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ABSTRACT

An important challenge facing modern machine learning is how to rigorously
quantify the uncertainty of model predictions. Conveying uncertainty is espe-
cially important when there are changes to the underlying data distribution that
might invalidate the predictive model. Yet, most existing uncertainty quantifica-
tion algorithms break down in the presence of such shifts. We propose a novel
approach that addresses this challenge by constructing probably approximately
correct (PAC) prediction sets in the presence of covariate shift. Our approach fo-
cuses on the setting where there is a covariate shift from the source distribution
(where we have labeled training examples) to the target distribution (for which we
want to quantify uncertainty). Our algorithm assumes given importance weights
that encode how the probabilities of the training examples change under the co-
variate shift. In practice, importance weights typically need to be estimated; thus,
we extend our algorithm to the setting where we are given confidence intervals
for the importance weights. We demonstrate the effectiveness of our approach on
covariate shifts based on DomainNet and ImageNet. Our algorithm satisfies the
PAC constraint, and gives prediction sets with the smallest average normalized
size among approaches that always satisfy the PAC constraint.

1 INTRODUCTION

A key challenge in machine learning is quantifying prediction uncertainty. A promising approach is
via prediction sets, where the model predicts a set of labels instead of a single label. For example,
prediction sets can be used by a robot to navigate to avoid regions where the prediction set includes
an obstacle, or in healthcare to notify a doctor if the prediction set includes a problematic diagnosis.

Various methods based on these approaches can provide probabilistic correctness guarantees (i.e.,
that the predicted set contains the true label with high probability) when the training and test dis-
tributions are equal—formally, assuming the observations are exchangeable (Vovk et al., 2005; Pa-
padopoulos et al., 2002; Lei et al., 2015) or i.i.d. (Vovk, 2013; Park et al., 2020a; Bates et al., 2021).
However, this assumption often fails to hold in practice due to covariate shift—i.e., where the in-
put distribution changes but the conditional label distribution remains the same (Sugiyama et al.,
2007; Quiñonero-Candela et al., 2009). These shifts can be both natural (e.g., changes in color and
lighting) (Hendrycks & Dietterich, 2019) or adversarial (e.g., `∞ attacks) (Szegedy et al., 2014).

We consider unsupervised domain adaptation (Ben-David et al., 2007), where we are given labeled
examples from the source domain, but only unlabeled examples from the target (covariate shifted)
domain. We propose an algorithm that constructs probably approximately correct (PAC) prediction
sets under bounded covariate shifts (Wilks, 1941; Valiant, 1984)—i.e., with high probability over
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A separate issue, arising in the no shift setting, is how to condition on the calibration set Z. A
conventional goal is unconditional validity, over the distribution p(x, y, Z). We refer to this strategy
as fully unconditional validity. However, the guarantee we consider uses a separate confidence level
for the training data, which is called a training conditional guarantee (Vovk, 2013); this correctness
notion is equivalent to a PAC correctness guarantee (Park et al., 2020a), and is also equivalent to
the standard “content” guarantee with a certain confidence level for tolerance regions (Wilks, 1941;
Fraser, 1956). We build on Park et al. (2020a), which formulates the problem of choosing τ as
learning a binary classifier where the input and parameter spaces are both one-dimensional; thus,
the correctness guarantee corresponds to a PAC generalization bound. This approach is widely
applicable since it can work with a variety of objectives (Bates et al., 2021).

Recent work has extended inductive conformal prediction to a setting with covariate shift (Tibshirani
et al., 2019; Lei & Candès, 2020); similarly, Podkopaev & Ramdas (2021) considers conformal
prediction under label shift (Lipton et al., 2018), i.e., assuming the conditional probabilities p(x |
y) do not change. These approaches start from the assumption that the true importance weights
(IWs) are known (Tibshirani et al., 2019; Podkopaev & Ramdas, 2021), or assume some properties
of the estimated IWs (Lei & Candès, 2020), whereas our approach considers a special form of
“ambiguity” in the estimated IWs. Furthermore, they are focused on fully unconditional validity,
whereas we obtain PAC prediction sets. In addition, Cauchois et al. (2020) designs confidence sets
that are robust to all distribution shifts with bounded f -divergence; in contrast, we consider the
unsupervised learning setting where we have unlabeled examples from the target distribution. We
provide additional related work in Appendix A.

2 BACKGROUND ON PAC PREDICTION SETS

We give background on PAC prediction sets (Park et al., 2020a); we also re-interpret this approach
using Clopper-Pearson confidence intervals (Clopper & Pearson, 1934), which aids our analysis.

2.1 PAC PREDICTION SETS ALGORITHM

Let x ∈ X be covariates and y ∈ Y be labels. We consider a source distribution P over X ×Y with
probability density function (PDF) p(x, y).1 A prediction set2 is a set-valued function C : X → 2Y .

Inputs. We are given a held-out calibration set Sm of i.i.d. samples (xi, yi) ∼ P for i ∈ [m] :=
{1, . . . ,m}, written as Sm ∼ Pm, and a score function f : X × Y → R≥0. For example, f(x, y)
can be a prediction for the probability that y is the label for x. The score function can be arbitrary,
but score functions assigning higher scores to likely labels yield smaller prediction sets.

PAC prediction set. A PAC prediction set is a set-valued function C : X → 2Y satisfying the
following two conditions. First, C is approximately correct in the sense that its expected error
(failing to contain the true label) is bounded by a given ε ∈ (0, 1), i.e.,

LP (C) := E(x,y)∼P [1(y /∈ C(x))] = P(x,y)∼P [y /∈ C(x)] ≤ ε.

Second, noting that CSm
is constructed based on a calibration set Sm ∼ Pm, the condition that CSm

is approximately correct must be satisfied with high probability—i.e., for given δ ∈ (0, 1), we have

PSm∼Pm [LP (CSm
) ≤ ε] ≥ 1− δ.

Our goal is to devise an algorithm for constructing a PAC prediction set C. Letting C(x) = Y for
all x ∈ X always satisfies both conditions above, but this extreme case would be uninformative if
used as a prediction set. Therefore, we additionally want to minimize the expected sizeE[S(C(x))]
of the prediction sets C(x), where S : 2Y → R≥0 is a size measure, which is application specific
(e.g., the cardinality of a set in classification); however, we only rely on the monotonicity of the size
measure with respect to the prediction set parameterization in construction.

1All quantities that we define are measurable with respect to a fixed σ-algebra on X × Y; for instance, p
is the density induced by a fixed σ-finite measure. To be precise, we consider a probability measure P defined
with respect to the base measure M on X ×Y; then, p = dP/dM is the Radon-Nykodym derivative of P with
respect to M . For classification, M is the product of a Lebesgue measure on X and a counting measure on Y .

2We use the term “prediction set” to denote both the set-valued function and a set output by this function.
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Algorithm. To construct C, we first define the search space of possible prediction sets along with
the size measure S. We parameterize C by a scalar τ ∈ T := R≥0 as

Cτ (x) = {y ∈ Y | f(x, y) ≥ τ},

i.e., τ is the threshold on f(x, y) above which we include y in C(x). Importantly, τ controls the
tradeoff between size and expected error. The reason is that if τ1 ≤ τ2, then Cτ2(x) ⊆ Cτ1(x)
for all x ∈ X . Thus, size is monotonically decreasing in τ—i.e., S(Cτ2(x)) ≤ S(Cτ1(x)) for all
x ∈ X , and error is monotonically increasing in τ—i.e., LP (Cτ1) ≤ LP (Cτ2). See Figure 1b for
an illustration, and Park et al. (2020a) and Gupta et al. (2021) for details.

