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Abstract

Many reinforcement learning (RL) problems in practice are offline, learning purely
from observational data. A key challenge is how to ensure the learned policy
is safe, which requires quantifying the risk associated with different actions. In
the online setting, distributional RL algorithms do so by learning the distribution
over returns (i.e., cumulative rewards) instead of the expected return; beyond
quantifying risk, they have also been shown to learn better representations for
planning. We propose Conservative Offline Distributional Actor Critic (CODAC),
an offline RL algorithm suitable for both risk-neutral and risk-averse domains.
CODAC adapts distributional RL to the offline setting by penalizing the predicted
quantiles of the return for out-of-distribution actions. We prove that CODAC
learns a conservative return distribution—in particular, for finite MDPs, CODAC
converges to an uniform lower bound on the quantiles of the return distribution;
our proof relies on a novel analysis of the distributional Bellman operator. In
our experiments, on two challenging robot navigation tasks, CODAC successfully
learns risk-averse policies using offline data collected purely from risk-neutral
agents. Furthermore, CODAC is state-of-the-art on the D4RL MuJoCo benchmark
in terms of both expected and risk-sensitive performance. Code is available at:
https://github.com/JasonMa2016/CODAC

1 Introduction

In many applications of reinforcement learning, actively gathering data through interactions with
the environment can be risky and unsafe. Offline (or batch) reinforcement learning (RL) avoids this
problem by learning a policy solely from historical data (called observational data) [9, 22, 23].

A shortcoming of most existing approaches to offline RL [11, 46, 20, 21, 48, 18] is that they are
designed to maximize the expected value of the cumulative reward (which we call the return) of
the policy. As a consequence, they are unable to quantify risk and ensure that the learned policy
acts in a safe way. In the online setting, there has been recent work on distributional RL algorithms
[7, 6, 27, 38, 17], which instead learn the full distribution over future returns. They can use this
distribution to plan in a way that avoids taking risky, unsafe actions. Furthermore, when coupled with
deep neural network function approximation, they can learn better state representations due to the
richer distributional learning signal [4, 26], enabling them to outperform traditional RL algorithms
even on the risk-neutral, expected return objective [4, 7, 6, 47, 14].

We propose Conservative Offline Distributional Actor-Critic (CODAC), which adapts distributional
RL to the offline setting. A key challenge in offline RL is accounting for high uncertainty on
out-of-distribution (OOD) state-action pairs for which observational data is limited [23, 20]; the
value estimates for these state-action pairs are intrinsically high variance, and may be exploited by
the policy without correction due to the lack of online data gathering and feedback. We build on
conservative Q-learning [21], which penalizes Q values for OOD state-action pairs to ensure that
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the policy return distribution in many different ways, including canonical return atoms [4], the
expectiles [36], the moments [31], and the quantiles [7, 6, 47]. CODAC builds on the quantile
approach due to its suitability for risk-sensitive policy optimization. The quantile representation
provides an unified framework for optimizing different objectives of interest [7], such as the risk-
neutral expected return, and a family of risk-sensitive objectives representable by the quantiles;
this family includes, for example, the conditional-value-at-risk (CVaR) return [35, 5, 38, 17], the
Wang measure [45], and the cumulative probability weighting (CPW) metric [42]. Recent work
has provided theoretical guarantees on learning CVaR policies [17]; however, their approach cannot
provide bounds on the quantiles of the estimated return distribution, which is significantly more
challenging since there is no closed-form expression for the Bellman update on the return quantiles.

Finally, there has been some recent work adapting distributional RL to the offline setting [1, 43].
First, REM [1] builds on QR-DQN [7], an online distributional RL algorithm; however, REM can
be applied to regular DQN [29] and does not directly utilize the distributional aspect of QR-DQN.
The closest work to ours is ORAAC [43], which uses distributional RL to learn a CVaR policy in
the offline setting. ORAAC uses imitation learning to avoid OOD actions and stay close to the data
distribution. As discussed above, imitation learning strategies can perform poorly unless the dataset
comes from an optimal policy; in our experiments, we find that CODAC significantly outperforms
ORAAC. Furthermore, unlike ORAAC, we provide theoretical guarantees on our approach.

2 Background

Offline RL. Consider a Markov Decision Process (MDP) [33] (S,A, P,R, γ), where S is the
state space, A is the action space, P (s′ | s, a) is the transition distribution, R(r | s, a) is the
reward distribution, and γ ∈ (0, 1) is the discount factor, and consider a stochastic policy π(a |
s) : S → ∆(A). A rollout using π from state s using initial action a is the random sequence
ξ = ((s0, a0, r0), (s1, a1, r1), ...) such that s0 = s, a0 = a, at ∼ π(· | st) (for t > 0), rt ∼
R(· | st, at), and st+1 ∼ P (· | st, at); we denote the distribution over rollouts by Dπ(ξ | s, a).
The Q-function Qπ : S × A → R of π is its expected discounted cumulative return Qπ(s, a) =
EDπ(ξ|s,a)[

∑∞
t=0 γ

trt]. Assuming the rewards satisfy rt ∈ [Rmin, Rmax], then we have Qπ(s, a) ∈
[Vmin, Vmax] ⊆ [Rmin/(1− γ), Rmax/(1− γ)].

A standard goal of reinforcement learning (RL), which we call risk-neutral RL, is to learn the optimal

policy π∗ such that Qπ∗

(s, a) ≥ Qπ(s, a) for all s ∈ S, a ∈ A and all π.

In offline RL, the learning algorithm only has access to a fixed dataset D := {(s, a, r, s′)}, where
r ∼ R(· | s, a) and s′ ∼ P (· | s, a). The goal is to learn the optimal policy without any interaction
with the environment. Though we do not assume that D necessarily comes from a single behavior

policy, we define the empirical behavior policy to be π̂β(a | s) :=
∑

s′,a′∈D
1(s′=s,a′=a)

∑
s′∈D

1(s′=s) . With slight

abuse of notation, we write (s, a, r, s′) ∼ D to denote a uniformly random sample from the dataset.
Also, in this paper, we broadly refer to actions not drawn from π̂β(· | s) (i.e., low probability density)
as out-of-distribution (OOD).

Fitted Q-evaluation (FQE) [9, 34] uses Q-learning for offline RL, which leverages the fact that

Qπ = T πQπ is the unique fixed point of the Bellman operator T π : R|S||A| → R
|S||A| defined by

T πQ(s, a) = ER(r|s,a)[r] + γ · EPπ(s′,a′|s,a)[Q(s′, a′)],

where Pπ(s′, a′|s, a) = P (s′ | s, a)π(a′ | s′). In the offline setting, we do not have access to T π;

instead, FQE uses an approximation T̂ π obtained by replacing R and P in T π with estimates R̂ and

P̂ based on D. Then, we can estimate Qπ by starting from an arbitrary Q̂0 and iteratively computing

Q̂k+1 := argmin
Q

L(Q̂, T̂ πQ̂k) where L(Q,Q′) = ED(s,a)

[

(Q(s, a)−Q′(s, a))2
]

.

Assuming we search over the space of all possible Q (i.e., do not use function approximation), then

the minimizer is Q̂k+1 = T̂ πQ̂k, so Q̂k = (T̂ π)kQ0. If T̂ π = T π , then limk→∞ Q̂k = Qπ .

Distributional RL. In distributional RL, the goal is to learn the distribution of the discounted
cumulative rewards (i.e., returns) [4]. Given a policy π, we denote its return distribution as the
random variable Zπ(s, a) =

∑∞
t=0 γ

trt, which is a function of a random rollout ξ ∼ Dπ(· | s, a);
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note that Zπ includes three sources of randomness: (1) the reward R(· | s, a), (2) the transition
P (· | s, a), and (3) the policy π(· | s). Also, note that Qπ(s, a) = EDπ(ξ|s,a)[Z

π(s, a)]. Analogous
to Q-function Bellman operator, the distributional Bellman operator for π is

T πZ(s, a)
D
:= r + γZ(s′, a′) where r ∼ R(· | s, a), s′ ∼ P (· | s, a), a′ ∼ π(· | s′), (1)

where
D
= indicates equality in distribution. As with Qπ , Zπ is the unique fixed point of T π in Eq. 1.

