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Abstract

One of the most important and well-studied settings for network design is edge-connectivity
requirements. This encompasses uniform demands such as the Minimum k-Edge-Connected
Spanning Subgraph problem (k-ECSS), as well as nonuniform demands such as the Survivable
Network Design problem. A weakness of these formulations, though, is that we are not able to
ask for fault-tolerance larger than the connectivity. Taking inspiration from recent definitions
and progress in graph spanners, we introduce and study new variants of these problems under
a notion of relative fault-tolerance. Informally, we require not that two nodes are connected
if there are a bounded number of faults (as in the classical setting), but that two nodes are
connected if there are a bounded number of faults and the two nodes are connected in the
underlying graph post-faults. That is, the subgraph we build must “behave” identically to the
underlying graph with respect to connectivity after bounded faults.

We define and introduce these problems, and provide the first approximation algorithms: a
(1+4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the
weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative
Survivable Network Design with only a single demand with a connectivity requirement of 3. To
obtain these results, we introduce a number of technical ideas that may of independent interest.
First, we give a generalization of Jain’s iterative rounding analysis that works even when the
cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition
we introduce and term local weak supermodularity. Second, we prove a structure theorem and
design an approximation algorithm utilizing a new decomposition based on important separators,
which are structures commonly used in fixed-parameter algorithms that have not commonly been
used in approximation algorithms.

*Supported in part by NSF award CCF-1909111.



1 Introduction

Fault-tolerance has been a central object of study in approximation algorithms, particularly for
network design problems where the graphs that we study represent some physical objects which
might fail (communication links, transportation links, etc.). In these settings it is natural to ask for
whatever object we build to be fault-tolerant. The precise definition of “fault-tolerance” is different
in different settings, but a common formulation is edge fault-tolerance, which typically takes the
form of edge connectivity. Informally, these look like guarantees of the form “if up to k edges fail,
then the nodes I want to be connected are still connected.” For example, consider the following
two classical problems.

� The Minimum k-Edge Connected Subgraph problem (k-ECSS), where we are given a graph
G and a value k and are asked to find the k-edge connected subgraph of G of minimum size
(or weight). In other words, if fewer than k edges fail, the graph should still be connected.

� The more general Survivable Network Design problem (SND, sometimes referred to as Gen-
eralized Steiner Network), where we are given a graph G and demands {(si, ti, ki)}i∈[`], and
we are supposed to find the minimum-weight subgraph H of G so that there are at least ki
edge-disjoint paths between si and ti for every i ∈ [`]. In other words, for every i ∈ [`], if
fewer than ki edges fail then si and ti will still be connected in H even after failures.

Both of these problems have been studied extensively (for a small sample, see [10, 16, 18, 23]),
and are paradigmatic examples of network design problems. But there is a different notion of
fault-tolerance which is stronger, and in some ways more natural: relative fault-tolerance. Relative
fault-tolerance makes guarantees that rather than being absolute (“if at most k edges fail the
network still functions”) are relative to an underlying graph or system (“if at most k edges fail, the
subgraph functions just as well as the original graph post-failures”). This allows us to generalize the
traditional definition: if the underlying graph has strong enough connectivity properties then the
two definitions are the same, but the relative version allows us to make interesting and nontrivial
guarantees even when the underlying graph does not have strong connectivity properties.

For example, the definition of Survivable Network Design has an important limitation: if G itself
can only support a small number of edge disjoint si − ti paths (e.g., 3), then of course we cannot
ask for a subgraph with more edge-disjoint paths. There simply would be no feasible solution. But
this is somewhat unsatisfactory. For example, while we cannot guarantee that si and ti would be
connected after any set of 5 faults (since those faults may include an (si, ti) cut of size 3), clearly
there could be some set of 5 faults which do not in fact disconnect si from ti in G. And if these
faults occur, it is natural to want si and ti to still be connected in (what remains) of H. In other
words: just because there exists a small cut, why should we give up on being tolerant to a larger
number of faults which do not contain that cut?

1.1 Our Results and Techniques

In this paper we initiate the study of relative fault-tolerance in network design, by defining relative
versions of Survivable Network Design and k-ECSS.

Definition 1. In the Relative Survivable Network Design problem (RSND), we are given a graph
G = (V,E) with edge weights w : E → R≥0 and demands {(si, ti, ki)}i∈[`]. A feasible solution is a
subgraph H of G where for all i ∈ [`] and F ⊆ E with |F | < ki, if there is a path in G \ F from
si to ti then there is also a path in H \ F from si to ti. Our goal is to find the minimum weight
feasible solution.
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Definition 2. The k-Edge Fault-Tolerant Subgraph problem (k-EFTS) is the special case of RSND
where there is a demand between all pairs and every ki is equal to k. In other words, we are giva
graph G = (V,E) with edge weights w : E → R≥0. A feasible solution is a subgraph H of G where
for all F ⊆ E with |F | < k, any two nodes which have a path between them in G \ F also have a
path between them in H \ F (the connected components of H \ F are identical to the connected
components of G \ F ). Our goal is to find the minimum weight feasible solution.

