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Abstract

We study the problem of learning control policies for complex tasks given by
logical specifications. Recent approaches automatically generate a reward function
from a given specification and use a suitable reinforcement learning algorithm to
learn a policy that maximizes the expected reward. These approaches, however,
scale poorly to complex tasks that require high-level planning. In this work, we
develop a compositional learning approach, called DIRL, that interleaves high-
level planning and reinforcement learning. First, DIRL encodes the specification
as an abstract graph; intuitively, vertices and edges of the graph correspond to
regions of the state space and simpler sub-tasks, respectively. Our approach then
incorporates reinforcement learning to learn neural network policies for each edge
(sub-task) within a Dijkstra-style planning algorithm to compute a high-level plan
in the graph. An evaluation of the proposed approach on a set of challenging
control benchmarks with continuous state and action spaces demonstrates that it
outperforms state-of-the-art baselines.

1 Introduction

Reinforcement learning (RL) is a promising approach to automatically learning control policies for
continuous control tasks—e.g., for challenging tasks such as walking [11] and grasping [6], control
of multi-agent systems [31, 22], and control from visual inputs [28]. A key challenge facing RL is
the difficulty in specifying the goal. Typically, RL algorithms require the user to provide a reward
function that encodes the desired task. However, for complex, long-horizon tasks, providing a suitable
reward function can be a daunting task, requiring the user to manually compose rewards for individual
subtasks. Poor reward functions can make it hard for the RL algorithm to achieve the goal; e.g., it can
result in reward hacking [3], where the agent learns to optimize rewards without achieving the goal.

Recent work has proposed a number of high-level languages for specifying RL tasks [5, 29, 24, 34, 19].
A key feature of these approaches is that they enable the user to specify tasks compositionally—i.e.,
the user can independently specify a set of short-term subgoals, and then ask the robot to perform a
complex task that involves achieving some of these subgoals. Existing approaches for learning from
high-level specifications typically generate a reward function, which is then used by an off-the-shelf
RL algorithm to learn a policy. Recent works based on Reward Machines [19, 35] have proposed
RL algorithms that exploit the structure of the specification to improve learning. However, these
algorithms are based on model-free RL at both the high- and low-levels instead of model-based
RL. Model-free RL has been shown to outperform model-based approaches on low-level control
tasks [10]; however, at the high-level, it is unable to exploit the large amount of available structure.
Thus, these approaches scale poorly to long horizon tasks involving complex decision making.
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can be represented as (a priori unknown) edge costs in Gex. At a high level, DIRL trains a policy
πe for each edge e in Gex, and sets the cost of e to be c(e;πe) = − logP (e;πe), where P (e;πe) is
the probability that πe succeeds in achieving e. For instance, for the edge S0 → S1, πe is trained
to reach S1 from a random state in S0 while avoiding O. Then, a naı̈ve strategy for identifying the
optimal path is to (i) train a policy πe for each edge e, (ii) use it to estimate the edge cost c(e;πe),
and (iii) run Djikstra’s algorithm with these costs.

One challenge is that πe depends on the initial states used in its training—e.g., training πe for
e = S1 → S3 requires a distribution over S1. Using the wrong distribution can lead to poor
performance due to distribution shift; furthermore, training a policy for all edges may unnecessarily
waste effort training policies for unimportant edges. To address these challenges, DIRL interweaves
training policies with the execution of Djikstra’s algorithm, only training πe once Djikstra’s algorithm
requires the cost of edge e. This strategy enables DIRL to scale to complex tasks; in our example, it
quickly learns a policy that satisfies the specification with high probability. These design choices
are validated empirically—as shown in Figure 1, DIRL quickly learns to achieve the specification,
whereas it is beyond the reach of existing approaches.

Related Work. There has been recent work on using specifications based on temporal logic for
specifying RL tasks [2, 7, 12, 18, 30, 17, 40, 15, 39, 23]. These approaches typically generate a
(usually sparse) reward function from a given specification which is then used by an off-the-shelf
RL algorithm to learn a policy. In particular, Li et al. [29] propose a variant of Linear Temporal
Logic (LTL) called TLTL to specify tasks for robots, and then derive shaped (continuous) rewards
from specifications in this language. Jothimurugan et al. [24] propose a specification language
called SPECTRL that allows users to encode complex tasks involving sequences, disjunctions, and
conjunctions of subtasks, as well as specify safety properties; then, given a specification, they
construct a finite state machine called a task monitor that is used to obtain shaped (continuous)
rewards. Icarte et al. [19] propose an automaton based model called reward machines (RM) for
high-level task specification and decomposition as well as an RL algorithm (QRM) that exploits this
structure. In a later paper [35], they propose variants of QRM including an hierarchical RL algorithm
(HRM) to learn policies for tasks specified using RMs. Camacho et al. [9] show that one can generate
RMs from temporal specifications but RMs generated this way lead to sparse rewards. Kuo et al. [27]
and Vaezipoor et al. [36] propose frameworks for multitask learning using LTL specifications but
such approaches require a lot of samples even for relatively simpler environments and tasks. There
has also been recent work on using temporal logic specifications for multi-agent RL [16, 33].

