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Abstract

Many reinforcement learning (RL) problems in practice are offline, learning purely
from observational data. A key challenge is how to ensure the learned policy
is safe, which requires quantifying the risk associated with different actions. In
the online setting, distributional RL algorithms do so by learning the distribution
over returns (i.e., cumulative rewards) instead of the expected return; beyond
quantifying risk, they have also been shown to learn better representations for
planning. We propose Conservative Offline Distributional Actor Critic (CODAC),
an offline RL algorithm suitable for both risk-neutral and risk-averse domains.
CODAC adapts distributional RL to the offline setting by penalizing the predicted
quantiles of the return for out-of-distribution actions. We prove that CODAC
learns a conservative return distribution—in particular, for finite MDPs, CODAC
converges to an uniform lower bound on the quantiles of the return distribution;
our proof relies on a novel analysis of the distributional Bellman operator. In
our experiments, on two challenging robot navigation tasks, CODAC successfully
learns risk-averse policies using offline data collected purely from risk-neutral
agents. Furthermore, CODAC is state-of-the-art on the D4RL MuJoCo benchmark
in terms of both expected and risk-sensitive performance. Code is available at:
https://github.com/JasonMa2016/CODAC

1 Introduction

In many applications of reinforcement learning, actively gathering data through interactions with
the environment can be risky and unsafe. Offline (or batch) reinforcement learning (RL) avoids this
problem by learning a policy solely from historical data (called observational data) [9, 22, 23].

A shortcoming of most existing approaches to offline RL [11, 46, 20, 21, 48, 18] is that they are
designed to maximize the expected value of the cumulative reward (which we call the return) of
the policy. As a consequence, they are unable to quantify risk and ensure that the learned policy
acts in a safe way. In the online setting, there has been recent work on distributional RL algorithms
[7, 6, 27, 38, 17], which instead learn the full distribution over future returns. They can use this
distribution to plan in a way that avoids taking risky, unsafe actions. Furthermore, when coupled with
deep neural network function approximation, they can learn better state representations due to the
richer distributional learning signal [4, 26], enabling them to outperform traditional RL algorithms
even on the risk-neutral, expected return objective [4, 7, 6, 47, 14].

We propose Conservative Offline Distributional Actor-Critic (CODAC), which adapts distributional
RL to the offline setting. A key challenge in offline RL is accounting for high uncertainty on
out-of-distribution (OOD) state-action pairs for which observational data is limited [23, 20]; the
value estimates for these state-action pairs are intrinsically high variance, and may be exploited by
the policy without correction due to the lack of online data gathering and feedback. We build on
conservative (Q-learning [21], which penalizes ) values for OOD state-action pairs to ensure that
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the learned @-function lower bounds the true @-function. Analogously, CODAC uses a penalty
to ensure that the quantiles of the learned return distribution lower bound those of the true return
distribution. Crucially, the lower bound is data-driven and selectively penalizes the quantile estimates
of state-actions that are less frequent in the offline dataset; see Figure 1.

We prove that for finite MDPs, CODAC converges to an es- CODAC
timate of the return distribution whose quantiles uniformly » p(als)

lower bound the quantiles of the true return distribution; Z7(s ﬂ)(T)

in addition, this data-driven lower bound is tight up to
the approximation error in estimating the quantiles using
finite data. Thus, CODAC obtains a uniform lower bound
on all integrations of the quantiles, including the stan-
dard RL objective of expected return, the risk-sensitive
conditional-value-at-risk (CVaR) objective [35], as well
as many other risk-sensitive objectives. We additionally
prove that CODAC expands the gap in quantile estimates T
between in-distribution and OOD actions, thus avoiding
overconfidence when extrapolating to OOD actions [11].

Figure 1: CODAC obtains conservative
estimates of the true return quantiles
Our theoretical guarantees rely on novel techniques for (black); it penalizes out-of-distribution
analyzing the distributional Bellman operator, which is actions, y(a | s), more heavily than in-
challenging since it acts on the infinite-dimensional func- distribution actions, 7 5 (a]s).

tion space of return distributions (whereas the traditional

Bellman operator acts on a finite-dimensional vector space). We provide several novel results that
may be of independent interest; for instance, our techniques can be used to bound the error of the
fixed-point of the empirical distributional Bellman operator; see Appendix A.6.

Finally, to obtain a practical algorithm, CODAC builds on existing distributional RL algorithms by
integrating conservative return distribution estimation into a quantile-based actor-critic framework.

In our experiments, we demonstrate the effectiveness of CODAC on both risk-sensitive and risk-
neutral RL. First, on two novel risk-sensitive robot navigation tasks, we show that CODAC suc-
cessfully learns risk-averse policies using offline datasets collected purely from a risk-neutral agent,
a challenging task that all our baselines fail to solve. Next, on the D4RL Mujoco suite [10], a
popular offline RL benchmark, we show that CODAC achieves state-of-art results on both the original
risk-neutral version as well a modified risk-sensitive version [43]. Finally, we empirically show that
CODAC computes quantile lower-bounds and gap-expanded quantiles even on high-dimensional
continuous-control problems, validating our key theoretical insights into the effectiveness of CODAC.

Related work. There has been growing interest in offline (or batch) RL [22, 23]. The key challenge
in offline RL is to avoid overestimating the value of out-of-distribution (OOD) actions rarely taken in
the observational dataset [40, 44, 20]. The problem is that policy learning optimizes against the value
estimates; thus, even if the estimation error is i.i.d., policy optimization biases towards taking actions
with high variance value estimates, since some of these values will be large by random chance. In
risk-sensitive or safety-critical settings, these actions are exactly the ones that should be avoided.

One solution is to constrain the learned policy to take actions similar to the ones in the dataset (similar
to imitation learning)—e.g., by performing support matching [46] or distributional matching [20, 12].
However, these approaches tend to perform poorly when data is gathered from suboptimal policies.
An alternative is to regularize the ()-function estimates to be conservative at OOD actions [21, 48, 18].
CODAC builds on these approaches, but obtains conservative estimates of all quantile values of
the return distribution rather than just the expected return. Traditionally, the literature on off-policy
evaluation (OPE) [32, 16, 39, 25, 37] aims to estimate the expected return of a policy using pre-
collected offline data; CODAC proposes an OPE procedure amenable to all objectives that can be
expressed as integrals of the return quantiles. Consequently, our fine-grained approach not only
enables risk-sensitive policy learning, but also improves performance on risk-neutral domains.

In particular, CODAC builds on recent works on distributional RL [4, 7, 6, 47], which parameterize
and estimate the entire return distribution instead of just a point estimate of the expected return
(i.e., the @Q-function) [29, 28]. Distributional RL algorithms have been shown to achieve state-of-art
performance on Atari and continuous control domains [14, 3]; intuitively, they provide richer training
signals that stabilize value network training [4]. Existing distributional RL algorithms parameterize



the policy return distribution in many different ways, including canonical return atoms [4], the
expectiles [36], the moments [31], and the quantiles [7, 6, 47]. CODAC builds on the quantile
approach due to its suitability for risk-sensitive policy optimization. The quantile representation
provides an unified framework for optimizing different objectives of interest [7], such as the risk-
neutral expected return, and a family of risk-sensitive objectives representable by the quantiles;
this family includes, for example, the conditional-value-at-risk (CVaR) return [35, 5, 38, 17], the
Wang measure [45], and the cumulative probability weighting (CPW) metric [42]. Recent work
has provided theoretical guarantees on learning CVaR policies [17]; however, their approach cannot
provide bounds on the quantiles of the estimated return distribution, which is significantly more
challenging since there is no closed-form expression for the Bellman update on the return quantiles.

Finally, there has been some recent work adapting distributional RL to the offline setting [1, 43].
First, REM [1] builds on QR-DQN [7], an online distributional RL algorithm; however, REM can
be applied to regular DQN [29] and does not directly utilize the distributional aspect of QR-DQN.
The closest work to ours is ORAAC [43], which uses distributional RL to learn a CVaR policy in
the offline setting. ORAAC uses imitation learning to avoid OOD actions and stay close to the data
distribution. As discussed above, imitation learning strategies can perform poorly unless the dataset
comes from an optimal policy; in our experiments, we find that CODAC significantly outperforms
ORAAC. Furthermore, unlike ORAAC, we provide theoretical guarantees on our approach.

2 Background

Offline RL. Consider a Markov Decision Process (MDP) [33] (S, A, P, R,~y), where S is the
state space, A is the action space, P(s’ | s,a) is the transition distribution, R(r | s,a) is the
reward distribution, and v € (0,1) is the discount factor, and consider a stochastic policy 7(a |
s) : 8§ = A(A). A rollout using 7 from state s using initial action a is the random sequence
¢ = ((s0,a0,70), (51,01,71),...) such that sg = s, agp = a, az ~ w(- | s¢) (for t > 0), ry ~
R(- | st,at), and sgy1 ~ P(- | s¢,a¢); we denote the distribution over rollouts by D™ (¢ | s,a).
The Q-function Q™ : S x A — R of 7 is its expected discounted cumulative return Q7 (s, a) =
Ep~(¢ls,a) [>-i20 7 re]. Assuming the rewards satisfy 7, € [Rumin, Rmax), then we have Q™ (s, a) €
[Vmin; Vmax} - [Rmin/(]- - 7)7 Rmax/(l — ’}/)}

A standard goal of reinforcement learning (RL), which we call risk-neutral RL, is to learn the optimal
policy 7* such that Q™ (s,a) > Q" (s,a) forall s € S,a € A and all 7.

In offline RL, the learning algorithm only has access to a fixed dataset D := {(s,a,r, s’)}, where

r~ R(-| s,a)and s’ ~ P(- | s,a). The goal is to learn the optimal policy without any interaction

with the environment. Though we do not assume that D necessarily comes from a single behavior
o ZS/_’G/GD 1(s'=s,a’=a)

policy, we define the empirical behavior policy to be 7g(a | s) = 5 T7=sy - With slight
s'ep H\S'=S

abuse of notation, we write (s, a,r, s’) ~ D to denote a uniformly random sample from the dataset.
Also, in this paper, we broadly refer to actions not drawn from 7z(- | s) (i.e., low probability density)
as out-of-distribution (OOD).