As a consequence, a typical goal is to construct Cτ that provably contains the true label with high
probability, while empirically minimizing size (Vovk et al., 2005; Gupta et al., 2021). In our set-
ting, we want to maximize τ (equivalently, minimize expected size) subject to the constraint that
Cτ is PAC. Let L̄Sm

(Cτ ) :=
∑

(x,y)∈Sm
1(y /∈ Cτ (x)) be the empirical error count on Sm, and

F (k;m, ε) =
∑k

i=0

(

m
k

)

εi(1−ε)m−i be the cumulative distribution function (CDF) of the binomial

distribution Binom(m, ε) with m trials and success probability ε. In prior work, Park et al. (2020a)
constructs Cτ̂ by solving the following problem:

τ̂ = max
τ∈T

τ subj. to L̄Sm
(Cτ ) ≤ k(m, ε, δ), (1)

where k(m, ε, δ) = maxk∈N∪{0} k subj. to F (k;m, ε) ≤ δ. Intuitively, the PAC guarantee via this

construction is related to the Binomial distribution; L̄Sm
(C) has distribution Binom(m,LP (C))

(given a fixed C), since 1(y 6∈ C(x)) has a Bernoulli(LP (C)) distribution when (x, y) ∼ P . Thus,
k(m, ε, δ) defines a “confidence interval” such that if L̄Sm

(C) ≤ k(m, ε, δ), then LP (C) ≤ ε
with probability at least 1 − δ. Below, we formalize this intuition by drawing a connection to the
Clopper-Pearson confidence interval.

2.2 CLOPPER-PEARSON INTERPRETATION

We interpret (1) using the Clopper-Pearson (CP) upper bound θ(k;m, δ) ∈ [0, 1] (Clopper &
Pearson, 1934; Park et al., 2021). This is an upper bound on the true success probability µ,
constructed from a sample k ∼ Binom(m,µ), which holds with probability at least 1 − δ, i.e.,

Pk∼Binom(m,µ)[µ ≤ θ(k;m, δ)] ≥ 1− δ, where

θ(k;m, δ) := inf {θ ∈ [0, 1] | F (k;m, θ) ≤ δ} ∪ {1}. (2)

Intuitively, for a fixed C, L̄Sm
(C) ∼ Binom(m,LP (C)), so the true error LP (C) is contained in

the CP upper bound θ(LSm
(C);m; δ) with probability at least 1 − δ. Intuitively, we can therefore

choose τ so that this upper bound is ≤ ε. However, we need to account for generalization error of
our estimator. To this end, we have the following (see Appendix D.1 for a proof and Algorithm 2 in
Appendix E for implementation details on the corresponding algorithm):

Theorem 1 Let UCP(C, Sm, δ) := θ(L̄Sm
(C);m; δ), where θ is defined in (2). Let τ̂ be the solution

of the following problem3:

τ̂ = max
τ∈T

τ subj. to UCP(Cτ , Sm, δ) ≤ ε. (3)

Then, we have PSm∼Pm [LP (Cτ ) ≤ ε] ≥ 1− δ for any τ ≤ τ̂ .

3 PAC PREDICTION SETS UNDER COVARIATE SHIFT

We extend the PAC prediction set algorithm described in Section 2 to the covariate shift setting. Our
novel approach combines rejection sampling (von Neumann, 1951) with Theorem 1.

3We consider a trivial solution τ = 0 when (3) is not feasible, but omitting here to avoid clutter.
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3.1 PROBLEM FORMULATION

We assume labeled training examples from the source distribution P are given, but want to construct
prediction sets that satisfy the PAC property with respect to a (possibly) shifted target distribution Q.
Both of these are distributions over X × Y; denote their PDFs by p(x, y) and q(x, y), respectively.
The challenge is that we are only given unlabeled examples from Q.

Preliminaries and assumptions. We denote the likelihood ratio of covariate distributions by
w∗(x) := q(x)/p(x), also called the importance weight (IW) of x. Our main assumption is the
covariate shift condition, which says the label distributions are equal (i.e., p(y | x) = q(y | x)),
while the covariate distributions may differ (i.e., we can have p(x) 6= q(x)).

Inputs. We assume a labeled calibration set Sm consisting of i.i.d. samples (xi, yi) ∼ P (for
i ∈ [m]) is given, and a score function f : X × Y → R≥0. For now, we also assume we have
the true importance weights w∗

i := w∗(xi) for each (xi, yi) ∼ P , as well as an upper bound
b ≥ maxx∈X w∗(x) on the IWs. In Sections 3.3 and Appendix B, we describe how to estimate these
quantities in a way that provides guarantees under smoothness assumptions on the distributions.4

Problem. Our goal is to construct CSm
that is a PAC prediction set under Q—i.e.,

PSm∼Pm [LQ(CSm
) ≤ ε] ≥ 1− δ,

where LQ(C) := P(x,y)∼Q[y 6∈ C(x)] is the error of C on Q, while empirically controlling its size.

3.2 REJECTION SAMPLING STRATEGY

Our strategy is to use rejection sampling to convert Sm consisting of i.i.d. samples from P into a
labeled calibration set consisting of i.i.d. samples from Q.

Rejection sampling. Rejection sampling (von Neumann, 1951; Owen, 2013; Rubinstein & Kroese,
2016) is a technique for generating samples from a target distribution q(x) based on samples from
a proposal distribution p(x). Given importance weights (IWs) w∗(x) and an upper bound b ≥
maxx∈X w∗(x), it constructs a set of i.i.d. samples from q(x). Typically, rejection sampling is used
when the proposal distribution is easy to sample compared to the target distribution. In contrast, we
use it to convert samples from the source distribution into samples from the target distribution.

In particular, our algorithm takes the proposal distribution to be the source covariate distribution PX ,
and the target distribution to be our target covariate distribution QX . Let Vi ∼ U := Uniform([0, 1])
be i.i.d., V := (V1, . . . , Vm), and ~w∗ := (w∗

1 , . . . , w
∗
m) with w∗

i = w∗(xi) as defined before. Then,
given Sm, it uses rejection sampling to construct a randomly chosen set of N samples

TN (Sm, V, ~w∗, b) := {(xi, yi) ∈ Sm | Vi ≤ w∗
i /b} (4)

from QX . The expected number of samples is E[N ] = m/b; thus, rejection sampling is more
effective when the proposal distribution is similar to the target.

Rejection sampling Clopper-Pearson (RSCP) bound. Given TN , our algorithm uses the CP
bound to construct a PAC prediction set C for Q. Let σi := 1(Vi ≤ w∗

i /b) indicate whether
example (xi, yi) ∈ Sm is accepted—i.e., TN (Sm, V, ~w∗, b) = {(xi, yi) ∈ Sm | σi = 1},where
|TN (Sm, V, ~w∗, b)| =

∑m
i=1 σi. Then, it follows that URSCP bounds the error on Q, where

URSCP(C, Sm, V, ~w∗, b, δ) := UCP(C, TN (Sm, V, ~w∗, b), δ). (5)

Thus, we have the following (see Appendix D.3 for the proof, and Algorithm 4 in Appendix E for a
detailed description of the PS-R algorithm that leverages this bound):

Theorem 2 Define URSCP as in (5). Let τ̂ be the solution of the following problem:

τ̂ = max
τ∈T

τ subj. to URSCP(Cτ , Sm, V, ~w∗, b, δ) ≤ ε. (6)

Then, we have PSm∼Pm,V∼Um [LQ(Cτ ) ≤ ε] ≥ 1− δ for any τ ≤ τ̂ .

Note that V is sampled only once for Algorithm 4, so the randomness in V can contribute to the
failure of the correctness guarantee; however, the failure rate is controlled by δ.

4In practice, we can improve stability of importance weights by considering source and target distributions
induced by a feature mapping, e.g., learned using unsupervised domain-adaptation (Park et al., 2020b).
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3.3 APPROXIMATE IMPORTANCE WEIGHTS

So far, we have assumed that the true importance weight w∗(x) is known. Since in practice, it needs
to be estimated, we relax this assumption to only needing an uncertainty set of possible importance
weights. This allows us to handle estimation error in the weights.

Problem. Let SX
m be unlabeled calibration examples from the source distribution (i.e., the covariates

in Sm), TX
n be n unlabeled calibration examples from the target distribution (denoted by TX

n ∼
Qn

X ), and ~w∗ := (w∗
1 , ..., w

∗
m) ∈ Rm be the vector of true importance weights w∗

i := w∗(xi), for
(xi, yi) ∈ Sm. Then, we assume an uncertainty setW ⊆ Rm that has ~w∗ with high probability, i.e.,

PSX
m∼Pm

X
,TX

n ∼Qn
X
[~w∗ ∈ W] ≥ 1− δw, (7)

where δw ∈ (0, 1). We assumeW has the form

W := {w ∈ Rm | ∀i ∈ [m] , wi ≤ wi ≤ wi} ,

for some wi and wi. See the discussion on our choice ofW in Appendix C.1.

