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Abstract

We propose State Matching Offline DIstribution

Correction Estimation (SMODICE), a novel and

versatile regression-based offline imitation learn-

ing (IL) algorithm derived via state-occupancy

matching. We show that the SMODICE objective

admits a simple optimization procedure through

an application of Fenchel duality and an analytic

solution in tabular MDPs. Without requiring ac-

cess to expert actions, SMODICE can be effec-

tively applied to three offline IL settings: (i) imita-

tion from observations (IfO), (ii) IfO with dynam-

ics or morphologically mismatched expert, and

(iii) example-based reinforcement learning, which

we show can be formulated as a state-occupancy

matching problem. We extensively evaluate

SMODICE on both gridworld environments as

well as on high-dimensional offline benchmarks.

Our results demonstrate that SMODICE is effec-

tive for all three problem settings and significantly

outperforms prior state-of-art. Project website:

https://sites.google.com/view/smodice/home

1. Introduction

The offline reinforcement learning (RL) framework (Lange

et al., 2012; Levine et al., 2020) aims to use pre-collected,

reusable offline data—without further interaction with the

environment—for sample-efficient, scalable, and practical

data-driven decision-making. However, this assumes that

the offline dataset comes with reward labels, which may

not always be possible. To address this, offline imitation

learning (IL) (Zolna et al., 2020; Chang et al., 2021; Kim

et al., 2022) has recently been proposed as an alternative

where the learning algorithm is provided with a small set of

1Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, USA 2University of Melbourne,
Melbourne, Australia. Correspondence to: Yecheng Jason Ma
<jasonyma@seas.upenn.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

expert demonstrations and a separate set of offline data of

unknown quality. The goal is to learn a policy that mimics

the provided expert data while avoiding test-time distribu-

tion shift (Ross et al., 2011) by using the offline dataset.

Expert demonstrations are often much more expensive to

acquire than offline data; thus, offline IL benefits signifi-

cantly from minimizing assumptions about the expert data.

In this work, we aim to remove two assumptions about the

expert data in current offline IL algorithms: (i) expert ac-

tion labels must be provided for the demonstrations, and

(ii) the expert demonstrations are performed with identical

dynamics (same embodiment, actions, and transitions) as

the imitator agent. These requirements preclude applica-

tions to important practical problem settings, including (i)

imitation from observations, (ii) imitation with mismatched

expert that obeys different dynamics or embodiment (e.g.,

learning from human videos), and (iii) learning only from

examples of successful outcomes rather than full expert

trajectories (Eysenbach et al., 2021).

For these reasons, many algorithms for online IL have al-

ready sought to remove these assumptions (Torabi et al.,

2018; 2019; Liu et al., 2019; Radosavovic et al., 2020; Ey-

senbach et al., 2021), but extending them to offline IL re-

mains an open problem.

We propose State Matching Offline DIstribution Correction

Estimation (SMODICE), a general offline IL framework that

can be applied to all three problem settings described above.

At a high level, SMODICE is based on a state-occupancy

matching view of IL:

min
π

DKL(d
π(s)‖dE(s)), (1)

which aims to minimize the KL-divergence of the state-

occupancy d between the imitator π and the expert E. This

state-occupancy matching objective intuitively demands in-

ferring the correct actions from the offline data in order to

match the state-occupancy of the provided expert demon-

strations. This formulation naturally enables imitation when

expert actions are unavailable, and even when the expert’s

embodiment or dynamics are different, as long as there is a

shared task-relevant state. Finally, we show that example-

based RL (Eysenbach et al., 2021), where only examples

of successful states are provided as supervision, can be for-
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2. Preliminaries

Markov decision processes. We consider a time-

discounted Markov decision process (MDP) (Puterman,

2014) M = (S,A,R, T, µ0, γ) with state space S, action

space A, deterministic rewards R(s, a), stochastic transi-

tions s′ ∼ T (s, a), initial state distribution µ0(s), and dis-

count factor γ ∈ (0, 1]. A policy π : S → ∆(A) determines

the action distribution conditioned on the state.

The state-action occupancies (also known as stationary dis-

tribution) dπ(s, a) : S ×A → [0, 1] of π is

dπ(s, a) := (1− γ)

∞∑

t=0

γtPr(st = s, at = a |

s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at))

(2)

which captures the relative frequency of state-action visita-

tions for a policy π. The state occupancies then marginalize

over actions: dπ(s) =
∑

a d
π(s, a). The state-action occu-

pancies satisfy the single-step transpose Bellman equation:

dπ(s, a) = (1− γ)µ0(s)π(a | s) + γ · T π
? dπ(s, a), (3)

where T π
? is the adjoint policy transition operator,

T π
? dπ(s, a) := π(a | s)

∑

s̃,ã

T (s | s̃, ã)d(s̃, ã) (4)

Divergences and Fenchel conjugates. Next, we briefly

introduce f -divergence and their Fenchel conjugates.

Definition 1 (f -divergence). Given a continuous, convex

function f and two probability distributions p, q ∈ ∆(X )
over a domain X , the f -divergence of p at q is

Df (p‖q) = Ex∼q

[

f

(
p(x)

q(x)

)]

(5)

A common f -divergence in machine learning is the KL-

divergence, which corresponds to f(x) = x log x. Now, we

introduce Fenchel conjugate for f -divergences.

Definition 2 (Fenchel conjugate). Given a vector space Ω
with inner-product 〈·, ·〉, the Fenchel conjugate f? : Ω? →
R of a convex and differentiable function f : Ω → R is

f?(y) := max
x∈Ω

〈x, y〉 − f(x) (6)

and any maximizer x∗ of f?(y) satisfies x∗ = f ′
?(y).

For an f -divergence, under mild realizability assump-

tions (Dai et al., 2016) on f , the Fenchel conjugate of

Df (p‖q) at y : X → R is

D?,f (y) = max
p∈∆(X )

Ex∼p[y(x)]−Df (p‖q) (7)

= Ex∼q[f?(y(x))] (8)

and any maximizer p∗ of D?,f (y) satisfies

p∗(x) = q(x)f ′
?(y(x)). (9)

This result can be seen as an application of the KKT condi-

tions to problems involving f -divergence regularization.