Fitted Q-evaluation (FQE) [9, 34] uses Q-learning for offline RL, which leverages the fact that
Q™ = T™QT is the unique fixed point of the Bellman operator 77 : RISIIAI — RISIIAI defined by

TTFQ(Sv (l) = ER(Hs,a) [T] + - IEP"(s/,a/\s,a) [Q(S/a a/)]v

where P™(s',a’|s,a) = P(s' | s,a)m(a’ | ). In the offline setting, we do not have access to 77
instead, FQE uses an approximation 7™ obtained by replacing R and P in 7™ with estimates R and
P based on D. Then, we can estimate Q™ by starting from an arbitrary )° and iteratively computing

QM = argmin £(Q,T™Q%) where L£(Q,Q') = Ep(s.) [(Q(s,a) — Q'(s,a))?] .
Q
Assuming we search over the space of all possible @ (i.e., do not use function approximation), then
the minimizer is Q¥ = T7Q%, so Q¥ = (T™)kQC. If T™ = T™, then lim;,_, o, Q" = Q™.

Distributional RL. In distributional RL, the goal is to learn the distribution of the discounted
cumulative rewards (i.e., returns) [4]. Given a policy 7, we denote its return distribution as the
random variable Z™ (s, a) = > .-, v'r¢, which is a function of a random rollout £ ~ D™ (- | s,a);



note that Z™ includes three sources of randomness: (1) the reward R(- | s,a), (2) the transition
P(- | s,a), and (3) the policy 7 (- | s). Also, note that Q" (s,a) = Epr(¢|s,a)[Z7 (s, a)]. Analogous
to @-function Bellman operator, the distributional Bellman operator for 7 is

T"Z(s,a) 2, +7Z(s',a’) where r~R(-]|s,a), s ~P(-|s,a), d ~m(-]s), 1

where 2 indicates equality in distribution. As with Q™, Z™ is the unique fixed point of 7™ in Eq. 1.

Next, let Fz(s,0)(®) : [Vinin, Vinax] — [0, 1] be the cumulative density function (CDF) for return
distribution Z(s,a), and Fg(, q) be the CDF of R(- | s,a) Then, we have the following equality,
which captures how the distributional Bellman operator 7™ operates on the CDF Fy, 4) [17]:

r—7T
FT‘I\'Z(S7a)(x) = ZPW(S/7QI | 57a)/FZ(S/’a/) ( 5 ) dFR(S7a)(T)' )

s’,a’

Let X and Y be two random variables. Then, the quantile function (i.e., inverse CDF) F'y L of
X is Fy!(7) == inf{z € R | 7 < Fx(x)}, and the p-Wasserstein distance between X and Y is
W,(X,Y) = (fol\Fgl(T) — Fx'(7)|Pdr)'/P. Then, the distributional Bellman operator 77 is a
~-contraction in the W), [4]—i.e., letting d,(Z1, Z2) = sup, ,Wp(Z1(s,a), Z2(s, a)) be the largest
Wasserstein distance over (s,a), and Z2 = {Z : S x A — P(R) | V(s,a) . E[|Z(s,a)|P] < oo} be
the space of distributions over R with bounded p-th moment, then

ch(T”Zl, TTFZQ) < ’yd},(Zh ZQ) (VZl, Zy € Z) 3)
As aresult, Z™ may be obtained by iteratively applying 7™ to an initial distribution Z.

As before, in the offline setting, we can approximate 7™ by T using D. Then, we can compute Z™
(represented as Fz_(ls a)s S€€ below) by starting from an arbitrary Z, and iteratively computing

R+l argmin £, (Z, T™Z*)  where L,(Z,2") =Eps,a) Wp(Z(s,a), Z'(s,a)?].  (4)
z

We call this procedure fitted distributional evaluation (FDE).

One distributional RL algorithmic framework is quantile-based distributional RL [7, 6, 47, 27, 38, 43],

where the return distribution Z is represented by its quantile function F,, (15 o) (1) :]0,1] — R. Given

a distribution g(7) over [0, 1], the distorted expectation of Z is ®4(Z(s,a)) = fol FZ_(ls’a)(T)g(T)dT,
and the corresponding policy is 7, (s) = arg max, ®4(Z(s,a)) [7]. If g = Uniform([0, 1]), then
Q™ (s,a) = ®4(Z(s,a)); alternatively, g = Uniform([0,&]) corresponds to the CVaR [35, 5, 6]
objective, where only the bottom &-percentile of the return is considered. Additional risk-sensitive
objectives are also compatible. For example, CPW [42] amounts to g(7) = 77 /(7% + (1 — 7)8 )%5,
and Wang [45] has g(7) = Fx(F/' (1) + ), where F)y is the standard Gaussian CDF.

A drawback of FDE is that it does not account for estimation error, especially for pairs (s, a) that rarely
appear in the given dataset D; thus, Zk (s, a) may be an overestimate of Z% (s, a) [12, 20, 21], even
in distributional RL (since the learned distribution does not include randomness in the dataset) [14, 3].
Importantly, since we act by optimizing with respect to Z k(s,a), the optimization algorithm will
exploit these errors, biasing towards actions with higher uncertainty, which is the opposite of what is
desired. In Section 3, we propose and analyze a penalty designed to avoid this issue.

3 Conservative offline distributional policy evaluation

We describe our algorithm for computing a conservative estimate of Z™ (s, a), and provide theoretical
guarantees for finite MDPs. In particular, we modify Eq. 4 to include a penalty term:

Zk+ = argzmina “Ey(r),D(s,0) [C0(8,0a) - sz(l,b,’a) (T)] + L,(2,T™Z%) 5)

for some state-action dependent scale factor cg; here, U = Uniform([0, 1]). This objective adapts the
conservative penalty in prior work [21] to the distributional RL setting; in particular, the first term in
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Figure 2: Overview of our theoretical results.

the objective is a penalty that aims to shrink the quantile values for out-of-distribution (OOD) actions
compared to those of in-distribution actions; intuitively, ¢ (s, a) should be larger for OOD actions.
For now, we let ¢y be arbitrary; we describe our choice in Section 4. o € R+ is a hyperparameter
controlling the magnitude of the penalty term with respect to the usual FDE objective. We call this
iterative algorithm conservative distribution evaluation (CDE).

Next, we analyze theoretical properties of CDE in the setting of finite MDPs; Figure 2 overviews these
results. First, we prove that CDE iteratively obtains conservative quantile estimates (Lemma 3.4)
and defines a contraction operator on return distributions (Lemma 3.5). Then, our main result
(Theorem 3.6) is that CDE converges to a fixed point Z™ whose quantile function lower bounds that
of the true returns Z™. We also prove that CDE is gap-expanding (Theorem 3.8)—i.e., it is more
conservative for actions that are rare in D. These results translate to RL objectives computed by
integrating the return quantiles, including expected and CVaR returns (Corollaries 3.7 & 3.9).

We begin by describing our assumptions on the MDP and dataset. First, we assume that our dataset
D has nonzero coverage of all actions for states in the dataset [23, 21].

Assumption 3.1. Forall s € D and a € A, we have 7ig(a | s) > 0.

This assumption is only needed by our theoretical analysis to avoid division-by-zero and ensure that
all estimates are well-defined; alternatively, we could assign a very low value 7g(a | s) := € for all
actions not visited at state s in the offline dataset and renormalize 7z (a | s) accordingly. Next, we
impose regularity conditions on the fixed point Z™ of the distributional Bellman operator 7 ™.

Assumption 3.2. Forall s € Sand a € A, Fiz=(, 4) is smooth. Furthermore, there exists ( € Rq
such that for all s € S and @ € A, Fiz= (5 q) is (-strongly monotone—i.e., we have F, ,r(s’a)(m) > (.

The smoothness assumption ensures that the pth moments of Z™ (s, a) are bounded (since Z™ €
[Vinin, Vinax] 18 also bounded), which in turn ensures that Z™ € Z. The monotonicity assumption is
needed to ensure convergence of F‘,}(S a)° Next, we assume that the search space in (5) includes all
possible functions (i.e., no function approximation).

Assumption 3.3. The search space of the minimum over Z in (5) is over all smooth functions Fz, ,)

(for all s € S and a € A) with support on [Viin, Vinax)-

This assumption is required for us to analytically characterize the solution Z%+1 of the CDE objective.
Finally, we also assume p > 1 (i.e., we use the p-Wasserstein distance for some p > 1).

Now, we describe our key results. Our first result characterizes the CDE iterates Z**1; importantly,
if co(s,a) > 0, then these iterates encode successively more conservative quantile estimates.

Lemma3.4. Foralls € D,a€ A k €N, and 7 € [0, 1], we have

Fyl o) = F2lp (1) = cl(s,0) where (s, a) = lap~teo(s, )] /@~ sign(co(s, 0)).
We give a proof in Appendix A.l; roughly speaking, it follows by setting the gradient of (5) equal to
zero, relying on results from the calculus of variations to handle the fact that F', (ls a) is a function.

Next, we define the CDE operator T™ = O.T™ to be the composition of 7™ with the shift operator

O, : Z — Z defined by F(;clz(s o) (1) = Fz_(ls a)(r) —¢(s, a); thus, Lemma 3.4 says Z5+1 = 77 ZF,

Now, we show that 7™ is a contraction in the maximum Wasserstein distance dy,.



Lemma 3.5. 7" isa y-contraction in cip, so Zk converges to a unique fixed point A
The first part follows since T™isa ~-contraction in Jp [4, 7], and O, is a non-expansion in d,, so by
composition, 7™ is a y-contraction in d,,; the second follows by the Banach fixed point theorem.