Robust Clopper-Pearson bound. To construct a PAC prediction set C for Q, it suffices to bound
the worst-case error over w ∈ W , i.e., we have the following (see Appendix D.4 for the proof):

Theorem 3 SupposeW satisfies (7). Define URSCP as in (5). Let τ̂ be the solution of the following:

τ̂ = max
τ∈T

τ subj. to max
w∈W

URSCP(Cτ , Sm, V, w, b, δC) ≤ ε. (8)

Then, we have PSm∼Pm,V∼Um,TX
n ∼Qn

X
[LQ(Cτ ) ≤ ε] ≥ 1− δC − δw for any τ ≤ τ̂ .

A key challenge applying Theorem 3 is solving the maximum over w ∈ W . We propose a simple
greedy algorithm that achieves the maximum.

Greedy algorithm for robust URSCP. The RSCP bound URSCP satisfies certain monotonicity prop-
erties that enable us to efficiently compute an upper bound to the maximum in (8). In particular,
if C makes an error on (xi, yi) (i.e., yi 6∈ C(xi)), then URSCP is monotonically non-decreasing in
w∗

i = w∗(xi); intuitively, this holds since a larger w∗
i increases the probability that (xi, yi) is

included in TN (Sm, V, w∗, b), which in turn increases the empirical error L̄TN (Sm,V,w∗,b)(C). Con-
versely, if C does not make an error on (xi, yi) (i.e., yi ∈ C(xi)), URSCP is non-increasing in w∗

i .
More formally, we have the following result (see Appendix D.5 for a proof):

Lemma 1 For any i ∈ [m], URSCP(C, Sm, V, w∗, b, δ) is monotonically non-decreasing in w∗
i if

yi /∈ C(xi), and monotonically non-increasing in w∗
i if yi ∈ C(xi).

Our greedy algorithm leverages the monotonicity of URSCP. In particular, givenW and C, the choice

ŵ := (ŵ1, . . . , ŵm), where ŵi =

{

wi if yi 6∈ C(xi)

wi if yi ∈ C(xi)
(∀i ∈ [m]) (9)

is the maximum value over w ∈ W of the constraint URSCP(Cτ , Sm, V, w, b, δC) in (8), i.e.,

max
w∈W

URSCP(C, Sm, V, w, b, δ) = URSCP(C, Sm, V, ŵ, b, δ). (10)

Thus, we have the following, which follows by (10) and the same argument as the Theorem 3:

Theorem 4 SupposeW satisfies (7). Define ŵτ,SX
m,TX

n
as in (9), making the dependency on τ , SX

m ,

and TX
n explicit, and URSCP as in (5). Let τ̂ be the solution of the following problem:

τ̂ = max
τ∈T

τ subj. to URSCP(Cτ , Sm, V, ŵτ,SX
m,TX

n
, b, δC) ≤ ε. (11)

Then, we have PSm∼Pm,V∼Um,TX
n ∼Qn

X
[LQ(Cτ ) ≤ ε] ≥ 1− δC − δw for any τ ≤ τ̂ . 5

Importance weight estimation. In general, to estimate the importance weights (IWs), some as-
sumptions on their structure are required (Kanamori et al., 2009; Cortes et al., 2008; Nguyen et al.,

5We assume b is given for simplicity, but our approach estimates it; see Appendix C.2 for details.
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Algorithm 1 PS-W: an algorithm using the robust RSCP bound in (20)

1: procedure PS-W(Sm, TX
n , f, g, T , ε, δw, δC ,K,E)

2: W ← ESTIMATEIWS(SX
m , TX

n , g, δw,K,E) (.)Compute an uncertainty setW
3: b← maxi∈[K] wi (.)Compute the maximum IW (see (19) in Appendix C.2)
4: return PS-ROBUST(Sm, f, T ,W, b, ε, δC)

5: procedure ESTIMATEIWS(SX
m , TX

n , g, δw,K,E)
6: Construct bins B1, . . . , BK using g as described in Appendix B.2
7: ConstructW using B1, . . . , BK , SX

m , TX
n , g, δw and, E as described in Appendix B.1

8: returnW

9: procedure PS-ROBUST(Sm, f, g, T ,W, b, ε, δC )
10: V ∼ Uniform([0, 1])m

11: τ̂ ← 0
12: for τ ∈ T do (.)Grid search in ascending order
13: Construct ŵ using (9) given τ , Sm, andW
14: if URSCP(Cτ , Sm, V, ŵ, b, δC) ≤ ε then
15: τ̂ ← max(τ̂ , τ)
16: else break

17: return τ̂

2010; Lipton et al., 2018). We use a cluster-based approach (Cortes et al., 2008). In particular, we
heuristically partition the feature space of the score function f into K bins by using a probabilistic
classifier g that separates source and target examples, and then estimate the source and target covari-
ate distributions p(x) and q(x) based on the smoothness assumption over the distributions, where
the degree of the smoothness is parameterized by E. Then, we can construct the uncertainty setW
that satisfies the specified guarantee in (7). See Appendix B for details.

Algorithm. Our algorithm, called PS-W, is detailed in Algorithm 1; it solves (20) and also performs
importance weight estimation according to (17) in Appendix B. In particular, Algorithm 1 constructs
a prediction set that satisfies the PAC guarantee in Theorem 4. See Section 4.1 for our choice of
parameters (e.g., K, E, and grid search parameters).

4 EXPERIMENTS

We show the efficacy of our approach on rate and support shifts on DomainNet and ImageNet.

4.1 EXPERIMENTAL SETUP

Models. For each source-target distribution pair, we split each the labeled source data and unlabeled
target data into train and calibration sets. We use a separate labeled test set from the target for
evaluation. For each shift from source to target, we use a deep neural network score function f
based on ResNet101 (He et al., 2016), trained using unsupervised domain adaptation based on the
source and target training sets. See Appendix F for details, including data split.

Prediction set construction. To construct our prediction sets, we first estimate IWs by training
a probabilistic classifier g using the source and target training sets. Next, we use g to construct
heuristic IWs w(x) = 1/g(s = 1 | x)− 11, where s = 1 if x is from source. Then, we estimate the
lower and upper bound of the true IWs using Theorem 5 with E = 0.001 and K = 10 bins (chosen
to contain equal numbers of heuristic IWs), where we compute the lower and upper Clopper-Pearson
interval using the source and target calibration sets. Furthermore, given a confidence level δ, we use
δC = δw = δ/2. For the grid search in line 12 of Algorithm 1, we increase τ by 10−7 until the
bound URSCP exceeds 1.5ε. Finally, we evaluate the prediction set error on the labeled target test set.

Baselines. We compare the proposed method in Algorithm 1 (PS-W) with the following:

• PS: The prediction set using Algorithm 2 that satisfies the PAC guarantee from Theorem 1, based
on Park et al. (2020a), which makes the i.i.d. assumption.

• PS-C: A Clopper-Pearson method addressing covariate shift by a conservative upper bound on the
empirical loss (see Appendix E.2 for details), resulting in Algorithm 3 that solves the following:

τ̂ = argmax
τ∈T

τ subj. to UCP(Cτ , Sm, δ) ≤ ε/b.

• WSCI: Weighted split conformal inference, proposed in (Tibshirani et al., 2019). Under the ex-
changeability assumption (which is somewhat weaker than our i.i.d. assumption), this approach

7
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Table 1: Average prediction set error and sizes over 100 random trials under rate shifts on Do-
mainNet (first six shifts) and support shifts on ImageNet (last two shifts). We denote an approach
satisfying the ε error constraint by 3, and 7 otherwise. The “normalized size” is the size divided
by the total number of classes (i.e., 345 for DomainNet and 1000 for ImageNet). Parameters are
m = 50, 000 for DomainNet, m = 20, 000 for ImageNet, ε = 0.1, and δ = 10−5. Our approach
PS-W satisfies the ε constraint, while producing prediction sets with the smallest average normalized
size among approaches that always satisfy the error constraint. See Appendix G.2 for box plots.