Offline imitation learning. Many imitation learning ap-

proaches rely on minimizing the f -divergence between the

state-action occupancies of the imitator and the expert (Ho

& Ermon, 2016; Ke et al., 2020; Ghasemipour et al., 2019):

min
π

Df

(
dπ(s, a)‖dE(s, a)

)
(10)

In imitation learning, we do not have dE ; instead, we are pro-

vided with expert demonstrations DE := {(s(i), a(i))}Ni=1.

In offline imitation learning, the agent further cannot interact

with the MDP M; instead, they are given a static dataset

of logged transitions DO := {τi}
M
i=1, where each trajectory

τ (i) = (s
(i)
0 , a

(i)
0 , s

(i)
1 , ...) with s

(i)
0 ∼ µ0; we denote the

empirical state-action occupancies of DO as dO(s, a).

3. The SMODICE Algorithm

In this section, we derive the SMODICE algorithm. We

begin by introducing our f -divergence regularized offline

state-matching objective (Section 3.1). Then, we describe

the 3 disjoint training steps of SMODICE in order (Sec-

tion 3.2–3.4). Finally, we present SMODICE tailored to

tabular MDPs (Section 3.5).

3.1. f -Divergence Regularized State-Matching

Recall that the state-occupancy matching objective takes the

form

min
π

DKL(d
π(s)‖dE(s)), (11)

which requires on-policy samples from π, as the expectation

is over dπ. To enable offline optimization, we necessarily

need to involve the offline dataset distribution dO in our

objective.

First, we assume expert coverage of the offline data:

Assumption 1. dO(s) > 0 whenever dE(s) > 0.

This assumption ensures that the offline dataset has cov-

erage over the expert state-marginal, and is necessary for

imitation learning to succeed. Whereas prior offline RL

approaches (Kumar et al., 2020; Ma et al., 2021a) assume

full coverage of the state-action space, our assumption2 is

considerably weaker since it only requires expert coverage.

Given this assumption, we introduce our f -divergence reg-

ularized state-matching objective, which follows from an

2Furthermore, it is not needed in practice, and is only required
for our technical development to ensure that all state-occupancy
quantities are well-defined (i.e., no division-by-zero).
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upper bound on state-occupancy matching that incorporates

the offline dataset distribution dO:

Theorem 1. Given Assumption 1, we have

DKL(d
π(s)‖dE(s)) ≤

Es∼dπ

[

log

(
dO(s)

dE(s)

)]

+DKL(d
π(s, a)‖dO(s, a))

(12)

Furthermore, for any f -divergence such that Df ≥ DKL,

DKL(d
π(s)‖dE(s)) ≤

Es∼dπ

[

log

(
dO(s)

dE(s)

)]

+Df (d
π(s, a)‖dO(s, a))

(13)

We refer to the RHS of Equation (13) as the f -divergence

regularized state-occupancy matching objective. The proofs

of this theorem and all other theoretical results are in Ap-

pendix A. Intuitively, the upper bound states that that offline

state-occupancy matching can be achieved by matching

states in the offline data that resemble expert states (the first

term) with reward function R(s) = log dE(s)
dO(s)

(we describe

how to compute this reward below), while remaining in the

support of the offline state-action distribution (the second

term). Replacing KL-divergence with other f -divergences

can be useful since the conjugate of KL divergence involves

a log-sum-exp, which has been found to be numerically un-

stable in many RL tasks (Zhu et al., 2020; Lee et al., 2021;

Rudner et al., 2021). Now, we describe the three disjoint

steps of SMODICE as presented in Figure 1.

3.2. Discriminator training

First, we discuss how to compute R(s) = log dE(s)
dO(s)

. In

the tabular case, R(s) can be computed using empirical

estimates of dE(s) and dO(s). In the continuous case, we

can train a discriminator c : S → (0, 1):

min
c

Es∼dE [log c(s)] + Es∼dO [log 1− c(s)] (14)

The optimal discriminator is c?(s) = dO(s)
dE(s)+dO(s)

(Goodfel-

low et al., 2014), so we can use R(s) = − log
(

1
c?(s) − 1

)

.

3.3. Dual Value Function Training

Note that (13) requires samples from dπ, so it still cannot

be easily optimized without online interaction. To address

this, we first rewrite it as an optimization problem over the

space of valid state-action occupancies (Puterman, 2014):

(P) max
d(s,a)≥0

Es∼d(s,a) [R(s)]−Df (d‖d
O) (15)

s.t.
∑

a

d(s, a) = (1− γ)µ0(s) + γT?d(s), ∀s ∈ S

(16)

where T?d(s) =
∑

s̄,ā T (s | s̄, ā)d(s̄, ā); here, (16) ensures

that d is the occupancy distribution for some policy. We

assume that (15) is strictly feasible.

Assumption 2. There exists at least one d(s, a) such that

constraints (16) are satisfied and ∀s ∈ S, d(s) > 0.

This assumption is mild and can be satisfied in practice for

any MDP for which every state is reachable from the initial

state distribution. Next, we can form the dual of (15):

(D) max
d(s,a)≥0

min
V (s)≥0

Es∼d [R(s)]−Df (d‖d
O)

+
∑

s

V (s)

(

(1− γ)µ0(s) + γT?d(s)−
∑

a

d(s, a)

)

(17)

where V (s) are the Lagrangian multipliers. Now, because

T? is the adjoint of T , we have the following:

∑

s

V (s) · T?d(s) =
∑

s,a

d(s, a) · (T V )(s, a) (18)

Using this equation, we can write (17) as

(D) max
d(s,a)≥0

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)]

+ E(s,a)∼d [R(s) + γT V (s, a)− V (s)]

−Df (d(s, a)‖d
O(s, a))

(19)

We note that the original problem (15) is convex (Lee et al.,

2021). By Assumption 2, it is strictly feasible, so by strong

duality, we can change the order of optimization in (19):

(D) min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)]

+ E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]

−Df (d(s, a)‖d
O(s, a))

(20)

Finally, using the Fenchel conjugate, (20) can be reduced to

a single unconstrained optimization problem over V : S →
R≥0 that depends on samples from only dO and not d; we

also obtain the importance weight of the state-occupancy of

the optimal policy with respect to the offline data.