Now, our first main theorem says that the fixed point Z™ of 7™ is a conservative estimate of Z™ at all
quantiles 7—i.e., CDE computes quantile estimates that lower bound the quantiles of the true return;
furthermore, it says that this lower bound is tight.

Theorem 3.6. For any 6 € R+, co(s,a) > 0, with probability at least 1 — 6,
(1) 4+ (1= 2) min{els'. ') = Al )},

(1) +@=y" {g}ff{C(S’, a’) = A(s',d)}

-1 —1
FZ"(s,a) (T) = FZ"(s,a

-1 1
FZW(S#I) (T) < FZ“(S,&)

foralls € D,a € A and 7 € |0,1], where A(s,a) = % % log %. Furthermore, for o
. . -A(s,a)P~ 1 - —

sufficiently large (i.e.,a > maxg o{ E= CS(S’()I)—}), we have FZWl(s,a) (1) > Féﬂl(s,a) (7).

We give a proof in Appendix A.2. The first inequality says that the quantile estimates computed by

CDE form a lower bound on the true quantiles; this bound is not vacuous as long as « satisfies the

given condition. Furthermore, the second inequality states that this lower bound is tight.

Many RL objectives (e.g., expected or CVaR return) are distorted expectations (i.e, integrals of the
return quantiles). We can extend Theorem 3.6 to obtain conservative estimates for all such objectives:
Corollary 3.7. For any § € Ry, co(s,a) > 0, a sufficiently large, and g(7), with probability at
least1 — 6, forall s € D, a € A, we have ®,(Z7(s,a)) > ®4(Z7 (s, a)).

Choosing g = Uniform([0, 1]) gives Q7 (s,a) > Q™ (s, a)—i.e., a lower bound on the Q-function.
CQL [21] obtains a similar lower-bound; thus, CDE generalizes CQL to other objectives—e.g., it can
be used in conjunction with any distorted expectation objective (e.g., CVaR, Wang, CPW, etc.) for
risk-sensitive offline RL.

Note that Theorem 3.6 does not preclude the possibility that the lower bounds are more conservative
for good actions (i.e., ones for which 75(a | s) is larger). We prove that under the choice'

plals) —7glals)
Ts(a|s)

(6)

co(s,a) =

for some u(a | s) # #g(a | s), then T™ is gap-expanding—i.e., the difference in quantile values
between in-distribution and out-of-distribution actions is larger under 7 than under 7 ™. Intuitively,
co(s, a) is large for actions a with higher probability under y than under 73 (i.e., an OOD action).

Theorem 3.8. For p = 2, « sufficiently large, and cq as in (6), for all s € S and T € [0, 1],

Eﬁ'ﬁ(a\s)F”_l (T) - IE/J(a|s)F‘”_1 (T) > ]Efrg(a\s)F_wl(s’a)(T) - Eu(a\s)F_vrl(s’a)(T)'

(s,a) ™(s,a)

As before, the gap-expansion property implies gap-expansion of integrals of the quantiles—i.e.:

Corollary 3.9. Forp = 2, « sufficiently large, cq as in (6), and any g(7), for all s € S,

]E‘frg(a\s)q)g(zﬂ(sr a)) - Eu(a\s)q)g(zw(sa (1)) > ]Efrﬁ(a\s)(bg(zw(sa a)) - Eu(a|s)q)g(z7r(sa CL))

Together, Corollaries 3.7 & 3.9 say that CDE provides conservative lower bounds on the return
quantiles while being less conservative for in-distribution actions.

Finally, we briefly discuss the condition on « in Theorems 3.6 & 3.8. In general,  can be taken to be
small as long as A(s,a) is small for all s € S and a € A, which in turn holds as long as n(s, a) is
large—i.e., the dataset D has wide coverage.

'We may have co(s,a) < 0; we can use ch(s,a) = co(s,a) + (1 — ming 4 co(s, a)) to avoid this issue.
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Figure 3: 2D visualization of evaluation trajectories on the Risky PointMass environment. The
red region is risky, the solid blue circles indicate initial states, and the blue lines are trajectories.
CODAC-C is the only algorithm that successfully avoids the risky region.

4 Conservative offline distributional actor critic
Next, we incorporate the distributional evaluation algorithm in Section 3 into an actor-critic framework.

Following [21], we propose a min-max objective where the inner loop chooses the current policy to
maximize the CDE objective, and the outer loop minimizes the CDE objective for this policy:

N . . _ A~ ﬂ_k ~
28 = arg min max {04 Eur) []EMs),u(a\s)Fzé,a) (T) = Ep(s.a) F7(s.0) (7)} +L,(2,T Z’“)}
where we have used ¢ as in (6). We can interpret x4 as an actor policy, the first term as the objective

for 1, and the overall objective as an actor-critic algorithm [8]. In this framework, a natural choice
for p is a maximum entropy policy p(a | s) o exp(Q(s, a)) [49]. Then, our objective becomes

Zk+1

. _ _ A~ ﬂ_k A
= arg nin {04 Eur) |Ep108 ) exp(Fy (0 (7)) = Enisa) Fyly ) (7) | +£p(2,T Zk)} :
a
where U = Uniform([0, 1]); we provide a derivation in Appendix B. We call this strategy con-
servative offline distributional actor critic (CODAC). To optimize over Z, we represent the quan-

tile function as a DNN Gy(7;s,a) ~ F ng (7). The main challenge is optimizing the term

L(Z,T™ZF) = W,(Z,T™Z*%)P. We do so using distributional temporal-differences (TD) [6]. For
a sample (s,a,r,s’) ~ Dand a’ ~ 7(- | s') and random quantiles 7, 7’ ~ U, we have

L(Z,T"Z*) ~ L,.(5;7) where 6 =71+ yGy (78 ,d’) — Gy(7; 5, 0).
Here, ¢ is the distributional TD error, 6’ are the parameters of the target Q-network [30], and

T —1(5 < 0)|-62/(2x)  if|0]< &

Eﬁ(é; T) = {|T _ ]1(5 < 0)|.(|5|f,<;/2) otherwise . @

is the 7-Huber quantile regression loss at threshold « [15]; then, E¢; ()L, (d;7) is an unbiased
estimator of the Wasserstein distance that can be optimized using stochastic gradient descent
(SGD) [19]. With this strategy, our overall objective can be optimized using any off-policy actor-
critic method [24, 13, 11]; we use distributional soft actor-critic (DSAC) [27], which replaces the
Q@-network in SAC [13] with a quantile distributional critic network [7]. We provide the full CODAC
pseudocode in Algorithm 1 of Appendix B.

5 Experiments

We show that CODAC achieves state-of-the-art results on both risk-sensitive (Sections 5.1 &5.2) and
risk-neutral (Section 5.3) offline RL tasks, including our risky robot navigation and D4RL? [10]. We
also show that our lower bound (Theorem 3.6) and gap-expansion (Theorem 3.8) results approximately
hold in practice, (Section 5.4), validating our theory on CODAC’s effectiveness. We provide additional
details (e.g., environment descriptions, hyperparameters, and additional results) in Appendix C.

5.1 Risky robot navigation

>The D4RL dataset license is Apache License 2.0.



Table 1: Risky robot navigation quantitative evaluation. CODAC-C achieves the best performance
on most metrics and is the only method that learns risk-averse behavior. This table is reproduced with
standard deviations in Table 6 in Appendix C.

Algorithm Risky PointMass Risky Ant
Mean Median CVaRy; Violations | Mean Median CVaRg; Violations
DSAC (Online) -7.69 -3.82 -49.9 94 | -866.1  -833.3  -1422.7 2247
CODAC-C (Ours) | -6.05 -4.89 -14.73 0.0 | -456.0 -433.4 -686.6 347.8
CODAC-N (Ours) -8.60 -4.05 -51.96 108.3 | -432.7 -395.1 -847.1 936.0
ORAAC -10.67 -4.55 -64.12 138.7 | -788.1  -7953  -1247.2 1196
CQL -7.51 -4.18 -43.44 93.4 | -967.8 -858.5 -1887.3 1854.3

Tasks. We consider an Ant robot whose goal is to navigate from a
random initial state to the green circle as quickly as possible (see
Figure 4 for a visualization). Passing through the red circle triggers
a high cost with small probability, introducing risk. A risk-neutral
agent may pass through the red region, but a risk-aware agent should
not. We also consider a PointMass variant for illustrative purposes.

We construct an offline dataset that is the replay buffer of a risk-
neutral distributional SAC [27] agent. Intuitively, this choice ] ]
matches the practical goals of offline RL, where data is gathered Figure 4: Risky Ant.
from a diverse range of sources with no assumptions on their quality

and risk tolerance levels. [23] See Appendix C.1 for details on the environments and datasets.

Approaches. We consider two variants of CODAC: (i) CODAC-N, which maximizes the expected
return and (ii) CODAC-C, which optimizes the CVaR ; objective. We compare to Offline Risk-
Averse Actor Critic (ORAAC) [43], a state-of-the-art offline risk-averse RL algorithm that combines a
distributional critic with an imitation-learning based policy to optimize a risk-sensitive objective, and
to Conservative Q-Learning (CQL) [21], a state-of-art offline RL algorithm that is non-distributional.

Results. We evaluate each approach using 100 test episodes, reporting the mean, median, and
CVaR ; (i.e., average over bottom 10 episodes) returns, and the total number of violations (i.e., time
steps spent inside the risky region), all averaged over 5 random seeds. We also report the performance
of the online DSAC agent used to collect data. See Appendix C for details. Results are in Table 1.

Performance of CODAC. CODAC-C consistently outperforms the other approaches on the CVaRg 3
return, as well as the number of violations, demonstrating that CODAC-C is able to avoid risky actions.
It is also competitive in terms of mean return due to its high CVaR ; performance, but performs
slightly worse on median return, since it is not designed to optimize this objective. Remarkably, on
Risky PointMass, CODAC-C learns a safe policy that completely avoids the risky region (i.e., zero
violations), even though such behavior is absent in the dataset. In Appendix C.1, we also show that
CODAC can successfully optimize alternative risk-sensitive objectives such as Wang and CPW.

