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Abstract

We propose a general approach for distance based
clustering, using the gradient of the cost function
that measures clustering quality with respect to
cluster assignments and cluster center positions.
The approach is an iterative two step procedure
(alternating between cluster assignment and clus-
ter center updates) and is applicable to a wide
range of functions, satisfying some mild assump-
tions. The main advantage of the proposed ap-
proach is a simple and computationally cheap up-
date rule. Unlike previous methods that specialize
to a specific formulation of the clustering prob-
lem, our approach is applicable to a wide range of
costs, including non-Bregman clustering methods
based on the Huber loss. We analyze the conver-
gence of the proposed algorithm, and show that it
converges to the set of appropriately defined fixed
points, under arbitrary center initialization. In the
special case of Bregman cost functions, the algo-
rithm converges to the set of centroidal Voronoi
partitions, which is consistent with prior works.
Numerical experiments on real data demonstrate
the effectiveness of the proposed method.

1. Introduction

Clustering is a fundamental problem in unsupervized learn-
ing and is ubiquitous in various applications and domains,
(Chandola et al., 2009), (Pediredla & Seelamantula, 2011),
(Jain, 2010), (Dhillon et al., 2003). K-means (Lloyd, 1982)
is a classical and widely adopted method for clustering. For
a given target number K of clusters, K-means proceeds
iteratively by alternating between two steps: 1) cluster as-
signment, i.e., assign each data point to its closest (in terms
of the Euclidean distance) cluster; and 2) finding cluster
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centers, i.e., position each cluster’s center at the average of
the data points currently assigned to the cluster. Besides
K -means, popular clustering methods include its improved
version K -means++ (Arthur & Vassilvitskii, 2007), as well
as K-modes (Huang, 1997), K-medians (Arya et al., 2004),
(Arora et al., 1998), etc.

It is well-known, e.g., (Selim & Ismail, 1984), that K -means
can be formulated as a joint minimization of a loss function
with respect to two groups of variables: 1) binary variables
that encode cluster assignments; and 2) continuous variables
that designate cluster centers, where the corresponding loss
function is a squared Euclidean norm. This K -means repre-
sentation has motivated a class of new clustering methods
called Bregman clustering (Banerjee et al., 2005), where
the squared Euclidean norm is replaced with arbitrary Breg-
man divergence (Bregman, 1967), such as Kullback-Leibler,
Mahalanobis, etc. An appealing feature of Bregman clus-
tering is that the introduction of a different loss (other than
squared Euclidean) does not harm computational efficiency,
as, despite a more involved loss function, the cluster center
finding step is still akin to K-means, i.e., it corresponds to
computing an average vector.

Several relevant clustering methods have been proposed that
also generalize the squared Euclidean norm of K -means and
that do not correspond to a Bregman divergence. For ex-
ample, clustering methods based on the Huber loss (Huber,
1964) have been shown to exhibit good clustering perfor-
mance and exhibit a high degree of robustness to noisy
data, (Pediredla & Seelamantula, 2011), (Liu et al., 2019).
However, several challenges emerge when generalizing clus-
tering beyond Bregman divergences. First, the cluster center
finding step—that corresponds to minimizing the loss with
respect to cluster center variables—is no longer an average-
finding operation and may be computationally expensive.
Second, convergence and stability results for clustering be-
yond Bregman divergences are limited. For example, refer-
ence (Pediredla & Seelamantula, 2011) shows a local con-
vergence to a stationary point, assuming that the algorithm
starts from an accurate cluster assignment.

In this paper, we propose a novel generalized clustering
algorithm for a broad class of loss functions, and we pro-
vide a comprehensive convergence (stability) analysis for
the algorithm. The assumed class of losses includes sym-
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metric Bregman divergences (squared Euclidean norm, Ma-
halanobis, Jensen-Shannon, etc.), but more importantly, in-
cludes non-Bregman losses such as the Huber loss. The
main novelty of the algorithm is that, at the cluster center
finding step, the exact minimization of the loss function is
replaced with a single gradient step with respect to the loss,
hence significantly reducing computational cost in general.
We prove that the algorithm converges to the appropriately
defined stationary points associated with the joint loss with
respect to the cluster assignment and cluster center vari-
ables, with arbitrary initialization. Numerical experiments
on real data demonstrate that involving the cheap cluster
center update incurs no or negligible loss both in cluster-
ing performance (appropriately measured accuracy) and
in iteration-wise convergence speed, hence opening room
for significant computational savings. We also show by
simulation that the proposed method with the Huber loss
exhibits a high degree of robustness to noisy data. While
this is in line with prior findings on Huber-based clustering
(Liu et al., 2019), (Pediredla & Seelamantula, 2011), the
proposed Huber-based method exhibits stronger theoretical
convergence guarantees than those offered by the previous
work.

We now briefly review the literature to help us contrast the
paper with existing work. Gradient based clustering has
been explored in the context of the K -means cost in (Mac-
Queen, 1967), (Bottou & Bengio, 1995). (MacQueen, 1967)
analyzes a gradient based update rule for K-means, while
(Bottou & Bengio, 1995) demonstrate that the standard cen-
troid based solution of the K -means problem is equivalent
to performing a Newton’s method in each step. However,
their analysis only concerns the squared Euclidean cost. Our
work is considerably more general and can be applied to
costs such as the Huber loss, or a class of Bregman diver-
gences. (Monath et al., 2017) propose a gradient-based
approach for the problem of hierarchical clustering. (Paul
et al., 2021) use adaptive gradient methods to design a uni-
fied framework for robust center-based clustering, applica-
ble to a large class of Bregman divergences.

A similar approach is used in the robotics community, in
the context of coverage control problems, e.g. (Cortes et al.,
2004), (Schwager, 2009). However, the focus of their work
is on continuous time gradient flow, designed for robot mo-
tion in a an environment that is typically an infinite set.
Additionally, the authors in (Cortes et al., 2004) propose
a family of discrete time algorithms, that converge to sets
of centroidal Voronoi partitions, if the cost is squared Eu-
clidean distance. On the other hand, our work focuses on a
discrete time gradient algorithm, designed for clustering a
finite set of points. We explicitly characterize the conditions
under which the method converges, and extend the notion
of distance to other metrics, beyond the Euclidean distance.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 formally defines the clustering
problem. Section 3 describes the proposed method. Section
4 presents the main results. Section 5 presents an analysis
of the fixed points the algorithm converges to. Section 6
presents numerical experiments, and Section 7 concludes
the paper. Appendix A contains proofs of the main lemma’s.
Appendix B contains proofs of some technical results used
throughout the paper. Appendix C contains some additional
numerical experiments. The notation used throughout the
paper is introduced in the next paragraph.