Theorem 2. The optimization problem (20) is equivalent to

(D) min
V (s)≥0

(1− γ)Es∼µ0
[V (s)]

+ E(s,a)∼dO [f? (R(s) + γT V (s, a)− V (s))]

(21)

Furthermore, given the optimal solution V ∗, the optimal

state-occupancy importance weights are

d∗(s, a)

dO(s, a)
= f ′

?(R(s) + γT V ∗(s, a)− V ∗(s)) (22)
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Algorithm 1 SMODICE

1: // Discriminator Learning

2: Train discriminator c∗(s) using (14) and derive R(s).
3: // Value Learning

4: Train derived value function V (s) using (21)

5: // Policy Learning

6: Derive optimal ratios ξ∗(s, a) through (22)

7: Train policy π using weighted BC (23)

This result can be viewed as using Fenchel duality to gen-

eralize prior DICE-based offline approaches (Lee et al.,

2021; Kim et al., 2022). In particular, the inner maximiza-

tion problem in (20) is precisely the Fenchel conjugate of

Df (d(s, a)‖d
O(s, a)) at R(s) + γT V (s, a)− V (s) (com-

pare (20) to (7)). Similarly, (22) can be derived from leverag-

ing the relationship between the optimal solutions of a pair

of Fenchel primal-dual problems (Equation (9)). This gen-

erality allows us to choose problem-specific f -divergences

that improve stability during optimization. In Appendix

C, we specialize the SMODICE objective for the KL- and

χ2-divergences, which we use in our experiments.

3.4. Weighted-Regression Policy Training

Finally, using the optimal importance weights, we can ex-

tract the optimal policy π using weighted Behavior Cloning:

min
π

−E(s,a)∼d∗ [log π(a | s)]

=min
π

−E(s,a)∼dO [ξ∗(s, a) log π(a | s)]
(23)

where ξ∗(s, a) = d∗(s,a)
dO(s,a)

. Here, V (s) can be viewed as

the value function—it is trained by minimizing a convex

function of the Bellman residuals and the values of the initial

states. Then, it can be used to inform policy learning.

Putting everything together, SMODICE can achieve stable

policy learning through a sequence of three disjoint super-

vised learning problems, summarized in Algorithm 1. The

full pseudo-code is in Algorithm 3 in Appendix 3.

3.5. SMODICE for Tabular MDPs.

An appealing property of SMODICE is that it admits closed-

form analytic solution in the tabular case. The proof is given

in Appendix D.

Theorem 3. Let R(s) = log dE(s)
dO(s)

∈ R
|S|
+ , and define

T ∈ R
|S||A|×|S| and B ∈ R

|S||A|×|S| by (T V )(s, a) =
∑

s′ T (s
′|s, a)V (s′) and (BV )(s, a) = V (s). Additionally,

denote µ0 ∈ ∆(|S|) and D = diag(dO) ∈ R
|S||A|×|S||A|.

Then, choosing the χ2-divergence in (21), we have

V ∗ =
(
(γT − B)>D(γT − B)

)−1

(
(γ − 1)µ0 + (B − γT )>D(I +BR)

) (24)

In Appendix D, we also derive a finite-sample performance

guarantee of SMODICE in the tabular setting.

4. Offline Imitation Learning from Examples

Next, we describe how SMODICE can be applied to offline

imitation learning from examples. Starting from the original

problem objective from Eysenbach et al. (2021), we derive

a state-occupancy matching objective, enabling us to apply

SMODICE without any modification.

Problem setting. We assume given success examples S∗ =
{s∗ ∼ pU (st | et = 1)}, where e ∈ {0, 1} indicates

whether the current state is a success outcome, and offline

data D = {(s, a, s′)}. Here, U is the state distribution of

the “user” providing success examples. Then, Eysenbach

et al. (2021) proposes the example-based RL objective

argmax
π

log pπ(et+ = 1) = logEs∼µ0
[pπ(et+ = 1|s0)]

(25)

That is, we want a policy that maximizes the probability of

reaching success states in the future. To tackle this problem

in the offline setting, our strategy is to convert (25) into an

optimization problem over the state-occupancy space.

Intuition. By parameterizing the problem in terms of state

occupancies, a policy that reaches success states in the future

is one that has non-zero occupancies at these states—i.e.,

dπ(s) corresponds to a policy that reaches success states if

dπ(s) > 0 for s ∈ S∗. Furthermore, treating success states

as absorbing states in the MDP, then
∑

s∈S∗ dπ(s) should

ideally be much larger than
∑

s/∈S∗ dπ(s) (we validate this

on gridworld; see Appendix D.2).

Derivation. We first transform the problem into state-

occupancy space—i.e.,

max
π

logEs∼µ0
[pπ(et+ = 1|s0)] = max

d≥0
logEs∼d(s) [p(e|s)]

(26)

which is valid given that the original objective can be

thought of as a regular RL problem with reward function

r(s) = p(e | s) (Eysenbach et al., 2021).

Given this formulation, we can derive a tractable lower

bound to (26) through Jensen’s inequality and Bayes’ rule:

logEs∼d(s) [pU (e | s)]

≥Es∼d(s) [log pU (e | s)]

=Es∼d(s)

[

log
pU (s | e)pU (e)

pU (s)

]

=Es∼d(s)

[

log
pU (s | e)

d(s)

]

+ Es∼d(s)

[

log
d(s)

pU (s)

]

+ const.

=−DKL (d(s)‖pU (s | e)) + DKL (d(s)‖pU (s)) + const.

≥−DKL (d(s)‖pU (s | e)) + const.

We can optimize the original objective by maximizing this
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A. Proofs

A.1. Technical Lemmas

Lemma 1. We have

DKL(d
π(s)‖dE(s)) ≤ DKL(d

π(s, a)‖dE(s, a))

Proof. We first state and prove a related lemma, which first appeared in (Yang et al., 2019).

Lemma 2.

DKL

(
dπ(s, a, s′)‖dE(s, a, s′)

)
= DKL

(
dπ(s, a)‖dE(s, a)

)
.

Proof.

