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Abstract

A key challenge for reinforcement learning is solving long-horizon planning prob-
lems. Recent work has leveraged programs to guide reinforcement learning in
these settings. However, these approaches impose a high manual burden on the
user since they must provide a guiding program for every new task. Partially ob-
served environments further complicate the programming task because the program
must implement a strategy that correctly, and ideally optimally, handles every
possible configuration of the hidden regions of the environment. We propose a
new approach, model predictive program synthesis (MPPS), that uses program
synthesis to automatically generate the guiding programs. It trains a generative
model to predict the unobserved portions of the world, and then synthesizes a
program based on samples from this model in a way that is robust to its uncer-
tainty. In our experiments, we show that our approach significantly outperforms
non-program-guided approaches on a set of challenging benchmarks, including
a 2D Minecraft-inspired environment where the agent must complete a complex
sequence of subtasks to achieve its goal, and achieves a similar performance as
using handcrafted programs to guide the agent. Our results demonstrate that our
approach can obtain the benefits of program-guided reinforcement learning without
requiring the user to provide a new guiding program for every new task.

1 Introduction

Reinforcement learning is a prominent technique for solving challenging planning and control
problems [50, 4]. Despite significant recent progress, solving long-horizon problems remains a
significant challenge due to the combinatorial explosion of possible strategies. One promising
approach to addressing these issues is to leverage programs to guide the behavior of the agents [3, 62,
39]. The approaches in this paradigm typically involve three key elements:

• Domain-specific language (DSL): For a given domain, the user defines a set of components
c that correspond to intermediate subgoals that are useful for that domain (e.g., “get wood”
or “build bridge”), but leaves out how exactly to achieve these subgoals.

• Task-specific program: For every new task in the domain, the user provides a sequence of
components (i.e. a program written in the DSL) that, if followed, enable the agent to achieve
its goal in the task (e.g., [“get wood”; “build bridge”; “get gem”]).

• Low-level neural policy: For a given domain, the reinforcement learning algorithm learns
an option [63] that implements each component (i.e., achieves the subgoal specified by that
component). Typically a neural policy is learned as each option.
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Given a new task in a domain, the user provides a program in the DSL that describes a high-level
strategy to solve that task. The agent then executes the program by deploying the sequence of learned
options that correspond to the components in that program.

A key drawback of this approach is programming overhead: for every new task (a task consists of
an instantiation of an environment and a goal), the user must analyze the environment, design a
strategy to achieve the goal, and encode the strategy into a program, with a poorly written program
producing a suboptimal agent. Furthermore, partially observed environments significantly complicate
the programming task because the program must implement a strategy that correctly, and ideally
optimally, handles every possible configuration of the hidden regions of the environment.

To address this challenge, we propose a new approach, model predictive program synthesis (MPPS),
that automatically synthesizes the guiding programs for program guided reinforcement learning.

MPPS works with a conditional generative model of the environment and a high level specification of
the goal of the task to automatically synthesize a program that achieves the goal, with the synthesized
program robust to uncertainty in the model. Because the automatically generated agent, and not the
user, reasons about how to solve each new task, MPPS significantly reduces user burden. Given a
goal specification φ, the agent uses the following three steps to choose its actions:

• Hallucinator: First, inspired by world-models [29], the agent keeps track of a conditional
generative model g over possible realizations of the unobserved portions of the environment.

• Synthesizer: Next, the agent synthesizes a program p that achieves φ assuming the hallu-
cinator g is accurate. Since world predictions are stochastic in nature, it samples multiple
predicted worlds and computes the program that maximizes the probability of success.

• Executor: Finally, the agent executes the options corresponding to the components in the
program p = [c1; ...; ck] for a fixed number of steps N .

If φ is not satisfied after N steps, then the above process is repeated. Since the hallucinator now has
more information (because the agent has explored more of the environment), the agent now has a
better chance of achieving its goal. Importantly, the agent is implicitly encouraged to explore since it
must do so to discover whether the current program can successfully achieve the goal φ.