Shift
Baselines Ablations Ours

PS WSCI PS-C PS-R PS-M PS-W
error size error size error size error size error size error size

All 3
(0.094)

10.5 3
(0.099)

9.5 3
(0.093)

10.7 3
(0.094)

10.6 3
(0.094)

10.8 3
(0.070)

17.0

Sketch 7
(0.142)

13.1 7
(0.116)

18.6 3
(0.020)

141.7 3
(0.097)

28.2 7
(0.105)

26.1 3
(0.078)

40.3

Painting 7
(0.159)

15.4 7
(0.113)

30.0 3
(0.025)

125.4 3
(0.096)

37.7 7
(0.103)

34.5 3
(0.076)

52.8

Quickdraw 3
(0.069)

5.9 3
(0.097)

3.8 3
(0.021)

23.8 3
(0.088)

4.3 3
(0.087)

4.2 3
(0.067)

6.1

Real 3
(0.079)

8.7 3
(0.087)

7.2 3
(0.032)

47.8 3
(0.080)

8.7 3
(0.087)

7.1 3
(0.068)

11.8

Clipart 7
(0.105)

10.2 7
(0.101)

10.9 3
(0.000)

345.0 3
(0.080)

19.4 3
(0.086)

14.8 3
(0.060)

25.7

Infograph 7
(0.363)

36.4 7
(0.114)

165.1 3
(0.000)

345.0 3
(0.085)

202.6 7
(0.107)

177.4 3
(0.078)

216.4

ImageNet-PGD 3
(0.090)

5.5 3
(0.096)

4.7 3
(0.000)

1000.0 3
(0.000)

1000.0 3
(0.074)

7.8 3
(0.049)

13.9

ImageNet-C13 7
(0.127)

9.3 7
(0.111)

67.0 3
(0.000)

1000.0 3
(0.000)

1000.0 3
(0.095)

15.9 3
(0.061)

35.8

mean normalized size – – 0.0338 0.0257 – 0.0047

that over Sketch is 37.16%. Even with the poor score function, our proposed approach still satisfies
the ε = 0.1 error constraint. Finally, while our approach PS-W generally performs best subject
to satisfying the error constraint, we note that our ablations PS-R and PS-M also perform well,
providing different tradeoffs. First, the performance of PS-W is significantly more reliable than
PS-R, but in some cases PS-R performs better (e.g., it produces slightly smaller prediction sets on
rate shifts but significantly larger sets on support shifts). Alternatively, PS-M consistently produces
smaller prediction sets, though it sometimes violates the ε error constraints.

Support shifts on ImageNet. We show results for synthetic and adversarial shifts in Table 1 (and
Figure 4 in Appendix G.2). As can be seen, the error of our approach (PS-W) is below the desired
level. PS-R performs poorly, likely due to the uncalibrated point IW estimation—we find that cal-
ibrated importance weights mitigate these issues, though accounting for uncertainty in the IWs is
necessary for achieving the desired error rate; see Appendix G.3 for details.

For adversarial shifts, the target classification error of the source-trained ResNet101 and the domain-
adapted ResNet101 is 99.97% and 28.05%, respectively. Domain adaptation can significantly de-
crease average error rate, but label predictions still do not have guarantees. However, our prediction
set controls the prediction set error rate as specified by ε. As shown in Figure 4, our prediction set
function outputs a prediction set for a given example that includes the true label at least 90% of the
time. Thus, downstream modules can rely on this guarantee for further decision-making.

Ablation and sensitivity study. We conduct an ablation study on the effect of IW calibration and
the smoothness parameter E for PS-W. We observe that the IW calibration considering uncertainty
intervals around calibrated IWs is required for the PAC guarantee (e.g., Figure 2b). Also, we find
that a broad range of E-s can be used to satisfy the PAC guarantee; we believe this result is due to
the use of a domain adapted score function. See Appendices G.3 & G.5 for details.

5 CONCLUSION

We propose a novel algorithm for building PAC prediction sets under covariate shift; it leverages re-
jection sampling and the Clopper-Pearson interval, and accounts for uncertain IWs. We demonstrate
the efficacy of our approach on natural, synthetic, and adversarial covariate shifts on DomainNet and
ImageNet. Future work includes providing optimality guarantees on the prediction set size, rigorous
estimation of the hyperparameter E, and incorporating probabilistic IW uncertainty estimates.
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Ethics statement. We do not foresee any significant ethical issues with our work. One possible
issue is that end-users may overly trust the prediction sets if they do not understand the limitations
of our approach—e.g., it is only a high probability guarantee.

Reproducibility statement. Algorithms used for evaluation, including ours, are stated in Algorithm
1, Algorithm 2, Algorithm 3, Algorithm 4, and Algorithm 5, along with hyperparameters for algo-
rithms in Section 4.1 and Appendix F. Related code is released6. The proof of our theorems are
stated in Appendix D; the required assumption is stated in Assumption 1.
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A ADDITIONAL RELATED WORK

Prediction sets under i.i.d. assumption. We built our proposed approach on the known PAC
prediction set approach (Wilks, 1941; Park et al., 2020a) due to its simplicity and sample efficiency.
As other candidates, nested conformal prediction (Vovk et al., 2005; Gupta et al., 2021) reinterprets
multiple known conformal prediction approaches using a scalar parameteriztion of prediction sets;
but different from Wilks (1941) and Park et al. (2020a), it is not known to provide PAC guarantees.
Kivaranovic et al. (2020) provides a PAC style guarantee, but their approach is limited to regression
and is sample-inefficient, i.e., it requires a sample of size O(1/ε2), while Park et al. (2020a) has a
better sample complexity, as demonstrated in their paper.

Prediction sets under various settings. Prior prediction set algorithms have been considered in
several settings. First, traditional conformal prediction (Vovk et al., 2005) often considers the setting
where labeled examples arrive sequentially from the same distribution; there has also been work
extending conformal prediction to the setting where the distribution is time-varying (Politis, 2015;
Chernozhukov et al., 2018; Xu & Xie, 2021; Gibbs & Candès, 2021). Alternatively, there has been
work on constructing risk-controlling prediction sets for supervised learning setting (Vovk, 2013;
Park et al., 2020a; Bates et al., 2021; Angelopoulos et al., 2021). Finally, there has been recent work
on conformal prediction in the meta-learning setting (Fisch et al., 2021); in particular, given a few
labeled examples drawn from the new task, their approach leverages labeled examples from previous
tasks to construct a conformal predictor for the new task, assuming the tasks are exchangeable.

Developments after our work. After our work was made publicly available, Jin et al. (2021)
has developed a different, robust conformal inference approach to constructing prediction sets with
estimated weights under covariate shift. Their algorithm assumes given upper and lower bounds on
the importance weights, and uses the worst-case quantile over all weights that satisfy the constraint
to set the critical values. Further, Yang et al. (2022) have developed a doubly robust approach to
construct prediction sets satisfying approximate marginal coverage under covariate shift (which can
be robust to estimating the weights and per-covariate prediction error), leveraging semiparametric
efficiency theory. Qiu et al. (2022) have developed a parallel approach for the PAC case.

Calibration. An alternative way to quantify uncertainty is calibrated prediction (e.g., Brier, 1950;
Cox, 1958; Miller, 1962; Murphy, 1972; Lichtenstein et al., 1977; DeGroot & Fienberg, 1983; Guo
et al., 2017, etc), which aims to ensure that among instances with a predicted confidence p, the
model is correct a fraction p of the time. Techniques have been proposed to re-scale predicted
confidences to improve calibration (Platt, 1999; Guo et al., 2017; Zadrozny & Elkan, 2001; 2002;
Kuleshov & Liang, 2015; Kuleshov et al., 2018; Malik et al., 2019); including ones with theoretical
guarantees (Kumar et al., 2019; Park et al., 2021) and ones that handle covariate shift (Park et al.,
2020b; Wang et al., 2020). There are also methods to rigorously test calibration, dating back to Cox
(1958); Miller (1962), see e.g., Lee et al. (2022) for a recent approach. These approaches provide a
qualitatively different form of uncertainty quantification compared to the one we consider.

Rejection sampling. Rejection sampling (sometimes accept-reject sampling) is a well-known tech-
nique (Owen, 2013; Rubinstein & Kroese, 2016) dating back at least to von Neumann (1951). We
highlight that most work on covariate shift relies on importance weighting; our rejection sampling
approach is relatively less common and more novel. In fact, to the best of our knowledge, only
Pagnoni et al. (2018) has used rejection sampling for a different problem in this area.