For both of these problems, we say that they are unweighted if all edges have the same weight
(or equivalently w(e) = 1 for all e ∈ E). Note that if si and ti are ki-connected in G for every
i ∈ [`], then RSND is exactly the same as SND, and if G is k-connected then k-EFTS is exactly
the same as k-ECSS. Hence we have strictly generalized these classical problems.

We note that the fault-tolerance we achieve is really “one less” than the given number (there are
strict inequalities in the definitions). This is “off-by-one” from the related relative fault-tolerance
literature [5, 6, 9], but makes the connection to SND and k-ECSS cleaner.

Difficulties. Before discussing our results or techniques, we briefly discuss what makes these
problems difficult. The non-relative versions are classical and have been studied extensively: why
can’t we just re-use the ideas and techniques developed for them? Particularly since there is only
a difference in the setting when there are small cuts in the graph, in which case we already know
that the edges of those cuts must be included in any feasible solution?

Unfortunately, it turns out that this seemingly minor change has a dramatic impact on the
structure of the problem. Most importantly, the cut requirement function has dramatically different
properties. In k-ECSS, Menger’s theorem implies that H is a valid solution if and only if for all
S ⊂ V with S 6= ∅, there are at least k edges between S and S̄. Hence we can rephrase k-ECSS as
the problem of finding a minimum cost subgraph such that that there are at least f(S) edges across
the cut (S, S̄) for all S ⊂ V with S 6= ∅, where f(S) = k. Similarly, we can rephrase SND as the
same problem but where f(S) = maxi∈[`]:si∈S,ti 6∈S ki (as was shown in [23]). Thus both problems
can be thought of as choosing a minimum cost subgraph subject to satisfying some cut-requirement
covering function f : 2V → R. So a natural starting point for any approximation algorithm is to
write the natural covering LP relaxation which has a covering constraint of f(S) for every cut S.
And indeed, the covering LP using the cut-requirement function was the starting point for both
the primal-dual O(maxi∈` ki)-approximation for SND of [23] and the seminal 2-approximation for
SND using iterative rounding due to Jain [18]. It has also been used for k-ECSS [16], although
(unlike SND) there are also purely combinatorial approximations [10].

Hence the natural starting point for us to study RSND and k-EFTS would be to formulate
them in terms of cut-requirement functions and try the same approaches as were used in SND and
k-ECSS. But this is easier said than done. The functions are a little more complicated, but it is not
too hard to construct a cut requirement function that characterizes feasible solutions. However, in
order to use the iterative rounding technique of Jain [18] (or any of the weaker techniques which
it superceded), the cut requirement function needs to have a structural property known as weak
(or skew) supermodularity [18]. This turns out to be crucial, and there are still (to the best of our
knowledge) no successful uses of iterative rounding in settings without weak supermodularity. And
unfortunately, it turns out that our cut requirement functions are not weakly supermodular. So
while we can phrase our problems as satisfying a cut requirement function, we cannot actually use
iterative rounding, uncrossing, or any other part of the extensive toolkit that has grown around [18].

Our approaches. We get around this difficulty in two ways. For k-EFTS, we define a new
property of cut requirement functions which we call local weak supermodularity, and prove that
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our cut requirement function has this property and that it is sufficient for iterative rounding. This
is, to the best of our knowledge, the first use of iterative rounding without weak supermodularity.
For RSND with a single demand, we use an entirely different combinatorial approach based on
decomposing the graph into a chain of connected components using important separators [21], an
important tool from fixed-parameter tractability that, to the best of our knowledge, has not been
used before in approximation algorithms.

1.1.1 k-Edge Fault-Tolerant Subgraph

We begin in Section 2 with k-EFTS, where we prove the following two theorems.

Theorem 1.1. There is a polynomial-time 2-approximation for the k-EFTS problem.

Theorem 1.2. There is a polynomial-time (1 + 4/k)-approximation for the unweighted k-EFTS
problem.

Both of these theorems are consequences of a structural property we prove about the cut-
requirement function for k-EFTS: while it is not weakly supermodular, it does have a weaker
property which we term local weak supermodularity. We define this property formally in Sec-
tion 2.1.2, but at a high level it boils down to proving that while the inequalities required for weak
supermodularity do not hold everywhere (as would be required for weak supermodularity), they
hold for particular sets (i.e., they hold locally) which are the sets where the inequalities are actually
applied by Jain’s analysis. In other words, we prove that the places in the function where weak
supermodularity are violated are precisely the places where we do not care if weak supermodularity
holds. After overcoming a few more technical complications (we actually need local weak super-
modularity even in the “residual” problem to use iterative rounding), this means that we can apply
Jain’s algorithm to prove Theorem 1.1.

To prove Theorem 1.2, it was observed for unweighted k-ECSS by [16] (with later improvements
by [15]) that one of the main pieces of Jain’s approach, the fact that the tight constraints can
be “uncrossed” to get a laminar family with the same span, implies a (1 + 4/k)-approximation
via a trivial threshold rounding. They pointed out that the fact that the linearly independent
tight constraints form a laminar family implies that there are only 2n linearly independent tight
constraints, while there are m variables, and hence at any basic feasible solution the remaining
m − 2n tight constraints defining the point must be the bounding constraints. These bounding
constraints being tight means that the associated variables are in {0, 1}, and hence there are only
2n fractional variables in any basic feasible solution. Rounding all of these variables to 1 increases
the cost by 2n, but since OPT ≥ kn/2 (since the input graph G must be k-connected) this results
in a (1 + 4/k)-approximation.