DKL

(
dπ(s, a, s′)‖dE(s, a, s′)

)

=

∫

S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)

dE(s, a) · T (s′ | s, a)
ds′dads

=

∫

S×A×S

dπ(s, a, s′) log
dπ(s, a)

dE(s, a)
ds′dads

=

∫

S×A

dπ(s, a) log
dπ(s, a)

dE(s, a)
dads

=DKL

(
dπ(s, a)‖dE(s, a)

)

Using this result, we can show the desired upper bound:

DKL

(
dπ(s, a)‖dE(s, a)

)

=DKL

(
dπ(s, a, s′)‖dE(s, a, s′)

)

=

∫

S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)

dE(s, a) · T (s′ | s, a)
ds′dads

=

∫

S×A×S

dπ(s)π(a | s)T (s′ | s, a) log
dπ(s, a) · T (s′ | s, a)

dE(s, a) · T (s′ | s, a)
ds′dads

=

∫

dπ(s)π(a | s)T (s′ | s, a) log
dπ(s)

dE(s)
ds′dads+

∫

dπ(s)π(a | s)T (s′ | s, a) log
π(a | s)T (s′ | s, a)

πE(a | s)T (s′ | s, a)
ds′dads

=

∫

dπ(s) log
dπ(s)

dE(s)
ds+

∫

dπ(s)π(a | s) log
π(a | s)

πE(a | s)
dads

=DKL

(
dπ(s)‖dE(s)

)
+DKL

(
π(a | s)‖πE(a | s)

)

≥DKL

(
dπ(s)‖dE(s)

)

A.2. Proof of Theorem 1

Proof.

DKL

(
dπ(s)‖dE(s)

)

=

∫

dπ(s) log
dπ(s)

dE(s)
·
dO(s)

dO(s)
ds, we assume that dO(s) > 0 whenever dE(s) > 0.

=

∫

dπ(s) log
dO(s)

dE(s)
ds+

∫

dπ(s) log
dπ(s)

dO(s)
ds

≤Es∼dπ

[

log
dO(s)

dE(s)

]

+DKL

(
dπ(s, a)‖dE(s, a)

)
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where the last step follows from Lemma 1. Then, for any Df ≥ DKL, we have that

DKL

(
dπ(s)‖dE(s)

)
≤ Es∼dπ

[

log
dO(s)

dE(s)

]

+Df

(
dπ(s, a)‖dE(s, a)

)

A.3. Proof of Theorem 2

Proof. We begin with

min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)‖d

O(s, a)) (28)

We have that

min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)‖d

O(s, a)) (29)

= min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + max

d(s,a)≥0
+E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)‖d

O(s, a)) (30)

= min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼dO [f? (R(s) + γT V (s, a)− V (s))] (31)

where the last step follows from recognizing that the inner-maximization is precisely the Fenchel conjugate of

Df (d(s, a)‖d
O(s, a)) at R(s) + γT V (s, a)− V (s).

To show the relationship among V ? and ξ?, we recognize that (31) and (15) are a pair of Fenchel primal-dual problems.

Lemma 3.

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼dO [f? (R(s) + γT V (s, a)− V (s))]

is the Fenchel dual to

max
d(s,a)≥0

Es∼d

[

log

(
dE(s)

dO(s)

)]

−Df (d(s, a)‖d
O(s, a)) (32)

s.t.
∑

a

d(s, a) = (1− γ)µ0(s) + γT?d(s), ∀s ∈ S (33)

Proof. We define the indicator function δX (x) as

δX (x) =

{

0 x ∈ X

∞ otherwise

Then, we define g : R
|S| → R as g(·) := δ{(1−γ)µ0}(·). Then, it can be shown that the Fenchel conjugate of g is

g?(·) = (1− γ)Eµ0
[·]. In addition, we denote h(·) := D + f(·‖dO); then, h?(·) = E(s,a)∼dO [f?(·)]. Finally, define matrix

operator A := γT? − I . Using these notations, we can write (31) as

min
V

g?(V ) + h?(A?V +R) (34)
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Then, we proceed to derive the Fenchel dual of (34):

min
V

g?(V ) + h?(A?V +R) (35)

=min
V

max
d

g?(V ) + 〈d,A?V +R〉 − h(d) (36)

=min
V

max
d

g?(V ) + 〈d,A?V 〉+ 〈d,R〉 − h(d) (37)

=max
d

(

min
V

g?(V ) + 〈d,A?V 〉
)

+ 〈d,R〉 − h(d) (38)

=max
d

(

min
V

g?(V ) + 〈Ad, V 〉
)

+ 〈d,R〉 − h(d) (39)

=max
d

(

max
V

−g?(V ) + 〈−Ad, V 〉
)

+ 〈d,R〉 − h(d) (40)

=max
d

g(−Ad) + 〈d,R〉 − h(d) (41)

where (36) follows applying Fenchel conjugacy to h?, (38) follows from strong duality, (39) follows from the property of an

adjoint operator, and (41) follows from applying Fenchel conjugacy to g?. Here, we recognize that (41) is precisely the

optimization problem (32)-(33), where we have moved the constraint (33) to the objective as the indicator function g(−Ad):

g(−Ad) = δ{(1−γ)µ0} (d− γT?d)

⇔
∑

a

d(s, a) = (1− γ)µ0(s) + γT?d(s), ∀s ∈ S

Giving Lemma 3, we use the fact that d∗ and V ∗ admit the following relationship:

d∗ = h′
?(−A?V

∗ +R) (42)

This follows from the characterization of the optimal solutions for a pair of Fenchel primal-dual problems with convex g, h
and linear operator A (Nachum & Dai, 2020). In this case, assuming that we can exchange the order of expectation and

derivative (e.g, conditions of Dominated Convergence Theorem hold), we have

d∗ = E(s,a)∼dO [f? ((R(s) + γT V (s, a)− V (s))] , (43)

or equivalently,

d∗(s, a) = f? (R(s) + γT V (s, a)− V (s)) · dO(s, a), ∀s, a ∈ S ×A, (44)

as desired.

B. Extended Related Work

Stationary distribution correction estimation. Estimating the optimal policy’s stationary distribution using off-policy

data was introduced by (Nachum et al., 2019a) as the DICE trick. This technique has been shown to be effective for

off-policy evaluation (Nachum et al., 2019a; Zhang* et al., 2020; Dai et al., 2020), policy optimization (Nachum et al.,

2019b; Lee et al., 2021), online imitation learning (Kostrikov et al., 2020; Zhu et al., 2020), and concurrently, offline

imitation learning (Kim et al., 2022). Within the subset of DICE-based policy optimization methods, none has tackled

state-occupancy matching or directly apply Fenchel Duality to its full generality to arrive at the form of value function

objective we derive.

