .}. (8)

Stationarity of {Bt} gives

pB = P(Bt = 1) = P(B0 = 1) = P(L0 = 0) =
P(L1 > 0)

μL
=

1
μL

. (9)

A discrete renewal process with L0 distributed as in (8) is called stationary-delayed. Alter-
natively, if L0 = 0 with probability one, the process is called zero-delayed. Define uh to be
the probability of a renewal at time h in a zero-delayed process:

uh := P(Bt = 1|B0 = 1) = P(Bt+h = 1|Bt = 1). (10)

Equation (7) yields

γB(h) = cov(Bt, Bt+h) =
1

μL

(
uh − 1

μL

)
. (11)

Notice that γB(h) < 0 if and only if uh < μ−1
L , which happens for many L. For example,

any lifetime with P(L = 1) = 0 has γB(h) = −1/μ2
L, which is negative. The parameters in

this model are those that describe the lifetime L. Observe that p1,1(h) = uh and p0,1(h) =
pB(1 − uh)/(1 − pB).

3.2. Clipped Gaussian Sequences

Another binary {Bt} is built from a correlated latent Gaussian process {Zt} as in Livsey,
Lund, Kechagais, and Pipiras [18]. Specifically, let {Zt} be a correlated zero-mean unit-
variance Gaussian random processes with corr(Zt, Zt+h) = ρZ(h). Set Bt = 1(Zt>κ) for some
preset real κ. Then {Bt} is a strictly stationary binary sequence with pB = P(Bt = 1) =
1 − Φ(κ); here, Φ(·) denotes the cumulative distribution function of the standard normal
random variable. This construct is very similar to the clipping strategies in Van Vleck and
Middleton [28].

The autocovariance function of {Bt} can be derived from bivariate normal probabilities.
As an illustration, suppose that κ = 0 so that pB = 1/2. Then a classical multivariate normal
orthant probability calculation gives

E(BtBt+h) = P(Zt > 0 ∩ Zt+h > 0) =
1
4

+
arcsin(ρZ(h))

2π
, (12)

where Rose and Smith [26] is used. Since E[Bt] ≡ 1/2,

γB(h) =
arcsin(ρZ(h))

2π
, ρB(h) =

2 arcsin(ρZ(h))
π

. (13)

In this case, lag h autocovariances and autocorrelations are negative if and only if ρZ(h) < 0.
Hence, this model can produce negative covariances; in fact, ρB(h) can take on any value
in [−1, 1] when pB = 1/2.
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When pB �= 1/2, one will need to solve pB = 1 − Φ(κ) for κ. In this case,

E[BtBt+h] = P(Bt = 1, Bt+h = 1) = P(Zt > κ,Zt+h > κ). (14)

Evaluating the covariance function in this case requires integrating the bivariate normal
density over an infinite rectangle that is not an orthant. With G(κ, ρZ(h)) := P(Zt > κ,
Zt+h > κ), which can be evaluated via many computer packages, we have

γB(h) = G(κ, ρZ(h)) − (1 − Φ(κ))2, ρB(h) =
G(κ, ρZ(h)) − (1 − Φ(κ))2

Φ(κ)(1 − Φ(κ))
. (15)

Point probabilities for {Bt} are

p1,1(h) =
G(κ, ρZ(h))
1 − Φ(κ)

p0,1(h) =
1 − Φ(κ) − G(κ, ρZ(h))

Φ(κ)
. (16)

3.3. Binary Processes

Suppose that {Bt} is a general zero-one stationary binary process with P[Bt = 1] = pB .
While stationary binary process with arbitrary positive correlations exist, for a fixed pB ,
straightforward computations show that lag h correlations can be no more negative than

ρ− =
{

1 − 1
1−pB

, 0 ≤ pB ≤ 1
2 ;

1 − 1
pB

, 1
2 < pB ≤ 1 (17)

(compare to the bounds given at the end of 2).
Consider the case where pB ∈ [0, 1/2) and {Bt} is generated with the renewal methods of

Section 3.1. The lag h correlation is ρB(h) = (uh − pB)/(1 − pB), which achieves the bound
in (17) whenever uh = 0. When h = 1, any lifetime L with P(L = 1) = 0 and μL = 1/pB > 2
will have correlation ρ−. Cases for higher h are more involved, but are straightforward to
investigate.