Thanks to our local weak supermodularity characterization the laminar family result is still true
even for k-EFTS, so it is still true that there are at most 2n nonzero variables at any extreme point.
But since we are not guaranteed thatG is k-connected we are not guaranteed thatOPT ≥ kn/2, and
so this does not imply the desired approximation. Instead, we prove that the number of fractional
variables at any basic feasible solution is at most 2nh, where nh is the number of “high-degree”
nodes. It is then easy to argue that OPT ≥ nhk/2, which gives Theorem 1.2.

1.1.2 Relative Survivable Network Design With a Single Demand

For k-EFTS, we strongly used the property that all pairs have the same demand. This is not true
for RSND, which makes the problem vastly more difficult. We still do not know whether there exists
a cut requirement function which characterizes the problem and is locally weakly supermodular.
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In this paper, we study the simplest case where not all demands are the same: when there is a
single nonzero demand (s, t, k), and k is either 2 or 3 (the case of k = 1 is simply the shortest-path
problem). It turns out to be relatively straightforward to prove a 2-approximation for k = 2 even
when there are many demands (see Section 3), but the k = 3 case is surprisingly difficult. We prove
the following theorem in Section 4.

Theorem 1.3. In any RSND instance with a single demand (s, t, 3), there is a polynomial-time
7− 1

4 = 27
4 -approximation.

To prove this, we start with the observation that if the minimum s− t cut is at least 3 then this
is actually just the traditional SND problem (and in fact, the even simpler problem of finding 3
edge-disjoint paths of minimum weight between s and t, which can be solved efficiently via min-cost
flow). So the only difficulty is when there are cuts of size 1 or 2. Cuts of size 1 can be dealt with
easily (see Section 3), but cuts of size 2 are more difficult. To get rid of them, we construct a “chain”
of 2-separators (cuts of size 2 that are also important separators [21]). Inside each component of
the chain there are no 2-cuts between the incoming separator and the outgoing separator, which
allows us to characterize the connectivity requirement of any feasible solution restricted to that
component. These connectivity requirements turn out to be quite complex even though we started
with only a single demand, as fault sets with different structure can force complicated connectivity
requirements in intermediate components. The vast majority of the technical work is proving a
structure lemma which characterizes them. With this lemma in hand, though, we can simply
approximate the optimal solution in each component.

Interestingly, to the best of our knowledge this is the first use of important separators in
approximation algorithms, despite their usefulness in fixed-parameter algorithms [21].

1.2 Related Work

The most directly related work is the 2-approximation of Jain for Survivable Network Design [18],
which introduced iterative rounding (see [19] for a detailed treatment of iterative rounding in
combinatorial optimization). This built off of an earlier line of work on survivable network design
beginning over 50 years ago with [22]. Since the success of Jain’s approach for SND, there has been
a significant amount of work on vertex-connectivity versions rather than edge-connectivity, which
is a significantly more difficult setting. This has culminated in the state of the art approximation
of [11]. There is also a long line of work on k-ECSS, most notably including [10,16].

While not technically related, the basic problems in this paper are heavily inspired by recent
work on relative notions of fault-tolerance in graph spanners and other non-optimization network
design settings. A relative definition of fault-tolerance for graph spanners which is very similar to
ours (but which takes distances into account due to the spanner setting) was introduced by [9],
who gave bounds on the size of f -fault-tolerant t-spanners for both edge and vertex notions of
fault-tolerance. This spawned a line of work which improved these bounds for both vertex and
edge fault-tolerance [4–7, 13, 14], culminating in [5] for vertex faults and [6] for edge faults. The
basic spanner definition also inspired work on relative fault-tolerant versions of related problems,
including emulators [3], distance sensitivity oracles for multiple faults [8], and single-source reach-
ability subgraphs [2, 20]. What all of these results shared, though, was that they were not doing
optimization: they were looking for existential bounds (and algorithms to achieve them) for these
objects. In this paper, by contrast, we take the point of view of optimization and approximation
algorithms and compare to the instance-specific optimal solution.

4



2 k-Edge Fault-Tolerant Subgraph

Both Theorems 1.1 and 1.2 depend on the same LP relaxation, which is based on a modification
of the “obvious” cut-requirement function. So we begin by discussing this relaxation, and then use
it to prove the two main theorems. All missing proofs can be found in Appendix B.