Comparison to ORAAC. While ORAAC also optimizes the CVaR objective, it uses imitation
learning to regularize the learned policy to stay close to the empirical behavior policy. However,
the dataset contains many sub-optimal trajectories generated early in training, and is furthermore
risk-neutral. Thus, imitating the behavioral policy encourages poor performance. In practice, a key
use of offline RL is to leverage large datasets available for training, and such datasets will rarely
consist of data from a single, high-quality behavioral policy. Our results demonstrate that CODAC is
significantly better suited to learned in these settings compared to ORAAC.

Comparison to CQL. On Risky PointMass, CQL learns a risky policy with poor tail-performance,
indicated by its high median performance but low CVaR ; performance. Interestingly, its mean
performance is also poor; intuitively, the mean is highly sensitive to outliers that may not be present in
the training dataset. On Risky Ant, possibly due to the added challenge of high-dimensionality, CQL
performs poorly on all metrics, failing to reach the goal and to avoid the risky region. As expected,
these results show that accounting for risk is necessary in risky environments.

Qualitative analysis. In Figure 3, we show the 100 evaluation rollouts from each policy on Risky
PointMass. As can be seen, CODAC-C extrapolates a safe policy that distances itself from the risky



Table 2: D4RL results. CODAC achieves the best overall performance in both risk-sensitive (Left)
and risk-neutral (Right) variants of the benchmark. These tables are reproduced with standard
deviations in Tables 7 & 9 in Appendix C.

i Medium Mixed Dataset BCQ MOPO CQL ORAAC | CODAC
Algorithm Mean CVaRy Mean CVaRy ‘ Q Q ‘

halfcheetah-random 22 354 354 135 34.6

5 CQL 332 -15.0 | 214.1 12.0 hopper-random 10.6 11.7 10.8 9.8 11.0

5§ ORAAC 3614 91.3 | 307.1 189 walker2d-random 4.9 136 70 32 18.7

2 CODAC-N 338 -41 347.7 149.2 -

O CODAC-C 335 27 396.4 238.5 halfcheetah-medium 40.7 423 44 .4 41.0 46.3
walker2d-medium 53.1 17.8 79.2 273 82.0

- CQL 877.9 693.0 | 189.2 -21.4 hopper-medium 54.5 280 580 1.48 70.8

2 ORAAC 1007.1 767.6 876.3 524.9 -

S CODAC-N | 993.7 9525 | 1483.9 1457.6 halfcheetah-mixed 38.2 531 462 30.0 44.1

T CODAC-C | 10140 9764 | 15512  1449.6 hopper-mixed 331 67.5 486 163 100.2
walker2d-mixed 15.0 39.0 267 28 332

= CQL 15243 1343.8 74.3 -64.0

‘:';3 ORAAC 1134.1 663.0 222.0 -69.6 halfcheetah-med-exp 64.7 63.3 62.4 24.0 70.4

% CODAC-N | 15373 1158.8 | 3587 106.4 walker2d-med-exp 57.5 446 987 28.2 106.0

= CODAC-C | 1120.8 902.3 | 450.0 261.4 hopper-med-exp 110.9 23.7 1110 18.2 112.0

region before proceeding to the goal; in contrast, all other agents traverse the risky region. For Ant,
we include plots of the trajectories of trained agents in Appendix C.1, and videos in the supplement.

5.2 Risk-sensitive D4RL

Tasks. Next, we consider stochastic D4RL [43]. The original D4RL benchmark [10] consists of
datasets collected by SAC agents of varying performance (Mixed, Medium, and Expert) on the Hopper,
Walker2d, and HalfCheetah MuJoCo environments [41]; stochastic D4RL relabels the rewards to
represent stochastic robot damage for behaviors such as unnatural gaits or high velocities; see
Appendix C.2. The Expert dataset consists of rollouts from a fixed SAC agent trained to convergence;
the Medium dataset is constructed the same way except the agent is trained to only achieve 50% of
the expert agent’s return. The Mixed dataset is the replay buffer of the Medium agent.

Results. In Table 2 (Left), we report the mean and CVaRy ; returns on test episodes from each
approach, averaged over 5 random seeds. We show results on the Expert dataset in Appendix
C.2; CODAC still achieves the strongest performance. As can be seen, CODAC-C and CODAC-N
outperform both CQL and ORAAC on most datasets. Surprisingly, CODAC-N is quite effective on
the CVaR 1 metric despite its risk-neutral objective; a likely explanation is that for these datasets,
mean and CVaR performance are highly correlated. Furthermore, we observe that directly optimizing
CVaR may lead to unstable training, potentially since CVaR estimates have higher variance. This
instability occurs for both CODAC-C and ORAAC—on Walker2d-Medium, they perform worse than
the risk-neutral algorithms. Overall, CODAC-C outperforms CODAC-N in terms of CVaRg ; on
about half of the datasets, and often improves mean performance as well. Next, while ORAAC is
generally effective on Medium datasets, it performs poorly on Mixed datasets; these results mirror the
ones in Section 5.1. Finally, CQL’s performance varies drastically across datasets; we hypothesize
that learning the full distribution helps stabilize training in CODAC. In Appendix C.2, we also
qualitatively analyze the behavior learned by CODAC compared to the baselines, demonstrating that
the better CVaR performance CODAC obtains indeed translates to safer locomotion behaviors.

5.3 Risk-neutral D4RL

Task. Next, we show that CODAC is effective even when the goal is to optimize the standard expected
return. To this end, we evaluate CODAC-N on the popular D4RL Mujoco benchmark [10].

Baselines. We compare to state-of-art algorithms benchmarked in [10] and [48], including Batch-
Constrained Q-Learning (BCQ), Model-Based Offline Policy Optimization (MOPO) [48], and CQL.
We also include ORAAC as an offline distributional RL baseline. We have omitted less competitive
baselines included in [10] from the main text; a full comparison is included in Appendix C.3.

Results. Results for non-distributional approaches are directly taken from [10]; for ORAAC and
CODAC, we evaluate them using 10 test episodes in the environment, averaged over 5 random seeds.
As shown in Table 2 (Right), CODAC achieves strong performance across all 12 datasets, obtaining
state-of-art results on 5 datasets (walker2d-random, hopper-medium, hopper-mixed, halfcheetah-
medium-expert, and walker2d-medium-expert), demonstrating that performance improvements from



distributional learning also apply in the offline setting. Note that CODAC’s advantage is not solely
due to distributional RL—ORAAC also uses distributional RL, but in most cases underperforms prior
state-of-the-art, These results suggest that CODAC’s use of a conservative penalty is critical for it to
achieve strong performance.

5.4 Analysis of Theoretical Insights

We perform additional ex- Table 3: Monte-Carlo estimate vs. critic prediction. The CODAC-
periments to validate that predicted expected and CVaR ; return is a lower bound on a MC
our theoretical insights in estimate of the true value.

Section 3 hold in practice,

3 _ ‘Walker2d-Medium ‘Walker2d-Mixed Walker2d-Medium-Expert
S?ggesggggaé ,t hey help exl Regular ‘ MC Return  Q-Estimate MC Return  Q-Estimate MC Return ~ Q-Estimate
plamn § empirica CODAC 240.2 55.7 127.1 97.6 370. 39.7
performance. CQL 2472 53.0 124.5 -45.2 369.7 116.4

ORAAC 2452 302.2 1182  7.70x10° 68.2 3222

Lower bound. We show

Walker2d-Medium ‘Walker2d-Mixed Walker2d-Medium-Expert

that in practice, CODAC ob- ~ Sthastic | yic cvar,,  Z-Estimate | MC CVaRo,, ~ Z-Estimate | MC CVaRo,,  Z-Estimate
tains conservative estimates CODAC ‘ 185.7 204.2 ‘ 85.6 59.9 265.3 -127.8

. . 367, 509 1.54x108 . 343,
of the Q and CVaR objec- _ORMC 2019 67.6 09  1.54x10 199.5 45

tives across different dataset

types (i.e., Medium vs. Mixed vs. Medium-Expert). Given an initial state sy, we obtain a Monte
Carlo (MC) estimate of @ and CVaR for (sg, 7(sg)) based on sampled rollouts from sg, and compare
them to the values predicted by the critic. In Table 3, we show results averaged over 10 random sg
and with 100 MC samples for each so. CODAC obtains conservative estimates for both ¢ and CVaR;
in contrast, ORAAC overestimates these values, especially on Mixed datasets, and CQL only obtains
conservative estimates for @), not CVaR.

Gap-EXpansion. Next, we  Table 4: Gap-expansion: CODAC expands the quantile gap and ob-
verify that CODAC’s quan-  tains higher returns than an ablation without the conservative penalty.

tile estimates expand their
in-di o 1 HalfCheetah-Medium-Expert | Hopper-Medium-Expert | Walker2d-Medium-Expert
gap betWeen 1n dlStrlbunon Positive Gap % Return | Positive Gap %  Return | Positive Gap % Return

and out-of-distribution ac- ~copac ‘ 95.3 93.6 ‘ 913 1119 ‘ 911 113
tions. We use the D4RL CODAC w.o. Penalty 4.7 12.1 8.7 25.8 8.9 59
Medium-Expert datasets where CODAC uniformly performs well, making them ideal for under-
standing the source of CODAC’s empirical performance. We train “CODAC w.o. Penalty”, a
non-conservative variant of CODAC (i.e., « = 0), and use its actor as y and its critic as F’ Z_,rl Next,
for each dataset, we randomly sample 1000 state-action pairs and 32 quantiles 7, resulting in 32000
(s, a, T) tuples; for each one, we compute the quantile gaps for CODAC and CODAC w.o. Penalty.
In Table 4, we show the percentage of tuples where each CODAC variant has a larger quantile gap,
along with their average return. As can be seen, CODAC has a larger gap for more than 90% of the
tuples on all datasets, as well as significantly higher returns. These results show that gap-expansion
holds in practice and suggest that it helps CODAC achieve good performance.