Notation. R denotes the set of real numbers, while R¢ de-
notes the corresponding d-dimensional vector space. More
generally, for a vector space V, we denote by V¥ its K-
dimensional extension. R denotes the set of non-negative
real numbers. We denote by N the set of non-negative
integers. || - || : RY — R, represents the standard Eu-
clidean norm, while (-, -) : R x R? — R denotes the inner
product. V denotes the gradient operator, i.e., V. f(x,y)
denotes the gradient of the cost f with respect to variable
x. [N] denotes the set of integers up to and including N,
ie., [N] = {1,...,N}. In the algorithm description and
throughout the analysis we use subscript to denote the itera-
tion counter, while the value in the parenthesis corresponds
to the particular center/cluster. In other words, z,(7) stands
for the i-th cluster center at iteration ¢. Same holds for
clusters, i.e., C¢(7) denotes the i-th cluster at iteration ¢,
corresponding to the subset of the data points assigned to
cluster ¢, at iteration ¢.

2. Problem formulation

In this section we formalize the clustering problem, and
propose a general cost, that subsumes many of the previous
clustering formulations.

Let (RY, g) represent the standard d-dimensional real vector
space, and a corresponding distance function. Let D C R?
be a finite set, with an associated probability measure pp.
For some K > 1, the problem of clustering the points in D
into K clusters can be cast as

. . 2
py min 9(x (), y)%, M

mind
reRK
y€D

where z = [z(1)7, ..., 2(K)"] € R¥? represent the can-
didate cluster centers and p, € (0, 1)!, given by Dy =
up(y), represent problem independent weights, that mea-
sure the importance of data points y € D. In the case when
g is the standard Euclidean distance, (1) is known in the lit-
erature as the K -means problem (Awasthi & Balcan, 2014).

"Note that, while a standard probability measure can take val-
ues in [0, 1], we implicitly assume two things: the support of pp
is the whole set D, and D contains at least two distinct points.
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Another problem similar in nature to (1) is given by

i 2
ir&égd Z py min g(x(i),y), ©))

and for g being the Euclidean distance, is known in the litera-
ture as K -medians (Arora et al., 1998). Both problems have
been well studied, and are known to be NP-hard (Vattani,
2009), (Awasthi et al., 2015), (Megiddo & Supowit, 1984).
Many algorithms for solving (1) and (2) exist, guaranteeing
convergence to locally optimal solutions, e.g. (Lloyd, 1982),
(MacQueen, 1967), (Banerjee et al., 2005), (Telgarsky &
Vattani, 2010), (Arora et al., 1998), (Arya et al., 2004). How-
ever, all of the algorithms are specialized for solving either
the K -means or the K -medians problem, and hence are not
generally applicable.

The problems (1), (2), can be equivalently defined as follows.
Forany K > 1, we call C = (C(1),...,C(K)) a partition
of D, if D = U;c(xC(i) and C(i) N C(j) = 0, fori #
j. Denote by Ck p the set of all K-partitions of D. The
clustering problem (1) is then equivalent to

min 3
e, , @OV = D D pglali) ) @)

i€[K]yeC(i)
The problem (2) can be defined in the same way.

‘We propose to unify and generalize (1) and (2) as follows.
Let f : R? x RY +— R, be a loss function that satisfies the
following assumption.

Assumption 2.1. The loss function f is increasing with
respect to the function g, i.e., forall z,y, z € R4

g(z,y) < g(z,y) implies f(x,y) < f(z,v).

We can then define the following general problem

K
xeRKrdI,licnecK,D J(@,C) = Z Z pyf(z(i),y). @

=1 yeC(i)

Remark 2.2. Introducing the function f along with g al-
lows us to naturally decouple the concepts of cluster shape
and location of cluster center. In particular, the function
g dictates the cluster shape, while the choice of function
f determines the exact location of the cluster centers. We
elaborate further on this in Section 5.

Remark 2.3. Compared to (3), the formulation (4) is more
general, in the sense that, while the dependence of f on g
is maintained, via Assumption 2.1, the function f provides
more flexibility, as is illustrated by the following examples.

Example. For the choice g(x,y) = ||z —y||, and f(z,y) =
g(z,y), the K-medians formulation is recovered. For
the choice g(,y) = |l — yll, and f(z,y) = glz,y)?.
the K-means formulation is recovered. For the choice

g(z,y) = f(x,y), being a Bregman distance, the Breg-
man divergence clustering formulation from (Banerjee et al.,
2005) is recovered. For the choice g(z,y) = |z — ¥,
and f(z,y) = ¢s(g(x,y)), where ¢s(x) is the Huber loss,
the formulation from (Pediredla & Seelamantula, 2011) is
recovered. We recall that the Huber loss is defined by

2, | < 6
— 2
ps(x) = {§|I| _E e >s ®)
3. The proposed method

In this section we outline the proposed method for solving
instances of (4) that satisfy some mild assumptions (see
ahead Assumptions 3.1-3.5).

To solve (4), an iterative approach is proposed. Start-
ing from an arbitrary initialization x(, at every itera-
tion ¢, it maintains and updates the pair (z, C;), where
zy = [ze()T,2,(2)7, ... 2 (K)T)T € RE and C; =
(Cy(1),...,Ci(K)) represent stacks of centers and clusters
at time ¢ € N. The iterative approach consists of two steps:

1. Cluster reassignment: for each y € D, we find the
index i € [K], such that

9(@(i),y) < g(@(4),y),VJ # i, (6)
and assign the point y to cluster Cy11 (7).

2. Center update: for each i € [K|, we perform the
following update

l’t+1(i) = xt(z) -« Z pyvmf(xt(i)a y)v (7)

y€Cy1(d)

where o > 0 is a fixed step-size.
Note that (7) can be written compactly as
Ty = ¢ — aVaJ (2, Crpa), (®)

where V,J(z¢,Ciy1) € RE? is the gradient of J with
respect to , whose i-th block of size d is given by

y€Ct41(i)

[ij(xt, Ot-l-l)jli =

In addition to Assumption 2.1, for our method to be applica-
ble, we make the following assumptions on functions f, g
and J.

Assumption 3.1. The distance function ¢ is a metric, i.e.,
it satisfies the following properties: 1) g(x,y) > 0, and
glz,y) = 0 <= =z = y; 2)g(x,y) = g(y,2);
3) 9(x,y) < g(x,2) +9(2,y).
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Remark 3.2. Assumption 3.1 requires the distance func-
tion g, that dictates cluster assignment, to be a distance
metric. Note that, with respect to (Banerjee et al., 2005),
Bregman divergences are not necessarily symmetric, nor do
they obey the triangle inequality. However, (Acharyya et al.,
2013), (Chen et al., 2008) show that a large class of Breg-
man divergences, such as Mahalanobis distances, as well as
Jensen-Shannon divergence, represent squares of metrics.
Hence, for the choice f(x,y) a Bregman divergence rep-
resenting the square of a metric and g(z,y) = /f(z,y),
Assumption 3.1 is satisfied.