Next, let FZ(s,a)(x) : [Vmin, Vmax] → [0, 1] be the cumulative density function (CDF) for return

distribution Z(s, a), and FR(s,a) be the CDF of R(· | s, a) Then, we have the following equality,
which captures how the distributional Bellman operator T π operates on the CDF FZ(s,a) [17]:

FT πZ(s,a)(x) =
∑

s′,a′

Pπ(s′, a′ | s, a)

∫

FZ(s′,a′)

(

x− r

γ

)

dFR(s,a)(r). (2)

Let X and Y be two random variables. Then, the quantile function (i.e., inverse CDF) F−1
X of

X is F−1
X (τ) := inf{x ∈ R | τ ≤ FX(x)}, and the p-Wasserstein distance between X and Y is

Wp(X,Y ) = (
∫ 1

0
|F−1

Y (τ) − F−1
X (τ)|pdτ)1/p. Then, the distributional Bellman operator T π is a

γ-contraction in the Wp [4]—i.e., letting d̄p(Z1, Z2) := sups,aWp(Z1(s, a), Z2(s, a)) be the largest

Wasserstein distance over (s, a), and Z = {Z : S × A → P(R) | ∀(s, a) . E[|Z(s, a)|p] <∞} be
the space of distributions over R with bounded p-th moment, then

d̄p(T
πZ1, T

πZ2) ≤ γd̄p(Z1, Z2) (∀Z1, Z2 ∈ Z). (3)

As a result, Zπ may be obtained by iteratively applying T π to an initial distribution Z.

As before, in the offline setting, we can approximate T π by T̂ π using D. Then, we can compute Zπ

(represented as F−1
Z(s,a); see below) by starting from an arbitrary Ẑ0, and iteratively computing

Ẑk+1 = argmin
Z

Lp(Z, T̂
πẐk) where Lp(Z,Z

′) = ED(s,a) [Wp(Z(s, a), Z
′(s, a))p] . (4)

We call this procedure fitted distributional evaluation (FDE).

One distributional RL algorithmic framework is quantile-based distributional RL [7, 6, 47, 27, 38, 43],

where the return distribution Z is represented by its quantile function F−1
Z(s,a)(τ) : [0, 1]→ R. Given

a distribution g(τ) over [0, 1], the distorted expectation of Z is Φg(Z(s, a)) =
∫ 1

0
F−1
Z(s,a)(τ)g(τ)dτ ,

and the corresponding policy is πg(s) := argmaxa Φg(Z(s, a)) [7]. If g = Uniform([0, 1]), then
Qπ(s, a) = Φg(Z(s, a)); alternatively, g = Uniform([0, ξ]) corresponds to the CVaR [35, 5, 6]
objective, where only the bottom ξ-percentile of the return is considered. Additional risk-sensitive

objectives are also compatible. For example, CPW [42] amounts to g(τ) = τβ/(τβ + (1− τ)β)
1
β ,

and Wang [45] has g(τ) = FN (F−1
N (τ) + β), where FN is the standard Gaussian CDF.

A drawback of FDE is that it does not account for estimation error, especially for pairs (s, a) that rarely

appear in the given dataset D; thus, Ẑk(s, a) may be an overestimate of Zk(s, a) [12, 20, 21], even
in distributional RL (since the learned distribution does not include randomness in the dataset) [14, 3].

Importantly, since we act by optimizing with respect to Ẑk(s, a), the optimization algorithm will
exploit these errors, biasing towards actions with higher uncertainty, which is the opposite of what is
desired. In Section 3, we propose and analyze a penalty designed to avoid this issue.

3 Conservative offline distributional policy evaluation

We describe our algorithm for computing a conservative estimate of Zπ(s, a), and provide theoretical
guarantees for finite MDPs. In particular, we modify Eq. 4 to include a penalty term:

Z̃k+1 = argmin
Z

α · EU(τ),D(s,a)

[

c0(s, a) · F
−1
Z(s,a)(τ)

]

+ Lp(Z, T̂
πZ̃k) (5)

for some state-action dependent scale factor c0; here, U = Uniform([0, 1]). This objective adapts the
conservative penalty in prior work [21] to the distributional RL setting; in particular, the first term in
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Lemma 3.5. T̃ π is a γ-contraction in d̄p, so Z̃k converges to a unique fixed point Z̃π .

The first part follows since T̂ π is a γ-contraction in d̄p [4, 7], and Oc is a non-expansion in d̄p, so by

composition, T̃ π is a γ-contraction in d̄p; the second follows by the Banach fixed point theorem.

Now, our first main theorem says that the fixed point Z̃π of T̃ π is a conservative estimate of Zπ at all
quantiles τ—i.e., CDE computes quantile estimates that lower bound the quantiles of the true return;
furthermore, it says that this lower bound is tight.

Theorem 3.6. For any δ ∈ R>0, c0(s, a) > 0, with probability at least 1− δ,

F−1
Zπ(s,a)(τ) ≥ F

−1

Z̃π(s,a)
(τ) + (1− γ)−1 min

s′,a′
{c(s′, a′)−∆(s′, a′)},

F−1
Zπ(s,a)(τ) ≤ F

−1

Z̃π(s,a)
(τ) + (1− γ)−1 max

s′,a′
{c(s′, a′)−∆(s′, a′)}

for all s ∈ D, a ∈ A, and τ ∈ [0, 1], where ∆(s, a) = 1
ζ

√

5|S|
n(s,a) log

4|S||A|
δ . Furthermore, for α

sufficiently large (i.e., α ≥ maxs,a{
p·∆(s,a)p−1

c0(s,a)
}), we have F−1

Zπ(s,a)(τ) ≥ F
−1

Z̃π(s,a)
(τ).

We give a proof in Appendix A.2. The first inequality says that the quantile estimates computed by
CDE form a lower bound on the true quantiles; this bound is not vacuous as long as α satisfies the
given condition. Furthermore, the second inequality states that this lower bound is tight.

Many RL objectives (e.g., expected or CVaR return) are distorted expectations (i.e, integrals of the
return quantiles). We can extend Theorem 3.6 to obtain conservative estimates for all such objectives:

Corollary 3.7. For any δ ∈ R>0, c0(s, a) > 0, α sufficiently large, and g(τ), with probability at

least 1− δ, for all s ∈ D, a ∈ A, we have Φg(Z
π(s, a)) ≥ Φg(Z̃

π(s, a)).

Choosing g = Uniform([0, 1]) gives Qπ(s, a) ≥ Q̃π(s, a)—i.e., a lower bound on the Q-function.
CQL [21] obtains a similar lower-bound; thus, CDE generalizes CQL to other objectives—e.g., it can
be used in conjunction with any distorted expectation objective (e.g., CVaR, Wang, CPW, etc.) for
risk-sensitive offline RL.

Note that Theorem 3.6 does not preclude the possibility that the lower bounds are more conservative
for good actions (i.e., ones for which π̂β(a | s) is larger). We prove that under the choice1

c0(s, a) =
µ(a | s)− π̂β(a | s)

π̂β(a | s)
(6)

for some µ(a | s) 6= π̂β(a | s), then T̃ π is gap-expanding—i.e., the difference in quantile values

between in-distribution and out-of-distribution actions is larger under T̃ π than under T π . Intuitively,
c0(s, a) is large for actions a with higher probability under µ than under π̂β (i.e., an OOD action).

Theorem 3.8. For p = 2, α sufficiently large, and c0 as in (6), for all s ∈ S and τ ∈ [0, 1],

Eπ̂β(a|s)F
−1

Z̃π(s,a)
(τ)− Eµ(a|s)F

−1

Z̃π(s,a)
(τ) ≥ Eπ̂β(a|s)F

−1
Zπ(s,a)(τ)− Eµ(a|s)F

−1
Zπ(s,a)(τ).

As before, the gap-expansion property implies gap-expansion of integrals of the quantiles—i.e.:

Corollary 3.9. For p = 2, α sufficiently large, c0 as in (6), and any g(τ), for all s ∈ S ,

Eπ̂β(a|s)Φg(Z̃
π(s, a))− Eµ(a|s)Φg(Z̃

π(s, a)) ≥ Eπ̂β(a|s)Φg(Z
π(s, a))− Eµ(a|s)Φg(Z

π(s, a)).

Together, Corollaries 3.7 & 3.9 say that CDE provides conservative lower bounds on the return
quantiles while being less conservative for in-distribution actions.

Finally, we briefly discuss the condition on α in Theorems 3.6 & 3.8. In general, α can be taken to be
small as long as ∆(s, a) is small for all s ∈ S and a ∈ A, which in turn holds as long as n(s, a) is
large—i.e., the dataset D has wide coverage.

1We may have c0(s, a) ≤ 0; we can use c
′

0(s, a) = c0(s, a) + (1−mins,a c0(s, a)) to avoid this issue.