When pB = 1/2, h = 1, and ε > 0 is small, a lifetime L with P[L = 1] = P[L = 3] = ε and
P[L = 2] = 1 − 2ε gives μL = 1/pB = 2 and ρB(1) = 2ε − 1, which comes arbitrarily close
to p−=− 1 as ε ↓ 0 (one cannot take L ≡ 2 as the support set of L is assumed aperiodic).

When pB ∈ (1/2, 1) and h = 1, a lifetime L with P(L = 1) = 2 − 1/pB and P(L = 2) =
1/pB − 1 will achieve ρ− = 1 − 1/pB . Again, cases for a higher h are straightforward to
investigate.

Now suppose that {Bt} is generated by the clipped Gaussian methods of Section 3.2.
The lag h autocorrelation in {Bt} is

ρB(h) =
P(Zt > κ,Zt+h > κ) − p2B

pB(1 − pB)
, (18)

and ρB(h) is “maximally negative” when P(Zt > κ,Zt+h > κ) = 0. When pB ∈ [0, 1/2],
κ > 0 and one again chooses ρZ(h) = −1.

When pB ∈ (1/2, 1), κ < 0. The autocorrelation in (18) achieves ρ− when P(Zt > κ,
Zt+h > κ) = 2pB − 1. This is equivalent to requiring that P(Zt < κ,Zt+h < κ) = 0, which
again happens by choosing ρZ(h) = −1.
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4. SUPERPOSITIONING

We now move to superpositioned count series. Let {Bt,i} for i ∈ {1, 2, . . .} denote IID copies
of {Bt}. Our count series {Xt} is built by adding (superimposing) a random number of IID
copies of {Bt} as in (1). Again, {Mt} is an IID count-valued random sequence with assumed
finite second moments that is independent of all {Bt,i}.

Let E[Mt] = μM and var(Mt) = σ2
M . It is obvious that {Xt} in (1) is a count-

valued strictly stationary random sequence with mean E[Xt] ≡ pBμM . The following result
establishes additional properties of {Xt}.
Theorem 1: Let {Xt} be the strictly stationary count series in (1). Then

(a) The probability generating function of Xt has form ψX(u) := E[uXt ] = ψM (1 − pB +
pBu), where ψM (u) := E[uMt ] is the probability generating function of Mt.

(b) The dispersion of {Xt} is DX := var(Xt)/E[Xt] = 1 + pB(DM − 1), where DM :=
σ2

M/μM is the dispersion of Mt. Xt is over/under dispersed if and only if Mt is
over/under dispersed.

(c) The lag h autocovariance of {Xt} has the form

γX(h) =
{

κγB(h), h �= 0;
γB(0)μM + p2Bσ2

M , h = 0; (19)

where

κ = E[min(M1,M2)] =
∞∑

k=0

P(Mt > k)2. (20)

(d) The lag h bivariate probability distributions of {Xt} have form

P(Xt = xt,Xt+h = xt+h) =
∞∑

mt=0

∞∑
mt+h=0

rmt,mt+h
(xt, xt+h)fM (mt)fM (mt+h),

where fM (k) = P(Mt = k) and rmt,mt+h
(xt, xt+h) has the form identified in the

Appendix.
(e) In the renewal case, {Xt} has long memory if and only if E[L2] = ∞. In the clipped

Gaussian case, {Xt} has long memory if and only if {Zt} has long memory.

This theorem is proven in the Appendix. Attempts to derive higher order (beyond
bivariate) joint process distributions have not produced tractable expressions to date. This
is unfortunate as it precludes using the processes’ joint distribution to construct likelihood-
based parameter estimators; nonetheless, the bivariate distribution above allows one to
compute composite likelihood estimators as in Pedeli and Karlis [25] and Ng, Joe, Karlis,
and Liu [24]. Particle filtering techniques show promise in approximating process likelihoods
(see Jia, Kechagias, Livsey, Lund, and Pipiras [14]). The covariance structure of the model
enables pseudo-Gaussian likelihood parameter estimation as in Livsey, Lund, Kechagais,
and Pipiras [18]. Estimation issues for these and other count model classes are considered
in Jia, Kechagias, Livsey, Lund, and Pipiras [14].