Assumption 3.3. The cost function f is coercive with
respect to the first argument, i.e. lim|400 f(7,9) =
400, Vy # x.

Remark 3.4. Assumption 3.3 ensures that the sequence of
centers, {x;}, generated by (8) remains bounded. It does so,
by not allowing for x to grow infinitely without affecting
the loss function f.

Assumption 3.5. The function .J has co-coercive gradients
in the first argument, i.e., for all z, z € REd

(Vi J(x,C)=V,J(2,C),x — z)
> 2Ved(,C) - V.J(, O

Remark 3.6. Assumption 3.5 ensures that the sequence of
centers, {x;}, generated by (8) not only decreases the cost
J, but also decreases the distance of the generated sequence
{x;} to a stationary point x. (or the set of stationary points
in general), at every iteration.

Remark 3.7. Assumption 3.5 implies Lipschitz continuos
gradients with respect to the first argument of the function .J,
as a result of the Cauchy-Schwartz inequality. As we show
in Appendix B, Assumption 3.5 is satisfied for any function
that is convex and has Lipschitz continuous gradients.
Remark 3.8. Note that Assumption 3.5 rules out non-smooth
costs, such as K -medians, (2). However, when a desirable
feature of the cost is robustness, smooth costs like the Huber
loss can be used.

4. Convergence analysis

In this section the goal is to show that the method (6)-(7)
converges to a fixed point.

To begin with, the notions of a fixed point and a set of
optimal clusterings are defined.

Definition 4.1. The pair (x,,C,) is a fixed point of the
clustering procedure (6)-(7), if the following holds:

1. Optimal clustering with respect to centers: for each
i € [K], and each y € C,(i), we have

g(x4(i),y) < g(x.(5),y), Vi # i. (10)

2. Optimal centers with respect to clustering:
VaiJ(zs,Cy) = 0.

Definition 4.2. Let x € RX? represent cluster centers. We
say U, is the set of optimal clusterings with respect to x, if
for all clusterings C € Uy, (6) is satisfied.

Definition 4.3. Letz € RX4 represent cluster centers. We
define the set U, as the set of clusterings with respect to =
suchthat: 1) U, C Uy 2)VC € Uy 0 Vi J(2,C) =0.

Remark 4.4. As we show in Section 4, for a Bregman cost
(of which the K-means problem is a special case) any fixed
point, per Definition 4.1, represents a centroidal partition of
the data, i.e., the centers z. (i) correspond to the means of
clusters C. (7). This is consistent with results in (Banerjee
et al., 2005), and shows that Definition 4.1 is a natural one.

Remark 4.5. In a slight abuse of terminology, we will refer
to a point x as fixed point, if there exists a clustering C' such
that (z, C) satisfies Definition 4.1.

Remark 4.6. Note Elat, by Definition 4.3, a pair (z,C) is a
fixed point if C' € U .

The main result of the paper is stated in Theorem 4.7, which
shows the convergence of the sequence of cluster centers to
a fixed point.

Theorem 4.7. Let Assumptions 2.1, 3.1, 3.3, 3.5 hold. For
the step-size choice o < % and any ro € RE? the se-
quence of centers {x:} generated by the algorithm (6)-(7),
converges to a fixed point x, € RX%, i.e., a point such that

U, # 0.

The result of Theorem 4.7 is strong - for a fixed step-size,
under arbitrary initialization, the proposed algorithm con-
verges to a fixed point. In the context of K -means clustering,
e.g. (Lloyd, 1982), (Banerjee et al., 2005), we achieve the
same guarantees. In the context of different costs, e.g. Hu-
ber loss, compared to (Pediredla & Seelamantula, 2011),
where the authors show convergence of the sequence of
centers, under the assumptions that the clusters have already
converged, and the initialization z is sufficiently close to
a fixed point, our results are much stronger - we guarantee
that the full sequence {x;} converges to a fixed point, un-
der arbitrary initialization. We also show that the clusters
converge.

To prove Theorem 4.7, a series of intermediate lemmas is
introduced. The proof outline follows a similar idea as the
one developed in (Kar & Swenson, 2019).

The following lemma shows that the proposed algorithm
decreases the objective function J in each iteration.

Lemma 4.8. For the sequence {(x, C)}, generated by (6)-
(7), witha < %, the resulting sequence of costs { J(x, Ct)}
is non-increasing.
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Proof of Lemma 4.8. To begin with, note that (6) together
with Assumption 2.1 implies that the clustering reassign-
ment step decreases the cost, i.e.

K
J(21, Cry1) Z > pyf(rili)y)

yE€C41(4)

K
Z > pyf (i), y) = J(x, Co).
=1 yeCy(i)
(1)

Next, using Lipschitz continuity of gradients of J (recall
Remark 3.7), we have

L
J(wi41,Cry1) < J(24, Cryn) + §Hﬂft+1 — z?

VzJ(l"t, Ct+1)7 Tt41 — xt>«
Using (8), we get

J(@141,Cir1) < J (24, Coy1) — (@) ||Vad (21, Crpr) |17,

where c(a) = a(l - —) Choosing o < 2 ensures that

¢(a) > 0, and combining with (11), we get

J(@ip1, Copr) < J (21, Crr) — (@) ||V d (21, Cri) [P
< J(x4,Cy) = c() ||V (21, Crpn) ||?
< J(@, Cy),
(12)
which completes the proof. O

The remaining proofs can be found in Appendix A. The
following lemma shows that, if two cluster centers are suffi-
ciently close, the optimal clustering sets match.

Lemma 4.9. Let x € RE4 represent cluster centers. Then,
e > 0, such that, for any center ' € RX, satisfying
maxe (] 9(2(),2' (7)) < € we have Uy C U.

The next lemma shows that, if a limit point of the sequence
of centers exists, it must be a fixed point.

Lemma 4.10. Any convergent subsequence of the sequence
{x+}, generated by (6)-(7), converges to a fixed point.

The next lemma proves a stronger result, namely, that the
clusters converge in finite time.

Lemma 4.11. For any convergent subsequence of the se-
quence of centers, 3sg > 0, such that Vs > so: Cy 41 €
Uy, where x, is the limit of the sequence {x;_}.

The following lemma shows that the generated sequence of
cluster centers stays bounded.

Lemma 4.12. The sequence of cluster centers {x;}, gener-
ated by (6)-(7), is bounded.

The next lemma shows that, if a point in the sequence of
centers is sufficiently close to a fixed point, then all the
subsequent points remain in the neighborhood of the fixed
point.

Lemma 4.13. Let {x;} be the sequence of cluster centers
generated by (6)-(7), with the step-size satisfying a < %
Let x, be a fixed point, in the sense that U, # (). Then,
e, > 0, such that, Ve € (0,€,,), Ite > 0, such that, if
lxt, — x|l <€, for some tg > te, then ||z, — x| < € for
all t Z to.

We are now ready to prove Theorem 4.7.