More broadly, there has been work on using policy sketches [5], which are sequences of subtasks
designed to achieve the goal. They show that such approaches can speed up learning for long-horizon
tasks. Sun et al. [34] show that providing semantics to the subtasks (e.g., encode rewards that describe
when the subtask has been achieved) can further speed up learning. There has also been recent interest
in combining high-level planning with reinforcement learning [1, 25, 13]. These approaches all target
MDPs with reward functions, whereas we target MDPs with logical task specifications. Furthermore,
in our setting, the high-level structure is derived from the given specification, whereas in existing
approaches it is manually provided. Illanes et al. [20] propose an RL algorithm for reachability tasks
that uses high-level planning to guide low-level RL; however, unlike our approach, they assume that
a high-level model is given and high-level planning is not guided by the learned low-level policies.
Finally, there has been recent work on applying formal reasoning for extracting interpretable policies
[37, 38, 21] as well as for safe reinforcement learning [4, 26].

2 Problem Formulation

MDP. We consider a Markov decision process (MDP) M = (S,A, P, η) with continuous states
S ⊆ R

n, continuous actions A ⊆ R
m, transitions P (s, a, s′) = p(s′ | s, a) ∈ R≥0 (i.e., the

probability density of transitioning from state s to state s′ upon taking action a), and initial states
η : S → R≥0 (i.e., η(s) is the probability density of the initial state being s). A trajectory ζ ∈ Z

is either an infinite sequence ζ = s0
a0−→ s1

a1−→ · · · or a finite sequence ζ = s0
a0−→ · · ·

at−1

−−−→ st

where si ∈ S and ai ∈ A. A subtrajectory of ζ is a subsequence ζ`:k = s`
a`−→ · · ·

ak−1

−−−→ sk. We let
Zf denote the set of finite trajectories. A (deterministic) policy π : Zf → A maps a finite trajectory
to a fixed action. Given π, we can sample a trajectory by sampling an initial state s0 ∼ η(·), and then
iteratively taking the action ai = π(ζ0:i) and sampling a next state si+1 ∼ p(· | si, ai).
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Specification language. We consider the specification language SPECTRL for specifying reinforce-
ment learning tasks [24]. A specification φ in this language is a logical formula over trajectories
that indicates whether a given trajectory ζ successfully accomplishes the desired task. As described
below, it can be interpreted as a function φ : Z → B, where B = {true, false}.

Formally, a specification is defined over a set of atomic predicates P0, where every p ∈ P0 is
associated with a function JpK : S → B; we say a state s satisfies p (denoted s |= p) if and only if

JpK(s) = true. For example, given a state s ∈ S, the atomic predicate Jreach sK(s′) =
(

‖s′−s‖ <

1
)

indicates whether the system is in a state close to s with respect to the norm ‖ · ‖. The set of
predicates P consists of conjunctions and disjunctions of atomic predicates. The syntax of a predicate
b ∈ P is given by the grammar b ::= p | (b1 ∧ b2) | (b1 ∨ b2), where p ∈ P0. Similar to atomic
predicates, each predicate b ∈ P corresponds to a function JbK : S → B defined naturally over
Boolean logic. Finally, the syntax of SPECTRL specifications is given by 2

φ ::= achieve b | φ1 ensuring b | φ1;φ2 | φ1 or φ2,

where b ∈ P . In this case, each specification φ corresponds to a function JφK : Z → B, and we say
ζ ∈ Z satisfies φ (denoted ζ |= φ) if and only if JφK(ζ) = true. Letting ζ be a finite trajectory of
length t, this function is defined by

ζ |= achieve b if ∃ i ≤ t, si |= b

ζ |= φ ensuring b if ζ |= φ and ∀ i ≤ t, si |= b

ζ |= φ1;φ2 if ∃ i < t, ζ0:i |= φ1 and ζi+1:t |= φ2

ζ |= φ1 or φ2 if ζ |= φ1 or ζ |= φ2.

Intuitively, the first clause means that the trajectory should eventually reach a state that satisfies the
predicate b. The second clause says that the trajectory should satisfy specification φ while always
staying in states that satisfy b. The third clause says that the trajectory should sequentially satisfy
φ1 followed by φ2. The fourth clause means that the trajectory should satisfy either φ1 or φ2. An
infinite trajectory ζ satisfies φ if there is a t such that the prefix ζ0:t satisfies φ.

We assume that we are able to evaluate JpK(s) for any atomic predicate p and any state s. This is a
common assumption in the literature on learning from specifications, and is necessary to interpret a
given specification φ.

Learning from Specifications. Given an MDPM with unknown transitions and a specification φ,
our goal is to compute a policy π∗ : Zf → A such that π∗ ∈ argmaxπ Prζ∼Dπ

[ζ |= φ], where Dπ

is the distribution over infinite trajectories generated by π. In other words, we want to learn a policy
π∗ that maximizes the probability that a generated trajectory ζ satisfies the specification φ.

We consider the reinforcement learning setting in which we do not know the probabilities P but
instead only have access to a simulator of M. Typically, we can only sample trajectories of M
starting at an initial state s0 ∼ η. Some parts of our algorithm are based on an assumption that we
can sample trajectories starting at any state that has been observed before. For example, if taking
action a0 in s0 leads to a state s1, we can store s1 and obtain future samples starting at s1.

Assumption 2.1. We can sample p(· | s, a) for any previously observed state s and any action a.

3 Abstract Reachability

In this section, we describe how to reduce the RL problem for a given MDPM and specification φ to
a reachability problem on a directed acyclic graph (DAG) Gφ, augmented with information connecting
its edges to subtrajectories inM. In Section 4, we describe how to exploit the compositional structure
of Gφ to learn efficiently.