6 Conclusion

We have introduced Conservative Offline Distributional Actor-Critic (CODAC), a general purpose
offline distributional reinforcement learning algorithm. We have proven that CODAC obtains conser-
vative estimates of the return quantile, which translate into lower bounds on ) and CVaR values. In
our experiments, CODAC outperforms prior approaches on both stochastic, risk-sensitive offline RL
benchmarks, as well as traditional, risk-neutral benchmarks.

One limitation of our work is that CODAC has hyperparameters that must be tuned (in particular,
the penalty magnitude o). As in prior work, we choose these hyperparameters by evaluate online
rollouts in the environment. Designing better hyperparameter selection strategies for offline RL is an
important direction for future work. Finally, we do not foresee any societal impacts or ethical concerns
for our work, other than the usual risks around algorithms for improving robotics capabilities.
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A  Proofs

A.1 Proof of Lemma 3.4

Recall that the p-Wasserstein distance is the L,, metric between quantile functions (see Eq. 3). Thus,

we can re-write the CODAC objective as
1 ' 1 1 P
@By (n,p(sa) |0(5,0) - Fi, (1) + Epiea) / \Fg<s,a>< N 1

1 p
:/O ED(s,a) |:OZ'C()(S,CL) Z(s a) ’ Z(sa T’}Zk(s a)( ) :|dT

We consider a perturbation
G;,a( ) FZ_(b a)( ) +€'¢s,a(7-)

for arbitrary smooth functions ¢ , with compact support [Viin, Vinax], yielding
1 P
/0 ED(s,a) |:aCO(Sa a) : Gg,a (T) + ’Gg,a( ) FT‘;:\-le(é a) (T)‘ ] dr.

Taking the derivative with respect to € at e = 0, we have

d [ -
de |, Boce [acols,0) - GLa(r) 4 |GLa(r) —~ Frlyy ()

la
T”Zk(s a) :| T

e=0

Sign (in(ls’a)( ) Fszk(‘s a)( )):| ¢S,G(T)dT

1 B p—1
~Eoe | {aco<s,a>+p Fyt o) = Ef ()

This term must equal O for F, (15 «) o minimize the objective; otherwise, some perturbation G50

decreases the objective value. Since ¢, , are arbitrary, it must equal zero for each s, a individually;
otherwise, increasing ¢, , would increase the term, making it nonzero. Thus, we have

p—1

1
[ [aents.ar o]0 = g O sien(Fd () = Frl, )| Snatrlar =0

for all s, a. Then, by the fundamental lemma of the calculus of variations, for each s, a, if this term is
zero for all ¢ ,, then the integrand must be zero—i.e.,

p—1

Slgn (FZ(S a)( ) Ft;wlzk(s a) (T)) = Oa

aco(s,a) +p [Pyl o (1) = Fily ()
which holds if and only if

FZ(ls a)( ) F'szk(b a)( ) c(s,a).

where ¢(s,a) = |ap~tco(s, a)|/ P~V sign(co (s, a)), Clearly, this choice of Z is valid, so the claim
follows. [

A.2 Proof of Theorem 3.6

First, we have the following result, which is a concentration bound on the quantile values; this result
enables us to bound the estimation error of 7" compared to 7 ™:
Lemma A.l. Let n(s,a) = |{(s,a) | (s,a,7,s") € D}| be the number of times (s,a) occurs in

D. For any return distribution Z with (-strongly monotone CDF Fy(, oy and any § € R, with
probability at least 1 — 6, for all s € D and a € A, we have

5|8 4|S||A
15 Twzsa FT:ZSQ)||OO< A(s,a) where A(s,a)= C\/n(L,L) log |(|5‘ |
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This lemma follows by first using the Dvoretzky-Kiefer-Wolfowitz inequality to bound the error of
the empirical CDF F+, Z(s,0) compared to the true CDF Frx 7, ) using similar analysis as in [17],

and then leveraging monotonicity to bound the quantile functions; we give a proof in Appendix A.4.
Next, we have the following key lemma, which relates one-step distributional Bellman contraction to
an oo-norm bound at the fixed point

Lemma A.2. If Z satisfies || F Z(g o) F_Z(g a)||<><>< Bforalls € S and a € A, then

1F5t 0~ Frtimlle< 1=7)718  (¥s€S.ae ),

We give a proof in Appendix A.5. As we discuss in Appendix A.6, we can use this result to obtain

bounds on the fixed point of the non-conservative empirical Bellman operator 7. Now, we prove
Theorem 3.6. First, with probability at least 1 — §, we have

F’;wzw(e (™) = F’;"ZW(S o(T) —cls,a)
< Frrge(an(T) = c(s,a) + A(s, a)
—FZwl(S a)( )—c(s,a)—i—A(aa), (8)

where the first step follows by Lemma 3.4 (noting that it holds for arbitrary ZF, and substituting

Z¥% = Z™), the second step holds with probability at least 1 — § by Lemma A.1 Wlth Z = Z7 (since
Z™ is (-strongly monotone), and the third step follows since Z™ = 7™ Z™ is the fixed point of 7.

Now, rearranging (8), we have

Fyliw@) 2 FfL, () + c(s,a) = Als, )
> FTjZW(s a)(T) + I?}an{c(sv a) - A(s,a)}
> Fyo (™) + (=) min{c(s,a) — A(s,a)}, ©

where in the last step, we have applied Lemma A.6 for the case > and 7'”, and with § =
ming o{c(s,a) — A(s, a)}. Finally, note that for the last term in (9) to be positive, we need

apleo(s,a) > A(s,a)P™! (Vs,a).
Since we have assumed that ¢y (s, a) > 0, this expression is in turn equivalent to
A p—1
o> max { LA
s,a co(s,a)

so the claim holds. [

A.3 Proof of Theorem 3.8

Lemma A.3. Forany Z and any A, for sufficiently large o, with probability at least 1 — §, we have

E _Ep,(a|s)Fjl ( ) >E

e Z(s) #3(al9) Frn 25,0 (T) = Enals) Fre 75,0y (T) + A

s (als) F. 'T"'Z(s a) ()

Proof. First, by Lemma 3.4, we have

_ -1 _
T) = FTWZ(s,a)(T) c(s,a).

-1
Ff"Z(s,a)(
Then, by Lemma A.1, with probability at least 1 — §, we have
Frl () —c(s,0) = Als,a) S F2l, (1) < Frly o (7) = els,0) + Als, a)
Taking the expectation over 73 (resp., ) of the lower (resp., upper) bound gives
-1 -1
Eito(al)F5x 5(6.0)(T) 2 Bas(als) Fr 2(5,0) (T) = Bag(als)e(s,0) = Eyals) Als, a)

-1
Epals)F7r 75,0y () < Enstals) Fre 26,0 (T) = Encals) (5, @) + Epals) Als, ),
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respectively. Recall that p = 2. Then, subtracting the latter from the former and rearranging terms,
s (als) P72 75,00 (7~ Butals) 7 55,00 () 2 Bratals) Fra 25,0 (T) — Bpatals) Frr 25,0 (7)
+(a/2)c(s) — A(s),
where
&(s) = Epals)co(s; @) — Eay(als)co(s; a)
A(s) = E(a)s)A(S; @) + Ezy(a)s)A(S, a).
Note that to show the claim, it suffices to show that for sufficient large o, we have
(a/2)e(s) > A(s) + A (Vs). (10)
To this end, note that

Eﬁﬁ(a\s)c(&a) = Z(M(a | S) - ﬁ-ﬂ(a | S)) =0,

a

N (plals) - wsal )
‘Z< Falal 5) )“”)
=3 (ML) o) < e o+ 3 (ML ) g
=5 (ML) Gt )~ e )
= (ula] $) — p(a ] 5))?
7; Fg(als) ’
so we have
s~ llals) sl [plals) ~Fslals)
() =2 % al) Va”““)[ Fa(al s) ]>O’

where the last inequality holds since p(a | s) # 7g(a | s). Thus, for (10) to hold, it suffices to have
. —1
plals) —wg(als) A A
a>2- max {Var,}ﬁ(ﬂs) [ 7ol 5) (A(s)+A) p.

The claim follows. O

Now, let Zy = Zy, and let Zy, = (T™)*Zy and Zj, = (T™)* Zy. Applying Lemma A.3 with Z = Z*
and A = 4V.x, we have

-1 —1
E%B(G|S)Fi’w2k(s7a)(7—) — EM(G|5)F"ka(s,a) (7)
—1 -1 A
> ]Eﬁg(a\s)Ff-,—«Zk(s’a) (T> - E#(G|S)FT7’Zk (s,a)(T) tA
—1 -1 A
= B al) P 20 (5,0) (T) — Buatals) Frr 20 (.0) (T) + A

+ (Eﬁ'ﬂ(a\s)F_jZk(sya) (T) - EM(G\S)F_:ZIC(S’(L) (T))

—1 —1
- (Eﬁﬁ(a\S)FT”Z’“(s,a) (7) = Eutals) Forz 2 (5.0 (T))
—1 —1
2 Bty tals) Fre g0 6.0y (T) = Bpatals) Forr g (5,0) (T)
+ A — 4Vax
—1 -1
= Es;(als) Frr 0 (5.0) (T) = Eputals) Fora 2 5,0y (T)-
The claim follows by taking the limit k — co. [J
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A.4 Proof of Lemma A.1

We first prove a bound on the concentration of the empirical CDF to the true CDF. A similar result
has been previously derived in [17]; our proof is based on theirs.