6







Table 2: D4RL results. CODAC achieves the best overall performance in both risk-sensitive (Left)
and risk-neutral (Right) variants of the benchmark. These tables are reproduced with standard
deviations in Tables 7 & 9 in Appendix C.

Algorithm
Medium Mixed

Mean CVaR0.1 Mean CVaR0.1

C
h

ee
ta

h CQL 33.2 -15.0 214.1 12.0
ORAAC 361.4 91.3 307.1 118.9
CODAC-N 338 -41 347.7 149.2
CODAC-C 335 -27 396.4 238.5

H
o

p
p

er

CQL 877.9 693.0 189.2 -21.4
ORAAC 1007.1 767.6 876.3 524.9
CODAC-N 993.7 952.5 1483.9 1457.6
CODAC-C 1014.0 976.4 1551.2 1449.6

W
al

k
er

2
d CQL 1524.3 1343.8 74.3 -64.0

ORAAC 1134.1 663.0 222.0 -69.6
CODAC-N 1537.3 1158.8 358.7 106.4
CODAC-C 1120.8 902.3 450.0 261.4

Dataset BCQ MOPO CQL ORAAC CODAC

halfcheetah-random 2.2 35.4 35.4 13.5 34.6
hopper-random 10.6 11.7 10.8 9.8 11.0
walker2d-random 4.9 13.6 7.0 3.2 18.7

halfcheetah-medium 40.7 42.3 44.4 41.0 46.3
walker2d-medium 53.1 17.8 79.2 27.3 82.0
hopper-medium 54.5 28.0 58.0 1.48 70.8

halfcheetah-mixed 38.2 53.1 46.2 30.0 44.1
hopper-mixed 33.1 67.5 48.6 16.3 100.2
walker2d-mixed 15.0 39.0 26.7 28 33.2

halfcheetah-med-exp 64.7 63.3 62.4 24.0 70.4
walker2d-med-exp 57.5 44.6 98.7 28.2 106.0
hopper-med-exp 110.9 23.7 111.0 18.2 112.0

region before proceeding to the goal; in contrast, all other agents traverse the risky region. For Ant,
we include plots of the trajectories of trained agents in Appendix C.1, and videos in the supplement.

5.2 Risk-sensitive D4RL

Tasks. Next, we consider stochastic D4RL [43]. The original D4RL benchmark [10] consists of
datasets collected by SAC agents of varying performance (Mixed, Medium, and Expert) on the Hopper,
Walker2d, and HalfCheetah MuJoCo environments [41]; stochastic D4RL relabels the rewards to
represent stochastic robot damage for behaviors such as unnatural gaits or high velocities; see
Appendix C.2. The Expert dataset consists of rollouts from a fixed SAC agent trained to convergence;
the Medium dataset is constructed the same way except the agent is trained to only achieve 50% of
the expert agent’s return. The Mixed dataset is the replay buffer of the Medium agent.

Results. In Table 2 (Left), we report the mean and CVaR0.1 returns on test episodes from each
approach, averaged over 5 random seeds. We show results on the Expert dataset in Appendix
C.2; CODAC still achieves the strongest performance. As can be seen, CODAC-C and CODAC-N
outperform both CQL and ORAAC on most datasets. Surprisingly, CODAC-N is quite effective on
the CVaR0.1 metric despite its risk-neutral objective; a likely explanation is that for these datasets,
mean and CVaR performance are highly correlated. Furthermore, we observe that directly optimizing
CVaR may lead to unstable training, potentially since CVaR estimates have higher variance. This
instability occurs for both CODAC-C and ORAAC—on Walker2d-Medium, they perform worse than
the risk-neutral algorithms. Overall, CODAC-C outperforms CODAC-N in terms of CVaR0.1 on
about half of the datasets, and often improves mean performance as well. Next, while ORAAC is
generally effective on Medium datasets, it performs poorly on Mixed datasets; these results mirror the
ones in Section 5.1. Finally, CQL’s performance varies drastically across datasets; we hypothesize
that learning the full distribution helps stabilize training in CODAC. In Appendix C.2, we also
qualitatively analyze the behavior learned by CODAC compared to the baselines, demonstrating that
the better CVaR performance CODAC obtains indeed translates to safer locomotion behaviors.

5.3 Risk-neutral D4RL

Task. Next, we show that CODAC is effective even when the goal is to optimize the standard expected
return. To this end, we evaluate CODAC-N on the popular D4RL Mujoco benchmark [10].

Baselines. We compare to state-of-art algorithms benchmarked in [10] and [48], including Batch-
Constrained Q-Learning (BCQ), Model-Based Offline Policy Optimization (MOPO) [48], and CQL.
We also include ORAAC as an offline distributional RL baseline. We have omitted less competitive
baselines included in [10] from the main text; a full comparison is included in Appendix C.3.

Results. Results for non-distributional approaches are directly taken from [10]; for ORAAC and
CODAC, we evaluate them using 10 test episodes in the environment, averaged over 5 random seeds.
As shown in Table 2 (Right), CODAC achieves strong performance across all 12 datasets, obtaining
state-of-art results on 5 datasets (walker2d-random, hopper-medium, hopper-mixed, halfcheetah-
medium-expert, and walker2d-medium-expert), demonstrating that performance improvements from
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distributional learning also apply in the offline setting. Note that CODAC’s advantage is not solely
due to distributional RL—ORAAC also uses distributional RL, but in most cases underperforms prior
state-of-the-art, These results suggest that CODAC’s use of a conservative penalty is critical for it to
achieve strong performance.

5.4 Analysis of Theoretical Insights

Table 3: Monte-Carlo estimate vs. critic prediction. The CODAC-
predicted expected and CVaR0.1 return is a lower bound on a MC
estimate of the true value.

Regular
Walker2d-Medium Walker2d-Mixed Walker2d-Medium-Expert

MC Return Q-Estimate MC Return Q-Estimate MC Return Q-Estimate

CODAC 240.2 55.7 127.1 97.6 370. 39.7
CQL 247.2 53.0 124.5 -45.2 369.7 116.4

ORAAC 245.2 302.2 118.2 7.70×105 68.2 322.2

Stochastic
Walker2d-Medium Walker2d-Mixed Walker2d-Medium-Expert

MC CVaR0.1 Z-Estimate MC CVaR0.1 Z-Estimate MC CVaR0.1 Z-Estimate

CODAC 185.7 204.2 85.6 59.9 265.3 -127.8

ORAAC 201.9 367.6 50.9 1.54×106 199.5 343.5

We perform additional ex-
periments to validate that
our theoretical insights in
Section 3 hold in practice,
suggesting that they help ex-
plain CODAC’s empirical
performance.

Lower bound. We show
that in practice, CODAC ob-
tains conservative estimates
of the Q and CVaR objec-
tives across different dataset
types (i.e., Medium vs. Mixed vs. Medium-Expert). Given an initial state s0, we obtain a Monte
Carlo (MC) estimate of Q and CVaR for (s0, π(s0)) based on sampled rollouts from s0, and compare
them to the values predicted by the critic. In Table 3, we show results averaged over 10 random s0
and with 100 MC samples for each s0. CODAC obtains conservative estimates for both Q and CVaR;
in contrast, ORAAC overestimates these values, especially on Mixed datasets, and CQL only obtains
conservative estimates for Q, not CVaR.

Table 4: Gap-expansion: CODAC expands the quantile gap and ob-
tains higher returns than an ablation without the conservative penalty.

HalfCheetah-Medium-Expert Hopper-Medium-Expert Walker2d-Medium-Expert
Positive Gap % Return Positive Gap % Return Positive Gap % Return

CODAC 95.3 93.6 91.3 111.9 91.1 111.3
CODAC w.o. Penalty 4.7 12.1 8.7 25.8 8.9 5.9

Gap-Expansion. Next, we
verify that CODAC’s quan-
tile estimates expand their
gap between in-distribution
and out-of-distribution ac-
tions. We use the D4RL
Medium-Expert datasets where CODAC uniformly performs well, making them ideal for under-
standing the source of CODAC’s empirical performance. We train “CODAC w.o. Penalty”, a

non-conservative variant of CODAC (i.e., α = 0), and use its actor as µ and its critic as F−1
Zπ . Next,

for each dataset, we randomly sample 1000 state-action pairs and 32 quantiles τ , resulting in 32000
(s, a, τ) tuples; for each one, we compute the quantile gaps for CODAC and CODAC w.o. Penalty.
In Table 4, we show the percentage of tuples where each CODAC variant has a larger quantile gap,
along with their average return. As can be seen, CODAC has a larger gap for more than 90% of the
tuples on all datasets, as well as significantly higher returns. These results show that gap-expansion
holds in practice and suggest that it helps CODAC achieve good performance.