IW estimation. There has been a long line of work studying the problem of estimating impor-
tance weights (IWs), also called likelihood ratios, in a way that provides theoretical guarantees.
For instance, (Nguyen et al., 2010) provides a convergence rate analysis of IW estimators—under
smoothness assumptions, they provide a finite sample bound on the Hellinger distance between the
true IW and estimated IW. Next, (Kanamori et al., 2009) shows a similar finite sample guarantee,
assuming the true IW can be represented as a linear combination of kernels. Finally, (Cortes et al.,
2008) proposes non-parametric IW estimators, modeling the source and target distribution by his-
tograms over clusters in sample space.

The IW estimation approaches can be used in conjuction with prediction set construction. Compared
to Candès et al. (2021), which only guarantees asymptotic validity under certain assumptions on
the estimated IWs, Theorem 4 provides a finite-sample correctness guarantee. Furthermore, we
explicitly describe an algorithm for approximate IWs, required by Theorem 4, in Appendix B.
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B IMPORTANCE WEIGHT ESTIMATION

In general, to estimate the importance weights (IWs), some assumptions on their structure are re-
quired. A number of approaches have been proposed, with varying guarantees under different as-
sumptions (Kanamori et al., 2009; Cortes et al., 2008; Nguyen et al., 2010; Lipton et al., 2018). We
use a cluster-based approach (Cortes et al., 2008); our approach is compatible with any of these
strategies if they can be modified to provide uncertainty estimates of the IWs.

In our approach, given a partition X =
⋃K

j=1 Bj into bins, we can estimate the IWs based on the
fractions of source and target samples in each bin. If the partition is sufficiently fine, then we can
obtain confidence intervals around the estimated IWs with finite-sample guarantees. However, this
strategy requires the number of bins in the partition to be exponential in the dimension of X . Thus,
in practice, we use a heuristic to construct the partition. We describe the cluster-based approach and
our partition construction heuristic below.

B.1 CLUSTER-BASED APPROACH

We assume given unlabeled calibration sets SX
m and TX

n , where SX
m consists of i.i.d. samples xi ∼

p(x) for i ∈ [m], and TX
n consists of i.i.d. samples xi ∼ q(x) for i ∈ [n], respectively7. Roughly

speaking, the cluster-based strategy estimates the average IW in each bin Bj ; assuming p and q are
roughly constant in each bin, these accurately estimate the true IWs. Let j(x) be the bin containing
x (i.e., x ∈ Bj(x)), and let

pB(x) := pj(x) s.t. pj =

∫

Bj

p(x′) dx′ and qB(x) := qj(x) s.t. qj =

∫

Bj

q(x′) dx′

be the (unnormalized) approximations of the densities p and q, respectively, that are constant on
each bin. We assume that pB and qB are accurate approximations:

Assumption 1 Given E ∈ R≥0, the partition satisfies
∫

Bj

|p(x)− p(x′)|dx′ ≤ E and

∫

Bj

|q(x)− q(x′)|dx′ ≤ E (j ∈ [K], ∀x ∈ Bj). (12)

Thus, p and q are roughly constant on the partitions. In general, (12) can hold for any E ∈ R>0 if p
and q are Lipschitz continuous and each Bj is sufficiently small (see Appendix B.3 for discussion).
Then, under Assumption 1, it can be verified that

|v(x) · p(x)− pB(x)| ≤ E and |v(x) · q(x)− qB(x)| ≤ E (∀x ∈ X ), (13)

where v(x) = vj(x), and vj =
∫

Bj
dx′ is the volume of bin Bj (see the proof of Theorem 5 for the

validity of (13)). Next, we have the following empirical estimates of pB and qB , respectively:

p̂B(x) := p̂j(x) s.t. p̂j =
1

m

∑

x′∈SX
m

1 (x′ ∈ Bj) and (14)

q̂B(x) := q̂j(x) s.t. q̂j =
1

n

∑

x′∈TX
n

1 (x′ ∈ Bj) . (15)

Now, 1(x′ ∈ Bj) has distribution Bernoulli(pj) when x ∼ P , thus m · p̂j has distribution
Binom(m, pj), and pj is contained in a Clopper-Pearson interval around p̂j with high probabil-
ity; in particular, let θ be the Clopper-Pearson lower bound corresponding to the Clopper-Pearson
upper bound defined in Section 2.2, i.e., Pk∼Binom(m,µ)[µ ≥ θ(k;m, δ)] ≥ 1− δ. Then, we have

θ(m · p̂j ;m, δ′) ≤ pj ≤ θ(m · p̂j ;m, δ′) (16)

with probability at least 1 − δ′ with respect to the samples SX
m . Combining (13) and (16), we have

the following result (and see Appendix D.6 for a proof):

7We can use the same calibration set to construct IWs and prediction sets due to the union bound in Theo-
rem 3.
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Theorem 5 Letting δ′ = δw/(2K) and [v]+ := max{0, v} for all v ∈ R, we have

w(x) :=
[θ (n · q̂B(x);n, δ

′)− E]+

θ (m · p̂B(x);m, δ′) + E
≤ w∗(x) ≤ w(x) :=

θ (n · q̂B(x), n, δ
′) + E

[θ (m · p̂B(x),m, δ′)− E]+
(∀x ∈ X )

(17)

with probability at least 1− δw over SX
m and TX

n .

We use these upper and lower bounds on the IWs as the inputs w and w to our algorithm—i.e.,

W = {w : X → R | ∀x ∈ X , w(x) ≤ w(x) ≤ w(x)} ,

and use b = maxx∈X w(x) = maxj∈[K] wj as the maximum IW. If b is known, we need importance

weights associated with source calibration samples SX
m ; thus we use a simpler form ofW as follows:

W = {w ∈ Rm | ∀i ∈ [m], wi ≤ wi ≤ wi} ,

where wi := w(xi) and wi := w(xi) for xi ∈ SX
m .

Theorem 5 under Assumption 1 is one way to construct uncertainty setW that contains the true IWs.

Corollary 1 Given K ∈ N, E ∈ R≥0, and δw ∈ (0, 1), suppose Assumption 1 is satisfied andW is
constructed using Theorem 5. Then, we have

PSX
m∼Pm

X
,TX

n ∼Qn
X
[w∗ ∈ W] ≥ 1− δw.

B.2 PARTITION CONSTRUCTION HEURISTIC

In general, exponentially many bins are needed to guarantee Assumption 1. Instead, we consider
an intuitive heuristic for constructing these bins, so that the importance weights w(x)—rather than
the density functions p(x) and q(x) individually—are roughly constant on each bin, inspired by
(Park et al., 2021; 2020b); a standard heuristic for estimating IWs is to train a probabilistic classifier
g(s | x) to distinguish source and target training examples, and then use these probabilities to
construct the IWs. In particular, define the distribution

g∗(x, y) =
1

2
p(x) · 1(s = 1) +

1

2
q(x) · 1(s = 0).

Then, letting g∗(y | x) be the conditional distribution, we have w∗(x) = 1/g∗(s = 1 | x)−1 (Bickel
et al., 2007). Thus, we train g(s | x) ≈ g∗(s | x) and construct bins according to w(x) = 1/g(s =
1 | x)− 1, i.e.,

Bj = {x ∈ X | w(x) ∈ [wj , wj+1)},

where 0 = w1 ≤ w2 ≤ ... ≤ wK+1 = ∞. Finally, we describe how to train g. Let SX
m′ and TX

n′ be
unlabeled training examples from a source and target, respectively; then, the set

RX
m′,n′ = {(x, 1) | x ∈ SX

m′} ∪ {(x, 0) | x ∈ TX
n′ }

consists of i.i.d. samples (x, y) ∼ s∗(x, y). Thus, we can train s on RX
m′,n′ using supervised

learning. In practice, the corresponding IW estimates w(x) can be inaccurate partly since w is likely
overfit to RX

m′,n′ , which is why re-estimating the IWs in each bin according to Theorem 5 remains
necessary.