3.1 Abstract Reachability

We begin by defining the abstract reachability problem, and describe how to reduce the problem of
learning from a SPECTRL specification to abstract reachability. At a high level, abstract reachability
is defined as a graph reachability problem over a directed acyclic graph (DAG) whose vertices

2Here, achieve and ensuring correspond to the “eventually” and “always” operators in temporal logic.
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Figure 2: Abstract graph for achieve b.

correspond to subgoal regions—a subgoal region X ⊆ S is a subset of the state space S. As
discussed below, in our reduction, these subgoal regions are derived from the given specification φ.
The constructed graph structure also encodes the relationships between subgoal regions.

Definition 3.1. An abstract graph G = (U,E, u0, F, β,Zsafe) is a directed acyclic graph (DAG)
with vertices U , (directed) edges E ⊆ U × U , initial vertex u0 ∈ U , final vertices F ⊆ U , subgoal
region map β : U → 2S such that for each u ∈ U , β(u) is a subgoal region,3 and safe trajectories
Zsafe =

⋃

e∈E Z
e
safe, where Ze

safe ⊆ Zf denotes the safe trajectories for edge e ∈ E.

Intuitively, (U,E) is a standard DAG, and u0 and F define a graph reachability problem for (U,E).
Furthermore, β and Zsafe connect (U,E) back to the original MDPM; in particular, for an edge
e = u→ u′, Ze

safe is the set of trajectories inM that can be used to transition from β(u) to β(u′).

Definition 3.2. An infinite trajectory ζ = s0
a0−→ s1

a1−→ · · · inM satisfies abstract reachability
for G (denoted ζ |= G) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik and a path
ρ = u0 → u1 → · · · → uk in G such that

• uk ∈ F ,

• for all j ∈ {0, . . . , k}, we have sij ∈ β(uj), and

• for all j < k, letting ej = uj → uj+1, we have ζij :ij+1
∈ Z

ej
safe.

The first two conditions state that the trajectory should visit a sequence of subgoal regions corre-
sponding to a path from the initial vertex to some final vertex, and the last condition states that the
trajectory should be composed of subtrajectories that are safe according to Zsafe.

Definition 3.3. Given MDPM with unknown transitions and abstract graph G, the abstract reacha-
bility problem is to compute a policy π̃ : Zf → A such that π̃ ∈ argmaxπ Prζ∼Dπ

[ζ |= G].

In other words, the goal is to find a policy for which the probability that a generated trajectory satisfies
abstract reachability is maximized.

3.2 Reduction to Abstract Reachability

Next, we describe how to reduce the RL problem for a given MDPM and a specification φ to an
abstract reachability problem forM by constructing an abstract graph Gφ inductively from φ. We
give a high-level description here, and provide details in Appendix A in the supplement.

First, for each predicate b, we define the corresponding subgoal region Sb = {s ∈ S | s |= b}
denoting the set of states at which b holds. Next, the abstract graph Gφ for φ = achieve b is shown
in Figure 2. All trajectories in Zf are considered safe for the edge e = u0 → u1 and the only final
vertex is u1 with β(u1) = Sb. The abstract graph for a specification of the form φ = φ1 ensuring b
is obtained by taking the graph Gφ1

and replacing the set of safe trajectories Ze
safe, for each e ∈ E,

with the set Ze
safe ∩ Zb, where Zb = {ζ ∈ Zf | ∀i . si |= b} is the set of trajectories in which all

states satisfy b. For the sequential specification φ = φ1;φ2, we construct Gφ by adding edges from
every final vertex of Gφ1

to every vertex of Gφ2
that is a neighbor of its initial vertex. Finally, choice

φ = φ1 or φ2 is handled by merging the initial vertices of the graphs corresponding to the two
sub-specifications. Figure 1 shows an example abstract graph. The labels on the vertices are regions
in the environment. All trajectories that avoid hitting the obstacle O are safe for all edges. We have
the following key guarantee:

Theorem 3.4. Given a SPECTRL specification φ, we can construct an abstract graph Gφ such that,
for every infinite trajectory ζ ∈ Z , we have ζ |= φ if and only if ζ |= Gφ. Furthermore, the number
of vertices in Gφ is O(|φ|) where |φ| is the size of the specification φ.

3We do not require that the subgoal regions partition the state space or that they be non-overlapping.
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Algorithm 1 Compositional reinforcement learning algorithm for solving abstract reachability.

function DIRL(M, G)
Initialize processed vertices Up ← ∅

Initialize Γu0
← {u0}, and Γu ← ∅ for u 6= u0

Initialize edge policies Π← ∅

while true do
u← NEARESTVERTEX(U \ Up,Γ,Π)
ρu ← SHORTESTPATH(Γu)
ηu ← REACHDISTRIBUTION(ρu,Π)
if u ∈ F then return PATHPOLICY(ρu,Π)
for e = u→ u′ ∈ Outgoing(u) do
πe ← LEARNPOLICY(e, ηu)
Add ρu ◦ e to Γu′ and πe to Π

Add u to Up

We give a proof in Appendix A. As a consequence, we can solve the reinforcement learning problem
for φ by solving the abstract reachability problem for Gφ. As described below, we leverage the
structure of Gφ in conjunction with reinforcement learning to do so.

4 Compositional Reinforcement Learning

In this section, we propose a compositional approach for learning a policy to solve the abstract
reachability problem for MDPM (with unknown transition probabilities) and abstract graph G.