C. SMODICE with common f -divergences

Example 1 (SMODICE with χ2-divergence). Suppose f(x) = 1
2 (x− 1)2, corresponding to χ2-divergence. Then, we can

show that f?(x) =
1
2 (x+ 1)2 and f ′

?(x) = x+ 1. Hence, the SMODICE objective amounts to

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[

(R(s) + γT V (s, a)− V (s) + 1)
2
]

(45)
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and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= max (0, R(s, a) + γT V ∗(s, a)− V ∗(s) + 1) (46)

Example 2 (SMODICE with KL-divergence). We have f(x) = x log x. Using the fact that the conjugate of the negative

entropy function, restricted to the probability simplex, is the log-sum-exp function (Boyd et al., 2004), it follows that

D?,f (y) = logEx∼q[expy(x)]. Hence, the KL-divergence SMODICE objective is

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + logE(s,a)∼dO [exp (R(s) + γT V (s, a)− V (s))] (47)

and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= softmax (R+ γT V ∗(s, a)− V ∗(s)) (48)

D. SMODICE for Tabular MDPs

In this section, we derive the closed-form expression of SMODICE for tabular MDPs. For simplicity, we assume that the

expert state occupancies are given, dE(s) ∈ ∆(|S|). A behavior policy πb is used to collect the offline dataset DO. Then,

we can construct a surrogate MDP M̂ using maximum likelihood estimation (i.e., T̂ (s, a, s′) = n(s,a,s′)
n(s,a) ). Using M̂, we

can extract the empirical estimate of the behavior policy occupancies dO ∈ ∆(|S||A|) using linear programming. Then, we

can define the reward vector R ∈ R
|S|
+ as R(s) = log dE(s)

dO(s)
. Using the χ2-divergence version of SMODICE, we can write

down the objective for V (s) ∈ R
|S|
+ :

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[

(R(s) + γT V (s, a)− V (s) + 1)
2
]

(49)

We rewrite this expression in vector-matrix form to derive the closed-form solution. To this end, we define T ∈ R
|S||A|×|S|

and B ∈ R
|S||A|×|S| such that (T V )(s, a) =

∑

s′ T (s
′|s, a)V (s′) and (BV )(s, a) = V (s). Additionally, we denote

µ0 ∈ ∆(|S|) and D = diag(dO) ∈ R
|S||A|×|S||A|. Then, we can rewrite (49):

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[

(R(s) + γT V (s, a)− V (s) + 1)
2
]

⇒min
V (s)

(1− γ)µ>
0 V +

1

2
E(s,a)∼dO









BR(s, a) + γT V (s, a)− BV (s, a)
︸ ︷︷ ︸

rV (s,a)

+1






2




⇒min
V (s)

(1− γ)µ>
0 V +

1

2
(rV + I)>D(rV + I)

(50)

where rV ∈ R
|S||A| and I is the all-one vector in R

|S||A|. Denoting J(V ) := (1− γ)µ>
0 V + 1

2 (rV + I)>D(rV + I), it is

clear that J(V ) is a convex program in V . Therefore, we can find its optimal solution by solving the first-order stationary

point. We have:
∂J(V )

∂V
=

∂

∂V

(

(1− γ)µ>
0 V +

1

2
(rV + I)>D(rV + I)

)

=
∂

∂V

(

(1− γ)µ>
0 V +

1

2
r>V DrV + r>V DI + I>DI

)

=(1− γ)µ0 + (γT − B)>DrV + (γT − B)>DI

=(1− γ)µ0 + (γT − B)>D(BR+ (γT − B)V ) + (γT − B)>DI

Then, by setting this expression to zero and solving for V gives the optimal V ∗:

(γT − B)>D(γT − B)V = (γ − 1)µ0 + (B − γT )>D(I +BR)

⇒V ∗ =
(
(γT − B)>D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT )>D(I +BR)

) (51)
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and we can recover ξ∗(s, a) = d∗(s,a)
dO(s,a)

:

ξ∗(s, a) = BR(s, a) + γT V ∗(s, a)− BV ∗(s, a) + 1 (52)

Pythonic pseudo-code using NumPy (Harris et al., 2020) is given in Algorithm 2.

D.1. Performance Guarantee

The closed-form solution of V ∗ assumes knowledge of the true transition T . When the empirical transition function T̂ is

estimated from samples (i.e., T̂ (s′ | s, a) := n(s,a,s′)
n ), we can obtain the following finite-sample performance guarantee:

Theorem 4. Let Rmax = maxs log
dE(s)
dO(s)

, Dmin = mins,a d
O(s, a), and T̂ (s′ | s, a) := n(s,a,s′)

n . Assume that
∥
∥(A>DA)−1

∥
∥
∞

≤ 1
(1−γ)2Dmin

5. Then, for any δ ∈ R>0, with probability ≥ 1− δ, we have

∥
∥
∥V ∗ − V̂

∥
∥
∥
∞

≤

(
2(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

)√

2S

n
log

4SA

δ
(53)

Proof. We begin by reiterating the expressions for V ∗ and V̂ :

V ∗ =
(
(γT − B)>D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT )>D(I +BR)

)

V̂ =
(

(γT̂ − B)>D(γT̂ − B)
)−1 (

(γ − 1)µ0 + (B − γT̂ )>D(I +BR)
) (54)

For notational simplicity, we let A := γT −B and Â := γT̂ −B. Then, we have

V ∗ − V̂ =
(
A>DA

)−1 (
(γ − 1)µ0 −A>D(I +BR)

)
−
(

Â>DÂ
)−1 (

(γ − 1)µ0 − Â>D(I +BR)
)

(55)

= (A>DA)−1(γ − 1)µ0 (56)

−(A>DA)−1A>D(I +BR)− (Â>DÂ)−1(γ − 1)µ0 + (Â>DÂ)−1Â>D(I +BR) (57)

Now, we can bound the ‖·‖∞:
∥
∥
∥V ∗ − V̂

∥
∥
∥
∞

=‖(A>DA)−1(γ − 1)µ0 − (A>DA)−1A>D(I +BR)− (Â>DÂ)−1(γ − 1)µ0 (58)