B.3 DENSITY ESTIMATION SATISFYING ASSUMPTION 1

We consider the following binning strategy that satisfies Assumption 1 for Lipschitz continuous
PDFs. In particular, assume the PDFs p(x) and q(x) are L-Lipschitz continuous for some norm ‖·‖.
Then, for any given E, construct each bin Bj such that

‖x− x′‖ ≤
E

L · vj
∀x, x′ ∈ Bj ,
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where vj is the volume of bin Bj . Then, we know that

|p(x)− p(x′)| ≤ L‖x− x′‖ ≤
E

vj
,

so
∫

Bj

|p(x)− p(x′)|dx′ ≤ E.

Similarly, we have
∫

Bj

|q(x)− q(x′)|dx′ ≤ E.

Thus, the bins satisfy Assumption 1. Finally, assuming ‖ · ‖ is the L∞ norm, we describe one way

to construct bins. In particular, construct bins by taking an ε-net with ε = (E/L)1/(d+1), where d
is the dimension of X . Then, we have

‖x− x′‖ ≤ ε =
εd+1

εd
=

E

L · vj
,

as desired.

C ADDITIONAL DISCUSSION ON IMPORTANCE WEIGHTS

C.1 APPROXIMATE IMPORTANCE WEIGHTS

In Section 3.3, we assumeW has the following form:

W := {w ∈ Rm | wi ≤ wi ≤ wi} .

However, considering the fact that the expected importance weight is one, i.e., Ex∼P [w
∗(x)] = 1,

the uncertainty setW that contains the true importance weights with high probability can be further
constrained as follows:

W ′ := {w ∈ Rm | ∀i ∈ [m] , wi ≤ wi ≤ wi , c ≤
∑m

i=1 wi ≤ c}

for some c and c. In particular, using the Hoeffding’s inequality for example, we can estimate c
and c such that w1, . . . , wm can be the part of the true importance weight w∗ that satisfies the mass
constraint Ex∼P [w

∗(x)] = 1.

Recall that we have to find a maximizer in the uncertainty set W ′ as in (8); however, due to the
additional constraint on

∑m
i=1 wi inW ′, it is challenging to solve the maximization problem exactly.

C.2 MAXIMUM IMPORTANCE WEIGHT ESTIMATION

To generalize our approach to estimate the maximum importance weight b, we redefine the uncer-
tainty setW over importance weights as follows:

W := {w : X → R | ∀x ∈ X , w(x) ≤ w(x) ≤ w(x)}

for some w : X → R and w : X → R such that it contains the true importance weight w∗ with high
probability—i.e.,

PSX
m∼Pm

X
,TX

n ∼Qn
X
[w∗ ∈ W] ≥ 1− δw. (18)

Given this, the maximum importance weight is obtained as follows:

b̂ = max
x∈X

w(x).

Considering that W can be estimated using binning as in Appendix B, the maximum importance
weight is rewritten as follows:

b̂ = max
x∈X

w(x) = max
j∈[K]

wj , (19)
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where

wj :=
θ (n · q̂j , n, δ

′) + E

[θ (m · p̂j ,m, δ′)− E]+
.

Here, θ, θ, m,n, δ′, E, p̂j , and q̂j are defined in Theorem 5 and Appendix B.

The guarantee (18) implies the guarantee (7). Thus, for the maximization over the uncertainty set in
(8), we use the original definitionW and the greedy algorithm for ŵ in (9). Then, Theorem 4 with
the estimated b using (19) still holds as follows:

Theorem 6 Suppose Assumption 1 is satisfied and W is estimated using Theorem 5. Define

ŵτ,SX
m,TX

n
as in (9) and b̂SX

m,TX
n

as in (19), making the dependency on τ , SX
m , and TX

n explicit,
and URSCP as in (5). Let τ̂ be the solution of the following problem:

τ̂ = max
τ∈T

τ subj. to URSCP(Cτ , Sm, V, ŵτ,SX
m,TX

n
, b̂SX

m,TX
n
, δC) ≤ ε. (20)

Then, we have PSm∼Pm,V∼Um,TX
n ∼Qn

X
[LQ(Cτ ) ≤ ε] ≥ 1− δC − δw for any τ ≤ τ̂ .

C.3 CHOOSING HYPERPARAMETERS

In general, there is no systematic way to choose the smoothness parameter E and the number of bins
K; we briefly discuss strategies for doing so.

Number of bins K. The bins are defined in one dimensional space as described in Appendix B.2, so
we follow the standard practice in the calibration literature for binning (Guo et al., 2017; Park et al.,
2021), where K is between 10 and 20. As we are using equal-mass binning, we choose the number
of bins so that each bin contains sufficiently many source examples (in our case, 5000 examples) for
the length of the Clopper-Pearson interval over IWs of each bin to be below some threshold (in our
case, 10−3), which leads us to K = 10. We provide a sensitivity analysis in Appendix G.6.

Smoothness parameter E. Estimating E (i.e., computing the integral of the difference of source
and target probabilities) is intractable in general as it requires that we perform density estimation
in a high-dimensional space (i.e., 2048 in our case), and then integrate this density over each bin.
To avoid this hyperparameter selection, we choose E equal to zero or close to zero (in our case,
0.001). Intuitively, we find that binning based on the source-discriminator scores is an effective way
to group examples with similar IWs; thus, the main contribution to the uncertainty is the error of
the point estimate. We provide a sensitivity analysis on E in Appendix G.5. Importantly, note that
PS-W even with E = 0 satisfies PAC criterion. One direction for future work is devising better
strategies for choosing E.

C.4 COMPARISON WITH WSCI

Guarantee. The main difference between WSCI and PS-W lies in the guarantee provided (rather
than prediction set size); PS-W provides a stronger guarantee than WSCI. In particular, WSCI does
not provide a PAC guarantee. Instead, to satisfy the coverage probability guarantee, it requires a
new calibration set for every new test example. However, in practice, we usually have a single
held-out calibration set. Thus, our approach PS-W provides a guarantee that holds conditioned on
this set. This difference is illustrated in Figure 3a, which compares WSCI and PS-W given the
true importance weight. PS-W produces a larger set size than WSCI, but strictly satisfies the error
constraint. The shortcoming of WSCI can also be observed in Figure 2 in Tibshirani et al. (2019),
which empirically shows that the guarantee only holds on average over examples.

Usage of IWs. WSCI requires the true IWs, whereas our method can use approximate IWs. Also,
IWs are used differently. Given the true importance weights, WSCI uses the importance weights to
reweight examples in the calibration set, and PS-W uses the importance weights to generate a target
labeled calibration set using rejection sampling.
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D PROOFS

D.1 PROOF OF THEOREM 1

First, note that the constraint in (1) implies F (L̄Sm
(Cτ );m, ε) ≤ δ; conversely, any value of τ

satisfying F (L̄Sm
(Cτ );m, ε) ≤ δ also satisfies L̄Sm

(Cτ ) ≤ k(m, ε, δ). Thus, we can rewrite (1) as

τ̂ = argmax
τ∈T

τ subj. to F (L̄Sm
(Cτ );m, ε) ≤ δ.

On the other hand, if τ satisfies (3), then by definition of UCP(Cτ , Sm, δ) = θ(k;m, δ), we have

inf{θ ∈ [0, 1] | F (L̄Sm
(Cτ );m, θ) ≤ δ} ∪ {1} ≤ ε,

which implies that F (L̄Sm
(Cτ );m, ε) ≤ δ (since the infimum is obtained within the set since the

binomial CDF F is continuous in ε). Conversely, any value of τ satisfying F (L̄Sm
(Cτ );m, ε) ≤ δ

also satisfies UCP(Cτ , Sm, δ) ≤ ε. Thus, we can rewrite (3) as

τ̂ = argmax
τ∈T

τ subj. to F (L̄Sm
(Cτ );m, ε) ≤ δ,

implying (1) and (3) are equal. Thus, the claim follows from Theorem 1 of (Park et al., 2020a) and
the fact that the error LP (Cτ ) is monotonically increasing in τ . �

D.2 MONOTONICITY OF THE CLOPPER-PEARSON BOUND

The CP bound UCP enjoys certain monotonicity properties that we will need. Intuitively, the CDF
decreases as the number of observations m increases while holding the number of successes k fixed,
but increases if both m and k are increased by the same amount (i.e., holding the number of failures
m− k fixed). In particular, we have the following:

Lemma 2 We have θ(k;m− 1, δ) ≥ θ(k;m, δ) and θ(k − 1;m− 1, δ) ≤ θ(k;m, δ).