Proof of Theorem 4.7. By Lemma 4.8 and the fact that the
corresponding sequence of costs {J(x¢, Cy)} is nonnega-
tive, we know this sequence converges to some J, € R,
by the monotone convergence theorem. On the other
hand, by Bolzano-Weierstrass theorem and Lemma 4.12,
the sequence {x;} has a convergent subsequence, {z;,},
with some z, € RE? as its limit. From the continuity
of J and convergence of {x; }, we can then conclude
that J, = lims_ 00 J(21,,Ct,) = J(z4, C), for some
C,. € U,,. Lemma 4.10 then implies that x, is a fixed point.
Finally, Lemmas 4.11 and 4.13 imply the convergence of
the entire sequence {x;} to x. O

Remark 4.14. We note that the convergence guarantees of
our method are independent of the initialization. Therefore,
our method is amenable to seeding procedures, such as
K-means++.

5. Fixed point analysis

In this section we analyse the fixed points and their proper-
ties. To begin with, we formally define the notion of Voronoi
partitions, e.g., (Okabe et al., 2000).

Definition 5.1. Let (V,d) be a metric space. For a set
X Cc V,and z = (2(1),...,2(K)) € VE, we say that
P = (P(1),...,P(K)) is a Voronoi partition of the set
X, generated by z, with respect to the metric d, if P is a
partition of X and additionally, for every i € [K]

P(i) = {z € X : d(2(i), ) < d(=(j), 2), Vj # i}

From Definitions 4.1 and 5.1, it is clear that, for a fixed point
(z+, Cy), the clustering C, represents a Voronoi partition
of D, with respect to g, generated by z.. Moreover, from
Definition 4.2, it is clear that, for any point x, the set U,
represents the set of all possible Voronoi partitions of D,
generated by z.



Gradient Based Clustering

From the cluster reassignment step (6), we can see that
in our approach, the clusters represent Voronoi partitions
with respect to g. It is known that different distance metrics
induce different Voronoi partitions, e.g., (Okabe et al., 2000),
and the choice of metrics affects the shape of the resulting
partitions. For example, choosing ¢ (z,y) = ||z — y||, the
standard Euclidean distance and g2 (z,y) = ||z — y||4, a
Mahalanobis distance (see (14) ahead), would potentially
result in different Voronoi partitions of the dataset. In that
sense, the distance function g determines the cluster shape.

Using (9), the fixed point condition from Definition 4.1 is
equivalent to

Vi € [K] : Vadi(a (i), Cu(i)) = 0 =

yeC (i)

From (13), we can see that the exact location of a cluster
center is determined by f. In that sense, the cost function f
determines the location of cluster centers. For example, for
the choice g(z,y) = ||z — y (z,y) = 3llz — y||* and
fa(z,y) = ¢5(g(x,y)), where ¢s is the Huber loss defined
in (5), we can see that in both cases the cluster shapes will
be determined by the Euclidean distance metric. However,
applying (13) to f1 and fo, it can be shown that

Z PyY;

yGCl(l)

)
L Zye@u) PyY + 2yetiti) Tt g PvY
x2(7’) - — 5
2yecs(i) Py T 2yeTri) Teat=aT Py

where C5(i) = {y € Ca(i) : [l2a(i) — yll > 8}, Cali) =
{y € Cali) : llea(i) — yl| < 6}, 21 () and s (i) satisfy (13)
for f1 and f> respectively, and up(C(i)) = X-,co) Py»
represents the measure of the i-th cluster. Hence, we see
that the function f dictates the exact location of the cluster
center within the cluster.

Remark 5.2. Note that, while a fixed point of Huber loss
takes the form of x5(%), as defined above, it is not actually a
trivially computable closed form solution, as both sides of
the equality contain x5 (7). Therefore, to obtain such a form
in practice, an iterative solver is required.

)

5.1. Case study: Centroidal Voronoi Partitions

A Voronoi partition C' of the set D generated by x is called
centroidal, if the generator of each partition corresponds to
its center, i.e.

x(1) = Z pyy, Vi € [K].

“D( ) yesi

The authors in (Banerjee et al., 2005) show that, if the
cost function f is a Bregman divergence, the Lloyd-type

algorithm (Lloyd, 1982) is optimal, i.e., using centroidal
Voronoi partitions results in the minimal loss in Bregman
information. In what follows, we show that, for a Bregman
divergence-type cost function, our algorithm converges to
the set of centroidal Voronoi partitions. To this end, we first
define the notion of Bregman divergence.

Definition 5.3. Let ¢ : R? — R be a strictly convex, differ-
entiable function. The Bregman divergence defined by ¢ is

given by dy(p, q) = é(p) — ¢(q) — (Vé(q),p — ¢)-

As a consequence of strict convexity of ¢, we have dg > 0,
and dg(p,q) = 0 <= p = ¢. However, in general,
dg is not a metric. Therefore, in our framework, Bregman
divergences are used as f(z,y) = dy(y,z). To define
an appropriate metric g, we rely on the works (Acharyya
et al., 2013), (Chen et al., 2008), that show a rich class
of Bregman divergences that represent squares of metrics.
Examples include Mahalanobis distance based Bregman
divergences, as well as the Jensen-Shannon entropy. We
show in Appendix B that, on a properly defined support,
the Jensen-Shannon entropy satisfies Assumptions 2.1-3.5.
Here, we define the Mahalanobis distance based Bregman
divergences and show how they fit our framework. Let
A € R¥? be a symmetric positive definite matrix. The
corresponding Bregman divergence is then given by
1 T

dy(2,y) = 5(x —y)" Az —y). (14)
This class of Bregman divergences is covered by our formu-
lation, for the choice

fla,y) = %(w —y) T Az —y),
9(@,y) = ||lz — ylla,
where ||z||4 = /(Az, x).

Lemma 5.4. Let f be a Bregman divergence, satisfying As-
sumptions 2.1-3.5. Then, the gradient clustering algorithm
converges to the set of centroidal Voronoi partitions.

The proof of Lemma 5.4 can be found in Appendix A.

5.2. Case study: Beyond Centroidal Voronoi Partitions

Note that, in the case the cost used is a Bregman distance,
the fixed point has a closed-form solution (39). Therefore,
in each iteration of the algorithm, it is possible to compute
the optimal cluster center, which is exactly what the Lloyd
algorithm does. The Lloyd algorithm (Lloyd, 1982), and its
generalization (Banerjee et al., 2005), perform the following
two steps:

1. Cluster reassignment: for each y € D, find the cluster
center ¢ € [K], such that

9(z4(i),y) < g(x:(5),y),Vj # i,
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and assign the point y to cluster Cy11 (7).