We instantiate our approach in the context of a 2D Minecraft-inspired environment [3, 57, 62],
which we call “craft,” and a “box-world” environment [76]. We demonstrate that our approach
significantly outperforms non-program-guided approaches, while achieving a similar performance as
using handcrafted programs to guide the agent. In addition, we demonstrate that the policy we learn
can be transferred to a continuous variant of the craft environment, where the agent is replaced by
a MuJoCo [66] Ant. Thus, our approach can obtain the benefits of program-guided reinforcement
learning without requiring the user to provide a new guiding program for every new task.2

Related work. In general, program guidance makes reinforcement learning more tractable in at least
two ways: (i) it provides intermediate rewards and (ii) it reduces the size of the search space of the
policy by decomposing the policy into separate components. Previous research in program guided
reinforcement learning demonstrates the benefits of this approach to guide reinforcement learning in
the craft environment [62]. This previous research requires the user to provide both a DSL for the
domain and a program for every new task. Furthermore, their approach requires that the user includes
conditional statements in the program to handle partial observability, which imposes an even greater
burden on the user. In contrast, we only require the user to provide a specification encoding the goal
for each new task, and automatically handle partial observability.

There has been work enabling users to write specifications in a high-level language based on temporal
logic [39], with these specifications then translated into shaped rewards to guide learning. Further-
more, recent work has shown that even if the subgoal encoded by each component is omitted, the
program (i.e., a sequence of symbols) can still aid learning [3]. Unlike our approach, this previous
work requires the user to provide the guiding programs and does not handle partial observability.

More broadly, our work fits into the literature on combining high-level planning with reinforcement
learning. In particular, there is a long literature on planning with options [63] (also known as
skills [33]), including work on inferring options [61]. Most of these approaches focus on MDPs with
discrete state and action spaces and fully observed environments. Recent work [1, 41, 40, 32, 79, 74,

2The code is available at: https://github.com/yycdavid/program-synthesis-guided-RL
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we have a set of training tasks for learning the policy, and our goal is to have a policy that works well
on new tasks occurring in the future.

DSL. A premise of our approach is a user-provided DSL consisting of components useful for the
domain. Figure 2a shows the DSL for the craft environment. For each component, the user also
specifies what the component is expected to achieve as a logical predicate. To deal with high-
dimensional state spaces, the logical predicates are expressed over features α(s) of the state—e.g.,
the logical predicate for “get wood” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected) ∧ (ρ+j,wood = ρ−j,wood − 1) ∧ (ι+wood = ι−wood + 1).

This predicate is over two sets of features: (i) features α(s−), denoted by a −, of the initial state
s− (i.e., where execution of the component starts), and (ii) features α(s+), denoted by a +, of the
final state s+ (i.e., where the subgoal is achieved and execution of the component terminates). The
first feature is the categorical feature z that indicates the zone containing the agent. In particular, we
divide the map into zones that are regions separated by obstacles such as water and stone—e.g., the
map in Figure 1a has two zones: (i) the region containing the agent, and (ii) the region blocked off by
stones. Now, the feature bi,j indicates whether zones i and j are connected, ρi,r denotes the count of
resource r in zone i, and ιr denotes the count of resource r in the agent’s inventory.

Thus, this formula says that (i) the agent goes from zone i to j, (ii) i and j are connected, (iii)
the count of wood in the agent’s inventory increases by one, and (iv) the count of wood in zone j
decreases by one. Appendix A.1 describes the full set of components we use.

Approach. Before solving any new tasks, for each component c, we use reinforcement learning
to train an option c̃ that attempts to achieve the subgoal encoded by c. Given a new task, the user
specifies the goal of the task as a logical predicate φ. Encoding the goal is typically simple; for
example, the goal of the task in Figure 1a is getting gem, which is encoded as φ := ιgem ≥ 1. Then
the agent attempts to solve the task as follows.