2.1 LP Relaxation

2.1.1 Basics

The natural place to start is the LP used by Jain [18], but with a cut requirement function
f(S) = min(|δG(S)|, k). Unfortunately, while this results in a valid LP relaxation, it is not
weakly supermodular (see Section 2.1.2 for the definition, and Appendix A for a counterexam-
ple). So instead we modify this cut requirement function by removing edges which are “forced”.
For every subset S of V , let δG(S) be the set of edges with exactly one endpoint in S. Let
F = {e ∈ E | ∃S where e ∈ δG(S) and |δG(S)| ≤ k}. In other words, F is the set of all edges that
are in some cut of size at most k. Clearly we can compute F in polynomial time by simply checking
for every edge (u, v) whether the minimum u− v cut in G has size at most k. For every set S ⊂ V
with S 6= ∅, we define the cut requirement function fF (S) = min(k, |δG(S)|) − |δG(S) ∩ F |. Note
that every edge in F must be in any feasible solution, since if any edge is missing then a fault set
consisting of the rest of the cut (at most k−1 edges) would disconnect the endpoints of the missing
edge in the solution but not in G, giving a contradiction. Then fF (S) is essentially the “remaining
requirement” after F has been removed.

Since iterative rounding will add other edges and remove them from the residual problem, we
will want to define a similar cut requirement function for supersets: formally, for any F ′ ⊇ F , let
fF ′(S) = min(k, |δG(S)|) − |δG(S) ∩ F ′|. For any F ′ ⊇ F , consider the following linear program
which we call LP(F ′), which has a variable xe for every edge e ∈ E \ F ′:

min
∑

e∈E\F ′
w(e)xe

s.t.
∑

e∈δG(S)\F ′
xe ≥ fF ′(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E \ F ′

(LP(F ′))

It is not hard to see that this is a valid LP relaxation (when combined with F ′), but we prove
this for completeness.

Lemma 2.1. Let H be a valid k-EFTS and let F ′ ⊇ F . For every edge e ∈ E \ F ′, let xe = 1 if
e ∈ H, and let xe = 0 otherwise. Then x is a feasible integral solution to LP(F ′).

Lemma 2.2. Let F ′ ⊇ F and let x be an integral solution to LP(F ′). Let E′ = {e : xe = 1}. Then
H = E′ ∪ F ′ is a valid k-EFTS.

These lemmas (together with the fact that every edge in F must be in any valid solution) imply
that if we can solve and round this LP while losing some factor α, then we can add F to the rounded
solution to get an α-approximation. Hence we are interested in solving and rounding this LP.

We first argue that we can solve the LP using the Ellipsoid algorithm with a separation oracle.
Note that unlike k-ECSS, here a violated constraint does not just correspond to a cut with LP
values less than k, since our cut-requirement function is more complicated. Indeed, if we compute
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a global minimum cut (with respect to the LP values) then we may end up with a small cut which
is not violated even though there are violated constraints. So we need to argue more carefully that
we can find a violated cut when one exists.

Lemma 2.3. For every F ′ ⊇ F , LP(F ′) can be solved in polynomial time.

2.1.2 Local Weak Supermodularity

As discussed in Section 1.1.1, it would be nice if this LP were weakly supermodular, as this would
immediately let us apply Jain’s iterative rounding algorithm to obtain a 2-approximation. Recall
the definition of weak supermodularity from [18].

Definition 3. Let f : 2V → Z. Then f is weakly supermodular if for every A,B ⊆ V , either
f(A) + f(B) ≤ f(A \B) + f(B \A), or f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

Unfortunately, our cut requirement function is not weakly supermodular; see Appendix A for a
counterexample. But we can make a simple observation that, to the best of our knowledge, has not
previously been noticed or utilized in iterative rounding: Jain’s iterative rounding algorithm does
not actually need the weak supermodularity conditions to hold for all pairs of sets A,B. It only
needs weak supermodularity to “uncross” the tight sets of an LP solution into a laminar family of
tight sets with the same span. Recall that a set is tight in a given LP solution if its corresponding
cut constraint is tight, i.e., is satisfied with equality. Moreover, note that in our setting, depending
on our choice of F ′ some cuts might be entirely included in F ′. These cuts would not have any
edges remaining, resulting in an “empty” constraint in LP(F ′). Such a constraint cannot be tight
by definition, and also is not linearly independent with any other set of constraints.

Hence in order to use Jain’s iterative rounding, we simply need our cut-requirement function
fF ′ to satisfy the weak supermodularity requirements for A,B where there is actually a nontrivial
constraint for A,B and where F ′ ⊇ F (here F ′ will consist of F together with edges that Jain’s
iterative rounding algorithm has already set to 1). We formalize this as follows. Given F ′ ⊇ F , we
say that S is an empty cut if δG(S) ∩ F ′ = δG(S), and otherwise it is nonempty.

Definition 4. Given a graph G = (V,E), a set F ′ ⊆ E, and a function g : 2V → Z, we say that g is
locally weakly supermodular with respect to F ′ if for every A,B ⊆ V with both A and B nonempty
cuts, at least one of the following conditions holds:

� g(A) + g(B) ≤ g(A \B) + g(B \A), or

� g(A) + g(B) ≤ g(A ∩B) + g(A ∪B).

We will now prove that for any F ′ ⊇ F , the function fF ′ is locally weakly supermodular with
respect to any F ′. This is the key technical idea enabling Theorems 1.1 and 1.2.

Theorem 2.4 (Local Weak Supermodularity). For any F ′ ⊇ F , the cut requirement function fF ′

is locally weakly supermodular with respect to F ′.