2. Center update: for each i € [K], perform the following
update

! > opy. (15)

T )= —————
t41(7) up (Cryr(i)) o)

The authors in (Bottou & Bengio, 1995) analyze the up-
date rule (15) and show that it corresponds to performing
a Newton step in each iteration. The authors in (Banerjee
et al., 2005) show an even stronger result - in the case f
is a Bregman divergence, the update (15) corresponds to
the optimal update, in terms of minimizing the Bregman
information.

From that perspective, naively extending the Lloyd’s algo-
rithm to a general cost f would correspond to

. . Dy
Z¢4+1(7) = argmin Z —
o) el o (Crya (i)

(i), y).
(16)
Performing the update (16) would require solving an opti-
mization problem in each iteration. This computation might
be prohibitively expensive. In this case, the update (7) is
preferred, as computing the gradient is a feasible, and in

many cases cheap operation.

An example of such a function is the Huber loss, defined
in (5). Huber loss provides robustness, e.g., (Ke & Kanade,
2005), (Liu et al., 2019), as it behaves like the squared loss
for points whose modulus is smaller than a given threshold,
while it grows only linearly for points whose modulus is
beyond the threshold. Therefore, Huber loss implicitly gives
more weight to points with smaller modulus.

In our framework, Huber loss is used as

3z —yll? |z —yl| <0

flzy) = os(lz—yl) =9 2 T2 e
Sle—yl -2, le—yl>

17)

A closed form expression satisfying (16), for the cost (17)
does not exist. Therefore, to perform the update (16) in
practice, requires solving an optimization problem in every
iteration. On the other hand, from (5) and (17), we have

|z —yll <0

@y,
Val(@9) = {59”‘” le -yl >0d"

lz—yll’

hence the gradient update is straightforward to compute.
Note that computing the gradient update of the Huber loss
corresponds to performing gradient clipping, effectively
dampening the contribution of points that are far away from
the current center estimate. We show in Appendix B that
Huber loss satisfies Assumptions 2.1-3.5.

6. Numerical experiments

In this section we demonstrate the effectiveness of the pro-
posed method. The experiments presented in this section
were performed on the MNIST dataset (LeCun et al.). In
Appendix C we present additional numerical experiments,
performed on the Iris dataset (Fisher, 1936). Throughout the
experiments, we assume a uniform distribution over the data,
e, up(yi) =+, Vi=1,...,N,withD = {y1,...,yn}.

The MNIST training dataset consists of handwritten digits,
along with the corresponding labels. The data is initially
normalized (divided by the highest value in the dataset), so
that each pixel belongs to the [0, 1] interval. Next, we select
the first 500 samples of the digits 1 through 7. In total, our
dataset consists of N = 3500 points, each being in [0, 1]768
(as there are 28 x 28 pixels), with the number of underlying
clusters K = T7.

For the first experiment, we utilised the gradient based
clustering using the standard squared Euclidean cost. In
our setup, that corresponds to: f(x,y) = %HHC —yl?
g(z,y) = ||z — y||. We refer to the resulting method as gra-
dient K -means and compare it with the standard K-means
(Lloyd, 1982), (Banerjee et al., 2005). In line with our the-
ory, we set the step-size equal to a« = 7 = & = 7. For
a fair comparison, we set the initial centers of both methods
to be the same. In particular, we take a random point from
each class and set them as the initial centroids.

We run the clustering experiments for 20 times and present
the mean performance (solid line), as well as the standard
deviation (shaded region). The measure of performance
used is the fraction of correctly clustered samples. Note
that both methods are unsupervised, i.e., do not use labels
when learning. However, we used the labels as ground truth,
when comparing the clustering results. In order to account
for a possible label mismatch, we checked all the possible
label permutations when computing the clustering accuracy
and chose the highest score as the true score. The results
are presented in Figure 1.

Figure 1 shows that accuracy-wise, the gradient based K-
means slightly outperforms the standard K -means. Speed-
wise, the standard /-means update converges faster, which
is to be expected, as the K-means update corresponds to
performing the exact arg min step in each iteration.

For the second experiment, we added zero mean Gaussian
noise to a fraction of points from all classes, thus introduc-
ing noise. In order to combat the noise, we use a Huber loss
function for our gradient based clustering method. In our
framework, the Huber loss is used as in (17). We compare
the performance of the gradient based Huber loss clustering
and the Huber based method from (Pediredla & Seelaman-
tula, 2011). The authors in (Pediredla & Seelamantula,
2011) consider a method that is based on a fixed-point itera-
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Figure 1. Accuracy of the Lloyd based K-means vs the gradient
based K-means algorithm. Presents the accuracy of clustering
digits 1 through 7 from the MNIST dataset.

tion, given by the recursion

>

L 2y PvY Tt 2yeti) et =Py
T41 (Z) = )

2yeciiy Py + 2y ) Tor=a Py

Z

>

where C; (i) = {y € Ci(i) : ||lze() — yl| > 0}, Ce(i) =
{y € C(3) : ||ze(i) — y|| < d}. The authors also sug-
gest initializing the method by doing one round of Lloyd’s
algorithm from a random starting point. For fairness of
comparison, we initialize both the gradient Huber and the
method from (Pediredla & Seelamantula, 2011) (which we
refer to as "Huber” in the figures) in this way.

As in the previous experiment, we report the average results
over 20 runs, along with the standard deviation. We consider
the effects of changing the percentage of noisy samples and
changing the variance of the noise. In all the experiments,
we fix the Huber loss parameter to 4 = 10 and use the same
step-size as in the standard K -means case, i.e., @ = 35100.
The results are presented in the Figure 2 below.

Figure 2 shows the performance of the Huber loss gradi-
ent method vs the method from (Pediredla & Seelamantula,
2011), when the percentage of noisy samples and variance
of noise vary. Comparing the rows, i.e., different percentage
of noisy samples, we can see that both methods perform
better when the percentage of noise is lower, as expected.
Comparing the columns, i.e., different variance levels, we
can see that our method is comparable to (Pediredla & See-
lamantula, 2011) for variance 1, but slightly outperforms
the competing method for variance 2. Therefore our method
exhibits a similar or better performance, with a small loss
in speed. However, our method provides much better con-
vergence guarantees, as it provably converges for arbitrary
initialization, while the method (Pediredla & Seelamantula,
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Figure 2. Performance of Huber loss gradient vs the method
from (Pediredla & Seelamantula, 2011) on MNIST data. The
rows correspond to percentage of noisy samples being 10% and
20%, with columns corresponding to variance of noise being 1 and
2, respectively (e.g., the upper left image corresponds to 10% of
noisy samples, with variance 1, etc.).

2011) provides only local convergence guarantees, when
already in a neighborhood of the stationary point.