First, based on the observations so far, the agent uses a hallucinator g to predict multiple potential
worlds, each of which represents a possible realization of the full map. Rather than predicting
concrete states, it suffices to predict the state features. For instance, Figure 1a shows two samples of
the world predicted by g; here, the only values it predicts are the number of zones in the map, the
type of the boundary between the zones, and the counts of the resources and workshops in each zone.
In this example, the first predicted world contains two zones, and the second contains one zone. Note
that in both predicted worlds, there is a gem located in same zone as the agent.

Next, the agent synthesizes a program p that achieves the goal φ in a maximal number of predicted
worlds. The synthesized program in Figure 1a is a single component “get gem,” which refers to
searching the current zone (or zones already connected with the current zone) for a gem. Note that
this program achieves the goal for the predicted worlds shown in Figure 1a.

Finally, the agent executes the program p = [c1; ...; ck] for a fixed number N of steps. In particular, it
executes the policy πτ of option c̃τ = (πτ , βτ ) corresponding to cτ until the termination condition
βτ holds, upon which it switches to executing πτ+1. In our example, there is only one component
“get gem,” so it executes the policy for this component until the agent finds a gem.

In this case, the agent fails to achieve its goal φ since there is no gem in its current zone. Thus,
it repeats the above process. Since it now has more observations, g more accurately predicts the
world—e.g., Figure 1b shows the intermediate step when the agent re-plans. Note that it now correctly
predicts that the only gem is in the second zone. Thus, the newly synthesized program is

p =[get wood; use workbench; get iron; use factory;
︸ ︷︷ ︸

for building axe

use axe; get gem].

That is, it builds an axe to break the stone so it can get to the zone containing the gem. Finally, the
agent executes this new program, which successfully finds the gem.

3 Problem Formulation

POMDP. We consider a partially observed Markov decision process (POMDP) with states S ⊆ R
n,

actionsA ⊆ R
m, observationsO ⊆ R

q , initial state distribution P0, observation function h : S → O,
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Synthesizer. The synthesizer computes a program that maximizes the probability of satisfying φ:

p∗ = argmax
p

EP (s|o)1[p solves φ for s] ≈ argmax
p

1

m

m∑

j=1

1[p solves φ for ŝj ], (1)

where the ŝj are samples from g. The objective (1) can be expressed as a MaxSAT problem [48]. In
particular, suppose for now that we are searching over programs p = [c1; ...; ck] of fixed length k.
Then, consider the constrained optimization problem

argmax
ξ1,...,ξk

1

m

m∑

j=1

∃s−1 , s
+
1 , ..., s

−
k , s

+
k . ψj , (2)

where ξτ and sδτ (for τ ∈ {1, ..., k} and δ ∈ {−,+}) are the optimization variables. Here, ξ1, ..., ξk
encodes the program p = [c1; ...; ck], and ψj encodes the constraints that p solves φ for world
ŝj—i.e.,

ψj ≡ ψj,start ∧

[
k∧

τ=1

ψj,τ

]

∧

[
k−1∧

τ=1

ψ′
j,τ

]

∧ ψj,end,

where (i) ψj,start ≡ (s−1 = ŝj) encodes that the initial state is ŝj , (ii) ψj,τ ≡
(
(ξτ = c)⇒ c(s−τ , s

+
τ )
)

encodes that if the the τ th component of p is cτ = c, then the transition from s−τ to s+τ on step

τ satisfies c(s−τ , s
+
τ ), (iii) ψ′

j,τ ≡ (s+τ = s−τ+1) encodes that the final state of the τ th step equals

the initial state the (τ + 1)th step, and (iv) ψj,end ≡ φ(s+j ) encodes that the final state of the last

component should satisfy the user-provided goal φ. We use a MaxSAT solver to solve (2) [16]. Given
a solution ξ1 = c1, ..., ξk = ck, the synthesizer returns the corresponding program p = [c1; ...; ck].