6 Conclusion

We have introduced Conservative Offline Distributional Actor-Critic (CODAC), a general purpose
offline distributional reinforcement learning algorithm. We have proven that CODAC obtains conser-
vative estimates of the return quantile, which translate into lower bounds on Q and CVaR values. In
our experiments, CODAC outperforms prior approaches on both stochastic, risk-sensitive offline RL
benchmarks, as well as traditional, risk-neutral benchmarks.

One limitation of our work is that CODAC has hyperparameters that must be tuned (in particular,
the penalty magnitude α). As in prior work, we choose these hyperparameters by evaluate online
rollouts in the environment. Designing better hyperparameter selection strategies for offline RL is an
important direction for future work. Finally, we do not foresee any societal impacts or ethical concerns
for our work, other than the usual risks around algorithms for improving robotics capabilities.
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A Proofs

A.1 Proof of Lemma 3.4

Recall that the p-Wasserstein distance is the Lp metric between quantile functions (see Eq. 3). Thus,
we can re-write the CODAC objective as

α · EU(τ),D(s,a)

[

c0(s, a) · F
−1
Z(s,a)(τ)

]

+ ED(s,a)

∫ 1

0

∣

∣

∣
F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p

dτ

=

∫ 1

0

ED(s,a)

[

α · c0(s, a) · F
−1
Z(s,a)(τ) +

∣

∣

∣F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p]

dτ.

We consider a perturbation

Gε
s,a(τ) = F−1

Z(s,a)(τ) + ε · φs,a(τ)

for arbitrary smooth functions φs,a with compact support [Vmin, Vmax], yielding

∫ 1

0

ED(s,a)

[

αc0(s, a) ·G
ε
s,a(τ) +

∣

∣

∣Gε
s,a(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p]

dτ.

Taking the derivative with respect to ε at ε = 0, we have

d

dε

∫ 1

0

ED(s,a)

[

αc0(s, a) ·G
ε
s,a(τ) +

∣

∣

∣Gε
s,a(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p]

dτ

∣

∣

∣

∣

∣

ε=0

= ED(s,a)

∫ 1

0

[

αc0(s, a) + p
∣

∣

∣F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p−1

sign
(

F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
)

]

φs,a(τ)dτ.

This term must equal 0 for F−1
Z(s,a) to minimize the objective; otherwise, some perturbation Gε

s,a

decreases the objective value. Since φs,a are arbitrary, it must equal zero for each s, a individually;
otherwise, increasing φs,a would increase the term, making it nonzero. Thus, we have

∫ 1

0

[

αc0(s, a) + p
∣

∣

∣F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p−1

sign
(

F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
)

]

φs,a(τ)dτ = 0

for all s, a. Then, by the fundamental lemma of the calculus of variations, for each s, a, if this term is
zero for all φs,a, then the integrand must be zero—i.e.,

αc0(s, a) + p
∣

∣

∣F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
∣

∣

∣

p−1

sign
(

F−1
Z(s,a)(τ)− F

−1

T̂ πẐk(s,a)
(τ)
)

= 0,

which holds if and only if

F−1
Z(s,a)(τ) = F−1

T̂ πẐk(s,a)
(τ)− c(s, a).

where c(s, a) = |αp−1c0(s, a)|
1/(p−1)·sign(c0(s, a)), Clearly, this choice of Z is valid, so the claim

follows.

A.2 Proof of Theorem 3.6

First, we have the following result, which is a concentration bound on the quantile values; this result

enables us to bound the estimation error of T̂ π compared to T π:

Lemma A.1. Let n(s, a) = |{(s, a) | (s, a, r, s′) ∈ D}| be the number of times (s, a) occurs in
D. For any return distribution Z with ζ-strongly monotone CDF FZ(s,a) and any δ ∈ R>0, with
probability at least 1− δ, for all s ∈ D and a ∈ A, we have

‖F−1

T̂ πZ(s,a)
− F−1

T πZ(s,a)‖∞≤ ∆(s, a) where ∆(s, a) =
1

ζ

√

5|S|

n(s, a)
log

4|S||A|

δ
.
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This lemma follows by first using the Dvoretzky-Kiefer-Wolfowitz inequality to bound the error of
the empirical CDF FT̂ πZ(s,a) compared to the true CDF FT πZ(s,a) using similar analysis as in [17],

and then leveraging monotonicity to bound the quantile functions; we give a proof in Appendix A.4.
Next, we have the following key lemma, which relates one-step distributional Bellman contraction to
an∞-norm bound at the fixed point.

Lemma A.2. If Z satisfies ‖F−1
Z(s,a) − F

−1
T Z(s,a)‖∞≤ β for all s ∈ S and a ∈ A, then

‖F−1
Z(s,a) − F

−1
Zπ(s,a)‖∞≤ (1− γ)−1β (∀s ∈ S, a ∈ A),

We give a proof in Appendix A.5. As we discuss in Appendix A.6, we can use this result to obtain

bounds on the fixed point of the non-conservative empirical Bellman operator T̂ . Now, we prove
Theorem 3.6. First, with probability at least 1− δ, we have

F−1

T̃ πZπ(s,a)
(τ) = F−1

T̂ πZπ(s,a)
(τ)− c(s, a)

≤ F−1
T πZπ(s,a)(τ)− c(s, a) + ∆(s, a)

= F−1
Zπ(s,a)(τ)− c(s, a) + ∆(s, a), (8)

where the first step follows by Lemma 3.4 (noting that it holds for arbitrary Z̃k, and substituting

Z̃k = Zπ), the second step holds with probability at least 1− δ by Lemma A.1 with Z = Zπ (since
Zπ is ζ-strongly monotone), and the third step follows since Zπ = T πZπ is the fixed point of T π .

Now, rearranging (8), we have

F−1
Zπ(s,a)(τ) ≥ F

−1

T̃ πZπ(s,a)
(τ) + c(s, a)−∆(s, a)

≥ F−1

T̃ πZπ(s,a)
(τ) + min

s,a
{c(s, a)−∆(s, a)}

≥ F−1

Z̃π(s,a)
(τ) + (1− γ)−1 min

s,a
{c(s, a)−∆(s, a)}, (9)

where in the last step, we have applied Lemma A.6 for the case ≥ and T̃ π, and with β =
mins,a{c(s, a)−∆(s, a)}. Finally, note that for the last term in (9) to be positive, we need

αp−1c0(s, a) ≥ ∆(s, a)p−1 (∀s, a).

Since we have assumed that c0(s, a) > 0, this expression is in turn equivalent to

α ≥ max
s,a

{

p ·∆(s, a)p−1

c0(s, a)

}

,

so the claim holds.

A.3 Proof of Theorem 3.8

Lemma A.3. For any Z and any ∆̄, for sufficiently large α, with probability at least 1− δ, we have

Eπ̂β(a|s)F
−1

T̃ πZ(s,a)
(τ)− Eµ(a|s)F

−1

T̃ πZ(s,a)
(τ) ≥ Eπ̂β(a|s)F

−1
T πZ(s,a)(τ)− Eµ(a|s)F

−1
T πZ(s,a)(τ) + ∆̄.

Proof. First, by Lemma 3.4, we have

F−1

T̃ πZ(s,a)
(τ) = F−1

T̂ πZ(s,a)
(τ)− c(s, a).

Then, by Lemma A.1, with probability at least 1− δ, we have

F−1
T πZ(s,a)(τ)− c(s, a)−∆(s, a) ≤ F−1

T̃ πZ(s,a)
(τ) ≤ F−1

T πZ(s,a)(τ)− c(s, a) + ∆(s, a).

Taking the expectation over π̂β (resp., µ) of the lower (resp., upper) bound gives

Eπ̂β(a|s)F
−1

T̃ πZ(s,a)
(τ) ≥ Eπ̂β(a|s)F

−1
T πZ(s,a)(τ)− Eπ̂β(a|s)c(s, a)− Eπ̂β(a|s)∆(s, a)

Eµ(a|s)F
−1

T̃ πZ(s,a)
(τ) ≤ Eµ(a|s)F

−1
T πZ(s,a)(τ)− Eµ(a|s)c(s, a) + Eµ(a|s)∆(s, a),
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respectively. Recall that p = 2. Then, subtracting the latter from the former and rearranging terms,

Eπ̂β(a|s)F
−1

T̃ πZ(s,a)
(τ)− Eµ(a|s)F

−1

T̃ πZ(s,a)
(τ) ≥ Eπ̂β(a|s)F

−1
T πZ(s,a)(τ)− Eµ(a|s)F

−1
T πZ(s,a)(τ)

+ (α/2)c̄(s)− ∆̄(s),

where

c̄(s) = Eµ(a|s)c0(s, a)− Eπ̂β(a|s)c0(s, a)

∆̄(s) = Eµ(a|s)∆(s, a) + Eπ̂β(a|s)∆(s, a).