7. Conclusion

We proposed an approach to clustering, based on the gra-
dient of a generic loss function, that measures clustering
quality with respect to cluster assignments and cluster cen-
ter positions. The approach is based on a formulation of
the clustering problem that unifies the previously proposed
distance based clustering approaches. The main advantage
of the algorithm, compared to the standard approaches is
its applicability to a wide range of clustering problems, low
computational cost, as well as the ease of implementation.
We prove that the sequence of centers generated by the al-
gorithm converges to an appropriately defined fixed point,
under arbitrary center initialization. We further analyze the
type of fixed points our algorithm converges to, and show
consistency with prior works, in case the cost is a Bregman
divergence. Most notably, the assumed generic formulation
includes loss functions beyond Bregman divergences (such
as the Huber loss), for which the K -means-type averaging
cluster center update step is not appropriate, while the step
that corresponds to exact minimization with respect to the
loss is computationally expensive. To combat these chal-
lenges, the proposed method involves a single gradient step
with respect to the loss to update cluster centers. Numerical
experiments illustrate and corroborate the results.
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A. Missing proofs

In this section we provide the proofs omitted from the main body.

Proof of Lemma 4.9. For given cluster centers 2 € R¥?

indices 7 whose centers x() are closest to y:

and each data point y € D, we denote by KX (y) the set of cluster

K3 (y) = argmin g(x(i), y).
i€[K]

Define
— mi . . , _ * ), 18
o =min  min 9(z(0),y) - g((c,)) (18)

where c; denotes an arbitrary cluster in K; (y). By the construction of K7 (y) and finiteness of the set of data points D, we
have that €5 > 0.
Let X, := {a’ € RE4: g(x(i),2(i)') < ¢,Vi € [K]}, where € > 0. We show that, for each ' € X, ., o, foreachy € D,
there holds

K3 (y) € K3 (y). (19)

From (19), it is easy to see that any optimal cluster assignment with respect to z’, C' € U,, will also be optimal with respect
to x, thus implying the claim of the lemma.

To prove (19), fix an arbitrary data point y and fix an arbitrary ¢ € K7, (y). We want to show that i € K} (y) as well, i.e.,
that cluster center x(4) belongs to the set of cluster centers x closest to y. By the triangle inequality for g, we have

9(@(i).y) < g(x(i),2 () + 9(@'(i),9) < T +9(' (7)) < T + 9@ (i)' (7) + 9(a(4),y) < €0 + 9 (). ).
(20)

where in the second line we use the fact that 2’ € X, /2 (for index 7) and the fact that s € K7, (y), in the third line we apply
the triangle inequality for g, and in the fourth line we use again the fact that 2’ is in the €y /2 neighborhood of z (for index
J). For the sake of contradiction, suppose now that ¢ ¢ KX (y) and take j € K (y) (note that (20) holds for all j € [K]).
Then, from (18) we have g(z(i),y) > g(z(j),y) + €0, which clearly contradicts (20). This proves (19) and subsequently
proves the lemma. O

Proof of Lemma 4.10. Let {z;, }32, be a convergent subsequence of {z;}. Let z, be its limit point and assume the contrary,
that z. is not a fixed point. By Definition 4.1, this means

IViJ(zs,C)|| >0, VC € U,,.
As the number of possible clusterings is finite, we can define

Jmin [Vad (2., O)|| = €1 > 0. 21)

From the assumption z;, — x., we have that, for a fixed J, > 0, there exists a sufficiently large so > 0, such that
Vi € [K], Vs > s0 : |71, (3) — 4 (3)]] < ds.

It then follows from the continuity of g that there exists a sufficiently large so > 0, such that g(x, (7), x.(i)) < €. Per
Lemma 4.9, we then have Cy, 1 € Uy, C U,,, Vs > so. From (21), we have

[Ved (24, Cr,11)|| > €1, Vs > so. (22)
Next, using the results established in Lemma 4.8, we have

J(@i41, Cry1) < J (24, Cy) — C(a)vaJ(ItthH)”Q
< J(xtflactfl) - C(a)HvaJJ(xtflaCt)'P - C(Oé)vaJ(xt,CtH)Hz

t
< S I (@0,C) = (@) Y [IVad (2, Crpr) |12

r=0
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Rearranging, we get

t

(@) Y IVad (@, Crpa)|I* < J(wo,C1) = J (2111, Crin) < J(wo,Ch). (23)
r=0
Additionally, we have
s(t) t
D VT (@, Coy)II” <Y NIVad (25, Cip)lI?, (24)
j=0 7=0

where s(t) = sup{j : t; < t}. Combining (23) and (24), we get
s(t)
(@) Y Vad (@, Coya)|* < J (w0, C1). (25)

Jj=0

Noting that the term on the right hand side of (25) is finite and independent of ¢, and s(t) — +o0 as t — +o00, we can take
the limit as ¢ — 400, to obtain

c(a) Z HVmJ(xtj,Cth)HQ < J(z9,C1) < +00,
=0

which implies
lim |V, (22, Co,a)[)” = 0.

Fix an € > 0. By the definition of limits, there exists a s; > 0, such that
IVad (@, Cro41)|| <€, Vs = s1.
On the other hand, from z:, — ., there exists a s, > 0, such that
lzr, — x4l <€, Vs> so.
AsCy, ., €U, CUg,, Vs> s, forany s > max{so, s1, 52}, we have

IVad (2, Cro4)|l < (Vo (@4, Cro1) = Vad (@, Cro1) || + [[Vad (@, Croq1) || < Lf|zs — e,

+e < (L+ 1),

where we used the Lipschitz continuity of the gradients of J in the second inequality. As e > 0 was arbitrarily chosen, we
can conclude

vaJ(J?MCtS_Fl)H 4)07 (26)

which clearly contradicts (22). Hence, we can conclude that x, is a fixed point, i.e.,

3C € Uy, : | Vo (2., C)| = 0.

Proof of Lemma 4.11. Let
d:= min_ ||V, J(",C)|.
CeU,x \Uz*
Note that, by construction of U, it must be that || V,..J (z*,C)|| > 0 for each C' € Uy \ U,~, which together with the
finiteness of U« \ U+, implies 6 > 0.

For the sake of contradiction, suppose now that C; 1 € U, \ U, infinitely often. Then, |V, J(z*, C;,11)|| > 4 infinitely
often, which clearly contradicts (26). O]
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Proof of Lemma 4.12. By Lemma 4.8, we have

o < J(Zt,ct+1) <...< J(xl,Cl) < J(l’o,cl) < +00. 27

RKd

Recalling equation (4), for x € and a clustering C, we define

Ji(x(i),C(0) = > pyf(a(i),y),
yeC (i)

so that
K

J(2,C) = 3 Jilw(i), C(0)). 28)

i=1

For the sake of contradiction, suppose that the sequence of centers {z; } is unbounded. This implies the existence of a cluster
k and a subsequence t such that ||z, (i)|| — +o0. For each ¢, let t; = max{t < t, : Cy(i) # 0}, i.e., t, is the largest
element in the sequence prior to ¢, such that the ¢-th cluster is non-empty.