2.2 Unweighted k-EFTS

To prove Theorem 1.2 we need to look inside [18]. The following two lemmas from [18] are the
main “uncrossing” lemmas which depend on weak supermodularity, and in which we can use local
weak supermodularity instead without change. As in [18], for each S ⊆ V we use AG(S) to denote
the row of the constraint matrix corresponding to S. In other words AG(S) is a vector indexed by
elements of E \ F which has a 1 in the entry for e if e ∈ δG(S) \ F , and otherwise has a 0 in that
entry.
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Lemma 2.5 (Lemma 4.1 of [18]). If two sets A and B are tight then at least one of the following
must hold

1. A \B and B \A are also tight, and AG(A) +AG(B) = AG(A \B) +AG(B \A)

2. A ∩B and A ∪B are also tight, and AG(A) +AG(B) = AG(A ∩B) +AG(A ∪B)

Let T denote the family of all tight sets. For any family F of tight sets, let Span(F) denote
the vector space spanned by {AG(S) : S ∈ F}.
Lemma 2.6 (Lemma 4.2 of [18]). For any maximal laminar family L of tight sets, Span(L) =
Span(T ).

Recall that nh is the number of high-degree nodes, i.e., nodes of degree at least k in G. Then
we have the following lemma, which is a modification of Lemma 4.3 of [18] where we give a stronger
bound on the number of sets.

Lemma 2.7. The dimension of Span(T ) is at most 2nh − 1.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. We first solve LP(F ) using Lemma 2.3 to get some basic feasible solution
x. Since there are |E \ F | variables, this point is defined by |E \ F | linearly independent tight
constraints. Lemma 2.7 implies that at most 2nh − 1 of these are from tight sets, and hence all of
the other tight constraints must be of the form xe = 0 or xe = 1 for some edge e ∈ E \ F . Thus
at most 2nh − 1 edges are assigned a fractional value in x. Hence if we include all such edges in
our solution H, together with all edges with xe = 1 and all edges in F , we have a solution which
is feasible (by Lemma 2.2). Note that any high-degree node must have degree at least k in any
feasible solution, and thus OPT ≥ k

2nh. Hence our solution H has size at most

|H| ≤
∑

e∈E\F

xe + |F |+ 2nh ≤ OPT + 2nh ≤ OPT +
4

k
OPT =

(
1 +

4

k

)
OPT.

2.3 Weighted k-EFTS

Jain’s approximation algorithm solves the initial LP, rounds up and removes any edges with xe ≥
1/2 which results in a residual problem, and repeats. This is obviously a 2-approximation (see [18]
for details), but requires proving that there is always at least one edge with xe ≥ 1/2 so we
can make progress (even in the residual problems). This is accomplished by proving Lemmas 2.5
and 2.6 to show that the tight constraints can be “uncrossed” into a laminar family. This requires
weak supermodularity, but as discussed, since in our LP every tight constraint must be a nonempty
constraint, it is sufficient to replace this with local weak supermodularity. Jain then uses a complex
counting argument based on this laminar family of tight constraints to prove that some edge e must
have xe ≥ 1/2. Importantly, nothing in this counting argument depends on the cut requirement
having any particular structure (e.g., weak supermodularity); it depends only on the fact that the
family of tight constraints can be uncrossed to be laminar.

Since local weak supermodularity is sufficient to uncross the tight constraints into a laminar
family, we can simply apply Jain’s counting argument on this family for LP(F ′) to obtain the
following lemma (as in Theorem 3.1 of [18]).

Lemma 2.8. For all F ′ ⊇ F , in any basic feasible solution x of LP(F ′) there is at least one
e ∈ E \ F ′ with xe ≥ 1/2.

When combined with the rest of the analysis in [18] (particularly Theorem 3.2), this implies
that iterative rounding is a 2-approximation, implying Theorem 1.1.
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3 2-Connectivity and k = 2

We will now move on from k-EFTS to the more general RSND problem. It turns out to be
relatively straightforward to handle cuts of size 1: removing such cuts gives a tree of 2-connected
components, and we can essentially run an algorithm independently inside each component. This
gives the following theorem, the proof of which can be found in Appendix C.

Theorem 3.1. If there exists an α-approximation algorithm for RSND on 2-edge connected graphs,
then there is an α-approximation algorithm for RSND on general graphs.

Extending this slightly gives the following theorem (proof in Appendix C.3), where 2-RSND
denotes the special case of the RSND problem where ki ≤ 2 for all i.

Theorem 3.2. There is a 2-approximation algorithm for 2-RSND.

4 RSND with a Single Demand: k = 3

In this section we prove Theorem 1.3. In the Single Demand RSND problem, we are given a graph
G = (V,E) (possibly with edge weights w : E → R+) and a k-relative fault tolerance demand for a
single vertex pair (s, t). In other words, the set of connectivity demands is just {(s, t, k)}. We give
a 7 − 1

4 = 27
4 -approximation algorithm for the k = 3 Single Demand RSND problem. The main

idea is to partition the input graph using important separators, prove a structure lemma which
characterizes the required connectivity guarantees within each component of the partition, and
then achieve these guarantees using a variety of subroutines: a min-cost flow algorithm, a 2-RSND
approximation algorithm (Theorem 3.2), and a Steiner Forest approximation algorithm [1].