4.1 Overview

At a high level, our algorithm proceeds in three steps:

• For each edge e = u → u′ in G, use RL to learn a neural network (NN) policy πe to
try and transition the system from any state s ∈ β(u) to some state s′ ∈ β(u′) in a safe
way according to Ze

safe. Importantly, this step requires a distribution ηu over initial states
s ∈ β(u).

• Use sampling to estimate the probability P (e;πe, ηu) that πe safely transitions from β(u)
to β(u′).

• Use Djikstra’s algorithm in conjunction with the edge costs c(e) = − log(P (e;πe, ηu))
to compute a path ρ∗ = u0 → u1 → · · · → uk in G that minimizes c(ρ) =

−
∑k−1

j=0 log(P (ej ;πj , ηj)), where ej = uj → uj+1, πj = πej , and ηj = ηuj
.

Then, we could choose π to be the sequence of policies π1, ..., πk−1—i.e., execute each policy πj
until it reaches β(uj+1), and then switch to πj+1.

There are two challenges that need to be addressed in realizing this approach effectively. First, it is
unclear what distribution to use as the initial state distribution ηu to train πe. Second, it might be
unnecessary to learn all the policies since a subset of the edges might be sufficient for the reachability
task. Our algorithm (Algorithm 1) addresses these issues by lazily training πe—i.e., only training πe
when the edge cost c(e) is needed by Djikstra’s algorithm.

In more detail, DIRL iteratively processes vertices in G starting from the initial vertex u0, continuing
until it processes a final vertex u ∈ F . It maintains the property that for every u it processes, it has
already trained policies for all edges along some path ρu from u0 to u. This property is satisfied by
u0 since there is a path of length zero from u0 to itself. In Algorithm 1, Γu is the set of all paths from
u0 to u discovered so far, Γ =

⋃

u Γu, and Π = {πe | e = u → u′ ∈ E, u ∈ Up} is the set of all
edge policies trained so far. In each iteration, DIRL processes an unprocessed vertex u nearest to u0,
which it discovers using NEARESTVERTEX, and performs the following steps:

1. SHORTESTPATH selects the shortest path from u0 to u in Γu, denoted ρu = u0 → · · · →
uk = u.
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2. REACHDISTRIBUTION computes the distribution ηu over states in β(u) induced by using
the sequence of policies πe0 , ..., πek−1

∈ Π, where ej = uj → uj+1 are the edges in ρu.

3. For every edge e = u→ u′, LEARNPOLICY learns a policy πe for e using ηu as the initial
state distribution, and adds πe to Π and ρu′ to Γu′ , where ρu′ = u0 → · · · → u→ u′; πe
is trained to ensure that the resulting trajectories from β(u) to β(u′) are in Ze

safe with high
probability.

4.2 Definitions and Notation

Edge costs. We begin by defining the edge costs used in Djikstra’s algorithm. Given a policy πe for
edge e = u→ u′, and an initial state distribution ηu over the subgoal region β(u), the cost c(e) of e
is the negative log probability that πe safely transitions the system from s0 ∼ ηu to β(u′). First, we
say a trajectory ζ starting at s0 achieves an e if it safely reaches β(u′)—formally:

Definition 4.1. An infinite trajectory ζ = s0 → s1 → · · · achieves edge e = u→ u′ in G (denoted
ζ |= e) if (i) s0 ∈ β(u), and (ii) there exists i (constrained to be positive if u 6= u0) such that
si ∈ β(u

′) and ζ0:i ∈ Z
e
safe; we denote the smallest such i by i(ζ, e).

Then, the probability that π achieves e from an initial state s0 ∼ ηu is

P (e;πe, ηu) = Pr
s0∼ηu,ζ∼Dπe,s0

[ζ |= e],

where Dπe,s0 is the distribution over infinite trajectories induced by using πe from initial state s0.
Finally, the cost of edge e is c(e) = − logP (e;πe, ηu). Note that c(e) is nonnegative for any edge e.

Path policies. Given edge policies Π along with a path ρ = u0 → u1 → · · · → uk = u in G, we
define a path policy πρ to navigate from β(u0) to β(u). In particular, πρ executes πuj→uj+1

(starting

from j = 0) until reaching β(uj+1), after which it increments j ← j + 1 (unless j = k). That is, πρ
is designed to achieve the sequence of edges in ρ. Note that πρ is stateful since it internally keeps
track of the index j of the current policy.

Induced distribution. Let path ρ = u0 → · · · → uk = u from u0 to u be such that edge policies
for all edges along the path have been trained. The induced distribution ηρ is defined inductively on
the length of ρ. Formally, for the zero length path ρ = u0 (so u = u0), we define ηρ = η to be the
initial state distribution of the MDPM. Otherwise, we have ρ = ρ′ ◦ e, where e = u′ → u. Then,
we define ηρ to be the state distribution over β(u) induced by using πe from s0 ∼ ηρ′ conditioned on
ζ |= e. Formally, ηρ is the probability distribution over β(u) such that for a set of states S′ ⊆ β(u),
the probability of S′ according to ηρ is

Pr
s∼ηρ

[s ∈ S′] = Pr
s0∼ηρ′ ,ζ∼Dπe,s0

[

si(ζ,e) ∈ S
′ | ζ |= e

]

.