Note that to show the claim, it suffices to show that for sufficient large α, we have

(α/2)c̄(s) ≥ ∆̄(s) + ∆̄ (∀s). (10)

To this end, note that

Eπ̂β(a|s)c(s, a) =
∑

a

(µ(a | s)− π̂β(a | s)) = 0,

and

Eµ(a|s)c(s, a)

=
∑

a

(

µ(a | s)− π̂β(a | s)

π̂β(a | s)

)

µ(a | s)

=
∑

a

(

µ(a | s)− π̂β(a | s)

π̂β(a | s)

)

(µ(a | s)− π̂β(a | s)) +
∑

a

(

µ(a | s)− π̂β(a | s)

π̂β(a | s)

)

π̂β(a | s)

=
∑

a

(

µ(a | s)− π̂β(a | s)

π̂β(a | s)

)

(µ(a | s)− π̂β(a | s))

=
∑

a

(µ(a | s)− π̂β(a | s))
2

π̂β(a | s)
,

so we have

c̄(s) =
∑

a

(µ(a | s)− π̂β(a | s))
2

π̂β(a | s)
= Varπ̂β(a|s)

[

µ(a | s)− π̂β(a | s)

π̂β(a | s)

]

> 0,

where the last inequality holds since µ(a | s) 6= π̂β(a | s). Thus, for (10) to hold, it suffices to have

α ≥ 2 ·max
s

{

Varπ̂β(a|s)

[

µ(a | s)− π̂β(a | s)

π̂β(a | s)

]−1

· (∆̄(s) + ∆̄)

}

.

The claim follows.

Now, let Z0 = Z̃0, and let Zk = (T π)kZ0 and Z̃k = (T̃ π)kZ̃0. Applying Lemma A.3 with Z = Z̃k

and ∆̄ = 4Vmax, we have

Eπ̂β(a|s)F
−1

T̃ πZ̃k(s,a)
(τ)− Eµ(a|s)F

−1

T̃ πZ̃k(s,a)
(τ)

≥ Eπ̂β(a|s)F
−1

T πZ̃k(s,a)
(τ)− Eµ(a|s)F

−1

T πZ̃k(s,a)
(τ) + ∆̄

= Eπ̂β(a|s)F
−1
T πZk(s,a)

(τ)− Eµ(a|s)F
−1
T πZk(s,a)

(τ) + ∆̄

+
(

Eπ̂β(a|s)F
−1

T πZ̃k(s,a)
(τ)− Eµ(a|s)F

−1

T πZ̃k(s,a)
(τ)
)

−
(

Eπ̂β(a|s)F
−1
T πZk(s,a)

(τ)− Eµ(a|s)F
−1
T πZk(s,a)

(τ)
)

≥ Eπ̂β(a|s)F
−1
T πZk(s,a)

(τ)− Eµ(a|s)F
−1
T πZk(s,a)

(τ)

+ ∆̄− 4Vmax

= Eπ̂β(a|s)F
−1
T πZk(s,a)

(τ)− Eµ(a|s)F
−1
T πZk(s,a)

(τ).

The claim follows by taking the limit k →∞.
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A.4 Proof of Lemma A.1

We first prove a bound on the concentration of the empirical CDF to the true CDF. A similar result
has been previously derived in [17]; our proof is based on theirs.

Lemma A.4. For all δ ∈ R>0, with probability at least 1− δ, for any Z ∈ Z , for all (s, a) ∈ D,

‖FT̂ πZ(s,a) − FT πZ(s,a)‖∞≤

√

5|S|

n(s, a)
log

4|S||A|

δ
(11)

Proof. By the definition of distributional Bellman operator applied to the CDF function, we have that

FT̂ πZ(s,a)(x)− FT πZ(s,a)(x)

=
∑

s′,a′

P̂ (s′ | s, a)π(a′ | s′)FγZ(s′,a′)+R̂(s,a)(x)−
∑

s′,a′

P (s′ | s, a)π(a′ | s′)FγZ(s′,a′)+R(s,a)(x).

Adding and subtracting
∑

s′,a′ P̂ (s′ | s, a)π(a′ | s′)FγZ(s′,a′)+R(s,a)(x) from this expression gives

∑

s′,a′

P̂ (s′ | s, a)π(a′ | s′)
(

FγZ(s′,a′)+R̂(s,a)(x)− FγZ(s′,a′)+R(s,a)(x)
)

+
∑

s′,a′

(

P̂ (s′ | s, a)− P (s′ | s, a)
)

π(a′ | s′)FγZ(s′,a′)+R(s,a)(x).

We proceed by bounding the two terms in the summation. For the first term, observe that

FγZ(s′,a′)+R̂(s,a)(x)− FγZ(s′,a′)+R(s,a)(x)

=

∫

[

FR̂(s,a)(r)− FR(s,a)(r)
]

dFγZ(s′,a′)(x− r)

≤

∫

∣

∣

∣FR̂(s,a)(r)− FR(s,a)(r)
∣

∣

∣dFγZ(s′,a′)(x− r)

≤ supr

∣

∣

∣FR̂(s,a)(r)− FR(s,a)(r)
∣

∣

∣

∫

dFγZ(s′,a′)(x− r)

=
∥

∥

∥FR̂(s,a)(r)− FR(s,a)(r)
∥

∥

∥

∞
.

Therefore, we have
∑

s′,a′

P̂ (s′ | s, a)π(a′ | s′)
(

FγZ(s′,a′)+R̂(s,a)(x)− FγZ(s′,a′)+R(s,a)(x)
)

≤
∑

s′,a′

P̂ (s′ | s, a)π(a′ | s′)
∥

∥

∥FR̂(s,a)(r)− FR(s,a)(r)
∥

∥

∥

∞

=
∥

∥

∥
FR̂(s,a)(r)− FR(s,a)(r)

∥

∥

∥

∞

The second term can be bounded as follows:
∑

s′,a′

(

P̂ (s′ | s, a)− P (s′ | s, a)
)

π(a′ | s′)FγZ(s′,a′)+R(s,a)(x)

=
∑

s′

(

P̂ (s′ | s, a)− P (s′ | s, a)
)

∑

a′

π(a′ | s′)FγZ(s′,a′)+R(s,a)(x)

≤
∥

∥

∥P̂ (· | s, a)− P (· | s, a)
∥

∥

∥

1
·

∥

∥

∥

∥

∥

∑

a′

π(a′ | ·)FγZ(·,a′)+R(s,a)(x)

∥

∥

∥

∥

∥

∞

≤
∥

∥

∥P̂ (· | s, a)− P (· | s, a)
∥

∥

∥

1
·

∥

∥

∥

∥

∥

∑

a′

π(a′ | ·)

∥

∥

∥

∥

∥

∞

=
∥

∥

∥P̂ (· | s, a)− P (· | s, a)
∥

∥

∥

1
.
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Together, we have
∣

∣

∣FT̂ πZ(s,a)(x)− FT πZ(s,a)(x)
∣

∣

∣ ≤
∥

∥

∥FR̂(s,a)(r)− FR(s,a)(r)
∥

∥

∥

∞
+
∥

∥

∥P̂ (s′ | s, a)− P (s′ | s, a)
∥

∥

∥

1
.

Finally, the inequalities can be bounded using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality
and the Hoeffding’s inequality, giving us the desired results. By the DKW inequality, we have that
with probability 1− δ/2, for all (s, a) ∈ D,

∥

∥

∥FR̂(s,a)(r)− FR(s,a)(r)
∥

∥

∥

∞
≤

√

1

2n(s, a)
ln

4|S||A|

δ

Similarly, by Hoeffding’s inequality and an `1 concentration bound for multinomial distribution3, we
have

max
s,a

∥

∥

∥
P̂ (· | s, a)− P (· | s, a)

∥

∥

∥

1
≤

√

2|S|

n(s, a)
ln

4|S||A|

δ

The claim follows by combining the two inequalities.

Next, we prove a general result that translates bounds on CDFs into bounds on quantile functions.