Recalling the update rule (7), it is not hard to see that x¢_ (i) = x4, (i), for all s, implying ||z, ()| — +oco. By Assumption
3.3 and the fact that Cy, () is nonempty for each s, we have

lim — Ji(ze, (i), Cp, (i) = +o0. (29)

[zt ()| =+o0 = -

Note that this is the case regardless of the clustering C;_, as the dataset D is finite, and therefore a bounded set. It is easy
to see that unboundness of J; implies unboundedness of J, i.e., limg_ o J (st , CLS ) = +oo. But this contradicts (27),
hence proving the claim of the lemma. O

Proof of Lemma 4.13. Recall that, by Lemma 4.8, the sequence of costs {.J(x;, C;) }1>0 is decreasing. Moreover, since
J(x,C) > 0, we know that the limit of the sequence of costs exists and is finite. Let

J, = lim J(z, Cy). (30)
t—o00

By assumption, U, # . From the definition of U, forall C € U, \ U, we have
Ve (z., C)|| > 0. 3D
As U,, is a finite set, we can define

er= min  [|VaJ(zs,O)| > 0.
CeU, \Us,

Let €, > 0 be such that Lemma 4.9 holds. From the continuity of g, we have
36 > 0Vx : ||z — 24| < 0 = g(x,24) < €. (32)
Define
in { 6., - (33)
€r, =Mminq s, — .
- L

For an arbitrary € € (0, ¢, ), let £y > 0 be such that
J(l’t,ct) S J*+C(27a)(61 —Le)z, Vtzto, (34)

with ¢(«v) defined as in Lemma 4.8. Note that the choice of ¢ is possible, from (30) and the fact that (e; — Le)? > 0. Our
goal now is to show that, for a fixed € € (0, ¢, ), if for some ¢ : ¢ > tg and ||z; — .|| < €, then ||xp11 — x| < €.

First note that, if ¢ > to and |zs — x.|| < €, itholds that Cy,; € U,,. To see this, assume the contrary,
Ciy1 ¢ Uy, . It follows from (33) that

Xy — ]| < €and

|z — x| < 0.
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From (32) and Lemma 4.9, we then have U,,, C U,,, and hence, C;;; € U, . Using Lipschitz continuity of gradients of J,
we get

||va(It,Ct+1) — V_tJ(x*,CtH)H S L”If — l‘*” S Le. (35)

As Cyyq ¢ U, , from (31), we have
IV (@, Cop)l| > 1. (36)

Applying the triangle inequality, (35) and (36), we get
||VmJ(xt,C’t+1)|| Z €1 — Le. (37)
Note that, by (33), the right-hand side of (37) is positive. Combining (12), (34) and (37), we have

Trer, Coan) € T O) = e(@) |V (20, Coct) |2 < o+ “9 e = L) = (@) [V (21, Crcn)

c(a)
2

< J.+ (€1 — Le)? — c(a)(e1 — Le)? < J,,

which is a contradiction. Hence, C; 1 € U, .

Using Assumption 3.5, the update rule (8), and the fact that Cy; € U, we have

241 = 2l = |20 — VT (21, Crpr) = @ul|® = [l — 2 |? + 0| Vi d (24, Copd) 1P = 20V (w4, Cpa), 20 — )

< lloe = ]2 = (= @) IVad o Cosn) | < o — ][> < 2
(38)
where the second inequality follows from the step-size choice o < % Therefore, we have shown that
|z, — x| < € = [Jzi41 — 24| < e
The same result holds for all s > ¢ inductively, which proves the claim. O

Proof of Lemma 5.4. To this end, we want to show that, for an arbitrary fixed point (., C,) of the algorithm, the pair
produces a centroidal Voronoi partition.

From Definition 4.1, it is clear that C, is a Voronoi partition of the dataset, generated by z... Now, let f(z,y) be a Bregman
divergence, for some strictly convex ¢. From the definition of Bregman divergence, we then have

Vaf(z,y) = =Vo(x) + Vo(z) — VZo(z)(y — x) = V2 ¢(2)(x — y).
Combining with (13), we get, for all i € [K]
0= 3 pVal@ ) = Poe ) X plald-n).
y€eC, (i) y€eC.. (i)
From the strict convexity of ¢, we have

Z pvaf(x*(z),y) =0 Z py(x*@) —y) =0 <= 5.(i) = # Z Pyy- (39)

yeC..(9) yeC, (4) #p(C.(0)) yeC. (4)

We have shown that the generators of Voronoi partitions correspond to their respective centers, which completes the
proof. O
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B. Some technical results

In this section we show some techinical results used in the paper. The next lemma is taken from (Nesterov, 2018). For the

sake of completeness, we provide the proof here.

Lemma B.1. Let f : R? — R be convex and have Lipschitz continuous gradients. Then, f has co-coercive gradients.

Proof. Define the function:

It is straightforward to see that ¢, maintains convexity, for any z € R?. It then follows that the point 2 is a minimizer of
¢... Next, we use the following lower-bound for functions with Lipschitz continuous gradients (the proof can be found in

(Nesterov, 2018)): .
SElIVI@|° < @) - 1),
where z* is a minimizer of f. Substituting ¢, in equation (40), we get
1
62(y) = 6u(2) = f(y) = (VI(@),y) = f(2) + (VI(@),2) > 57|V )]* = HVf

Applying the same steps to ¢,, and summing the resulting inequalities, gives the desired result.

The following lemma shows that Huber loss satisfies Assumptions 2.1-3.5.
Lemma B.2. Huber loss-based cost satisfies Assumptions 2.1-3.5.

Proof. Note that Huber loss is an increasing function on the domain of interest, [0, +00). By definition,

g(l.ay) = ||IB - y||7
f(@,y) = ¢s(9(2,y)),

hence Assumptions 2.1 and 3.1 are satisfied. By the same argument, for a fixed y, we have

lim  f(a,y) = +oo,

[lz]| =00

satisfying Assumption 3.3.

(40)

— Vi)

Next, note that f is a convex function, as a composition of convex functions. By Lemma B.1, it suffices to show that f(z, y)

has Lipschitz continuous gradients. The gradient of f is given by

fe—w, vl
Veltey) = {6,; eyl > 6

We differentiate between the following cases:

L |lz = yll, ||z — yl| < &. We then have
IVf(z,y) =V Izl =@ —y) = (z =yl = [z -z

2. |l —yl| <6,z —y| > 0 (the case when ||z — y|| > 6, ||z — y|| < 4 is analogous). We then have

19 se.0) = Vel = @ - =) = e -2+ (1= 26|

<|lz—z| + (1 T

Next, using the triangle inequality and ||z — y|| < §, we get
Iz =yl < lle =2l + llz —yll < [lz — 2] + 0.
Rearranging and substituting in the equation above, we get

IVF(z,y) = V(z )l <2[lz -z

|)n gl = llz— 2l| + 12 — ]l - &
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3. ||z —yll, ||z — y|| > d. Without loss of generality, assume ||z — y|| < ||z — y||. We then have

Y

Vf(x,y) — Vf(z, =4 =
I = VGl =9 = - il =l - e £ il
| | le—2l _ Je—all  Jz—al
<46 - lz—yll+4 <4é +6
(=~ =) =l ==l Tl

< 2||Z —.23”,

where we use the triangle inequality and ||z — y|| < ||z — || in the first inequality, while the last inequality stems from
Iz =yl > .