5. CLASSICAL COUNT MARGINAL DISTRIBUTIONS

This section constructs stationary time series with the classical count marginal distributions:
binomial, Poisson, negative binomial, and multinomial.
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5.1. Binomial Marginals

Count time series with binomial marginal distributions with M trials and success probability
pB are easily obtained: just take Mt equal to the constant M. The binomial distribution is
under-dispersed with DX = 1 − pB . This model was introduced by Blight [3] and studied
further in Cui and Lund [4,5] and Weiß [31,32]. By part (c) of Theorem 4.1, when h �= 0,
the lag h autocovariance and autocorrelation of {Xt} are

γX(h) = MγB(h), ρX(h) =
γB(h)

pB(1 − pB)
, (21)

and γX(0) = MpB(1 − pB), ρX(0) = 1. By (11), in the renewal case, the lag h autocovari-
ance and autocorrelation of {Xt} are

γX(h) =
M

μL

(
uh − 1

μL

)
, ρX(h) =

1
μL

(
uh − 1

μL

)
pB(1 − pB)

. (22)

From our derived expressions in the clipped Gaussian case, the lag h autocovariance and
autocorrelation of {Xt} are, for h �= 0,

γX(h) = M
[
G(κ, ρZ(h)) − p2B

]
, ρX(h) =

G(κ, ρZ(h)) − p2B
pB(1 − pB)

. (23)

Figure 1 shows a simulated realization of a binomial series with M = 5. Here, the Bt,i

were generated from a renewal process with lifetime L having a Pareto distribution with
parameter α = 2.1: P(L = k) = C(α)/kα, for k = 1, 2, . . .. The constant C(α) makes the
probability mass sum to unity; there is no explicit form for C(α). In this case, the renewal
lifetime L has a finite mean, μL ≈ 3.57, which gives pB ≈ 0.28. Moreover, L has an infinite
second moment, which implies from part (e) of Theorem 4.1 that this series has long memory.
Thus, the series has binomial marginal distributions with five trials, success probability of
approximately 0.28, and long memory.

5.2. Poisson Marginals

To construct a count time series {Xt} with Poisson marginal distributions with mean λ > 0,
let {Mt} be an IID Poisson sequence with mean 2λ and pB = 1/2. It is easy to show that
Xt in (1) has a Poisson distribution with mean λ (see [4]). The Poisson distribution has unit
dispersion. The lag h autocovariance of this process has form γX(h) = κγB(h) for h �= 0,
where κ = E[min(Mt,Mt+h)] and Mt and Mt+h are independent Poisson random variables
with mean 2λ, which is derived in Lund and Livsey [19] as

κ = 2λ
{
1 − e−4λ[I0(4λ) + I1(4λ)]

}
, (24)

where Ii(x) is the modified Bessel function

Ii(x) =
∞∑

n=0

(x/2)2n+i

n!(n + i)!
, i ∈ {0, 1}. (25)

When h = 0, E[min(Mt,Mt+h)] = 2λ. By Theorem 4.1, the lag h autocovariance of {Xt} is
γX(h) = κγB(h) when h �= 0 and γX(0) = λ.
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Figure 1. A realization of a stationary count time series with a Bin(5, 0.28) marginal
distribution and long memory. Sample and true autocorrelations are shown with dotted
pointwise 95% confidence bands for white noise.

In the renewal case, autocovariance and autocorrelation functions are

γX(h) =
κ

μL

(
uh − 1

μL

)
, ρX(h) =

κ

λμL

(
uh − 1

μL

)
. (26)

Observe that γX(h) < 0 whenever uh < μ−1
L , which happens for many renewal lifetime

distributions. In the clipped Gaussian case,

γX(h) = κ

[
G(κ, ρZ(h)) − 1

4

]
, ρX(h) =

κ

λ

[
G(κ, ρZ(h)) − 1

4

]
; (27)

these quantities are negative at lag h when ρZ(h) < 0.
Table 1 shows some negative correlations that can be made at lag one in our Poisson

series for different λ. The table shows the theoretically most negative correlation possible
as quantified in (6), the most negative possible lag one correlation achievable using renewal
binary series, and the most negative correlation that can be made from Gaussian clipped
binary series. The renewal negative correlation is achieved by allowing L to be a three-point
lifetime with P[L = 1] = P[L = 3] = ε and P[L = 2] = 1 − 2ε. Here, u1 = ε and we let ε ↓ 0
to achieve the reported negative correlation. The most negative correlation for the clipped
Gaussian series is obtained by taking ρZ(1) = −1.

The results show that some substantial negative correlations can be produced with
these methods, as λ increases, the degree of negative correlation obtained increases. This
said, no negative correlations smaller than −0.5 were produced from these methods. One
could experiment with other choices of pB besides 1/2.