+(Â>DÂ)−1Â>D(I +BR)‖∞ (59)

≤
∥
∥
∥(A>DA)−1(γ − 1)µ0 − (Â>DÂ)−1(γ − 1)µ0

∥
∥
∥
∞

(60)

+
∥
∥
∥(Â>DÂ)−1Â>D(I +BR)− (A>DA)−1A>D(I +BR)

∥
∥
∥
∞

(61)

≤(1− γ)
∥
∥
∥(A>DA)−1 − (Â>DÂ)−1

∥
∥
∥
∞

(62)

+
∥
∥
∥(Â>DÂ)−1Â>D(I +BR)− (A>DA)−1A>D(I +BR)

∥
∥
∥
∞

(63)

=(1− γ)
∥
∥
∥(A>DA)−1 − (Â>DÂ)−1

∥
∥
∥
∞

(64)

+
∥
∥
∥(Â>DÂ)−1Â>D(I +BR)− (A>DA)−1Â>D(I +BR)

∥
∥
∥
∞

(65)

+
∥
∥
∥(A>DA)−1Â>D(I +BR)− (A>DA)−1A>D(I +BR)

∥
∥
∥
∞

(66)

≤(1− γ)
∥
∥
∥(A>DA)−1 − (Â>DÂ)−1

∥
∥
∥
∞

(67)

+
∥
∥
∥(Â>DÂ)−1 − (A>DA)−1

∥
∥
∥
∞

∥
∥
∥Â>D(I +BR)

∥
∥
∥
∞

(68)

+
∥
∥(A>DA)−1

∥
∥
∞

∥
∥
∥(Â−A)>D(I +BR)

∥
∥
∥
∞

(69)

5This assumption is similar to the assumption of a lower bound on the minimum eigenvalue of the covariance matrix required to bound
estimation error in linear regression (with A>DA being analogous to the covariance matrix).



Offline Imitation from Observations, Mismatched Experts, and Examples

Since induced norm is sub-multiplicative, we have

∥
∥
∥Â>D(I +BR)

∥
∥
∥
∞

≤
∥
∥
∥Â>D

∥
∥
∥
∞

‖(I +BR)‖∞ ≤ (1 +Rmax) (70)
∥
∥
∥(Â−A)>D(I +BR)

∥
∥
∥
∞

≤
∥
∥
∥(Â−A)>D

∥
∥
∥
∞

‖(I +BR)‖∞ ≤
∥
∥
∥(Â−A)>D

∥
∥
∥
∞

(1 +Rmax) (71)

The first inequality follows because

∥
∥
∥Â>D

∥
∥
∥
∞

= max
s′

∑

s,a

∣
∣
∣(γT̂ (s′ | s, a)− 1(s′ = s))D(s, a)

∣
∣
∣ ≤ max

s′,s,a

∣
∣
∣γT̂ (s′ | s, a)− 1(s′ = s)

∣
∣
∣ = 1 (72)

which uses the fact that
∑

s,a D(s, a) = 1.

Plugging this back in gives

∥
∥
∥V ∗ − V̂

∥
∥
∥
∞

≤ ((1− γ) + (1 +Rmax))
∥
∥
∥(Â>DÂ)−1 − (A>DA)−1

∥
∥
∥
∞

+ (1 +Rmax)
∥
∥(A>DA)−1

∥
∥
∞

∥
∥
∥(Â−A)>D

∥
∥
∥
∞

(73)

Now, we note that
∥
∥
∥(Â−A)>D

∥
∥
∥
∞

(74)

=γ
∥
∥
∥(T̂ − T )>D

∥
∥
∥
∞

(75)

=γmax
s′

∑

s,a

∣
∣
∣(T̂ (s′ | s, a)− T (s′ | s, a))D(s, a)

∣
∣
∣ (76)

≤γ max
s′,s,a

∣
∣
∣(T̂ (s′ | s, a)− T (s′ | s, a))

∣
∣
∣ (77)

≤γmax
s,a

∥
∥
∥T̂ (· | s, a)− T (· | s, a)

∥
∥
∥
1

(78)

and
∥
∥
∥(Â>DÂ)−1 − (A>DA)−1

∥
∥
∥
∞

(79)

=
∥
∥
∥(A>DA)−1(A>DA− Â>DÂ)(Â>DÂ)−1

∥
∥
∥
∞

(80)

≤
∥
∥(A>DA)−1

∥
∥
∞

∥
∥
∥A>DA− Â>DÂ

∥
∥
∥
∞

∥
∥
∥(Â>DÂ)−1

∥
∥
∥
∞

(81)

≤
∥
∥(A>DA)−1

∥
∥
2

∞

∥
∥
∥A>DA− Â>DÂ

∥
∥
∥
∞

(82)

=
∥
∥(A>DA)−1

∥
∥
2

∞

∥
∥
∥A>DA−A>DÂ+A>DÂ− Â>DÂ

∥
∥
∥
∞

(83)

=
∥
∥(A>DA)−1

∥
∥
2

∞

(∥
∥
∥A>D(A− Â)

∥
∥
∥
∞

+
∥
∥
∥(A− Â)>DÂ

∥
∥
∥
∞

)

(84)

≤
∥
∥(A>DA)−1

∥
∥
2

∞

(∥
∥A>D

∥
∥
∞

∥
∥
∥A− Â

∥
∥
∥
∞

+
∥
∥
∥(A− Â)>D

∥
∥
∥
∞

∥
∥
∥Â
∥
∥
∥
∞

)

(85)

≤
∥
∥(A>DA)−1

∥
∥
2

∞

(

γmax
s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1
+ (1 + γ)γmax

s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1

)

(86)

=
∥
∥(A>DA)−1

∥
∥
2

∞

(

(2 + γ)γmax
s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1

)

(87)

where we have used the fact that

∥
∥
∥A− Â

∥
∥
∥
∞

= γmaxs,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1

and that

‖A‖∞ = max
s,a

∑

s′

|γT (s′ | s, a)− 1(s′ = s)| ≤ max
s,a

∑

s′ 6=s

|γT (s′ | s, a)|+ 1 ≤ 1 + γ (88)
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Plugging these back into (73) gives
∥
∥
∥V ∗ − V̂