Lemma A.5. Consider two CDFs F and G with support X . Suppose that F is ζ-strongly monotone
and that ‖F −G‖∞≤ ε. Then, ‖F−1 −G−1‖∞≤ ε/ζ.

Proof. First, note that

F−1(y)−G−1(y) =

∫ F−1(y)

G−1(y)

dx =

∫ y

F (G−1(y))

dF−1(y′),

where the first equality follows by fundamental theorem of calculus, and the second by a change of
variable y′ = F (x). Since F (F−1(y′)) = y′, we have F ′(F−1(y′))dF−1(y′) = dy′, so

dF−1(y′) =
dy′

F ′(F−1(y′))
≤
dy′

ζ
,

where the inequality follows by ζ-strong monotonicity. As a consequence, we have

∫ y

F (G−1(y))

dF−1(y′) ≤

∫ y

F (G−1(y))

dy′

ζ
=

(y − F (G−1(y))

ζ
=
G(G−1(y))− F (G−1(y))

ζ
≤
ε

ζ
,

where the last inequality follows since ‖G− F‖∞≤ ε. The claim follows.

Finally, Lemma A.1 follows by substituting F = FT̂ πZ(s,a)(x), G = FT πZ(s,a)(x), and ε =
√

5|S|
n(s,a) log

4|S||A|
δ into Lemma A.5, where the condition ‖F −G‖∞≤ ε holds by Lemma A.4.

A.5 Proof of Lemma A.2

We prove the following slightly stronger result:

Lemma A.6. For any β ∈ R, if Z satisfies

F−1
Z(s,a)(τ) ≥ F

−1
T πZ(s,a)(τ) + β (∀τ ∈ [0, 1]) (12)

for all s ∈ S and a ∈ A, then we have

F−1
Z(s,a)(τ) ≥ F

−1
Zπ(s,a)(τ) + (1− γ)−1β (∀τ ∈ [0, 1]).

The result holds with ≥ replaced by ≤, or with T π and Zπ replaced by T̂ π and Ẑπ or T̃ π and Z̃π .

3See https://nanjiang.cs.illinois.edu/files/cs598/note3.pdf for a derivation.
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Proof. We prove the first case; the cases with ≥, and the cases with T̂ π and Ẑπ follow by the same
argument. First, we show that

FT πZ(s,a)(x) ≥ FZ(s,a)(x+ β) (∀x ∈ [Vmin, Vmax]). (13)

To this end, note that rearranging (12), we have

FT πZ(s,a)(F
−1
Z(s,a)(τ)− β) ≥ τ.

Then, substituting τ = FẐπ(s,a)(x + β) yields (13); note that such τ must exist since the CDF is

defined on all of R. Next, we show that

F−1
T πZ(s,a)(τ) ≥ F

−1
T π(T πZ(s,a))(τ) + γβ (∀τ ∈ [0, 1]), (14)

where the parts changed from (12) are highlighted in red. Intuitively, this claim says that T π

distributes additively to the constant β, and since T π is a γ-contraction in d̄p, we have T πβ ≤ γβ.
To show (14), first note that

FT π(T πZ(s,a))(x) =
∑

s′,a′

Pπ(s′, a′ | s, a)

∫

FT πZ(s′,a′)

(

x− r

γ

)

dFR(s,a)(r)

≥
∑

s′,a′

Pπ(s′, a′ | s, a)

∫

FZ(s′,a′)

(

x− r

γ
+ β

)

dFR(s,a)(r)

=
∑

s′,a′

Pπ(s′, a′ | s, a)

∫

FγZ(s′,a′)(x− r + γβ)dFR(s,a)(r)

=
∑

s′,a′

Pπ(s′, a′ | s, a)FR(s,a)+γZ(s′,a′)(x+ γβ)

= FT πZ(s,a)(x+ γβ),

where the first step follows by derivation of the Bellman operator for the CDF, the second step follows
from (13), and the third step follows from the property of a CDF function. It follows that

F−1
T πZ(s,a)(FT π(T πZ(s,a))(x)) ≥ x+ γβ.

Setting τ = FT π(T πZ(s,a))(x), we have

F−1
T πZ(s,a)(τ) ≥ F

−1
T π(T πZ(s,a))(τ) + γβ

for all τ ∈ [0, 1]; thus, we have shown (14). Now, by induction on T π , we have

F−1
(T π)kZ(s,a)

(τ) ≥ F−1
(T π)k+1Z(s,a)

(τ) + γkβ

for all k ∈ N. Summing these inequalities over k ∈ {0, 1, ..., n} inequality gives
n
∑

k=0

F−1
(T π)kZ(s,a)

(τ) ≥

n
∑

k=0

F−1
(T π)k(T πZ(s,a))

(τ) +

n
∑

k=0

γkβ

Subtracting common terms from both sides and evaluating the sum over γk, we have

F−1
Z(s,a)(τ) ≥ F

−1
(T π)n+1Z(s,a)(τ) +

1− γn+1

1− γ
β.

Taking n→∞, we have

F−1
Z(s,a)(τ) ≥ F

−1
Zπ(s,a)(τ)− (1− γ)−1β,

where we have used the fact that Zπ is the fixed point of T π . The claim follows.

A.6 Bound on error of the fixed-point of the empirical distributional bellman operator

We can use our techniques to prove finite-sample bounds on the error of using value iteration with the

empirical Bellman operator T̂ compared to the true Bellman operator T .

Theorem A.7. We have ‖F−1

Ẑπ(s,a)
− FZπ(s,a)‖∞≤ (1 − γ)−1∆max, where Ẑπ and Zπ are the

fixed-points of T̂ π and T π , respectively.

Proof. Let ∆max = maxs,a ∆(s, a). We have ‖F−1

Ẑπ(s,a)
− FT πẐπ(s,a)‖∞≤ ∆max by Lemma A.1

with Z = Ẑπ . Thus, we have ‖F−1

Ẑπ(s,a)
− FZπ(s,a)‖∞≤ (1− γ)−1∆max by Lemma A.2.
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B Algorithm and implementation details

In this section, we describe our practical implementation of CODAC in detail.

B.1 Actor-Critic objective

We first describe a modification to the CODAC objective, which admits learnable α, instead of having
to fix it to a constant value throughout the entirety of training. Recall that the original objective is

Ẑk+1 = argmin
Z

{

α · EU(τ)

[

ED(s) log
∑

a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)

]

+ Lp(Z, T̂
πk

Ẑk)

}

,

We first provide a derivation of the above objective; this portion largely follows from [21]. We first
introduce a regularization termR(µ) to obtain a well-defined optimization problem:

Ẑk+1 = argmin
Z

max
µ

{

α · EU(τ)

[

ED(s),µ(a|s)F
−1
Z(s,a)(τ)− ED(s,a)F

−1
Z(s,a)(τ)

]

+ Lp(Z, T̂
πk

Ẑk)
}

+R(µ)

If we set R(µ) to be the entropy H(µ), then we can see that µ(a | s) ∝ exp(Q(s, a)) =

exp(
∫ 1

0
F−1
Z(s,a)(τ)dτ) is the solution to the inner-maximization. Plugging this choice into the

above regularized objective gives

Ẑk+1 = argmin
Z

{

α · EU(τ)

[

ED(s) log
∑

a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)

]

+ Lp(Z, T̂
πk

Ẑk)

}

,

as desired. As in [21], we introduce a parameter ζ ∈ R>0 that thresholds the quantile value difference
between µ and π̂β . In addition, we scale this difference by ω ∈ R>0. This gives a learnable
formulation of α via dual gradient descent:

min
Z

max
α≥0

{

α · EU(τ)

[

ω ·

[

ED(s) log
∑

a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)

]

− ζ

]

+ Lp(Z, T̂
πk

Ẑk)

}

,

Because our experiments are all conducted in continuous-control domains, we cannot enumerate

all actions a and compute log
∑

a exp(F−1
Z(s,a)(τ)) directly. To circumvent this issue, we use the

importance sampling approximation scheme introduced in [21]. To this end, we use the following
approximation in our implementation:

log
∑

a

exp(F−1
Z(s,a)(τ)) ≈ log





1

2M

N
∑

ai∼U(A)

[

exp(F−1
Z(s,a)(τ))

U(A)

]

+
1

2M

N
∑

ai∼π(a|s)

[

exp(F−1
Z(s,a)(τ))

π(ai | s)

]





(15)
where U(A) = Uniform(A) denotes the uniform distribution over actions, and where we pick
M = 10. We summarize a single step of the actor and critic updates used by CODAC in Algorithm 1.