Lemma A4. Forall § € R, with probability at least 1 — 6, for any Z € Z, for all (s,a) € D,

55| 4|8 A|
”FA"Z(s,a) - F‘T"Z(s,a)HOOS \/’I’L(S a) IOg S (11)

Proof. By the definition of distributional Bellman operator applied to the CDF function, we have that
FTW Z(s, a)(x) _FT" Z(s, a)(x)
—ZPS|SCL (a"| $")F L2t al )+ R(s,a) (@ ZP (s" | s,a)m(a’ | ') Fy 25,00+ R(s,a) (T)-

Adding and subtracting ZS,,Q, 15(5’ | s,a)m(a’ | 8")Fyz(s a1+ R(s,a) (%) from this expression gives

Z P(S/ ‘ 87(1)7'((@/ | 8/) (F'yZ(s’,a’)+R(s,a)(x) - F’YZ(S/va/)‘FR(S»a) ({,C))

s’,a’l

+ 3 (P [ 5.0) = P(' | 5,0) ) 7@ | 8P sty sy (0):

s’,a’

We proceed by bounding the two terms in the summation. For the first term, observe that

nyZ(s’7a/)+R(s7a) ('1:> - F“/Z(s’,a')-l-R(s,a) (x)
— / |:FI§’(S a) (7‘) — FR(s,a) (’I’)] dFﬂfz(S/ﬂ/)(x — 7")
/‘ R(sa FRSQ ‘dF'YZ(S a/)(x—r)

< sup, | Figs.m) (1) — Fitgosny () / AF, 3000y (i — 1)

Therefore, we have

Z P s' ‘ S5, CL a | s )(FryZ(s’7a’)+R(s7a)(x) - F“/Z(s’,a’)JrR(s}a) (l‘))

s’,al

<ZP (s' | s,a)m(a’ | s") H R(ga) — Fps,a)(7)

o0

‘ R(sa FR(S a)( )H

The second term can be bounded as follows:

> (P [5,0) = P(s' | 5,0) )wla’ | )Py 2014 i) ()

s’,a’

:Z (ﬁ’(s’ | sva) —P(S’ | sva)> Z (a |S) ~Z(s',a')+R(s, a)( )

s/

IA

P(-|s,a) = P(-| 5,a)

Z (a | ) YZ(: a)+R(sa)( )

a’

> ']

a’

1
o)

IN

P(-|s,a) = P(-| 5,a)

1
oo

—||2(- | 5,0) = P(- | 5.0)

17



Together, we have

|+ HP(S’ | s,a) — P(s' | s,a)Hl.

F’f’ﬂz(s,a) (93) - FT" (s a) ’ H R(s, a) FR(s,a) (T

Finally, the inequalities can be bounded using the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality
and the Hoeffding’s inequality, giving us the desired results. By the DKW inequality, we have that

with probability 1 — §/2, for all (s,a) € D,
1 4|S||A]
In
2n(s, a) ]

Similarly, by Hoeffding’s inequality and an ¢; concentration bound for multinomial distribution®, we

have
A 2|8 4[S||A|
(1s,a) = P(| s’a)H = \/n(s,a) I 5

1

[ )~ Frer @] <

The claim follows by combining the two inequalities. [

Next, we prove a general result that translates bounds on CDFs into bounds on quantile functions.

Lemma A.5. Consider two CDFs F and G with support X. Suppose that F' is (-strongly monotone
and that ||F — G||sc < €. Then, — G Y < €/C.

Proof. First, note that

F~(y) y
F~ y) — G () :/ dx :/ dF~1(y),

G~ (y) F(G~1(y)

where the first equality follows by fundamental theorem of calculus, and the second by a change of
variable y’ = F(z). Since F(F~1(y")) = v/, we have F'(F~1(y))dF~1(y') = dy’, so

o dy _dy
FE) ~ ¢

where the inequality follows by (-strong monotonicity. As a consequence, we have

dF~'(y') =

Y Y dy’ - F(G™! G(G™! — F(G™!
/ aF-1(y) S/ dy  (y—F(G () GG (y)-F(G (y) <
F(G1(y)) FG-1) S ¢ ¢ ¢
where the last inequality follows since |G — F'||o < €. The claim follows. O

Finally, Lemma A.1 follows by substituting ' = Fj. a)(x), G = Frrz(s,a)(7), and € =
5[S] 4\SHAI

n(s,a)

log into Lemma A.5, where the condition | F' — G|| o< € holds by Lemma A.4. [

A.5 Proof of Lemma A.2

We prove the following slightly stronger result:
Lemma A.6. Forany 8 € R, if Z satisfies

FZ_(s a)( ) > FTiZ(s a)( ) + ﬂ (VT € [Oa 1]) (12)
forall s € S and a € A, then we have
FZ(ls a)( ) 2 FZ"}(S a)( ) + (1 - ’y)_lﬁ (VT € [Oa 1])

The result holds with > replaced by <, or with T™ and Z™ replaced by T and Z™ or T™ and Z™.

3See https://nanjiang.cs.illinois.edu/files/cs598/note3.pdf for a derivation.
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Proof. We prove the first case; the cases with >, and the cases with T and Z™ follow by the same
argument. First, we show that

F’T”Z(s,a) ({,C) > FZ(s,a) (CL‘ + 5) (V‘T € [Vmina Vmax])~ (13)
To this end, note that rearranging (12), we have
Freg(s,a)(Fg(aa)(T) = B) > T.
Then, substituting 7 = FZ,,(S a) (z + B) yields (13); note that such 7 must exist since the CDF is
defined on all of R. Next, we show that

F’sz(s a)( T) > FTw(Tw Z(s, a))(T) +B (V7 € [0,1]), (14)

where the parts changed from (12) are highlighted in red. Intuitively, this claim says that 77
distributes additively to the constant 3, and since 7™ is a y-contraction in d,, we have 7" 3 < v03.
To show (14), first note that

- r—T
FTW(TWZ(s,a))(x) = Z P (Sl,al ‘ 570')/FT“Z(5”“’) ( 0% ) dFR(S’a)(T)

s’,a’

>ZP”S a sa)/Fzsa/)<x_r

s’ a’

) dFR(s,a) (’l")

_ZPWS a/‘sa)/ vZ(s' a)(x7r+’YB)dFR(s,a)(r)

= Z P™(s',a" | s,0)Fris,a)y+y2(s' a0’y (@ +70)

s’,a’

= F’T”Z(s,a) (:L‘ + ’Yﬁ)a
where the first step follows by derivation of the Bellman operator for the CDF, the second step follows
from (13), and the third step follows from the property of a CDF function. It follows that

Frr psay Freme2(5,0)) (%)) = @ + 7.
Setting 7 = F'rr (77 z(s,a)) (%), we have
—1
Fre 2s.0)(T) 2 Fro e g0 (T) + 78
for all 7 € [0, 1]; thus, we have shown (14). Now, by induction on 7™, we have
- 1 k
Freya6.0)(T) 2 Fipmyeni g6, () +7°8
forall k € N. Summing these inequalities over k& € {0, 1, ..., n} inequality gives

n

k

Z Tz (T Z Ty 2(s,ap () + D 7B
k=0

Subtracting common terms from both sides and evaluating the sum over v*, we have
B _ 1 _ ,.YnJrl
Fa)(T) 2 Egnyns g0 () + =755
Taking n — oo, we have
F (1S a)( T) = FE«(S a)( ) —-(1- ’7)_15»

where we have used the fact that Z™ is the fixed point of 7 ™. The claim follows. O

A.6 Bound on error of the fixed-point of the empirical distributional bellman operator

We can use our techniques to prove finite-sample bounds on the error of using value iteration with the
empirical Bellman operator 7 compared to the true Bellman operator 7.

Theorem A.7. We have HFZ_:(S 5 " Frr(salloo< (1 =)7L Apas, where Z™ and Z™ are the

fixed-points of T and T™, respectively.

Proof. Let Apax = max, o A(s,a). We have ||FT1 @ Fr gn(s.a)loo< Amax by Lemma A.1

with Z = Z7. Thus, we have \|F;j(s o~ Fyr(s,0) ||Oo (1 — ) 1 Apax by Lemma A.2. O
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B Algorithm and implementation details
In this section, we describe our practical implementation of CODAC in detail.

B.1 Actor-Critic objective

We first describe a modification to the CODAC objective, which admits learnable «, instead of having
to fix it to a constant value throughout the entirety of training. Recall that the original objective is

Zk+1

. _ _ A ﬂ_k ~
= arg min {a “Eu(r) |En(s) 108 Y exp(Fyl, o (1) = EpeayFyly o) (T)| + Lp(Z, T Zk)} :
a

We first provide a derivation of the above objective; this portion largely follows from [21]. We first
introduce a regularization term R (u) to obtain a well-defined optimization problem:

A7, . _ _ ~ Trk; ~
Skl _ argzmln mjxx {a ‘Eu(n) [ED(S)Y#(Q‘S)FZ(LG)(T) - ED(s,a)FZ(l&a) (T)} +L,(Z, T Zk)}_ﬂ%(u)

If we set R(p) to be the entropy (), then we can see that u(a | s) o« exp(Q(s,a)) =
exp( fol FZ_(IS o) (T)d7) is the solution to the inner-maximization. Plugging this choice into the
above regularized objective gives

Zk+1

. _ _ A Trk ~
= arg min {a “Eu(r) |En(s) 108 Y exp(Fyl, 0 (1) = Ep(eay Py o) (T)| + Lp(Z, T Zk)} :
a
as desired. As in [21], we introduce a parameter ( € R+ that thresholds the quantile value difference
between u and 7g. In addition, we scale this difference by w € R. This gives a learnable

formulation of « via dual gradient descent:

. — _ S ﬂ,k ~
min max {a Ey(ry |w- lED(S) logz eXp(FZ(La)(T)) - IED(S’G)FZ&S’&) (T)] (| +L,(Z, T Zk)} ,

Z >0
Because our experiments are all conducted in continuous-control domains, we cannot enumerate

all actions a and compute log ) exp(FZ_(ls_a) (7)) directly. To circumvent this issue, we use the

importance sampling approximation scheme introduced in [21]. To this end, we use the following
approximation in our implementation:

N —1 N -1
1 eXP(Fz( )(T)) 1 exp(FZ( )(T))
1 o1 ~1 __ - Lsa)r 77 _ _ - alsae)r 77
ogZCXP( Z(s,a) (7)) ~ log oM Z U(A) + oM m(a; | s)
a a;~U(A) a;~m(als)
(15)

where U(A) = Uniform(.A) denotes the uniform distribution over actions, and where we pick
M = 10. We summarize a single step of the actor and critic updates used by CODAC in Algorithm 1.