Proof. Recall that F (k;m, θ) is the cumulative distribution function of a binomial distribution
Binom (m, θ), or equivalently of the random variable

∑m
i=1 Xi, where Xi ∼ Bernoulli(θ) are i.i.d.

Decreasing case. If k ≤ m− 1, then we have

m
∑

i=1

Xi ≤ k ⇒
m−1
∑

i=1

Xi ≤ k,

hence

P

[

m
∑

i=1

Xi ≤ k

]

⊆ P

[

m−1
∑

i=1

Xi ≤ k

]

,

so F (k;m, θ) ≤ F (k;m− 1, θ).

Then, we have

θ(k;m, δ) := inf {θ ∈ [0, 1] | F (k;m, θ) ≤ δ} ∪ {1}

≤ inf {θ ∈ [0, 1] | F (k;m− 1, θ) ≤ δ} ∪ {1}

=: θ(k;m− 1, δ),

thus θ is monotonically non-increasing in m.

Increasing case. We have
m−1
∑

i=1

Xi ≤ k − 1⇒
m
∑

i=1

Xi ≤ k,

hence

P

[

m−1
∑

i=1

Xi ≤ k − 1

]

⊆ P

[

m
∑

i=1

Xi ≤ k

]

,
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so F (k − 1;m− 1, θ) ≤ F (k;m, θ).

Then, we have

θ(k;m, δ) := inf {θ ∈ [0, 1] | F (k;m, θ) ≤ δ} ∪ {1}

≥ inf {θ ∈ [0, 1] | F (k − 1;m− 1, θ) ≤ δ} ∪ {1}

=: θ(k − 1;m− 1, δ),

thus θ is monotonically jointly non-decreasing in (m, k). �

D.3 PROOF OF THEOREM 2

The rejection sampling prediction set consists of two steps: (i) generate target samples, using source
samples Sm, importance weights w, and an upper bound on their maximum value b, and (ii) construct
the Clopper-Pearson prediction set using the generated target samples.

From rejection sampling, we choose N :=
∑m

i=1 σi samples from Sm, denoting them by TN ; here,
N ∼ Binom (m, 1/b), and 1/b is the acceptance probability (von Neumann, 1951)—i.e.,

P

[

V ′ ≤
w(X)

b

]

=
1

b
,

where V ′ ∼ Uniform([0, 1]). The samples in TN are independent and identically distributed, con-
ditionally on the random number N of samples being equal to any fixed value n. The reason is that
one can view the rejection sampling algorithm proceeding in stages, iterating through the samples
one by one. The first stage starts at the very beginning, and then each stage ends when a datapoint
is accepted, followed by starting a new stage at the next datapoint. The last stage ends at the last
datapoint.

Based only on the source samples observed in one stage, rejection sampling produces a sample from
the target distribution. Thus, within each stage, we produce one sample from the target distribu-
tion, and because each stage is independent of all the other ones, conditionally on any number of
stages reached, our produced target samples are iid. Thus, we can use the Clopper-Pearson bound
conditionally on each N = n.

To this end, let τ̂(Sm, V ) = τ̂ to explicitly denote the dependence on Sm and V , and let

τ̃(Tn) = argmax
τ∈T

τ subj. to URSCP(Cτ , Tn, δ) ≤ ε.

Note that conditioned on obtaining n samples using rejection sampling (i.e., |Tn(Sm, V, w, b)| = n),

we have τ̂(Sm, V )
D
= τ̃(Tn), where

D
= denotes equality in distribution. Then, we have

PSm∼Pm,V∼Um

[

LQ(Cτ̂(Sm,V )) ≤ ε
]

=

m
∑

n=0

PSm∼Pm,V∼Um [LQ(Cτ̂(Sm,V )) ≤ ε | N = n] ·P[N = n]

=

m
∑

n=0

PTn∼Qn [LQ(Cτ̃(Tn)) ≤ ε] ·P[N = n]

≥
m
∑

n=0

(1− δ) ·P[N = n]

= 1− δ,

where the inequality follows by Theorem 1. The claim follows. �

D.4 PROOF OF THEOREM 3

First, let

τ̃ = argmax
τ∈T

τ subj. to URSCP(Cτ , Sm, V, ~w∗, b, δC) ≤ ε, (21)
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which satisfies PSm∼Pm,V∼Um [LQ(Cτ̃ ) ≤ ε] ≥ 1 − δC by Theorem 2. Now, with probability at
least 1− δw, we have ~w∗ ∈ W . Under this event, we have

URSCP(Cτ , Sm, V, ~w∗, b, δC) ≤ max
w∈W

URSCP(Cτ , Sm, V, w, b, δC),

so τ̂ satisfies the constraint in (21). Thus, we must have τ̂ ≤ τ̃ . By monotonicity of LQ(Cτ ) in τ ,
we have LQ(Cτ̂ ) ≤ LQ(Cτ̃ ), which implies that

PSm∼Pm,V∼Um,TX
n ∼Qn

X
[LQ(Cτ̂ ) ≤ ε] ≥ PSm∼Pm,V∼Um [LQ(Cτ̃ ) ≤ ε] ≥ 1− δC ,

where the last step follows by Theorem 2. The claim follows by a union bound, since ~w∗ ∈ W with
probability at least 1− δw. �

D.5 PROOF OF LEMMA 1

Let w and v be IWs where w(xi) ≥ v(xi) and w(xj) = v(xj) for j 6= i. Additionally, we use the
following shorthands:

nw :=

m
∑

i=1

1

(

Vi ≤
w(xi)

b

)

,

Tnw
:=

{

(xi, yi) ∈ Sm

∣

∣

∣

∣

Vi ≤
w(xi)

b

}

,

kw :=
∑

(x,y)∈Tnw

1 (y /∈ C(x)) ,

nv :=

m
∑

i=1

1

(

Vi ≤
v(xi)

b

)

,

Tnv
:=

{

(xi, yi) ∈ Sm

∣

∣

∣

∣

Vi ≤
v(xi)

b

}

, and

kv :=
∑

(x,y)∈Tnv

1 (y /∈ C(x)) .

Here, nw ≥ nv since w(xi) ≥ v(xi). Finally, recall that F (k;m, θ) be the cumulative distribution
function of a binomial random variable

∑m
i=1 Xi, where Xi ∼ Bern(θ).

Non-decreasing case. If yi /∈ C(xi), there are two cases to consider:

1. If
v(xi)

b < Vi ≤
w(xi)

b , then we can verify that nw = nv + 1 and kw = kv + 1.

2. Otherwise, we can verify that nw = nv and kw = kv .

In both cases, kw ≥ nv and nw ≥ nv . Since θ is monotonically jointly non-decreasing in (m, k) as
in Lemma 2, we have

URSCP(C, Sm, V, w, b, δ) := UCP(L̄Tnw
(C), δ)

:= θ(kw;nw, δ)

≥ θ(kv;nv, δ)

=: UCP(L̄Tnv
(C), δ)

=: URSCP(C, Sm, V, v, b, δ),

thus URSCP is monotonically non-decreasing in w(xi).

Non-increasing case. If yi ∈ C(xi), then kw = kv . Since θ is monotonically non-increasing in m
as in Lemma 2, we have

URSCP(C, Sm, V, w, b, δ) := UCP(L̄Tnw
(C), δ)

:= θ(kw;nw, δ)

≤ θ(kv;nv, δ)

=: UCP(L̄Tnv
(C), δ)

=: URSCP(C, Sm, V, v, b, δ),
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thus URSCP is monotonically non-increasing in w(xi).

D.6 PROOF OF THEOREM 5

Recall that

p̂B(x) :=

K
∑

j=1

1 (x ∈ Bj)





1

m

∑

x′∈SX
m

1 (x′ ∈ Bj)



 ,

q̂B(x) :=

K
∑

j=1

1 (x ∈ Bj)





1

n

∑

x′∈TX
n

1 (xi ∈ Bj)



 ,

pB(x) :=

K
∑

j=1

1 (x ∈ Bj)

∫

Bj

p(x′) dx′,

qB(x) :=
K
∑

j=1

1 (x ∈ Bj)

∫

Bj

q(x′) dx′, and

v(x) := vj(x) =

∫

Bj(x)

dx′.