B.2 Neural network architecture

The policy network π(· | s;φ) consists of a two-layer fully connected architecture with 256 hidden
units and ReLU activations. For the quantile network, we use the architecture from [27], which builds
on top of the implicit quantile network (IQN) architecture [6]. Specifically, we represent the quantile

function F−1
Z(s,a)(τ) as an element-wise (Hadamard) product of a state-action feature representation

ψ(s, a) and a quantile embedding ϕ(τ)—i.e., F−1
Z(s,a)(τ) = ψ(s, a)� ϕ(τ). Following IQN, we use

the following embedding formula for ϕ(τ):

ϕj(τ) := h

(

n
∑

i=1

cos(iπτ)wij + bj

)

,

where wij , bj are weights of the neural network ϕ, and h is the sigmoid function. We use a one-layer
256-unit fully connected neural network for ψ(s, a), and a one-layer 64-unit fully connected neural
network for ϕ(τ), followed with one-layer 256-unit fully connected network applied to ψ(s, a)�ϕ(τ).
We apply layer normalization [2] after each activation layer to ensure stable training.
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Algorithm 1 CODAC Update

1: Hyperparameters: Number of generated quantiles N , quantile Huber loss threshold κ, CODAC
penalty scale ω, CODAC penalty threshold ζ, discount rate γ, learning rates ηactor, ηcritic, ηα

2: Parameters: Critic parameters θ, Actor parameters φ, Penalty α
3: Inputs: Tuple s, a, r, s′

4: Sample quantiles τi (for i = 1, . . . , N ) and τ ′j (for j = 1, . . . , N ) i.i.d. from Uniform([0, 1])
5: # Compute distributional TD loss
6: Get next actions for calculating target a′ ∼ π(· | s′;φ)
7: for i = 1 to N do
8: for j = 1 to N do
9: δτi,τ ′

j
= r + γF−1

Z(s′,a′),θ′(τ
′
j)− F

−1
Z(s,a),θ(τi)

10: end for
11: end for
12: Compute Lcritic(θ) = N−2

∑N
i=1

∑N
j=1 Lκ(δτi,τ ′

j
; τi)

13: # Compute CODAC penalty
14: Sample i ∼ U({1, ..., N}) and use quantile τi
15: Estimate log

∑

a exp(F−1
Z(s,a),θ(τi)) according to (15)

16: ComputeLCODAC(θ, α) = α·
(

ω ·
(

log
∑

a exp(F−1
Z(s,a),θ(τi))−N

−1
∑N

j=1 F
−1
Z(s,a),θ(τj)

)

− ζ
)

17: Update θ ← θ − ηcritic∇θ(Lcritic(θ) + LCODAC(θ, α))
18: Update α← α− ηα∇αLCODAC(θ, α)
19: # Update Policy Network πφ(a | s) with Φg objective
20: Get new actions with re-parameterized samples ã ∼ π(· | s;φ)
21: ComputeΦg(s, ã) using F−1

Z(s,ã),θ(τi), i = 1, ..., N

22: Lactor(φ) = log(π(ã | s;φ))− Φg(s, ã)
23: Update φ← φ+ ηactor∇Lactor(φ)

B.3 Actor-Critic updates

We summarize a single actor-critic update performed by CODAC in Algorithm 1. We briefly discuss a
few implementation details. First, since computing the CODAC penalty to all quantiles is prohibitively
expensive, we apply the conservative penalty to a randomly chosen τi on each update step (Line
13-15). This practical choice aligns well with our theoretical objective, whose outer expectation is
taken with respect to the uniform distribution U(τ) over quantiles. We also found subtracting the

average quantile values (i.e., N−1
∑N

j=1 F
−1
Z(s,a),θ(τj)) to be more stable than just subtracting the

corresponding quantile value F−1
Z(s,a),θ(τi). This step can be viewed as rewriting

EU(τ)

[

ED(s) log
∑

a

exp(F−1
Z(s,a)(τ))− ED(s,a)F

−1
Z(s,a)(τ)

]

as

EU(τ)

[

ED(s) log
∑

a

exp(F−1
Z(s,a)(τ))

]

− EU(τ)

[

ED(s,a)F
−1
Z(s,a)(τ)

]

and implementing the latter as in Line 15. Finally, to compute Φg(s, ã) in Line 21, we take the average

of all F−1
Z(s,ã),θ(τi) where τi is less than or equal to the risk threshold value. For the expected-return

(i.e., risk-neutral objective), the threshold is 1, and Φg(s, ã) =
∑N

i=1 F
−1
Z(s,ã),θ(τi)/N . For CVaR0.1,

the threshold is 0.1, and Φg(s, ã) =
∑maxi:τi<0.1

i=1 F−1
Z(s,ã),θ(τi)/(maxi : τi < 0.1).

C Experiment details and additional results

C.1 Risky robot navigation

Risky PointMass environment. The state space of the PointMass agent 4-dimensional, including
the agent’s position as well as the goal position, which is fixed to [0.1, 0.1]. The state space constraint
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Table 5: CODAC can optimize various distorted expectation based risk-sensitive objectives.

Algorithm
Risky PointMass

Mean Median CVaR0.1 Violations

CODAC-CVaR -6.05 -4.89 -14.73 0.0
CODAC-CPW -8.34 -4.00 -54.18 103.0
CODAC-Neutral -8.60 -4.05 -51.96 108.3
CODAC-Wang -6.01 -4.46 -16.80 7.0

Table 6: Risky robot navigation quantitative evaluation.

Algorithm
Risky PointMass Risky Ant

Mean Median CVaR0.1 Violations Mean Median CVaR0.1 Violations

DSAC (Online) -7.69 -3.82 -49.9 94 -866.1 -833.3 -1422.7 2247
CODAC-C (Ours) -6.05 ± 0.42 -4.89 ± 0.35 -14.73 ± 0.95 0.0 ± 0.0 -456.0 ± 24.0 -433.4 ± 17.1 -686.6 ± 149.8 347.8 ± 69.7
CODAC-N (Ours) -8.60 ± 1.62 -4.05 ± 0.12 -51.96 ± 12.34 108.3 ± 11.90 -432.7 ± 41.3 -395.1 ± 11.5 -847.1 ± 309.3 936.0 ± 186.1
ORAAC -10.67 ± 1.18 -4.55 ± 0.55 -64.12 ± 5.14 138.7 ± 16.4 -788.1 ± 82.0 -795.3 ± 144.4 -1247.2 ± 48.0 1196 ± 49.7
CQL -7.51 ± 1.05 -4.18 ± 0.13 -43.44 ± 10.57 93.4 ± 0.94 -967.8 ± 66.9 -858.5 ± 22.0 -1887.3 ± 236.1 1854.3 ± 369.1

is [0, 1]. Hence, the agent cannot enter a location outside of this unit square. The risky red region
is centered at [0.5, 0.5] with radius of 0.3. The agent’s initial state is randomly chosen inside the
[0.1, 0.9]2 box outside the risky red region. The agent dynamics is holomorphic, allowing the agent
to move freely in any direction with its x-axis and y-axis displacement capped at 0.1. The reward
the agent receives at each step is its negative Euclidean distance to the goal plus a constant −0.1,
which encourages the agent to reach the goal as fast as possible. When the agent is inside the risky
red region, with probability 0.1, an additional −50 reward is incurred. The episode terminates when
the agent is within 0.1 distance to the goal. An episode may last up to 100 steps.

Risky Ant environment. The state space of the Ant agent is identical to the original state space of
the Mujoco Ant agent. The goal is located at [10, 10], and the risky red region is centered at [5, 5]
with a radius of 3. The agent’s initial state is randomly chosen inside the [0, 7]2 box outside the risky
red region. The agent dynamics is also identical to the Mujoco Ant environment. At each timestep,
the agent receives its negative Euclidean distance to the goal plus 0.1× velocity as its reward. When
the agent is inside the risky red region, with probability 0.1, an additional −50 reward is incurred.
The episode terminates when the agent is within 0.1 distance to the goal. When the agent is inside the
risky red region, with probability 0.05, an additional −90 reward is incurred. The episode terminates
when the agent is within distance 1 of the goal. An episode may last up to 200 steps.

Dataset and training details. We train a distributional SAC agent online for 100 (resp., 5000)
episodes in the PointMass (resp., Ant) environment, and use this agent’s replay buffer as the dataset
for offline RL training. All offline RL algorithms are trained for 104 (resp., 106) gradient steps. We
use the default hyperparameters for ORAAC, and use ω = 0.01 and ζ = 10 for both CODAC and
CQL. Our results are reported using 100 evaluation episodes with same set of initial states.