4.1 Decomposition

By Theorem 3.1, an α-approximation algorithm for RSND on 2-connected graphs implies an α-
approximation algorithm for RSND on general graphs. Hence going forward, we will assume the
input graph G is 2-connected. In this section we define important separators and describe how to
construct what we call the s− t 2-chain of G.

Definition 5. Let X and Y be vertex sets of a graph G. An (X,Y )-separator of G is a set of
edges S such that there is no path between any vertex x ∈ X and any vertex y ∈ Y in G \ S. An
(X,Y )-separator S is minimal if no subset S′ ⊂ S is also an (X,Y )-separator. If X = {x} and
Y = {y}, we say that S is an (x, y)-separator.

The next definition, which is a slight modification of the definition due to [21], is a formalization
of a notion of a “closest” separator.

Definition 6. Let S be an (X,Y )-separator of graph G, and let R be the vertices reachable from X
in G \S. Then S is an important (X,Y )-separator if S is minimal and there is no (X,Y )-separator
S′ such that |S′| ≤ |S| and R′ ⊂ R, where R′ is the set of vertices reachable from X in G \ S′.

This definition corresponds to a “closest” separator, while the original definition of [21] corre-
spond to a “farthest” separator. Important separators have been studied extensively due to their
usefulness in fixed-parameter tractable algorithms, and so much is known about them. For our
purposes, we will only need the following lemma, which follows directly from Theorem 2 of [21].

Lemma 4.1. Let X,Y ⊆ V be two sets of vertices in graph G = (V,E), and let d ≥ 0. An
important (X,Y )-separator of size d can be found in time 4d · nO(1) (if one exists), where n = |V |.
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Figure 1: The s− t 2-chain of G.

By Lemma 4.1, we can find an important (X,Y )-separator of size 2 in polynomial time. We
now describe how to use this to construct what we call the s− t 2-chain of G. First, if there are no
important (s, t)-separators of size 2 in G, then every (s, t)-separator has size at least 3. Hence we
can just use the 2-approximation for Survivable Network Design [18] with demand (s, t, 3) to solve
the problem (or can exactly solve it by finding the cheapest three pairwise disjoint s − t paths in
polynomial time using a min-cost flow algorithm).

If such an important separator exists, then we first find an important (s, t)-separator S0 of size
2 in G, and let R0 be the set of vertices reachable from s in G\S0. We let V(0,r) be the nodes in R0

incident on S0, and let V(1,`) be the nodes in V \ R0 incident on S0. We then proceed inductively.

Given V(i,`), if there is no important (V(i,`), t) separator of size 2 in G \ (∪i−1j=0Rj) then the chain
is finished. Otherwise, let Si be such a separator, let Ri be the nodes reachable from V(i,`) in

(G \ (∪i−1j=0Rj)) \ Si, let V(i,r) be the nodes in Ri incident on Si, and let V(i+1,`) be the nodes in

V \ (∪ij=0Rj) incident on Si.
After this process completes we have our s − t 2-chain, consisting of components R0, . . . , Rp

along with important separators S0, . . . , Sp−1 between the components. See Figure 1.
We can now use this chain construction to give a structure lemma which characterizes feasible

solutions. Informally, the lemma states that a subgraph H of G is a feasible solution if and only
if in the s − t 2-chain of G, all edges between components are in H, and in every component Ri
certain connectivity requirements between V(i,`) and V(i,r) are met.

Let G = (V,E) be a graph, and let H be a subgraph of G. Going forward, we will say that in
H, a vertex set A ⊂ V has a path to (or is reachable from) another vertex set B ⊂ V if there is a
path from a vertex a ∈ A to a vertex b ∈ B in H. Additionally, let X and Y be vertex sets. We
also say that H satisfies the RSND demand (X,Y, k) on input graph G if the following is true: for
every F ⊆ E with |F | < k, if there is a path from at least one vertex in X to at least one vertex in
Y in G \F then there is a path from at least one vertex in X to at least one vertex in Y in H \F .
The demand (X,Y, k) on input G is equivalent to contracting all nodes in X to create super node
vX , contracting all nodes in Y to create super node vY , and including demand (vX , vY , k). We will
also let G[Ri] and H[Ri] be the subgraphs of G and H, respectively, induced by the component Ri.

Lemma 4.2 (Structure Lemma). Let G be the input graph, and let H be a subgraph of G. Ad-
ditionally, let R0, . . . , Rp denote the components in the s − t 2-chain of G, and let S0, . . . , Sp−1
denote the edge sets between components in the chain, as defined previously. Let Gi = G[Ri], and
Hi = H[Ri]. Then H is a feasible solution to the k = 3 Single Demand RSND problem if and only
if all edges in S0, . . . , Sp−1 are included in H, and Hi has the following properties for every i:

1. There are at least 3 edge-disjoint paths from V(i,`) to V(i,r).
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2. Hi is a feasible solution to RSND on input graph Gi with demands{
(V(i,`), vr, 2) : vr ∈ V(i,r)

}
∪
{

(V(i,r), v`, 2) : v` ∈ V(i,`)
}
.