Path costs. The cost of a path ρ = u0 → · · · → uk = u is c(ρ) = −
∑k−1

j=0 logP (ej ;πej , ηρ0:j
)

where ej = uj → uj+1 is the j-th edge in ρ, and ρ0:j = u0 → · · · → uj is the j-th prefix of ρ.

4.3 Algorithm Details

DIRL interleaves Djikstra’s algorithm with using RL to train policies πe. Note that the edge weights
to run Dijkstra’s are not given a priori since the edge policies and initial state/induced distributions
are unknown. Instead, they are computed on-the-fly beginning from the subgoal region u0 using
Algorithm 1. We describe each subprocedure below.

Processing order (NEARESTVERTEX). On each iteration, DIRL chooses the vertex u to
process next to be an unprocessed vertex that has the shortest path from u0—i.e., u ∈
argminu′∈U\Up

minρ∈Γu′
c(ρ). This choice is an important part of Djikstra’s algorithm. For a

graph with fixed costs, it ensures that the computed path ρu to each vertex u is minimized. While the
costs in our setting are not fixed since they depend on ηu, this strategy remains an effective heuristic.

Shortest path computation (SHORTESTPATH). This subroutine returns a path of minimum cost,
ρu ∈ argminρ∈Γu

c(ρ). These costs can be estimated using Monte Carlo sampling.

Initial state distribution (REACHDISTRIBUTION). A key choice DIRL makes is what initial state
distribution ηu to choose to train policies πe for outgoing edges e = u → u′. DIRL chooses the

7



initial state distribution ηu = ηρu
to be the distribution of states reached by the path policy πρu

from

a random initial state s0 ∼ η.4

Learning an edge policy (LEARNPOLICY). Now that the initial state distribution ηu is known,
we describe how DIRL learns a policy πe for a single edge e = u → u′. At a high level, it
trains πe using a standard RL algorithm, where the rewards 1(ζ |= e) are designed to encourage
πe to safely transition the system to a state in β(u′). To be precise, DIRL uses RL to compute
πe ∈ argmaxπ P (e;π, ηu). Shaped rewards can be used to improve learning; see Appendix B.

Constructing a path policy (PATHPOLICY). Given edge policies Π along with a path ρ = u0 →
· · · → u, where u ∈ F is a final vertex, DIRL returns the path policy πρ.

Theoretical Guarantee. We have the following guarantee (we give a proof in Appendix C).

Theorem 4.2. Given a path policy πρ corresponding to a path ρ = u0 → · · · → uk = u, where
u ∈ F , we have Prζ∼Dπρ

[ζ |= G] ≥ exp(−c(ρ)).

In other words, we guarantee that minimizing the path cost c(ρ) corresponds to maximizing a lower
bound on the objective of the abstract reachability problem.

5 Experiments

We empirically evaluate our approach on several continuous control environments; details are in
Appendix D, E and F.

Rooms environment. We consider the 9-Rooms environment shown in Figure 1, and a similar
16-Rooms environment. They have states (x, y) ∈ R

2 encoding 2D position, actions (v, θ) ∈ R
2

encoding speed and direction, and transitions s′ = s + (v cos(θ), v sin(θ)). For 9-Rooms, we
consider specifications similar to φex in Figure 1. For 16-Rooms, we consider a series of increasingly
challenging specifications φ1, ..., φ5; each φi encodes a sequence of i sub-specifications, each of
which has the same form as φex (see Appendix E). We learn policies using ARS [32] with shaped
rewards (see Appendix B); each one is a fully connected NN with 2 hidden layers of 30 neurons each.

Fetch environment. We consider the Fetch-Pick-And-Place environment in OpenAI Gym [8],
consisting of a robotic arm that can grasp objects and a block to manipulate. The state space is R25,
which includes components encoding the gripper position, the (relative) position of the object, and
the distance between the gripper fingers. The action space is R4, where the first 3 components encode
the target gripper position and the last encodes the target gripper width. The block’s initial position is
a random location on a table. We consider predicates NearObj (indicates if the gripper of the arm is
close to the block), HoldingObj (indicates if the gripper is holding the block), LiftedObj (indicates if
the block is above the table), and ObjAt[g] (indicates if the block is close to a goal g ∈ R

3).

We consider three specifications. First, PickAndPlace is

φ1 = NearObj;HoldingObj;LiftedObj;ObjAt[g],

where g is a random goal location. Second, PickAndPlaceStatic is similar to the previous one, except
the goal location is fixed. Third, PickAndPlaceChoice involves choosing between two tasks, each of
which is a sequence of two subtasks similar to PickAndPlaceStatic. We learn policies using TD3 [14]
with shaped rewards; each one is a fully connected NN with 2 hidden layers of 256 neurons each.