Figure 2 shows a simulated realization of a stationary series with Poisson marginal
distributions with mean λ = 5. The {Bt,i} are generated from a clipped Gaussian process:
a zero-mean unit variance AR(1) series with a lag one autocorrelation of 0.9.
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Table 1. Poisson negative correlations for various λ. The second column shows the theo-
retical most negative correlation possible in (6); the third column is a renewal-based negative
correlation obtained with the above three-point lifetime with ε ↓ 0; the rightmost column
shows the negative correlation achieved when ρZ(1) = −1 in a clipped Gaussian binary
process.

λ ρ− in (6) Renewal binary series Clipped Gaussian binary series

0.01 −0.0100 −0.0098 −0.0098
0.1 −0.0996 −0.0828 −0.0829
0.5 −0.5004 −0.2376 −0.2381
1 −0.7364 −0.3065 −0.3071
2 −0.8871 −0.3605 −0.3612
3 −0.9271 −0.3853 −0.3861
5 −0.9584 −0.4105 −0.4114
10 −0.9800 −0.4362 −0.4371
50 −0.9961 −0.4709 −0.4718
100 −0.9981 −0.4791 −0.4801

Figure 2. A realization of a stationary count time series with Poisson marginal distribu-
tions with mean 5. Sample and true autocorrelations are shown with dotted pointwise 95%
confidence bands for white noise.

5.3. Negative Binomial Marginals

Count series with negative binomial marginal distributions are often used to model overdis-
persed count series [10,29,33]. The negative binomial distribution with parameters r ∈
{1, 2, . . .} and p ∈ (0, 1) (NB(r, p)) has the probability mass function

P(Xt = k) =
(

r + k − 1
r − 1

)
pr(1 − p)k, k ∈ {0, 1, . . .}. (28)
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The dispersion of this distribution is DX = 1/p > 1 and its probability generating function is

ψXt
(u) = E[uXt ] =

(
p

1 − (1 − p)u

)r

, |u| < (1 − p)−1. (29)

To construct a negative binomial count series {Xt} via (1), apply part 1 of Theorem 4.1 to
infer that the probability generating function of Mt must satisfy

ψM (u) =

⎛
⎝ ppB

1−p+ppB

1 −
(
1 − ppB

1−p+ppB

)
u

⎞
⎠

r

. (30)

From this, it follows that the marginal distribution of {Mt} is again negative binomial:
Mt ∼ NB(r, p̃), where p̃ = ppB/(1 − p + ppB) ∈ [0, 1].

Part (c) of Theorem 4.1 shows that the lag h autocovariance of {Xt} has form
γX(h) = κγB(h) when h �= 0 and γX(0) = r(1 − p)/p2, where κ =

∑∞
k=0 P(Mt > k)2. The

tail probability P(Mt > k) for Mt ∼ NB(r, p̃) can be calculated via a recursion in r. Specif-
ically, Mt has the representation Mt = A1 + · · · + Ar, where the Ai are independent with
tail distribution P(Ai > k) = (1 − p̃)k for k ∈ {0, 1, 2, . . .} (a NB(r = 1, p̃) distribution). Let
q̃ = 1 − p̃ and condition on A1 to get the recursion

P(A1 + · · · + Ar > k) =
∞∑

�=0

P(A2 + · · · + Ar > k − �)p̃q̃�. (31)

With ηr(k) = P(A1 + · · · + Ar > k), we arrive at the difference equation

ηr(k) = q̃k+1 + p̃

k∑
�=0

ηr−1(k − �)q̃�, (32)

which can be evaluated recursively in r to obtain ηr(k) = P(Mt > k), starting with
η1(k) = q̃k+1.

Figure 3 shows a realization of stationary count time series with a negative binomial
marginal distribution with r = 10 and p = 0.5. The {Bt,i}s were generated from a renewal
process with lifetime L supported on {1, 2, 3}, with P(L = 1) = P(L = 3) = 0.1 and P(L =
2) = 0.8. Here, E[L] = 2 and pB = 1/2. From the plotted sample autocorrelations, it is
evident that negative correlations are obtained.

Overall, the degree of negative correlations produced by superpositioning as in (1)
for negative binomial marginal distributions is disappointing. In particular, no scenarios
(renewal or clipping) or values of pB produced a negative lag one correlation less than -0.12
when r = 1. Because of this, we will explore alternative ways of combining the binary series
to achieve a negative binomial marginal.