We incrementally search for longer and longer programs, starting from k = 1 and incrementing
k until either we find a program that achieves at least a minimum objective value, or we reach a
maximum program length kmax, at which point we use the best program found so far.

Executor. For each user-provided component c ∈ C, we use reinforcement learning to learn an
option c̃ = (π, β) that executes the component, where π : O → A is a policy and β : O → {0, 1} is
a termination condition. The executor runs the synthesized program p = [c1; ...; ck] by deploying
each corresponding option c̃τ = (πτ , βτ ) in sequence, starting from τ = 1. In particular, it uses
action at = πτ (ot) at each time step t, where ot is the observation on that step, until βτ (ot) = 1, at
which point it increments τ ← τ + 1. It continues until either it has completed running the program
(βk(ot) = 1), or after N steps. In the former case, by construction, the goal φ has been achieved, so
the agent terminates. In the latter case, the agent iteratively reruns the hallucinator and the synthesizer
based on the current observation to get a new program. At this point, the hallucinator likely has
additional information about the environment, so the new program has a greater chance of success.

5 Learning Algorithm

Next, we describe our algorithm for learning the parameters of models used by our agent. In particular,
there are two parts that need to be learned: (i) the parameters of the hallucinator g and (ii) the options
c̃ based on the user-provided components c.

Hallucinator. The goal is to train the hallucinator g(s | o) to approximate the actual distribution
P (s | o) of the state s given the observation o. We obtain samples (ot, st) from the training tasks using
rollouts from a random agent and train gθ(s | o) using supervised learning. In our experiments, we
take gθ to be a CVAE and train it using the evidence lower bound (ELBo) on the log likelihood [46].

Executor. Our framework uses reinforcement learning to learn options c̃ that implement the user-
provided components c; these options can be shared across multiple tasks. We use neural module
networks [3] as the model for the executor policy; but in general our approach can also work with
other types of models. In particular, we take c̃ = (π, β), where π : O → A is a neural module and
β : O → {0, 1} checks when to terminate execution. First, β is constructed directly from c—i.e., it
returns whether c is satisfied based on the current observation o. Next, we train π on the training tasks,
which consist of randomly generated initial states s and goal specifications φ. Just for training, we
use the ground truth program p synthesized based on the fully observed environment; this approach
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achieves an average reward of 0.024(±0.004) in 2D-craft, showing that our benchmarks require
effective techniques for handling partial observations. We compare to two ablations without a learned
hallucinator: (i) an optimistic synthesizer that synthesizes the shortest possible program making
best-case assumptions about the unobserved parts of the map, and (ii) a random hallucinator that
randomly samples completions of the world (See Appendix B.3 for more details). Table 2 shows
the results on the 2D-craft environment. As can be seen, our approach significantly outperforms
both alternatives. Figure 3c & 3d shows the difference in behavior between our approach and the
optimistic strategy; by using a learned hallucinator, our approach is able to leverage the current
observations effectively and synthesize a correct program sooner.

Effect of the number of hallucinator samples. We vary the number of hallucinator samples m on
box-world. Figure 6 shows the results on the test set over 5 random seeds. As can be seen, varying m
does not significantly affect the mean performance, but increasing m significantly reduces variance.
Thus, increasing m makes the policy more robust to the uncertainty in the hallucinator. This fact
shows the benefit of using multiple samples and MaxSAT synthesis.

Transfer to MuJoCo Ant. To demonstrate that our approach can be adapted to handle continuous
control tasks, we consider a variant of 2D-craft where the agent is replaced by a MuJoCo ant [53]
(Figure 3b). We consider a simplified setup where we only model the movements of the ant; the ant
automatically picks up resources in the grid cell it currently occupies. We focus on transfer learning
from 2D-craft. In particular, we pretrain a goal-reaching policy for the ant using soft actor-critic [30]:
given a random goal position, this policy moves the ant to that position. The actions output by
each approach are translated into a goal position used as input to this goal-reaching policy. We
initialize each policy with the corresponding model for 2D-craft and fine-tune it on ant-craft for 40K
episodes. Table 1 (rightmost column) shows the results. Our approach significantly outperforms the
non-program-guided baselines, both in terms of fraction of tasks solved and time taken to solve them.
This demonstrates that our approach is also effective on tasks involving continuous control under a
transfer learning setup.