Baselines. We compare our approach to four state-of-the-art algorithms for learning from spec-
ifications, SPECTRL [24], QRM [19], HRM [35], and a TLTL [29] based approach, as well as a
state-of-the-art hierarchical RL algorithm, R-AVI [25], that leverages state abstractions. We used
publicly available implementations of SPECTRL, QRM, HRM and R-AVI. For QRM and HRM, we
manually encoded the tasks as reward machines with continuous rewards. The variants QRM+CR

and HRM+CR use counterfactual reasoning to reuse samples during training. Our implementation of
TLTL uses the quantitative semantics defined in Li et al. [29] with ARS to learn a single policy for
each task. We used the subgoal regions and the abstract graph generated by our algorithm as inputs to
R-AVI. Since R-AVI only supports disjoint subgoal regions and furthermore assumes the ability to
sample from any subgoal region, we only ran R-AVI on supported benchmarks. The learning curves

4This choice is the distribution of states reaching u by the path policy πρ eventually returned by DIRL. Thus,
it ensures that the training and test distributions for edge policies in πρ are equal.
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A Reduction to Abstract Reachability

In this section, we detail the construction of the abstract graph Gφ from a SPECTRL specification φ.
Given two sets of finite trajectories Z1,Z2 ⊆ Zf , let us denote by Z1 ◦ Z2 the concatenation of the
two sets—i.e.,

Z1 ◦ Z2 =

{

ζ ∈ Zf

∣

∣

∣

∣

∃i < t . ζ0:i ∈ Z1

∧ ζ(i+1):t ∈ Z2

}

.

In addition to the abstract graph G = (U,E, u0, F, β,Zsafe) we also construct a set of safe terminal
trajectories Zterm =

⋃

u∈F Z
u
term where Zu

term ⊆ Zf is the set of terminal trajectories for the final

vertex u ∈ F . Now, we define what it means for a finite trajectory ζ to satisfy the pair (G,Zterm).

Definition A.1. A finite trajectory ζ = s0
a0−→ s1

a1−→ · · ·
at−1

−−−→ st inM satisfies the pair (G,Zterm)
(denoted ζ |= (G,Zterm)) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik ≤ t and a path
ρ = u0 → u1 → · · · → uk in G such that

• uk ∈ F ,

• for all j ∈ {0, . . . , k}, we have sij ∈ β(uj),

• for all j < k, letting ej = uj → uj+1, we have ζij :ij+1
∈ Z

ej
safe, and

• ζik:t ∈ Z
uk
term.

We now outline the inductive construction of the pair (Gφ,Zterm,φ) from a specification φ such that
any finite trajectory ζ ∈ Zf satisfies φ if and only if ζ satisfies (Gφ,Zterm,φ).

Objectives (φ = achieve b). The abstract graph is Gφ = (U,E, u0, F, β,Zsafe) where

• U = {u0, ub} with β(u0) = S and β(ub) = Sb = {s | s |= b},

• E = {u0 → ub},

• F = {ub} and,

• Z
(u0,ub)
safe = Zub

term = Zf .

Constraints (φ = φ1 ensuring b). Let the abstract graph for φ1 be Gφ1
=

(U1, E1, u
1
0, F1, β1,Zsafe,1) and the terminal trajectories be Zterm,1. Then, the abstract graph for

φ is Gφ = (U,E, u0, F, β,Zsafe) where

• U = U1, u0 = u10, E = E1 and F = F1.

• β(u) = β1(u) ∩ Sb for all u ∈ U \ {u0} where Sb = {s | s |= b}, and β(u0) = S.

• Ze
safe = Z

e
safe,1 ∩ Zb for all e ∈ E where

Zb = {ζ ∈ Zf | ∀i . si |= b}.

• Zu
term = Zu

term,1 ∩ Zb for all u ∈ F .

Sequencing (φ = φ1;φ2). Let the abstract graph for φi be Gφi
= (Ui, Ei, u

i
0, Fi, βi,Zsafe,i) and

the terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) is
constructed as follows.

• U = U1 t U2 \ {u
2
0}.

• E = E1 t E
′
2 t E1→2 where

E′
2 = {u→ u′ ∈ E2 | u 6= u20} and

E1→2 = {u1 → u2 | u1 ∈ F1 & u20 → u2 ∈ E2}.

• u0 = u10 and F = F2.

• β(u) = βi(u) for all u ∈ Ui and i ∈ {1, 2}.

• The safe trajectories are given by
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– Ze
safe = Z

e
safe,1 for all e ∈ E1,

– Ze
safe = Z

e
safe,2 for all e ∈ E′

2 and,

– Zu1→u2

safe = Zu1

term,1 ◦ Z
u2
0→u2

safe,2 for all u1 → u2 ∈ E1→2.

• Zu
term = Zu

term,2 for all u ∈ F .

Choice (φ = φ1 or φ2). Let the abstract graph for φi be Gφi
= (Ui, Ei, u

i
0, Fi, βi,Zsafe,i) and the

terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph for φ is Gφ = (U,E, u0, F, β,Zsafe)
where:

• U =
(

U1 \ {u
1
0}
)

t
(

U2 \ {u
2
0}
)

t {u0}.

• E = E′
1 t E

′
2 t E0 where

E′
i = {u→ u′ ∈ Ei | u 6= ui0} and

E0 = {u0 → ui | i ∈ {1, 2} & ui0 → ui ∈ Ei}.

• F = F1 t F2.

• β(u) = βi(u) for all u ∈ Ui, i ∈ {1, 2} and β(u0) = S.

• The safe trajectories are given by

– Ze
safe = Z

e
safe,i for all e ∈ E′

i and i ∈ {1, 2},

– Zu0→ui

safe = Z
ui
0→ui

safe,i for all u0 → ui ∈ E0 with ui ∈ Ui.

• Zu
term = Zu

term,i for all u ∈ Fi and i ∈ {1, 2}.

The constructed pair (Gφ,Zterm,φ) has the following important properties.

Lemma A.2. For any SPECTRL specification φ, the following hold.

• For any finite trajectory ζ ∈ Zf , ζ |= φ if and only if ζ |= (Gφ,Zterm,φ).