Another way of combining the zero-one processes mimics a strategy in Cui and Lund
[4]. Using that a negative binomial draw is the first time that r heads are obtained in
independent coin flips (minus r to render a variable supported on {0, 1, . . .}), set M

(r)
t =

inf{k ≥ 1 :
∑k

i=1 Bt,i = r} and Xt = M
(r)
t − r. Then Xt has a NB(r, pB) distribution by

construction and has the superpositioned form

Xt =
M

(r)
t∑

i=1

(1 − Bt,i). (33)

The difference between (1) and (33), besides the Bt,i versus the 1 − Bt,i, is that M
(r)
t is not

independent of the Bt,is, but is rather a stopping time constructed from them.
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Figure 3. A realization of a long memory stationary count time series with NB(10,0.5)
marginal distributions. The first 200 observations are plotted. Sample autocorrelations are
shown with dotted pointwise 95% confidence bands for white noise.

Explicit evaluation of the autocovariance function of this model is difficult, but
can be done recursively in r. Let ξi,j(h) := E[M (i)

t M
(j)
t+h], where M

(i)
t = At,1 + · · · + At,i

and M
(j)
t+h = At+h,1 + · · · + At+h,j are ordinary geometric random variables supported on

{1, 2, . . .} (note that this geometric support set does not contain zero). Since γX(h) =
cov(M (r)

t ,M
(r)
t+h), γX(h) = ξr,r(h) − r2/p2B . The Appendix establishes the recursion

ξi,j(h) =
ξi−1,j−1(h)pBp1,1(h) + ξi,j−1(h)(1 − pB)p0,1(h) + ξi−1,j(h)pBp1,0(h)

1 − (1 − pB)p0,0(h)

+
(

i + j − 1
pB

− p1,1(h)
1 − (1 − pB)p0,0(h)

)
1

1 − (1 − pB)p0,0(h)

+
[2 − (1 − pB)p0,0(h)]
[1 − (1 − pB)p0,0(h)]2

, (34)

in i, j ∈ {1, 2, . . .}. Of course, ξi,j(h) = ξj,i(h). Boundary conditions take ξ0,i(h) =
ξi,0(h) = 0. One starts the recursion with

ξ1,1(h) =
1

pBp0,1(h)
− pBp0,0(h)

[1 − (1 − pB)p0,0(h)]2p0,1(h)

+
p1,0(h)

[1 − (1 − pB)p0,0(h)]2
. (35)

For example, to get ξ2,2(h), one first uses (34) to get ξ1,2(h) from ξ1,1(h). Using the recursion
again gives ξ2,2(h) from ξ1,2(h).

Table 2 is analogous to Table 1 and shows negative correlations achieved at lag one for
negative binomial marginals with r = 1 for varying values of pB . The correlation at lag h

https://doi.org/10.1017/S0269964819000433 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000433


550 Y. Jia, R. Lund and J. Livsey

Table 2. Negative lag one correlations produced for negative binomial marginals. The
renewal and clipped Gaussian specifications are described above.

pB ρ− in Eq. (6) Renewal binary series Clipped Gaussian binary series

0.1 −0.6370 −0.0556 −0.0556
0.2 −0.6176 −0.1250 −0.1250
0.3 −0.5881 −0.2143 −0.2143
0.4 −0.5463 −0.3333 −0.3333
0.5 −0.4991 −0.4990 −0.4990
0.6 −0.4004 −0.4000 −0.4000
0.7 −0.3004 −0.3000 −0.3000
0.8 −0.2001 −0.2000 −0.2000
0.9 −0.1000 −0.1000 −0.1000

for the case is

ρX(h) =
ξ1,1(h) − 1

p2
B

1−pB

p2
B

. (36)

For each fixed p = pB in the table, the renewal methods chooses a lifetime L with mean
μL = 1/pB as follows. When 0 < pB ≤ 1/2, we choose L with P (L = 1) = 0 so that u1 = 0.
When 1/2 < pB < 1, a two-point L supported on {1, 2} is chosen. Since pB = 1/μL, the prob-
abilities P (L = 1) = 2 − 1/pB and P (L = 2) = 1/pB − 1 are chosen. The clipped Gaussian
method again takes ρZ(1) = −1 for the latent Gaussian process {Zt}; the clipping value
of κ is set to make the success probability of the binary process pB . From these specifica-
tions, one can compute p0,0(1), p1,1(1), p0,1(1), and p1,0(1); the lag one correlation is then
computed from (36).

Observe that the degree of negative correlation produced by the methods is very close
to the minimal values possible (these are in the second column) for large pB , becoming
almost optimal for pB ≥ 1/2. Degrees of negative correlation for smaller pB are worse. Also,
the renewal and clipped Gaussian methods produce the same values (one can verify this
computationally).