7 Conclusion

We propose an approach that automatically synthesizes programs to guide reinforcement learning
for complex long-horizon tasks. Our model predictive program synthesis (MPPS) approach handles
partially observed environments by leveraging an approach inspired by world models, where it
learns a generative model over the remainder of the world conditioned on the observations, and then
synthesizes a guiding program that accounts for the uncertainty in this model. Our experiments
demonstrate that MPPS significantly outperforms non-program-guided approaches, while performing
comparably to an oracle given a ground truth guiding program. Our results highlight that MPPS can
deliver the benefits of program-guided reinforcement learning without requiring the user to provide a
guiding program for every new task.

One limitation of our approach is that, as with existing program guided approaches, the user must
provide a set of components for each domain. This process only needs to be completed once for each
domain since the components can be reused across tasks; nevertheless, automatically inferring these
components is an important direction for future work. Finally, we do not foresee any negative societal
impacts or ethical concerns for our work (outside of generic risks in improving robotics capabilities).
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A Components for Environments

A.1 Components for the Craft Environment

In this section, we describe the components (i.e., logical formulae encoding pre/post-conditions for
each option) that we use for the craft environment. First, recall that the domain-specific language that
encodes the set of components for the craft environment is

C := get R | use T | use W

R := wood | iron | grass | gold | gem
T := bridge | axe | ladder
W := factory | workbench | toolshed

Also, the set of possible artifacts (objects that can be made in some workshop using resources or
other artifacts) in the craft environment is

A = { bridge, axe, plank, stick, ladder } .

We define the following features:

• Zone: z = i indicates the agent is in zone i

• Boundary: bi,j = b indicates how zones i and j are connected, where

b ∈ {connected,water, stone, not adjacent}

• Resource: ρi,r = n indicates that there are n units of resource r in zone i

• Workshop: ωi,r = b, where b ∈ {true, false}, indicates whether there exists a workshop r
in zone i

• Inventory: ιr = n indicates that there are n objects r (either a resource or an artifact) in
the agent’s inventory

We use z−, b−, ρ−, ω−, ι− and z+, b+, ρ+, ω+, ι+ to denote the initial state and the final state for a
component, respectively. Now, the logical formulae for each component are defined as follows.

(1) “get r” (for any resource r ∈ R). First, we have the following component telling the agent to
obtain a specific resource r:

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (ρ+j,r = ρ−j,r − 1) ∧ (ι+r = ι−r + 1) ∧ Q.

Here, Q refers to the conditions that the other fields of the abstract state stay the same—i.e.,

(b+ = b−) ∧ (ω+ = ω−) ∧ (ι+\r = ι−\r)

∧ (ρ+\(j,r) = ρ−\(j,r)),

where ι\r means all the other fields in ι except ιr, and similarly for ρ\(j,r). In particular Q addresses
the frame problem from classical planning.

(2) “use r” (for any workshop r ∈ W ). Next, we have a component telling the agent to use a
workshop to create an artifact. To do so, we introduce a set of auxiliary features to denote the number
of artifacts made in this component: mo = n indicates that n units of artifact o is made. The set of
artifacts that can be made at workshop r is denoted as Ar, and the number of units of ingredient q
needed to make 1 unit of artifact o is denoted as ko,q, where q ∈ R ∪A; note that {Ar} and {ko,q}
come from the rule of the game.
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Then, the logical formula for “use r” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected)

∧ (wj,r = true) ∧

(
∑

o∈Ar

mo ≥ 1

)

∧




∑

o/∈Ar

mo = 0





∧

(

∀q ∈ R, ι+q = ι−q −
∑

o∈Ar

ko,qmo

)

∧

(

∀q ∈ A, ι+q = ι−q −
∑

o∈Ar

ko,qmo +mq

)

∧

(

∀o ∈ Ar, ¬

(
∧

q

ι+q ≥ ko,q

))

∧ Q,

where

Q = (b+ = b−) ∧ (ω+ = ω−) ∧ (ρ+ = ρ−).