B.2 Neural network architecture

The policy network 7(- | s; ¢) consists of a two-layer fully connected architecture with 256 hidden
units and ReLU activations. For the quantile network, we use the architecture from [27], which builds
on top of the implicit quantile network (IQN) architecture [6]. Specifically, we represent the quantile
function Fg(l )(T) as an element-wise (Hadamard) product of a state-action feature representation

(s, a) and a quantile embedding ¢ (7)—i.e., sz(ls’a)(T) = (s,a) ® ¢(7). Following IQN, we use
the following embedding formula for ¢(7):

0;i(t)=nh (Z cos(imT)w;; + bj> ,
i=1

where w;;, b; are weights of the neural network ¢, and h is the sigmoid function. We use a one-layer

256-unit fully connected neural network for ¢(s, a), and a one-layer 64-unit fully connected neural

network for ¢(7), followed with one-layer 256-unit fully connected network applied to ¥ (s, a) ©¢(T).

We apply layer normalization [2] after each activation layer to ensure stable training.
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Algorithm 1 CODAC Update

1: Hyperparameters: Number of generated quantiles N, quantile Huber loss threshold x, CODAC
penalty scale w, CODAC penalty threshold (, discount rate -y, learning rates 7,cior, Neritic, Mo

2: Parameters: Critic parameters 6, Actor parameters ¢, Penalty «

3: Inputs: Tuple s,a,r, s’

4: Sample quantiles 7; (fori = 1,..., N) and 7} (for j = 1,..., N)ii.d. from Uniform(0, 1])

5: # Compute distributional TD loss

6

7

8

. Get next actions for calculating target a’ ~ 7(- | s’; ¢)
: fori=1to N do
for j = 1to N do

9: 571,7/ = r—l—’yF Z(sa0), o (7)) — Fz(ls )0 o(73)
10: end for

11: end for

12: Compute Leie(0) = N 221 1Zj L Li(6 ra,7] /5 7i)

13: # Compute CODAC penalty
14: Sample i ~ U({1, .. N}) and use quantile 7;
15: Estimate log ), exp( Z(g o), o (7)) according to (15)

16: Compute Lcopac(f, o) = a- (w (logz exp(F’ Z(s, a)79<7-i)) - N~ Z] 1 Z(S a), o(T. )) - C)

17: Update 00— ncriticve( critic( ) + LCODAC (9 a))

18: Update v <— o — 1o,V o Lcopac (8, @)

19: # Update Policy Network 74(a | s) with @, objective

20: Get new actions with re-parameterized samples @ ~ (- | s; ®)
21: Compute®,(s, a) using F*(1 ) o(1i)i=1,..,N

22: Locior(¢) = log(m(a | 550)) — @y(s,a)

23: Update d) — (25 + ndclorv£dct0r(¢)

B.3 Actor-Critic updates

We summarize a single actor-critic update performed by CODAC in Algorithm 1. We briefly discuss a
few implementation details. First, since computing the CODAC penalty to all quantiles is prohibitively
expensive, we apply the conservative penalty to a randomly chosen 7; on each update step (Line
13-15). This practical choice aligns well with our theoretical objective, whose outer expectation is
taken with respect to the uniform distribution U(7) over quantiles. We also found subtracting the

average quantile values (i.e., N1 Z Z(S a), »(7j)) to be more stable than just subtracting the

corresponding quantile value F',, ( o), 9(73) This step can be viewed as rewriting

Eu(r llED(s) log Y exp(Fy . (7)) = Ep(sa) Fi(s o) (T)]
as
By lED(s) log Z eXP(F§(137a) (T))] —Ey(r) [ED(s,a)Fg({g}a) (T)i

and implementing the latter as in Line 15. Finally, to compute @, (s, @) in Line 21, we take the average

of all FZ (5,8),0 o (i) where 7; is less than or equal to the risk threshold value. For the expected-return

(i.e., risk-neutral objective), the threshold is 1, and @, (s, a) = Zl 1 Z(g a), o(7i)/N. For CVaRO0.1,
the threshold is 0.1, and @, (s,a) = Y7 "< F L o (7)/(max; s 73 < 0.1).

C Experiment details and additional results

C.1 Risky robot navigation

Risky PointMass environment. The state space of the PointMass agent 4-dimensional, including
the agent’s position as well as the goal position, which is fixed to [0.1, 0.1]. The state space constraint
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Table 5: CODAC can optimize various distorted expectation based risk-sensitive objectives.

Algorithm Risky PointMass
Mean Median CVaRy; Violations
CODAC-CVaR -6.05 -4.89 -14.73 0.0
CODAC-CPW -8.34 -4.00 -54.18 103.0
CODAC-Neutral | -8.60 -4.05 -51.96 108.3
CODAC-Wang -6.01 -4.46 -16.80 7.0

Table 6: Risky robot navigation quantitative evaluation.

Algorithm ‘ Risky PointMass Risky Ant
Mean Median CVaRy 1 Violations Mean Median CVaRg 1 Violations
DSAC (Online) -7.69 -3.82 -49.9 94 -866.1 -833.3 -1422.7 2247
CODAC-C (Ours) | -6.05+042 -489+0.35 -14.73+0.95 0.0+£0.0 | -456.0£24.0 -4334+17.1 -686.6 = 149.8 347.8 £ 69.7
CODAC-N (Ours) | -8.60+1.62 -4.05+0.12 -51.96+12.34 1083 +11.90 | -432.7+413  -3951+11.5 -847.1 £309.3  936.0 + 186.1
ORAAC -10.67 £1.18 -4554+055 -64.12+5.14 138.7+16.4 | -788.1 £82.0 -7953 £ 1444  -1247.2 £48.0 1196 + 49.7
CQL -7.51+£1.05 -4.18+0.13 -43.44 +10.57 934 40.94 | -967.8 +66.9  -858.54+22.0 -1887.34+236.1 1854.3 +369.1

is [0, 1]. Hence, the agent cannot enter a location outside of this unit square. The risky red region
is centered at [0.5, 0.5] with radius of 0.3. The agent’s initial state is randomly chosen inside the
[0.1,0.9]? box outside the risky red region. The agent dynamics is holomorphic, allowing the agent
to move freely in any direction with its x-axis and y-axis displacement capped at 0.1. The reward
the agent receives at each step is its negative Euclidean distance to the goal plus a constant —0.1,
which encourages the agent to reach the goal as fast as possible. When the agent is inside the risky
red region, with probability 0.1, an additional —50 reward is incurred. The episode terminates when
the agent is within 0.1 distance to the goal. An episode may last up to 100 steps.

Risky Ant environment. The state space of the Ant agent is identical to the original state space of
the Mujoco Ant agent. The goal is located at [10, 10], and the risky red region is centered at [5, 5]
with a radius of 3. The agent’s initial state is randomly chosen inside the [0, 7]? box outside the risky
red region. The agent dynamics is also identical to the Mujoco Ant environment. At each timestep,
the agent receives its negative Euclidean distance to the goal plus 0.1 x velocity as its reward. When
the agent is inside the risky red region, with probability 0.1, an additional —50 reward is incurred.
The episode terminates when the agent is within 0.1 distance to the goal. When the agent is inside the
risky red region, with probability 0.05, an additional —90 reward is incurred. The episode terminates
when the agent is within distance 1 of the goal. An episode may last up to 200 steps.

Dataset and training details. We train a distributional SAC agent online for 100 (resp., 5000)
episodes in the PointMass (resp., Ant) environment, and use this agent’s replay buffer as the dataset
for offline RL training. All offline RL algorithms are trained for 10* (resp., 10°) gradient steps. We
use the default hyperparameters for ORAAC, and use w = 0.01 and ¢ = 10 for both CODAC and
CQL. Our results are reported using 100 evaluation episodes with same set of initial states.

Additional results. In Table 6, we show full results for the risky robot navigation environments. As
can be seen, CODAC-C achieves the best performance on most metrics and is the only method that
learns risk-averse behavior. In addition, in Figure 5, we visualize trajectories for various Ant agents.
As can be seen, CODAC-C avoids the risky region shown in red, while still making it to the goal.

Alternative risk-sensitive objectives. On the risky pointmass domain, we also show that CODAC
can optimize CPW and Wang risk-sensitive objectives using the same offline dataset. As for CODAC-
CVaR (CODAC-C) and CODAC-Neutral (CODAC-N), we train CODAC-Wang and CODAC-CPW
using 5 random seeds and report the results in Table 5. As shown, CODAC-Wang performs similarly
to CODAC-CVaR, trading off slightly better average performance at the cost of safety. On the other
hand, CODAC-CPW is on par with CODAC-Neutral. These findings match our intuition that Wang
is slightly more risk-seeking than CVaR since it gives non-zero (but vanishingly small) weight to
quantile values above the risk cutoff threshold, and CPW is similar to risk-neutral due to its intended
modeling of human game-play behavior. These findings are also consistent with those in prior
work [6], which investigates these risk objectives for online distributional reinforcement learning.
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Figure 5: 2D visualization of evaluation trajectories on the Risky Ant environment. The red region is
risky, the solid blue circles indicate initial states, and the blue lines are trajectories. CODAC-C learns
the most risk-averse behavior while consistently approaching the goal.

Table 7: Normalized Return on the Stochastic DARL Mujoco Suite, averaged over 5 random seeds.