5.4. Multinomial Marginals

Our goal here is to construct a J -dimensional time series with a multinomial marginal
distribution with M trials and success probability vector (p1, p2, . . . , pJ ). While any of the
series in the previous subsections can be built from either renewal or clipped Gaussian
binary processes, we find it more convenient to work with a latent Gaussian processes {Zt},
but to place it into more than two categories. Partition R into the J sets E1, E2, . . . , EJ so
that P(Z1 ∈ Ej) = pj for j = 1, 2, . . . , J . Define

Bt,j =
{

1, Zt ∈ Ej ;
0, otherwise , (37)

and set Bt = (Bt,1, Bt,2, . . . , Bt,J). Then Bt has a multinomial distribution with one trial
and success probability vector (p1, p2, . . . , pJ ). Choosing E1, . . . , EJ such that p1 = · · · =
pJ = 1/J yields a discrete uniform variate over the categories {1, . . . , J}.
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For a fixed number of trials M, one can superposition M independent copies of
{Bt} — call these {Bt,i} — via

Xt =
M∑
i=1

Bt,i. (38)

Then Xt = (Xt,1,Xt,2, . . . , Xt,J)′ has a multinomial distribution with M trials and success
probability vector (p1, p2, . . . , pJ ). Observe that E[Xt,j ] = Mpj . For lag h autocovariances,
simple computations give E(Xt,iXt+h,j) = MP(Zt ∈ Ei ∩ Zt+h ∈ Ej) + (M2 − M)pipj . It
now follows that

cov(Xt,i,Xt+h,j) = M [P(Zt ∈ Ei ∩ Zt+h ∈ Ej) − P(Zt ∈ Ei)P(Zt+h ∈ Ej)] . (39)

A graphic of a sample path of {Xt} and its autocorrelations is omitted, but negative
autocovariances arise when {Zt} has negative correlations.

6. COVARIATES

Situations arise where stationarity is not reasonable, particularly when covariates are
present. Suppose that there are P non-random covariates to help explain the series at
time t and call these Ct,1, . . . , Ct,P . This setting is easily accommodated by allowing Mt to
have marginal distribution Fθ(t)(·), where θ(t) is a function of the time-varying covariates
and other specifications. For example, if a Poisson marginal is desired for {Xt} in a Poisson
regression setup, one simply lets {Mt} have a Poisson marginal with mean λ(t), where

λ(t) = exp (β0 + β1Ct,1 + · · · + βP Ct,P ) . (40)

Here, the exponential link function is used to guarantee that λ(t) is positive and
β0, β1, . . . , βP are regression coefficients. In this setting, Xt has a Poisson marginal
distribution for each time, but the mean E[Xt] changes over time.

Seasonality can be accommodated in multiple ways. One way simply allows for seasonal
covariates via (40). Seasonality in the underlying Bernoulli sequences is also possible and
will yield count series with seasonally varying autocorrelations; this avenue was pursued in
Fralix, Livsey, and Lund [7].

7. COMMENTS

This paper presented methods to build stationary time series with some of the classical
count marginal distributions that can have very general autocovariance features, including
negative correlations and long-memory. The methods build the series by combining corre-
lated zero-one binary series in various ways. A distribution family not pursued here, but
worthy of further research, is the generalized Poisson.

Another strategy that could be used to generate a variety of series that is not dis-
cussed here is a copula approach. Some words on this merit mention. Suppose F (·) is the
desired marginal distribution of a count series. If {Zt} is a Gaussian process with stan-
dard normal marginals and autocorrelation function ρZ(·), then {Xt} defined pointwise by
Xt = F−1(Φ(Zt)) will have marginal distribution F (·). This definition requires taking the
inverse of the count cumulative distribution function F−1 in the manner of Equation (14.5)
of Billingsley [2]. This is the so-called normal to anything (NORTA) approach of Yahav and
Shmueli [35]. This approach generally does not yield explicit autocovariance expressions
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(see Jia, Kechagias, Livsey, Lund, and Pipiras [14] for a series expansion). The likelihood
is also difficult to obtain because of the discrete nature of F−1. If F were continuous, then
a simple Jacobian transformation method would suffice to evaluate the likelihood. But the
discrete nature of F−1 makes one have to quantify a discrete joint transformations; this said,
Jia, Kechagias, Livsey, Lund, and Pipiras [14] make some progress on a particle filtering
likelihood approximation.
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APPENDIX