3. Hi is a feasible solution to RSND on input graph Gi with demands
{

(u, v, 1) : (u, v) ∈ V(i,`) × V(i,r)
}

.

The proof of this structure lemma is a highly technical case analysis, which due to space con-
straints can be found in Appendix D. At a very high level, though, our proof is as follows. For
the “only if” direction, we first assume that we are given some feasible solution H. Then for each
of the properties in Lemma 4.2, we assume it is false and derive a contradiction by finding a fault
set F ⊆ E with |F | ≤ 2 where there is a path from s to t in G \ F , but not in H \ F . The exact
construction of such an F depends on which of the properties of Lemma 4.2 we are analyzing.

For the more complicated “if” direction, we assume that H satisfies the conditions of Lemma 4.2
and consider a fault set F ⊆ E with |F | ≤ 2 where s and t are connected in G \ F . We want to
show that s and t are connected in H \ F . We analyze two subchains of the s − t 2-chain of G:
the minimal prefix of the chain which contains at least 1 fault, and the minimal prefix of the chain
which contains both faults. We first show that the set of vertices reachable from s at the end of
the first subchain is the same in G \ F and in H \ F . We then use this to show that there is at
least one reachable vertex at the end of the second subchain in H \F , even though (unlike the first
subchain) the set of reachable vertices at the end of the second subchain may be smaller in H \ F
than in G\F . From there we show that there is a path to t in H \F from this one reachable vertex.
There are a large number of cases depending on the structure of F (whether it intersects some of
the separators in the chain, whether both faults are in the same component, etc.), and we have to
use different properties of Lemma 4.2 in different cases, making this proof technically involved.

4.2 Algorithm and Analysis

We can now use Lemma 4.2 to give a 7 − 1
4 = 27

4 -approximation algorithm for the k = 3 setting
of Single Demand RSND on 2-connected graphs which, by Theorem 3.1, gives a 27

4 -approximation
algorithm for the k = 3 Single Demand RSND problem on general graphs. All missing proofs can
be found in Appendix E.

Our algorithm uses a variety of subroutines, including an algorithm for min-cost flow, the 2-
RSND approximation algorithm of Theorem 3.2, and a Steiner Forest approximation algorithm.
For reference, we state the latter of these.

Lemma 4.3 ([1]). There is a
(
2− 1

k

)
-approximation algorithm for the Steiner Forest problem,

where k is the number of terminal pairs in the input.

We can now give our algorithm. Given a graph G = (V,E) with edge weights w : E → R≥0
and demand {(s, t, 3)}, we first create the s − t 2-chain of G in polynomial time, as described in
Section 4.1. After building the chain, within each component we run a set of algorithms to satisfy
the demands characterized by Lemma 4.2: a combination of min-cost flow, 2-RSND, and Steiner
Forest algorithms. We include the outputs of these algorithms in our solution H, together with all
edges in the separators S = S1 ∪ S2 ∪ · · · ∪ Sp−1.

We first create an instance of min-cost flow on G[Ri] (in polynomial time). Contract the vertices
in V(i,`) and contract the vertices in V(i,r) to create super nodes v` and vr, respectively. Let v` be
the source node and vr be the sink node. For each edge e ∈ E(Ri) set the capacity of e to 1 and
set the cost of e to w(e). Require a minimum flow of 3, and run a polynomial-time min-cost flow
algorithm on this instance [12]. Since all capacities are integers the algorithm will return an integral
flow, so we add to H all edges with non-zero flow.
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We then create our first instance of 2-RSND on G[Ri]. Contract the vertices in V(i,`) to create
super node v`, and set demands {(v`, u, 2) : u ∈ V(i,r)}. For our second instance of 2-RSND on
Ri, contract V(i,r) to create super node vr, and set demands {(u, vr, 2) : u ∈ V(i,`)}. We run the
2-RSND algorithm (Theorem 3.2) on each of these instances and include all selected edges in H.

Finally, we create an instance of the Steiner Forest problem on G[Ri]. For each vertex pair
(v`, vr) ∈ V(i,`)×V(i,r), we check in polynomial time if v` and vr are connected in G[Ri]. If they are
connected, then we include (v`, vr) as a terminal pair in the Steiner Forest instance. Additionally,
for e ∈ E(Ri), we set the cost of e to w(e). We run the Steiner Forest approximation algorithm
(Lemma 4.3) on this instance, and add all selected edges to H.

The following lemma is essentially directly from Lemma 4.2 (the structure lemma) and the
description of our algorithm.

Lemma 4.4. H is a feasible solution.

Let H∗ denote the optimal solution, and for any set of edges A ⊆ E, let w(A) =
∑

e∈Aw(e).
The next lemma follows from combining the approximation ratios of each of the subroutines used
in our algorithm.

Lemma 4.5. w(H) ≤ 27
4 · w(H∗)

Theorem 1.3 is directly implied by Lemmas 4.4 and 4.4 together with the obvious observation
that our algorithm runs in polynomial time.
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A Counterexamples from Section 2

We show some counterexample to obvious approaches to k-EFTS; in particular, we show that our
cut requirement function fF is not weakly supermodular, and the most obvious cut requirement
function f(S) = min(k, |δG(S)|) is also not weakly supermodular.