• For any final vertex u of Gφ and any state s ∈ β(u), the length-1 trajectory ζ = s is
contained in Zu

term,φ.

Proof. Follows from the above construction by structural induction on φ.

Proof of Theorem 3.4. Let ζ = s0
a0−→ s1

a1−→ · · · be an infinite trajectory. First we show that ζ |= φ
if and only if ζ |= Gφ.

( =⇒ ) Suppose ζ |= φ. Then, there is a t ≥ 0 such that ζ0:t |= φ. From Lemma A.2, we get that
ζ0:t |= (Gφ,Zterm,φ) which implies that ζ |= Gφ.

( ⇐= ) Suppose ζ |= Gφ. Then, let 0 = i0 ≤ i1 < · · · < ik be a sequence of indices realizing
a path u0 → · · · → uk to a final vertex uk in Gφ. Since sik ∈ β(uk), from Lemma A.2 we have
ζik:ik ∈ Z

uk

term,φ and hence ζ0:ik |= (Gφ,Zterm,φ). From Lemma A.2 we conclude that ζ0:ik |= φ and

therefore ζ |= φ.

Next, it follows by a straightforward induction on φ that the number of vertices in Gφ is at most
|φ|+ 1 where |φ| is the number of operators (achieve, ensuring, ;, or) in φ.

B Shaped Rewards for Learning Policies

To improve learning, we use shaped rewards for learning each edge policy πe. To enable reward
shaping, we assume that the atomic predicates additionally have a quantitative semantics—i.e., each
atomic predicate p ∈ P0 is associated with a function JpKq : S → R. To ensure compatibility with

the Boolean semantics, we assume that

JpK(s) =
(

JpKq(s) > 0
)

. (1)
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For example, given a state s ∈ S, the atomic predicate

Jreach sKq(s
′) = 1− ‖s′ − s‖

indicates whether the system is in a state near s w.r.t. some norm ‖ · ‖. In addition, we can
extend the quantitative semantics to predicates b ∈ P by recursively defining Jb1 ∧ b2Kq(s) =

min{Jb1Kq(s), Jb2Kq(s)} and Jb1 ∨ b2Kq(s) = max{Jb1Kq(s), Jb2Kq(s)}. These definitions are a

standard extension of Boolean logic to real values. In particular, they preserve (1)—i.e., b |= s if and
only if JbKq(s) > 0.

In addition to quantitative semantics, we make use of the following property to define shaped rewards.

Lemma B.1. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) of a specification φ satisfies the
following:

• For every non-initial vertex u ∈ U \ {u0}, there is a predicate b ∈ P such that β(u) =
Sb = {s | s |= b}.

• For every e ∈ E, either Ze
safe = Zb = {ζ ∈ Z | ∀i . si |= b} for some b ∈ P or

Ze
safe = Zb1 ◦ Zb2 for some b1, b2 ∈ P .

Proof sketch. We prove a stronger property that, in addition to the above, requires that for any
e = u0 → u ∈ E, Ze

safe = Zb for some b ∈ P and for any final vertex u, Zu
term,φ = Zb for some

b ∈ P . This stronger property follows from a straightforward induction on φ.

Next, we describe the shaped rewards we use to learn an edge e = u → u′ in Gφ, which have the
form

Rstep(s, a, s
′) = Rreach(s, a, s

′) +Rsafe(s, a, s
′).

Intuitively, the first term encodes a reward for reaching β(u′), and the second term encodes a reward
for maintaining safety. By Lemma B.1, β(u′) = Sb for some b ∈ P . Then, we define

Rreach(s, a, s
′) = JbKq(s

′).

The safety reward is defined by

Rsafe(s, a, s
′) =











min{0, JbKq(s
′)} if Ze

safe = Zb

min{0, Jb ∨ b′Kq(s
′)} if Ze

safe = Zb ◦ Zb′ ∧ ψb

min{0, Jb′Kq(s
′)} if Ze

safe = Zb ◦ Zb′ ∧ ¬ψb.

Here, ψb is internal state keeping track of whether b has held so far—i.e., ψb ← ψb ∧ JbK(s) at state
s. Intuitively, the first case is the simpler case, which checks if every state in the trajectory satisfies b,
and the latter two cases handle a sequence where b should hold for the first part of the trajectory, and
b′ should hold for the remainder.

C Proof of Theorem 4.2

Proof. Let the abstract graph be G = (U,E, u0, F, β,Zsafe). Let us first define what it means for a
rollout to achieve a path in G.

Definition C.1. We say that an infinite trajectory ζ achieves the path ρ (denoted ζ |= ρ) if ζ |= Gρ
where Gρ = (Uρ, Eρ, u0, {uk}, β ↓ ρ,Zsafe ↓ρ) with Uρ = {uj | 0 ≤ j ≤ k}, Eρ = {uj →
uj+1 | 0 ≤ j < k} and β ↓ ρ and Zsafe ↓ρ are β and Zsafe restricted to the vertices and the edges
of Gρ, respectively.

From the definition it is clear that for any infinite trajectory ζ, if ζ |= ρ then ζ |= G and therefore

Pr
ζ∼Dπρ

[ζ |= G] ≥ Pr
ζ∼Dπρ

[ζ |= ρ]. (2)

Let us now define a slightly stronger notion of achieving an edge.
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Definition C.2. An infinite trajectory ζ = s0 → s1 → · · · is said to greedily achieve the path ρ
(denoted ζ |=g ρ) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik such that for all j < k,

• ζij :∞ |= ej = uj → uj+1 and,

• ij+1 = i(ζij :∞, ej),

where ζij :∞ = sij → sij+1 → · · · .