∥
∥
∥
∞

≤ ((1− γ) + (1 +Rmax)) (2 + γ)γ
∥
∥(A>DA)−1

∥
∥
2

∞
max
s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1

+ (1 +Rmax)γ
∥
∥(A>DA)−1

∥
∥
∞

max
s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1

(89)

For any δ ∈ [0, 1), with probability 1− δ/2, we have

max
s,a

∥
∥
∥T (· | s, a)− T̂ (· | s, a)

∥
∥
∥
1
≤

√

2S

n
ln

4SA

δ
(90)

Then, leveraging our assumption that

∥
∥(A>DA)−1

∥
∥
∞

=
1

inf‖x‖=1 ‖(A>DA)x‖∞
≤

1

(1− γ)2Dmin
(91)

we have, with probability 1− δ,

∥
∥
∥V ∗ − V̂

∥
∥
∥
∞

≤

(
(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

+
(1 +Rmax)γ

(1− γ)2Dmin

)√

2S

n
ln

4SA

δ
(92)

≤

(
2(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

)√

2S

n
ln

4SA

δ
(93)

D.2. Gridworld Experiments

In this subsection, we provide more experimental details and analysis of the tabular SMODICE experiments shown in Figure

1.

To generate the offline dataset, a random policy (i.e., a policy that chooses each action with equal probabilities) is executed

in the MDP for 10000 epsiodes. We use this dataset to compute the approximate MDP. Then, this MDP is used as an input

to SMODICE (see Algorithm 2). The data collection procedure for the offline imitation learning from examples setting is

identical.

Offline IL from mismatched experts. In this task, we consider an expert agent that can move one grid cell diagonally in

any direction, whereas the imitator is only able to move one grid cell horizontally or vertically. The expert policy is shown

in black in Figure 2(a). Using purely an offline dataset collected by a random agent, we compute the closed-form tabular

SMODICE solution (24) using Algorithm 2 and obtain the zig-zagging policy shown in blue. Indeed, this solution is one of

the two correct solutions that minimize the state-occupancy divergence (the other one mirrors this path along the expert

demo), while being feasible under the imitator dynamics.

Offline IL from examples. We arbitrarily select a state to be the success state denoted by the green star in Figure 2(b). In

this case, the expert’s state occupancies is simply a one-hot vector with weight 1 at the success state. Then, we again use the

tabular version of SMODICE to compute the policy whose state occupancies is as close to this one-hot vector as possible;

the solution is illustrated in blue. As can be seen, this policy successfully reaches the goal. Furthermore, it is easy to see that

in this task, a policy that minimizes state-occupancy divergence to the expert (i.e., the one-hot vector) is one that reaches the

goal with the fewest steps. The policy learned by SMODICE is indeed among the set of optimal policies.

Furthermore, we compute the state occupancies of all states in the gridworld. For the success state, d(s) ≈ 0.915, whereas

the second largest state occupancy is 0.01. This validates the intuition that
∑

s∈S∗ dπ(s) �
∑

s/∈S∗ dπ(s).

E. SMODICE with Deep Neural Networks

For high-dimensional MDP with continuous state and action spaces, we instantiate SMODICE using deep neural networks.

In particular, we parameterize Vθ and πφ using DNNs with weights θ and φ, respectively.

Remark. We note that the sample-based estimation of Equation (21) (Line 9) is biased because T V is itself an expectation

that is inside a (non-linear) convex function f (Baird, 1995); however, as in several prior works (Nachum et al., 2019b;
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Nachum & Dai, 2020; Lee et al., 2021), we do not find this biased estimate to impact empirical performance and keep it for

simplicity.

E.1. Hyperparameters and Architecture

We use the same hyperparameters for all SMODICE experiments in this paper modulo the choice of f -divergences (explained

in the next section). In terms of architecture, we use a simple 2-layer ReLU network with hidden size 256 to parameterize

the value network. For the policy network, we use the same architecture to parameterize a Gaussian output distribution; the

mean and the log standard deviation are ouputs of two separate heads. In addition, we use an tanh function on the Gaussian

samples to enforce bounded actions, as in (Haarnoja et al., 2018). The discriminator uses the same architecture. Table 1

summarizes the hyperparameters as well as the architecture.

Table 1. SMODICE Hyperparameters.

Hyperparameter Value

SMODICE Hyperparameters Optimizer Adam (Kingma & Ba, 2014)

Critic learning rate 3e-4

Discriminator learning rate 3e-4

Actor learning rate 3e-5

Mini-batch size 256

Discount factor 0.99

Actor Mean Clipping (-7.24, 7.24)

Actor Log Std. Clipping (-5,2)

Architecture Discriminator hidden dim 256

Discriminator hidden layers 2

Discriminator activation function Tanh

Critic hidden dim 256

Critic hidden layers 2

Critic activation function ReLU

Actor hidden dim 256

Actor hidden layers 2

Actor activation function ReLU

E.2. Choosing f -Divergence in Practice

In our experiments, SMODICE is implemented using χ2-divergence for all tasks except Hopper, Walker2d, and HalfCheetah.

Here, we show that a suitable choice of f -divergence can be chosen offline by observing the initial direction of the

SMODICE policy loss on the offline dataset. More specifically, on the environments in which SMODICE exhibited largest

performance discrepancies between using KL-divergence or χ2-divergence, we have found that SMODICE returns are

negatively correlated with the policy loss. As shown in Figure 8, the poor performing variant of SMODICE always has a

policy loss that initially jumps and vice-versa. This makes intuitive sense given the composition of the offline datasets, which

is a mix of small amount of expert data with a large amount of poor quality data (see Appendix G for more details). When

SMODICE fails to pick out the expert data, which is often narrowly distributed, then it must have assigned relatively higher

importance weights to the lower quality data, which is more diverse. This creates a more difficult supervised learning task,

leading to higher training loss for the policy. Therefore, in practice, we recommend monitoring SMODICE’s initial policy

loss direction to determine whether the current f -divergence will lead to good performance and make changes accordingly.

F. Baselines

TD3-BC. Many of our baselines are implemented using TD3-BC as their offline policy optimizer. We use the default

hyperparameters for TD3-BC provided by Fujimoto & Gu (2021), shown in Table 2.