This formula reflects the game setting that when the agent uses a workshop, it will make artifacts
until the ingredients in the inventory are depleted.

(3) “use r” (r = bridge/axe/ladder). Next, we have the following component for telling the agent to
use a tool. The formula for this component encodes the logic of zone connectivity. In particular, it is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = water/stone)

∧ (b+i,j = connected) ∧ (ι+r = ι−r − 1)

∧
(

∀i′, j′, (b+i′,j′ = connected)⇒

(
(b−i′,j′ = connected) ∨ X

))

∧
(

∀i′, j′, (b+i′,j′ 6= connected)⇒ (b+i′,j′ = b−i′,j′)
)

∧ Q,

where

X = (b−i′,i = connected ∨ b−i′,j = connected)

∧ (b−j′,i = connected ∨ b−j′,j = connected)

Q = (ω+ = ω−) ∧ (ρ+ = ρ−) ∧ (ι+\r = ι−\r).

A.2 Components for Box World

In this section, we describe the components for the box world. They are all of the form “get k”, where
k ∈ K is a color in the set of possible colors in the box world. First, we define the following features:

• Box: bk1,k2
= n indicates that there are n boxes with key color k1 and lock color k2 in the

map

• Loose key: `k = b, where b ∈ {true, false}, indicates whether there exists a loose key of
color k in the map

• Agent’s key: ιk = b, where b ∈ {true, false}, indicates whether the agent holds a key of
color k

As in the craft environment, we use b−, `−, ι− and b+, `+, ι+ to denote the initial state and the final
state for a component, respectively. Since the configurations of the map in the box world can only
contain at most one loose key, we add a cardinality constraint Card(`) ≤ 1, where Card(·) counts the
number of features that are true.
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Then, the logical formula defining the component “get k” is

X ∨ Y,

where

X = `−k ∧ ι
+
k ∧ (Card(l+) = 0) ∧ (b+ = b−)

Y = (Card(ι−) = 1) ∧ ι+k ∧ ¬ι
−
k ∧ (l+ = l−)∧

(

∀k1 . ι
−
k1
⇒
(

(b+k,k1
= b−k,k1

− 1) ∧ (b+\(k,k1)
= b−\(k,k1)

)
))

In particular, X encodes the desired behavior when the agent picks up a loose key k, and Y encodes
the desired behavior when the agent unlocks a box to get key k.

B Experimental Details

B.1 Benchmarks

2D-craft. In this domain, a map is a 10× 10 grid, where each grid cell is either empty or contains a
resource (e.g., wood), obstacle (e.g., water), or workshop. The agent can only observe cells within the
distance of 2 units. Since the environment is static, any previously observed cells remain visible. We
follow the same approach as in prior work [3] to encode and preprocess the observations: each grid
cell is first encoded using a one-hot encoding representing its content (with an entry for unobserved
cells); then the preprocessing step extracts the 5× 5 grid around the current position of the agent as
the fine-scale features, and also an aggregated 5× 5 grid of coarse-scale features which is aggregated
over a 25× 25 region from the original map (after padding) via max pooling. The flattened version
of these features are the inputs to the policy networks in our approach and the baselines. More details
can be found in [3] and its code repository. The test set we use contains tasks with 10 types of goals:
get wood, get iron, get grass, get gold, get gem, build plank, build stick, build bridge, build axe, and
build ladder. To make the test set more challenging, we include more (15 tasks) from the two hardest
goals: get gold and get gem. These goals involve potentially longer horizons to achieve. The rest
of the goals are in equal proportion. All our results are averaged over the test set (averaged across
different types of goals). This setup follows prior work [3, 62].