Proof of Theorem 4.1. Parts (a) and (b) follow easily from standard techniques.
To prove part (c), apply the law of total covariance to get

cov(Xt, Xt+h) = cov

⎛
⎝Mt∑

i=1

Bt,i,

Mt+h∑
j=1

Bt+h,j

⎞
⎠

= E

⎡
⎣cov

⎛
⎝Mt∑

i=1

Bt,i,

Mt+h∑
j=1

Bt+h,j

∣∣∣∣∣∣Mt, Mt+h

⎞
⎠
⎤
⎦

+ cov

⎛
⎝E

[
Mt∑
i=1

Bt,i

∣∣∣∣∣Mt, Mt+h

]
, E

⎡
⎣Mt+h∑

j=1

Bt+h,j

∣∣∣∣∣∣Mt, Mt+h

⎤
⎦
⎞
⎠ . (A.1)

https://doi.org/10.1017/S0269964819000433 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000433


554 Y. Jia, R. Lund and J. Livsey

For any positive integers mt, mt+h,

cov

⎛
⎝ mt∑

i=1

Bt,i,

mt+h∑
j=1

Bt+h,j

⎞
⎠ = min(mt, mt+h)γB(h)

and E[
∑mt

i=1 Bt,i] = mtpB . Plugging these into (A.1) gives

cov(Xt, Xt+h) = E [min(Mt, Mt+h)] γB(h) + p2Bcov(Mt, Mt+h). (A.2)

When h �= 0, Mt and Mt+h are independent and cov(Mt, Mt+h) = 0, implying that γX(h) =
κγB(h), where κ = E[min(Mt, Mt+h)]. When h =0, extracting the first two moments from the
probability generating function gives γX(0) = γB(0)μM + p2Bσ2

M as claimed.
For part (d), when h �= 0, conditioning on Mt and Mt+h gives

P(Xt = xt, Xt+h = xt+h) =
∞∑

mt=0

∞∑
mt+h=0

rmt,mt+h(xt, xt+h)fM (mt)fM (mt+h), (A.3)

where rmt,mt+h(xt, xt+h) := P(St = xt, St+h = xt+h), St =
∑mt

i=1 Bt,i, St+h =
∑mt+h

i=1 Bt+h,i,
and mt and mt+h are fixed. This joint probability can be calculated by further conditioning on Xt:

rmt,mt+h(xt, xt+h) = P (St+h = xt+h|St = xt)P(St = xt). (A.4)

It is easy to see that St has a binomial distribution with mt trials and success probability pB . The
conditional probability above changes form with two cases.

When mt < mt+h, the conditional probability in (A.4) represents the sum of three independent
binomial distributions: one with xt trials and success probability p1,1(h), one with mt − xt trials
and success probability p0,1(h), and one with mt+h − mt trials and success probability pB . Hence,

P (St+h = xt+h|St = xt) =

min(mt−xt,xt+h)∑
b=0

min(xt,xt+h−b)∑
a=0

T1T2T3,

where T1 = B(xt, a, p1,1(h)), T2 = B(mt − xt, b, p0,1(h)), and T3 = B(mt+h − mt, xt+h − a −
b, pB). Here, B(n, k, p) :=

(n
k

)
pk(1− p)n−k denotes the binomial probability mass function.

The case where mt ≥ mt+h is more complicated. Further conditioning on
∑mt+h

i=1 Bt,i (this is
neither St nor St+h) gives

P (St+h = xt+h|St = xt) =
∞∑

k=0

P

(
St+h = xt+h|St = xt,

mt+h∑
i=1

Bt,i = k

)

× P

(mt+h∑
i=1

Bt,i = k

∣∣∣∣∣St = xt

)
. (A.5)

Conditional on St = xt,
∑mt+h

i=1 Bt,i has a hypergeometric distribution with mt+h draws from a
population of containing xt type I items and mt − xt type II items:

P

(mt+h∑
i=1

Bt,i = k

∣∣∣∣∣St = xt

)
=

(xt
k

)( mt−xt
mt+h−k

)
( mt
mt+h

) , (A.6)

for k ∈ {max(0, mt+h − mt + xt), . . . ,min(xt, mt+h)}.
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The distribution of St+h conditioned on St = xt and
∑mt+h

i=1 Bt,i = k behaves as the sum of
two independent binomial distributions: one with k trials and success probability p1,1(h), and the
other with mt+h − k trials and success probability p0,1(h). This gives

P

(
St+h = xt+h

∣∣∣∣∣St = xt,

mt+h∑
i=1

Bt,i = k

)
=

min(k,xt+h)∑
a=0

B(mt+h − k, xt+h − a, p0,1(h))

× B(k, a, p1,1(h)).