Due to the assumption of (12), |v(x) · p(x)− pK(x)| is bounded for any x ∈ Bj as follows:

|v(x) · p(x)− pB(x)| =

∣

∣

∣

∣

∣

∫

Bj

p(x) dx′ −

∫

Bj

p(x′) dx′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Bj

p(x)− p(x′)dx′

∣

∣

∣

∣

∣

≤

∫

Bj

|p(x)− p(x′)| dx′

= E. (22)

Similarly,

|v(x) · q(x)− qB(x)| ≤ E. (23)

Observe that mp̂(x) ∼ Binom
(

m,
∫

Bj
p(x′)dx′

)

for any x ∈ Bj ; thus pK is bounded with proba-

bility at least 1− δ′ as follows due to the Clopper-Pearson interval (θ, θ):

θ(mp̂(x);m, δ′) ≤ pK(x) ≤ θ(mp̂(x);m, δ′). (24)

Similarly,

θ(nq̂(x);n, δ′) ≤ qK(x) ≤ θ(nq̂(x);n, δ′). (25)

From (22), (23), (24), and (25), the following holds:

θ(mp̂(x);m, δ′)− E ≤ v(x) · p(x) ≤ θ(mp̂(x);m, δ′) + E and

θ(nq̂(x);n, δ′)− E ≤ v(x) · q(x) ≤ θ(nq̂(x);n, δ′) + E.

Therefore, for any x ∈ Bj , w∗(x) is bounded as follows:

θ(nq̂(x);n, δ′)− E

θ(mp̂(x);m, δ′) + E
≤ w∗(x) =

q(x)

p(x)
≤

θ(nq̂(x);n, δ′) + E

θ(mp̂(x);m, δ′)− E
.

Since we apply the Clopper-Pearson interval for K partitions for both source and target, the claim
holds due to the union bound.
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E ADDITIONAL ALGORITHMS

E.1 PS ALGORITHM

Algorithm 2 PS: an algorithm using the CP bound in (3)

procedure PS(Sm, f, T , ε, δ)
τ̂ ← 0
for τ ∈ T do (.)Grid search in ascending order

if UCP(Cτ , Sm, δ) ≤ ε then
τ̂ ← max(τ̂ , τ)

else
break

return τ̂

E.2 PS-C ALGORITHM

Algorithm 3 PS-C: an algorithm using the CP bound in (3) with ε/b

procedure PS-C(Sm, f, T , b, ε, δ)
return PS(Sm, f, T , ε/b, δ)

We describe the PS-C algorithm, which uses a conservative upper bound on the CP interval. Let

LP (C) := E
(x,y)∼P

[1 (y /∈ C(x))]

LQ(C) := E
(x,y)∼Q

[1 (y /∈ C(x))]

w∗(x) :=
q(x)

p(x)

b := max
x∈X

w∗(x).

Then, we have

LQ(C) = E
(x,y)∼Q

[1 (y /∈ C(x))]

= E
(x,y)∼P

[w∗(x)1 (y /∈ C(x))]

≤ E
(x,y)∼P

[b · 1 (y /∈ C(x))]

= b E
(x,y)∼P

[1 (y /∈ C(x))]

= b · LP (C).

Thus, LQ(C) ≤ ε if b · LP (C) ≤ ε. Equivalently, LQ(C) ≤ ε if LP (C) ≤ ε/b. As a consequence,
we can choose C based on the CP bound for the i.i.d. case (i.e., Algorithm 2), except using the
desired error of ε/b (instead of ε). The algorithm is described in Algorithm 3.
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E.3 PS-R ALGORITHM

Algorithm 4 PS-R: an algorithm using the RSCP bound in (6)

procedure PS-R(Sm, f, T , w, b, ε, δ)
V ∼ Uniform([0, 1])m

τ̂ ← 0
for τ ∈ T do (.)Grid search in ascending order

if URSCP(Cτ , Sm, V, w, b, δ) ≤ ε then
τ̂ ← max(τ̂ , τ)

else
break

return τ̂

E.4 PS-M ALGORITHM

Algorithm 5 PS-M: an algorithm using the RSCP bound in (6) along with IWs rescaling

procedure PS-M(Sm, TX
n , f, T , w, b, ε, δ)

ŵ(x)← q̂B(x)
p̂B(x) for x ∈ X , where p̂B and q̂B are defined in (14) and (15), respectively

return PS-R(Sm, f, T , ŵ, b, ε, δ)

F EXPERIMENT DETAILS

F.1 DOMAIN ADAPTATION

We use a fully-connected network (with two hidden layers, where each layers has 500 neurons
followed by ReLU activations and a 0.5-dropout layer) as the domain classifier (recall that the input
of this domain classifier is the last hidden layer of ResNet101). We use the last hidden layer of
the model as example space X , where its dimension is 2048. For neural network training, we run
stochastic gradient descent (SGD) for 100 epochs with an initial learning rate of 0.1, decaying it by
half once every 20 epochs. The domain adaptation regularizer is gradually increased as in (Ganin
et al., 2016). We use the same hyperparameters for all experiments.

F.2 DOMAINNET

We split the dataset into 409,832 training, 88,371 calibration, and 88,372 test images.

F.3 IMAGENETC-13

We split ImageNet into 1.2M training, 25K calibration, and 25K test images, and ImageNet-C13
into 83M training, 1.6M calibration, and 1.6M test images.

To train a model using domain adaptation, due to the large size of the target training set, we sub-
sample the target training set to be the same size as the source training set on for each random
trials.

G ADDITIONAL RESULTS

G.1 SYNTHETIC RATE SHIFT BY TWO GAUSSIANS

We demonstrate the efficacy of the proposed approaches (i.e., PS-R with the known IWs and PS-W
with the estimated IWs) using a synthetic dataset consisting of samples from two Gaussian distribu-
tions.

Dataset. We consider two Gaussian distributions N (µ,Σ) and N (µ,Σ′) over 2048-dimensional
covariate space X . Here, µ = 0; Σ and Σ′ are diagonal where Σ1,1 = 52, Σi,i = 10−1, Σ′

1,1 = 1,
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G.7 PREDICTION SET VISUALIZATION

Example x ĈPS(x) ĈPS-W(x) Example x ĈPS(x) ĈPS-W(x)

{
̂raccoon

} {
owl,
̂raccoon

} {
angel,

ĥarp

}




angel,
cello,

ĥarp,
microphone,
piano,
violin





{
ŵine bottle

}




bread,
grapes,

ŵine bottle,
wine glass





{
ŝhark,
snorkel

}





dolphin,

ŝhark,
snorkel,

submarine,
whale





{
̂campfire

}




̂campfire,
ocean,
star,
tent





{
coffee cup,

ĉup

}




coffee cup,
ĉup,
mug,
teapot





{
ôcean

}




hurricane,
ôcean,
square,
tornado





{
b̂rain

}




b̂rain,
fish,
lion,

lollipop,
sea turtle





{
̂penguin

}




fire hydrant,
foot,
̂penguin,

telephone





{
hat,

ĥot tub

}


























































bed,

belt,

birthday cake,

guitar,

hat,

ĥot tub,

tiny paint can,

pillow,

shoe,
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Figure 9: Prediction sets of the DomainNet shift from All to Paint. Parameters are m = 50, 000,
ε = 0.1, and δ = 10−5. The green label is the true label and the label with the hat is the predicted
label. We choose examples where the two approaches differ; in particular, if PS-W is incorrect, then
PS is incorrect as well since the prediction set sizes are monotone in τ .
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Figure 10: Prediction sets of the shift from ImageNet to ImageNet-C13. Parameters are m =
20, 000, ε = 0.1, and δ = 10−5. The green label is the true label and the label with the hat is
the predicted label. We choose examples where the two approaches differ; in particular, if PS-W is
incorrect, then PS is incorrect as well since the prediction set sizes are monotone in τ .
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ŝtarfish,
sea urchin







































brain coral,

chiton,
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Figure 11: Prediction sets of the shift from ImageNet to ImageNet-PGD. Parameters are m =
20, 000, ε = 0.1, and δ = 10−5. The green label is the true label and the label with the hat is
the predicted label. We choose examples where the two approaches differ; in particular, if PS-W is
incorrect, then PS is incorrect as well since the prediction set sizes are monotone in τ .
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