For the MLP model architectures, we follow the prior work that originally introduced 2D-craft [3]; in
particular, we adopt their model architecture for the actor and critic networks in both our approach
and the baselines. We train our hallucinator to operate on state features (e.g. the counts of gems); it
takes the state features of the observation as input and predicts the state features of the full map.

Box-world. In this domain, a map is a 12×12 grid with locks and boxes. The agent can only observe
cells within the distance of 3 units. As in 2D-craft, since the environment is static, any previously
observed cells remain visible. For encoding the observations, each grid cell is encoded using a
one-hot encoding representing its content (with an entry for unobserved cells). Following [76], we
use a one-layer CNN with 32 kernels of size 3× 3 to preprocess the map across all approaches before
feeding into the policy networks. The test set contains 40 tasks with the number of boxes in the path
to the goal varying between 1 to 4; these difficulty levels are in equal proportion.

Ant-craft. This domain is the same as 2D-craft, except that the agent is replaced with a MuJoCo
ant [53], a simulated four-legged robot. We consider a simplified setup where we only model the
movements of the ant; the ant directly picks up resources, use tools, and use workshops when it is at
the appropriate grid cell (e.g., we do not model the mechanics of grabbing).

B.2 Training

We train our models on an NVIDIA GeForce GTX 1080 Ti GPU. The actor-critic training of our
approach takes around a day on 2D-craft (400K episodes), 12 hours on box-world (200K episodes),
and a day for fine-tuning ant-craft (40K episodes). We use the Adam optimizer [45] with a learning
rate of 0.002. We use a batch size of 10 episodes.

B.3 Ablations

Here, we provide more detail on the two ablations without a learned hallucinator.
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Optimistic synthesizer. The optimistic synthesizer considers the unobserved parts of the world to be
in any possible configuration. If a program can achieve the goal under any one of these configurations,
this program is considered to be correct. The optimistic synthesizer chooses the shortest program
considered to be correct in this optimistic sense. For example, if the goal of the task is “get gem”, and
there is some unobserved grid cells in the current zone, then an optimistic synthesizer will always
synthesize the simplest program “get gem”. This baseline also demonstrates the importance of using
a hallucinator, instead of a heuristic such as pure optimism.

Random hallucinator. The random hallucinator randomly predicts the configuration of the unob-
served parts of the world. In our experiments, the hallucinator directly predicts the abstract state
features, so the random hallucinator simply predicts random values for each entry of the state features
(e.g., number of wood in zone 1) under the condition that it does not conflict with existing observa-
tions (e.g., predicting number of wood in zone 1 to be 1 when there are already 2 woods observed in
zone 1). The purpose of this ablation is to demonstrate the importance of using a learned hallucinator.

C Additional Related Work

Program synthesis. There has been a long line of work on program synthesis, which targets the
problem of how to automatically synthesize a program that satisfies a given specification [55, 58,
28, 73, 31]. More broadly, recent work has explored learning neural network models to predict the
program [17, 10, 14, 13, 5], as well as using neural models to guide synthesis [44, 54, 78, 7, 23,
21, 15, 51, 22]. There has also been work leveraging program synthesis to improve performance in
image and natural language domains [19, 20, 68, 75, 65, 35, 12]. In contrast, our work uses program
synthesis to guide reinforcement learning.

Task and motion planning (TAMP). TAMP is a hierarchical planning approach that uses high-level
task planning and low-level motion planning [42, 26]. TAMP by itself does not handle partial
observability; recent work has proposed extensions to address this challenge. For instance, [52]
learns a full symbolic program to handle all possible cases—this program tends to be very complex
(with many branches) and hence hard to learn. In contrast, our approach learns a simple straight
line program that is most likely to solve the task and then replans if needed. Furthermore, [52] only
handles discrete partial observations, whereas our approach does not have this restriction. Next, [43]
performs planning in the belief space, which is more similar to our strategy. However, they make
the significantly stronger assumption that a structured representation of belief space is available; in
particular, they assume a probability distribution over the abstract state space is provided. In general,
such a distribution can be difficult to obtain—most deep generative models are unable to explicitly
provide the distribution over abstract states; instead, they provide either samples (e.g., GANs and
VAEs) or probabilities of given states (e.g., normalizing flows; VAEs can provide a lower bound). As
a consequence, it would be difficult to apply this approach to our environments.