Algorithm Medium Mixed Expert
Mean CVaRy 1 Mean CVaRy 1 Mean CVaRy 1
= CQL 33.24+21.6 -15.0 +14.3 214.1 +£52.0 12.0 £23.8 -74.8 £22.6 -206.6 +46.9
£ ORAAC 361.4 +14.2 91.3 +£42.1 307.1 £5.8 118.9 +£27.1 598.3 +£47.0 99.7 £ 71.3
& CODAC-N | 338.9+65.7 -41.6 = 16.7 347.7 £323 149.2 +£79.2 686.3 + 128.8 123.2 +90.1
U CODAC-C 335.8 £ 80.6 -27.7+60.3 396.4 £ 56.1 238.5 £ 58.9 551.6 1294  151.3 £133.0
.. CQL 8779 £193.3  693.0 £ 160.9 189.2 + 63.0 -21.4 +62.5 1165.0 =594  886.0 + 132.7
2  ORAAC 1007.1 +£58.5  767.6+101.0 | 8763 £86.7 5249 +£323.0 | 1156.8 +340.5 767.4 +372.6
& CODAC-N | 993.7 4329 952.5 £29.0 14839+ 162  1457.6 +20.7 12927+ 349  1024.0 £ 45.6
T CODAC-C | 1014.0£281.7 9764 +272.1 | 15512+£33.4 1449.6 + 101.3 | 1270.6 & 74.8 986.4 +99.7
= CQL 15243 £879 1343.8 £248.2 | 743 £76.7 -64.0 + -77.7 20452 +37.6  1868.2 +55.1
5 ORAAC 1134.1 £ 2354 663.0 +349.8 | 222.0 +37.4 -69.6 +76.3 991.2 +203.5 108.9 +73.2
%: CODAC-N | 15373 +65.8 1158.8 £357.3 | 358.7 £ 1254 106.4 + 1469 | 21703 £22.7 20354 +39.9
2 CODAC-C | 1120.8 +319.3 902.3 £492.0 | 450.0 £ 1932 261.4+231.3 | 2056.7 +£43.1 1889.4 +28.6

C.2 Stochastic D4RL Mujoco suite

Our experimental protocol largely follows [10]. All algorithms are trained for 500k gradient steps.
We use 10 evaluation episodes on the modified Mujoco environments (see below). Hyperparameters
are detailed in Appendix C.4.

Dataset descriptions. We describe the stochastic reward modification made to the original HalfChee-
tah, Hopper, and Walker2d environments [43]. These reward modifications are used to relabel the
reward label in D4RL datasets; the modified environments are also used for evaluation in this set of
experiments. The following paragraphs are adapted from [43]:

* Half-Cheetah: We use R, (s,a) = 74(s,a) — 70 - L~ - Bo.1, where 7(s, a) is the original envi-
ronment reward, v is the forward velocity, and ¥ is a threshold velocity (v = 4 for Medium/Mixed
datasets and v = 10 for the Expert dataset). The maximum episode length is reduced to 200 steps.

* Walker2D/Hopper: We use R(s,a) = T¢(s,a) — p- Ljg/5q - Bo.1, where 7¢(s, a) is the original
environment reward, € is the pitch angle, 6 is a threshold angle (§ = 0.5 for Walker2d and 6 = 0.1

for Hopper) and p = 30 for Walker2d and p = 50 for Hopper. When |#|> 26 the robot falls, the
episode terminates. The maximum episode length is reduced to 500 steps.

Additional results. In Table 7, we present the full Stochastic DARL Mujoco results, including results
on the Expert dataset. We repeat the results on the Medium and Mixed datasets in the main text here
for completeness. Recall that the Expert (resp., Medium) dataset consists of rollouts from a fixed
SAC agent trained to Expert (resp., Medium) performance, Expert is convergence and Medium is
50% of Expert performance. The Mixed dataset is the replay buffer of a SAC agent trained to achieve
50% of the expert return.

Qualitative analysis. To better interpret the stochastic D4RL results, we have collected behavioral
statistics of the agents trained on the risk-sensitive HalfCheetah-Mixed-v0 and Walker2d-Mixed-v0
datasets. We execute one trained agent for each method reported in Table 2 for 10 episodes in the
environment and record the percentage of timesteps where the agent violates the threshold and their
average velocity over these evaluation episodes.
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Table 8: Stochastic DARL qualitative results

Algorithm HalfCheetah-Mixed-v0 Walker2d-Mixed-v0
% Violation ~ Average Velocity | % Violation —Average Velocity |
CODAC-C (Ours) 11 1.49 15 0.28
CODAC-N (Ours) 54 2.02 9 0.34
CQL 23 1.71 13 0.19
ORAAC 37 1.76 48 0.49

Table 9: Normalized Return on the DARL Mujoco Suite, averaged over 5 random seeds.

Dataset BC BEAR BRAC-v BCQ MOPO CQL ORAAC CODAC
halfcheetah-random 2.1 25.1 24.1 22 354 354 135 346+1.27
hopper-random 9.8 11.4 12.2 10.6 11.7 10.8 9.8 11 £043
walker2d-random 1.6 7.3 1.9 4.9 13.6 7.0 32 187+45
halfcheetah-medium 36.1 41.7 438 407 423 444 41.0 46.3+0.98
walker2d-medium 6.6 59.1 81.1  53.1 17.8  79.2 27.3  82.0 +0.45
hopper-medium 29.0 52.1 31.1 545 28.0 58.0 148 708+ 114
halfcheetah-mixed 38.4 38.6 477 382 531 462 30.0 44 +0.76
hopper-mixed 11.8 337 0.6  33.1 67.5 48.6 16.3 1002+ 1.0
walker2d-mixed 11.3 19.2 09 150 39.0 267 28 332+17.6
halfcheetah-medium-expert ~ 35.8 53.4 419 647 633 624 240 704 +194
walker2d-medium-expert 6.4 40.1 81.6 575 446  98.7 282 106.0 £4.6
hopper-medium-expert 111.9 96.3 0.8 1109 23.7 111.0 182 112.0 + 1.7

As shown in Table 8, CODAC-C achieves the lowest percentage of violations in the HalfCheetah
environment, indicating that it has learned a safer policy than all other methods. On Walker2d, CQL
appears to be the safest; however, this result is due to the fact that CQL failed to learn the desirable
walking behavior as indicated by its low reward in the paper. Among the methods that learned to
walk, CODAC-C achieves the lowest average angular velocity while maximizing the return.

C.3 D4RL Mujoco suite

Our experimental protocol largely follows from [10]. All algorithms are trained for 1M gradient steps.
We use 10 evaluation episodes on the original Mujoco environments, which all last 1000 steps long.
Hyperparameters are detailed in Appendix C.4. In Table 9, we show the full results on the risk-neutral
D4RL Mujoco Suite, which includes additional baselines such as BEAR [20] and BRAC [46].

C.4 Hyperparameters

As CODAC builds on top of distributional SAC (DSAC), we keep the DSAC-specific hyperparameters
identical as the original work. These hyperparameters are shown in Table 10.

CODAC additionally introduces hyperparameters o, w, ¢ (see Appendix B). In most cases, « is a
learnable parameter initialized to 1 with learning rate 1, = 3 x 10~%; in few cases, we fix it to 1
throughout the entirety of training, which we indicate by setting ( = —1, as in [21]. For ORAAC,
we use the default hyperparameters tuned on the stochastic D4RL Mujoco suite for all experiments;
for CQL, we use the default hyperparameters tuned on the original D4RL Mujoco suite for all
experiments. Below, we describe the specific CODAC hyperparameters we use for the risk-neutral
and risk-sensitive D4RL experiments.

Risk-neutral D4RL. We restrict the search range of the hyperparameters as follow: w €
{0.1,1,10}, ¢ € {—1,10}. We also experiment with enabling entropy tuning in DSAC and tune the
value network learning rate 7). between 3e — 4 and 3e — 5, which improves performance on some
datasets. Table 11 summarizes the hyperparameters used for each dataset in our reported results. At a
high level, we find w = 1 to be effective for Mixed and Random datasets and w = 10 effective for
Medium and Medium-Expert datasets. These empirical findings match our intuition that the penalty
needs not to be high when the dataset has wide coverage.
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Table 10: CODAC backbone hyperparameters

Hyper-parameter Value
Policy network learning rate n,cior 3e-4
(Quantile) Value network learning rate 7cyitic 3e-5
Optimizer Adam
Discount factor y 0.99
Target smoothing Se-3
Batch size 256
Replay buffer size le6
Minimum steps before training le4
Number of quantile fractions N 32
Quantile fraction embedding size 64
Huber regression threshold x 1

Table 11: CODAC hyperparameters for risk-neutral D4RL

dataset w ¢ Nuiic entropy tuning
halfcheetah-random I 10 3e-5 yes
hopper-random 1 10 3e-5 yes
walker2d-random 1 10 3e-5 yes
halfcheetah-medium 10 10 3e-5 no
hopper-medium 10 10 3e-4 yes
walker2d-medium 10 10  3e-5 no
halfcheetah-mixed 1 10 3e-5 yes
hopper-mixed 1 10 3e-5 yes
walker2d-mixed 1 10  3e-5 yes
halfcheetah-medium-expert 0.1 -1  3e-4 no
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no

Risk-sensitive D4RL. We use the same hyperparameter range as in risk-neutral D4RL for a grid
search. Interestingly, the best value of w is smaller across most datasets, suggesting less conservatism
may be needed due to the increased stochasticity in the environment. Table 12 summarizes the
hyperparameter choices.

C.5 Compute resources

We use a single Nvidia 2080-Ti with 32 cores to run our experiments. Each CODAC run takes about
10 hours in clock time.
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Table 12: CODAC hyperparameters for risk-sensitive D4RL

dataset w ¢ Nuiic entropy tuning
halfcheetah-medium 1 -1 3e5 no
hopper-medium 0.1 10 3e-5 yes
walker2d-medium I -1 3es5 yes
halfcheetah-mixed 0.1 10 3e-5 yes
hopper-mixed I 10 3e-5 yes
walker2d-mixed 1 10 3e-5 yes
halfcheetah-medium-expert 1 -1 3e-5 yes
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no
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