Implementation Details. We use the official PyTorch implementation of TD3-BC, publicly available at https:

//github.com/sfujim/TD3_BC. For DEMODICE, because the code is not public available, we implement it using Py-

Torch, adapting from https://github.com/secury/optidice; we use the hyperparameters reported in the paper.

Note that DEMODICE shares many architectures with SMODICE. For example, DEMODICE uses a state-action discrimi-
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Table 2. TD3+BC Hyperparameters. This table is reproduced from Fujimoto & Gu (2021) directly.

Hyperparameter Value

TD3 Hyperparameters Optimizer Adam (Kingma & Ba, 2014)

Critic learning rate 3e-4

Actor learning rate 3e-4

Mini-batch size 256

Discount factor 0.99

Target update rate 5e-3

Policy noise 0.2

Policy noise clipping (-0.5, 0.5)

Policy update frequency 2

Architecture Critic hidden dim 256

Critic hidden layers 2

Critic activation function ReLU

Actor hidden dim 256

Actor hidden layers 2

Actor activation function ReLU

TD3+BC Hyperparameters α 2.5

Table 3. Offline Dataset Compositions.

Task State Dim Expert Dataset Expert Data Size Random Data Size

Hopper 11 hopper-expert-v2 193430 999999

Walker2d 17 walker2d-expert-v2 99900 999999

HalfCheetah 17 halfcheetah-expert-v2 199800 999000

Ant 27 ant-expert-v2 192409 999427

AntMaze 29 antmaze-umaze-v2 349687 999000

Kitchen 60 kitchen-mixed-v0 136937 0

SMODICE with Zero Reward. We compare SMODICE with SMODICE-Zero, which simply assigns every transition zero

reward (i.e., R(s) = 0) regardless of its similarity to an expert state. Then, we compare the ratio of the importance weights

(i.e., ξ(s, a)) assigned to the offline expert data and the offline random data by the two SMODICE methods, respectively.

As shown in Figure 9, SMODICE assigns much higher relative weights to the expert data and consequently significantly

outperforms SMODICE-Zero. These results demonstrate that SMODICE’s empirical performance comes from its superior

ability to discriminate the offline expert data, which is a by-product of its optimization procedure.

DEMODICE with State-Based Discriminator.

We replace DEMODICE’s state-action based discriminator with a state-based one to make it compatible with the problem

settings we consider in this paper. We compare this version of DEMODICE (DEMODICE+SD) to SMODICE in Table 4,

showing performance at convergence. SMODICE significantly outperforms DEMODICE+SD, which suffers from training

instability due to optimizing the KL conjugate. Thus, naively adapting DEMODICE to state matching is insufficient;

our generalized f -divergence based algorithm is crucial for enabling learning from challenging expert observations (e.g.,

mismatched dynamics or examples).

Table 4. SMODICE vs. DEMODICE with State-Discriminator
Algorithm AntMaze-PointMass AntMaze-Example PointMass-4D Kettle Microwave

DEMODICE+SD 19.8 32.7 0.0 0.0 0.1

SMODICE 34.3 47.3 80.0 100.0 60.3

H. Offline IL from mismatched Expert Experimental Details

H.1. Continuous Control Experiments

Mismatched Experts. The mismatched experts are illustrated in Figure 11.
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Algorithm 2 SMODICE with χ2-divergence for Tabular MDPs

# d_E: the expert state occupancies, |S|
# mdp: the empirical MDP learned using offline data

# pi_b: the behavior policy, |S||A|

def SMODICE(mdp, d_E, pi_b):

d_O_sa = compute_policy_occupancies(mdp, pi_b) # |S||A|

d_O = d_O_sa.reshape(mdp.S, mdp.A).sum(axis=1) # |S|

# compute reward function

R = np.log(d_E/d_O) # |S|

# define and reshape matrices

T = mdp.T.reshape(mdp.S * mdp.A, mdp.S) # |S||A| x |S|

B = np.repeat(np.eye(mdp.S), mdp.A, axis=0) # |S||A| x |S|

I = np.ones(mdp.S * mdp.A) # |S||A|

D = np.diag(d_O_sa) # |S||A| x |S||A|

# compute optimal V

H = (mdp.gamma * P - B).T @ D @ (mdp.gamma * T - B) # |S| x |S|

y = -((1 - mdp.gamma) * p0 + (mdp.gamma * P - B).T @ D @ (I + B @ R)) # |S|

V_star = np.linalg.pinv(H) @ y # |S|

# compute optimal occupancy ratios

xi_star = B @ R + (mdp.gamma * P - B) @ V_star + 1 # |S||A|
m = np.array(xi_star >= 0, dtype=np.float)
xi_star = xi_star * m

# weighted BC

pi_star = (xi_star * d_O).reshape(mdp.S, mdp.A) # |S||A|
pi_star /= np.sum(pi_star, axis=1, keepdims=True)

f_divergence = d.dot(0.5 * (w_star ** 2))

return pi_star, f_divergence, V_star

Algorithm 3 SMODICE for Continuous MDPs

1: Require: Expert demonstration(s) DE , offline dataset DO , choice of f -divergence f
2: Randomly initialize discriminator cψ , value function Vθ , and policy πφ.
3: // Train Expert (resp. Example) Discriminator

4: Train cψ using DE and DO using Equation (14)
5: // Train Lagrangian Value Function

6: for number of iterations do
7: Sample minibatch of offline data {sit, a

i
t, s

i
t+1}

N
i=1 ∼ D

O, {si0}
M
i=1 ∼ D

O(µ0)
8: Obtain reward: Ri = cθ(s

i
t), i = 1, ..., N

9: Compute value objective L(θ) := (1− γ) 1

M

∑M

i=1
Vθ(s

i
0) +

1

N
f?

(

Ri + γV (sit+1)− V (sit)
)

10: Update Vθ using SGD: Vθ ← Vθ − ηV∇L(θ)
11: end for
12: // Policy Learning

13: for number of iterations do
14: Sample minibatch of offline data {sit, a

i
t, s

i
t+1}

N
i=1 ∼ D

O

15: // Compute Optimal Importance Weights

16: Compute ξ∗(si, ai) = f ′

?

(

R(si) + γV (sit+1)− V (sit)
)

, i = 1, ..., N
17: // Weighted Behavior Cloning

18: Update πψ using Equation (23)
19: end for