Additional results. In Table 6, we show full results for the risky robot navigation environments. As
can be seen, CODAC-C achieves the best performance on most metrics and is the only method that
learns risk-averse behavior. In addition, in Figure 5, we visualize trajectories for various Ant agents.
As can be seen, CODAC-C avoids the risky region shown in red, while still making it to the goal.

Alternative risk-sensitive objectives. On the risky pointmass domain, we also show that CODAC
can optimize CPW and Wang risk-sensitive objectives using the same offline dataset. As for CODAC-
CVaR (CODAC-C) and CODAC-Neutral (CODAC-N), we train CODAC-Wang and CODAC-CPW
using 5 random seeds and report the results in Table 5. As shown, CODAC-Wang performs similarly
to CODAC-CVaR, trading off slightly better average performance at the cost of safety. On the other
hand, CODAC-CPW is on par with CODAC-Neutral. These findings match our intuition that Wang
is slightly more risk-seeking than CVaR since it gives non-zero (but vanishingly small) weight to
quantile values above the risk cutoff threshold, and CPW is similar to risk-neutral due to its intended
modeling of human game-play behavior. These findings are also consistent with those in prior
work [6], which investigates these risk objectives for online distributional reinforcement learning.
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Table 8: Stochastic D4RL qualitative results

Algorithm
HalfCheetah-Mixed-v0 Walker2d-Mixed-v0

% Violation Average Velocity % Violation Average Velocity

CODAC-C (Ours) 11 1.49 15 0.28
CODAC-N (Ours) 54 2.02 9 0.34
CQL 23 1.71 13 0.19
ORAAC 37 1.76 48 0.49

Table 9: Normalized Return on the D4RL Mujoco Suite, averaged over 5 random seeds.

Dataset BC BEAR BRAC-v BCQ MOPO CQL ORAAC CODAC

halfcheetah-random 2.1 25.1 24.1 2.2 35.4 35.4 13.5 34.6 ± 1.27
hopper-random 9.8 11.4 12.2 10.6 11.7 10.8 9.8 11 ± 0.43
walker2d-random 1.6 7.3 1.9 4.9 13.6 7.0 3.2 18.7 ± 4.5

halfcheetah-medium 36.1 41.7 43.8 40.7 42.3 44.4 41.0 46.3± 0.98
walker2d-medium 6.6 59.1 81.1 53.1 17.8 79.2 27.3 82.0 ± 0.45
hopper-medium 29.0 52.1 31.1 54.5 28.0 58.0 1.48 70.8 ± 11.4

halfcheetah-mixed 38.4 38.6 47.7 38.2 53.1 46.2 30.0 44 ± 0.76
hopper-mixed 11.8 33.7 0.6 33.1 67.5 48.6 16.3 100.2 ± 1.0
walker2d-mixed 11.3 19.2 0.9 15.0 39.0 26.7 28 33.2 ± 17.6

halfcheetah-medium-expert 35.8 53.4 41.9 64.7 63.3 62.4 24.0 70.4 ± 19.4
walker2d-medium-expert 6.4 40.1 81.6 57.5 44.6 98.7 28.2 106.0 ± 4.6
hopper-medium-expert 111.9 96.3 0.8 110.9 23.7 111.0 18.2 112.0 ± 1.7

As shown in Table 8, CODAC-C achieves the lowest percentage of violations in the HalfCheetah
environment, indicating that it has learned a safer policy than all other methods. On Walker2d, CQL
appears to be the safest; however, this result is due to the fact that CQL failed to learn the desirable
walking behavior as indicated by its low reward in the paper. Among the methods that learned to
walk, CODAC-C achieves the lowest average angular velocity while maximizing the return.

C.3 D4RL Mujoco suite

Our experimental protocol largely follows from [10]. All algorithms are trained for 1M gradient steps.
We use 10 evaluation episodes on the original Mujoco environments, which all last 1000 steps long.
Hyperparameters are detailed in Appendix C.4. In Table 9, we show the full results on the risk-neutral
D4RL Mujoco Suite, which includes additional baselines such as BEAR [20] and BRAC [46].

C.4 Hyperparameters

As CODAC builds on top of distributional SAC (DSAC), we keep the DSAC-specific hyperparameters
identical as the original work. These hyperparameters are shown in Table 10.

CODAC additionally introduces hyperparameters α, ω, ζ (see Appendix B). In most cases, α is a
learnable parameter initialized to 1 with learning rate ηα = 3 × 10−4; in few cases, we fix it to 1
throughout the entirety of training, which we indicate by setting ζ = −1, as in [21]. For ORAAC,
we use the default hyperparameters tuned on the stochastic D4RL Mujoco suite for all experiments;
for CQL, we use the default hyperparameters tuned on the original D4RL Mujoco suite for all
experiments. Below, we describe the specific CODAC hyperparameters we use for the risk-neutral
and risk-sensitive D4RL experiments.

Risk-neutral D4RL. We restrict the search range of the hyperparameters as follow: ω ∈
{0.1, 1, 10}, ζ ∈ {−1, 10}. We also experiment with enabling entropy tuning in DSAC and tune the
value network learning rate ηcritic between 3e− 4 and 3e− 5, which improves performance on some
datasets. Table 11 summarizes the hyperparameters used for each dataset in our reported results. At a
high level, we find ω = 1 to be effective for Mixed and Random datasets and ω = 10 effective for
Medium and Medium-Expert datasets. These empirical findings match our intuition that the penalty
needs not to be high when the dataset has wide coverage.
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Table 10: CODAC backbone hyperparameters

Hyper-parameter Value

Policy network learning rate ηactor 3e-4
(Quantile) Value network learning rate ηcritic 3e-5
Optimizer Adam
Discount factor γ 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4
Number of quantile fractions N 32
Quantile fraction embedding size 64
Huber regression threshold κ 1

Table 11: CODAC hyperparameters for risk-neutral D4RL

dataset ω ζ ηcritic entropy tuning

halfcheetah-random 1 10 3e-5 yes
hopper-random 1 10 3e-5 yes
walker2d-random 1 10 3e-5 yes

halfcheetah-medium 10 10 3e-5 no
hopper-medium 10 10 3e-4 yes
walker2d-medium 10 10 3e-5 no

halfcheetah-mixed 1 10 3e-5 yes
hopper-mixed 1 10 3e-5 yes
walker2d-mixed 1 10 3e-5 yes

halfcheetah-medium-expert 0.1 -1 3e-4 no
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no

Risk-sensitive D4RL. We use the same hyperparameter range as in risk-neutral D4RL for a grid
search. Interestingly, the best value of ω is smaller across most datasets, suggesting less conservatism
may be needed due to the increased stochasticity in the environment. Table 12 summarizes the
hyperparameter choices.

C.5 Compute resources

We use a single Nvidia 2080-Ti with 32 cores to run our experiments. Each CODAC run takes about
10 hours in clock time.
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Table 12: CODAC hyperparameters for risk-sensitive D4RL

dataset ω ζ ηcritic entropy tuning

halfcheetah-medium 1 -1 3e-5 no
hopper-medium 0.1 10 3e-5 yes
walker2d-medium 1 -1 3e-5 yes

halfcheetah-mixed 0.1 10 3e-5 yes
hopper-mixed 1 10 3e-5 yes
walker2d-mixed 1 10 3e-5 yes

halfcheetah-medium-expert 1 -1 3e-5 yes
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no

26


	1 Introduction
	2 Background
	3 Conservative offline distributional policy evaluation
	4 Conservative offline distributional actor critic
	5 Experiments
	5.1 Risky robot navigation
	5.2 Risk-sensitive D4RL
	5.3 Risk-neutral D4RL
	5.4 Analysis of Theoretical Insights

	6 Conclusion
	A Proofs
	A.1 Proof of Lemma 3.4
	A.2 Proof of Theorem 3.6
	A.3 Proof of Theorem 3.8
	A.4 Proof of Lemma A.1
	A.5 Proof of Lemma A.2
	A.6 Bound on error of the fixed-point of the empirical distributional bellman operator

	B Algorithm and implementation details
	B.1 Actor-Critic objective
	B.2 Neural network architecture
	B.3 Actor-Critic updates

	C Experiment details and additional results
	C.1 Risky robot navigation
	C.2 Stochastic D4RL Mujoco suite
	C.3 D4RL Mujoco suite
	C.4 Hyperparameters
	C.5 Compute resources