D Additional Analysis

D.1 Stand-alone evaluations

Hallucinator. We perform additional experiments that measure the prediction accuracy of our trained
hallucinator for 2D-craft. We measure accuracy in two ways. The first is the percentage of cases
where the predicted state features match the ground truth state features in every entry of the state
feature (e.g. the number of zones is an entry, the number of wood in zone 1 is an entry). We call this
the “whole” accuracy. The second is the percentage of entries that are correctly predicted, treating
each entry of the state feature separately. We call this the “individual” accuracy. We measure accuracy
on the test set at different number of steps into the episode. The results are shown in Table 3. As
can be seen, the learned hallucinator can correctly predict many entries of the state features, but
rarely predicts the whole state features perfectly. This result is due to the intrinsic randomness in the
distribution P (s | o). Note that accuracy increases with the number of steps into the episodes since
the agent has explored more of the map later in the episodes.

Executor. We measure the success rate of the learned executor in our approach at achieving a given
component. We evaluate on the test set of 2D-craft environment, focusing on components from the
oracle programs. The success rate is 93.8% (so the failure rate is 6.2%). The most common failure
cases are that the agent gets stuck in some local region of the map. Note that since the program for
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Table 4: Performance on the test set for the non-deterministic version of 2D-craft

Avg. reward Avg. finish step

End-to-end 0.22 (0.02) 83.3 (1.8)
World models 0.20 (0.01) 83.6 (0.7)

Ours 0.47 (0.03) 73.1 (1.2)
Oracle 0.50 (0.03) 69.9 (1.6)

(a) (b) (c) (d)

Figure 8: Example behavior of our policy in a task with the goal of getting gem. (a) The start state.
The agent initially hallucinates that there is a gem in the same zone, thus starts with a simple program
“get gem”. (b) After several steps, the agent observes a grass and a toolshed. Hallucinating based on
these new observations, the agent synthesizes a new program that builds a ladder to get gem (which
requires grass and toolshed). (c) After several more steps, the agent observes some water and iron. It
re-synthesizes a new program that builds a bridge to cross water. This is a correct program for this
task. (d) The final state. The agent executes the program and successfully get the gem.

(a) (b)

Figure 9: Example behavior of our policy in a task with the goal of getting gold. (a) The start state.
By hallucinating based on the current observations, the agent correctly synthesizes a program that
builds and uses a bridge to get to the other zone and get gold. (b) The final state.

(a) (b) (c)

Figure 10: Example behavior of our policy in a task with the goal of getting gold. (a) The start state.
Based on its hallucinations, the agent synthesizes a program that builds and uses a ladder to get a gold
in the other zone. However, there is not enough resources and facilities to make a ladder in this map.
(b) The intermediate state when the agent re-synthesizes a new program. With more observations, the
agent changes the program to building and using an axe instead, which is a feasible solution in this
map. (c) The final state.
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(a) (b) (c) (d)

Figure 11: Example behavior of our policy in a task with the goal of getting gem. (a) The start state.
The agent starts with a simple program “get gem”. (b) After several steps, the agent observes a grass
and a wood. Hallucinating based on these new observations, the agent synthesizes a new program
that builds a ladder to get gem (which requires grass and wood). (c) During its search for workbench,
the agent observes all the resources for building an axe. Therefore, it re-synthesizes a new program
that builds a axe to cross the stone boundary. This is a correct program for this task. (d) The final
state. The agent executes the program and successfully get the gem.
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