This identifies the two terms in (A.5). Plugging these back into (A.4) identifies the form of
rmt,mt+h(xt, xt+h).

To prove part (e), the renewal case is established in Lund, Holan, and Livsey [20]. In the clipped
Gaussian case, if ρZ(h) → 0 as h → ∞, then the result follows from (13) and the limit comparison
test since limx→0 sin

−1(x)/x = 1. Should ρZ(h) � 0, then {Zt} must have long memory and there
are an infinite number of lags h where |ρZ(h)| > δ for some δ > 0. For these lags, we also must
have | sin−1(ρZ(h))| > δ∗ for some δ∗ > 0 by properties of the inverse sin function. It follows from
(13) that {Xt} must also have long memory. This proves part (e). �

Proof of (34). To rig up a type of regeneration epoch, condition on the minimum of At,1 and
At+h,1 to get

ξi,j(h) =
∞∑

�=1

E

[
M

(i)
t M

(j)
t+h

∣∣∣min(At,1, At+h,1) = 	
]

P(min(At,1, At+h,1) = 	). (A.7)

When At,1 = At+h,1 = 	, due to the memoryless property of the geometric distribution, M
(i)
t is

distributionally equivalent to M
(i−1)
t + 	 and M

(j)
t+h is equal in distribution to M

(j−1)
t+h + 	. Similarly,

when 	 = At,1 < At+h,1, M
(i)
t is equal in distribution to M

(i−1)
t + 	 and M

(j)
t+h is equal to M

(j)
t+h + 	

in distribution. When Mt,1 > Mt+h,1 = 	, M
(i)
t equals M

(i)
t + 	 in distribution and M

(j)
t+h equals

M
(j−1)
t+h + 	 in distribution. Using these in (A.7) and simplifying gives

ξi,j(h) = ξi−1,j−1(h)p1(h) + ξi,j−1(h)p2(h) + ξi−1,j(h)p3(h)

+
i + j − 1− p1(h)

pB
E
[
min(At,1, At+h,1)

]
+ var(min(At,1, At+h,1)) + E

2 [min(At,1, At+h,1)
]
, (A.8)

where i, j ∈ {1, 2, . . .}. Here, the pi(h)s are

p1(h) = P(At,1 = At+h,1 = 	|min(At,1, At+h,1) = 	) =
pBp1,1(h)

1− (1− pB)p0,0(h)
,

p2(h) = P(At,1 > At+h,1 = 	|min(At,1, At+h,1) = 	) =
(1− pB)p0,1(h)

1− (1− pB)p0,0(h)
,

p3(h) = P(	 = At,1 < At+h,1|min(At,1, At+h,1) = 	) =
pBp1,0(h)

1− (1− pB)p0,0(h)
.

To verify the expression in (35), notice that M
(1)
t+h conditioned on M

(1)
t = k has the distributional

form shown in Table A1.
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Table A1. Probability distribution of M
(1)
t+h conditioned on M

(1)
t .

	 P(M
(1)
t+h = 	|M (1)

t = k)

1 p0,1(h)
...

...

k − 1 p0,0(h)
k−2p0,1(h)

k p0,0(h)
k−1p1,1(h)

k +1 pBp0,0(h)
k−1p1,0(h)

k +2 (1− pB)pBp0,0(h)
k−1p1,0(h)

...
...

Using these in the law of total expectation gives

ξ1,1(h) =
1

pBp0,1(h)
− pBp0,0(h)

[1− (1− pB)p0,0(h)]2p0,1(h)
+

p1,0(h)

[1− (1− pB)p0,0(h)]2
. (A.9)

Finally, we derive an explicit form for E[min(At,1, At+h,1)] and var(min(At,1, At+h,1)). The tail
distribution of min(At,1, At+h,1) satisfies

P(min(At,1, At+h,1) > 	) = P
(
Bt,1 = 0, Bt+h,1 = 0, · · · , Bt,� = 0, Bt+h,� = 0

)
= [(1− pB)p0,0(h)]

�,

which is an ordinary geometric distribution. Hence, E[min(At,1, At+h,1)] = [1− (1− pB)p0,0(h)]
−1

and var(min(At,1, At+h,1)) = (1− pB)p0,0(h)/[1− (1− pB)p0,0(h)]
2. Plugging these into (A.8)

verifies the claim. �
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