That is, ζ |=g ρ if a partition of ζ realizing ρ can be be constructed greedily by picking ij+1 to be

the smallest index i ≥ ij (strictly bigger if j > 0) such that si ∈ β(uj+1) and ζij :i ∈ Z
ej
safe. Since

ζ |=g ρ implies ζ |= ρ, we have

Pr
ζ∼Dπρ

[ζ |= ρ] ≥ Pr
ζ∼Dπρ

[ζ |=g ρ]. (3)

Let ρj:k denote the j-th suffix of ρ. We can decompose the probability Prζ∼Dπρ
[ζ |=g ρ] as follows.

Pr
ζ∼Dπρ

[ζ |=g ρ] = Pr
ζ∼Dπρ

[ζ |= e0 ∧ ζi(ζ,e0):∞ |=g ρ1:k]

= Pr
ζ∼Dπe0

[ζ |= e0] · Pr
ζ∼Dπρ

[ζi(ζ,e0):∞ |=g ρ1:k | ζ |= e0]

= P (e0;πe0 , η0) · Pr
s0∼ηρ0:1

,ζ∼Dπρ1:k
,s0

[ζ |=g ρ1:k]

where the last equality followed from the definition of ηρ0:1
and the Markov property ofM. Applying

the above decomposition recursively, we get

Pr
ζ∼Dπρ

[ζ |=g ρ] =

k−1
∏

j=0

P (ej ;πej , ηρ0:j
)

= exp(log(

k−1
∏

j=0

P (ej ;πej , ηρ0:j
)))

= exp(−(−

k−1
∑

j=0

logP (ej ;πej , ηρ0:j
)))

= exp(−c(ρ)).

Therefore, from Equations 2 and 3, we get the required bound.

D Experimental Methodology

Our tool learns the low-level NN policies for edges using an off-the-shelf RL algorithm. For the
Rooms and Fetch environments, we learn policies using ARS [32] and TD3 [14] with shaped rewards,
respectively.

For each specification on an environment, we first construct its abstract graph. In DIRL, each
edge policy πe is trained using k episodes of interactions with the environment. For the purpose of
generating a learning curve, we run DIRL for each specification with several values of k. For each k
value, we plot the sum total of the samples taken to train all edge policies against the probability with
which the computed policy reaches a final subgoal region.

For a fair comparison with the baselines, if each episode for learning an edge policy in DIRL is
run for m steps, we run the episodes of the baselines for m · d+ c steps, where d is the maximum
path length to reach a final vertex in the abstract graph of the specification and c > 0 is a buffer.
Intuitively, this approach ensures that all tools get a similar number of steps in each episode to learn
the specification.
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(a) 16-Rooms (All doors open) (b) 16-Rooms (Some doors open)

Figure 5: 16-Rooms Environments. Blue square indicates the initial room. Red squares represent
obstacles. (a) illustrates the segments in the specifications.

E Case Study: Rooms Environment

We consider environments with several interconnected rooms. The rooms are separated by thick walls
and are connected through bi-directional doors.

The environments are a 9-Rooms environment, (Figure 1), a 16-Rooms environment with all doors
open (Figure 5a), and 16-Rooms environment with some doors open (Figure 5b). The red blocks
indicate obstacles. A robot can pass through those rooms by moving around the red blocks. The
robot is initially placed randomly in the center of the room with the blue box (bottom-left corner).

Rooms are identified by the tuple (r, c) denoting the room in the r-th row and c-th column. We use
the convention that the bottom-left corner is room (0,0). Predicate reach (r, c) is interpreted as
reaching the center of the (r, c)-th room and predicate avoid (r, c) is interpreted as avoiding the
center of the (r, c)-th room. For clarity, we omit the word achieve from specifications of the form
achieve b denoting such a specification using just the predicate b.

E.1 9-Rooms Environment

Specifications.

1. φ1 := reach (2, 0); reach (0, 0)

Go to the top-left corner and then return to the bottom-left corner (initial room); red blocks
not considered obstacles.

This specification is difficult for standard RL algorithms that do not store whether the first
sub-task has been achieved. In these cases, a stateless policy will not be able to determine
whether to move upwards or downwards. In contrast, DIRL (as well as SPECTRL and RM
based approaches) augment the state space to automatically keep track of which sub-tasks
have been achieved so far.

2. φ2 := reach (2, 0) or reach (0, 2)

Either go to the top-left corner or to the bottom-right corner (obstacles are not considered).

3. φ3 := φ2; reach (2, 2)

After completing φ2, go to the top-right corner (obstacles not considered).

This specification combines two choices of similar difficulty yet only one is favorable to
fulfilling the specification since the direct path to the top-right corner from the bottom-right
one is obstructed by walls.

4. φ4 := reach (2, 0) ensuring avoid (1, 0)

Reach the top-left (while considering the obstacles).

5. φ5 := φ4 or reach (0, 2); reach (2, 2)

Either go to the top-left corner or bottom-right corner enroute to the top-right corner (while
considering the obstacles).

This specification is similar to φ3 except that the choices are of unequal difficulty due to the
placement of the red obstacle. In this case, the non-greedy choice is favorable for completing
the task.
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