Hence, we have shown that, Vz,y, z € R¢

IVF(z,y) = V(z )| <2z - =]

By Lemma B.1, we see that Assumption 3.5 is satisfied, thus proving the claim. O

The following lemma shows that Jensen-Shannon divergence satisfies Assumptions 2.1-3.5, on a properly defined support.
Lemma B.3. Let P. C R, for some € > 0, define the restricted probability simplex, i.e.

d
Pez{pERd:Zpizl,egpi<1}. (1)
i=1
Then, the Jensen-Shannon divergence based cost satisfies Assumptions 2.1-3.5 on P..
Proof. By the definition of Jensen-Shannon divergence, we have
1 1
Dys(y || z) = iDKL(Z/ | m) + §DKL(T/ | m),

where m = £, and D (- || ) is the Kullback-Leibler divergence, defined by

Dir(z | y) = szlog—

It is shown in (Acharyya et al., 2013) that the Jensen-Shannon divergence represents the square of a metric. Therefore, for
g(ﬁﬂ,y): D,]S(y H (E),
f(a:ay) = DJS(y || ':C)a

Assumptions 2.1 and 3.1 are satisfied. Since the domain of interest, given by (41) is bounded, Assumption 3.3 is not of
interest.

We next show that D jg is convex and has Lipschitz continuous gradients on P,. A basic computation yields that the partial
derivative of D jg, with respect to x;, is given by

0 1 21‘,’

=21 ) 42
oz, PrsWll2) = 5 log p—— 42)
It is then straightforward to see that the Hessian of D ;g is a diagonal matrix, whose i-th diagonal element is given by
0 Yi
D —_— 43

Since x,y € P, the expression in (43) is positive, hence D ;g is convex on P,. Next, from (42), for any z,y, z € P, we
have
; )

9 zityi
axi

i + Y

zi +Yi
i+ Yi

1 xX;
= f’ log — + log
2 Zi

L4
§max{‘log— ,
z

%

log

0
~—Dys(y || 2)

Dys(y || =) — a2
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Without loss of generality, assume z; > z;. We then have

) ) ) |
‘1ogﬂ zlogﬁgﬁ—lz% Zlg—(xi 2),
Z Zi Zi Zi €
and
‘ngH‘yi _ $i+yi§$i+yi_1:$i Zi
it Yi Zi + Yi Zi + Yi zi +yi
1
< (x5 — 2),

where we used log x < x — 1 in the above inequalities. Hence, we have shown that

0 o 1
—_ = < — —
’(%iDJS(y | =) 92 Dys(y | Z)‘ . 6|acz 2

By definitions of the gradient and norm, it then follows that

1
|VeDist | 2) = V.Dustw | 2)| < <lle — =

which shows Lipschitz continuity of the gradients of D ;s on P.. Hence, by Lemma B.1, D ;s satisfies Assumption 3.5 on
P.. O

Remark B.4. Note that in general, Jensen-Shannon divergence does not satisfy Assumptions 3.3 and 3.5. However, in certain
problems, where the restricted probability simplex of the form (41) is a natural domain of choice, the Jensen-Shannon
divergence can be applied in our framework. One such example is soft clustering under uncertainty - where no class can be
ruled out with certainty, nor can a point belonging to any class be taken with certainty. Hence, for an appropriately selected
€, the restricted probability simplex (41) represents a natural domain.

C. Additional experiments

In this section we present some additional numerical experiments. The experiments were performed on the Iris dataset (Fisher,
1936). We begin by describing the Iris dataset.

The Iris dataset consists of three species of the Iris flower, Iris setosa, Iris virginica and Iris versicolor, along with the
corresponding labels. Each of the species has 50 samples, so that the total number of samples is 150. Each sample consists
of 4 features, being the length and the width of the sepals and petals of the flowers. In total, the dataset consists of N = 150
points, with the number of underlying clusters K = 3.

For the first experiment, we utilised the gradient based clustering using the standard squared Euclidean cost. We compare

the performance of the gradient K -means with the standard K -means. The step-size is setto o = 2 = 2 = L.

We run the clustering experiments for 20 times and present the mean performance (solid line), as well as the standard
deviation (shaded region). The measure of performance used is the fraction of correctly clustered samples. Note that
both methods are unsupervised, i.e., do not use labels when learning. However, we used the labels as ground truth, when
comparing the clustering results. In order to account for a possible label mismatch, we checked all the possible label
permutations when computing the clustering accuracy and chose the highest score as the true score. The results are presented
in Figure 3. Figure 3 shows that accuracy-wise, the gradient based K -means performs identically to the standard K -means,
at a negligible speed loss.

For the second experiment, we added zero mean Gaussian noise to a fraction of points from all classes, thus introducing noise.
We again compare the performance of the gradient based Huber loss clustering and the Huber based method from (Pediredla
& Seelamantula, 2011). Again, we follow the suggestions in (Pediredla & Seelamantula, 2011) and initialize both the
methods by doing one round of Lloyd’s algorithm from a random starting point.

As in the previous experiment, we report the average results over 20 runs, along with the standard deviation. We consider
the effects of changing the percentage of noisy samples and changing the variance of the noise. In all the experiments, we
fix the Huber loss parameter to § = 5 and use the same step-size as in the standard K -means version, i.e., @ = ﬁ. The
results are presented in the Figure 4 below.
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Figure 3. Accuracy of the Lloyd based K-means vs the gradient based K-means algorithm. Presents the accuracy of clustering flowers
from the Iris dataset.

Figure 4 shows the performance of the Huber loss gradient method vs the method from (Pediredla & Seelamantula, 2011),
when the percentage of noisy samples and variance of noise vary. The step-size was the same as in the standard gradient
K-means case. Comparing the rows, i.e., different percentage of noisy samples, we can see that both methods perform
identically both accuracy and speed-wise, when the percentage of noisy samples is lower. However, the gradient based Huber
method outperforms (Pediredla & Seelamantula, 2011) when the percentage of noisy samples is higher, more significantly
when the variance is higher as well (bottom right image). Comparing the columns, i.e., different variance levels, we can see
that both methods perform better when the variance of noise is lower.
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Figure 4. Performance of Huber loss gradient vs the method from (Pediredla & Seelamantula, 2011) on Iris data. The rows correspond to
percentage of noisy samples being 10% and 20%, with columns corresponding to variance of noise being 1 and 2, respectively (e.g., the
upper left image corresponds to 10% of noisy samples, with variance 1, etc.).