Recall that δG(S) denotes the edges in G with exactly one endpoint in S. We extend this
notation for disjoint sets A,B by letting δG(A,B) denote the edges with one endpoint in A and
one endpoint in B.

Theorem A.1. The function fF is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V,E) which has two
sets A,B ⊆ V with the following properties.

|δG(A \B, V \ (A ∪B))| = 49 |δG(B \A, V \ (A ∪B))| = 105

|δG(A ∩B, V \ (A ∪B))| = 3 |δG(A \B,B \A)| = 0

|δG(A \B,A ∩B)| = 2 |δG(B \A,A ∩B)| = 49

Anything not specified is extremely dense and well-connected, so an edge is in F if and only if it is
part of a small cut made up of the above sets. It is not hard to see that the small cuts are precisely
A \ B (since |δG(A \ B)| = 49 + 0 + 2 = 51 < 100) and A ∩ B (since |δG(A ∩ B) = 3 + 2 + 49 =
54 < 100). All other cuts are large. Hence F consists of all edges involving A or B other than
δG(B \A, V \ (A ∪B)), or more specifically,

F = δG(A \B, V \ (A ∪B)) ∪ δG(A ∩B, V \ (A ∪B)) ∪ δG(A \B,A ∩B) ∪ δG(B \A,A ∩B).

We can now calculate fF on the subsets we care about:

fF (A) = 100− 49− 3− 49 = −1

fF (B) = 100− 3− 2 = 95

fF (A \B) = 0 (A \B is small)

fF (B \A) = 100− 49 = 51

fF (A ∩B) = 0 (A ∩B is small)

fF (A ∪B) = 100− 49− 3 = 48
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Thus

fF (A) + fF (B) = 94 fF (A \B) + fF (B \A) = 51 fF (A ∪B) + fF (A ∩B) = 48

Hence fF is not weakly supermodular.

Note that the above example is not a contradiction of f being locally weakly supermodular
since A is an empty cut.

Theorem A.2. The function f = min(k, |δG(S)|) is not weakly supermodular.

Proof. Consider the following example. Set k = 100. We create a graph G = (V,E) which has two
sets A,B ⊆ V with the following properties. All of A \ B and B \ A and A ∩ B and V \ (A ∪ B)
are extremely large and dense (e.g., large cliques). There are no edges between A \ B, B \ A, or
A ∩B. The other cut sizes are:

|δG(A ∩B, V \ (A ∪B))| = 55

|δG(A \B, V \ (A ∪B))| = 95

|δG(B \A), V \ (A ∪B))| = 95

Then it is easy to see that

f(A) = 100 f(b) = 100

f(A \B) = 95 f(B \A) = 95

f(A ∪B) = 100 f(A ∩B) = 55

Hence f is not weakly supermodular.

B Proofs from Section 2

Proof of Lemma 2.1. Clearly 0 ≤ xe ≤ 1 for all e ∈ E \ F ′. Consider some S ⊆ V . Since H is
a valid k-EFTS, the number of edges in H ∩ δG(S) is at least min(k, |δG(S)|) (or else the edges
in H ∩ δG(S) would be a fault set of size less than k such that the connected components of H
post-faults are different from the connected components of G post-faults). Hence∑
e∈δG(S)\F ′

xe = |(H ∩ δG(S)) \ F ′| = |H ∩ δG(S)| − |H ∩ δG(S) ∩ F ′| ≥ |H ∩ δG(S)| − |δG(S) ∩ F ′|

≥ min(k, |δG(S)|)− |δG(S) ∩ F ′| = fF ′(S),

as required.

Proof of Lemma 2.2. Suppose for contradiction that H is not a valid k-EFTS. Then there are two
nodes u, v ∈ V and a minimal set A ⊆ E with |A| < k so that u, v are not connected in H \A but
are connected in G \A. Let S be the nodes reachable from u in G \A, and so by minimality of A
we know that A = H ∩ δG(S).

Note that |δG(S)| > k, or else all edges of δG(S) would be in F , implying that E ∩ δG(S) =
H ∩ δG(S) = A and so u and v would not be connected in G \A. Thus∑

e∈δG(S)\F ′
xe = |H ∩ δG(S)| − |F ′ ∩ δG(S)| = |A| − |δG(S) ∩ F ′|

< min(k, |δG(S)|)− |δG(S) ∩ F ′| = fF ′(S),

which contradicts x being a feasible solution to LP(F ′).
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Proof of Lemma 2.3. We give a separation oracle, which when combined with the Ellipsoid algo-
rithm implies the lemma [17]. Consider some vector x indexed by edges of E \ F ′. Suppose that x
is not a feasible LP solution, so we need to find a violated constraint. Obviously if there is some
xe 6∈ [0, 1] then we can find this in linear time. So without loss of generality, we may assume that
there is some S ⊆ V such that

∑
e∈δG(S)\F ′ xe < fF ′(S). This implies that fF ′(S) > 0 and that

there is some edge e∗ ∈ δG(S) \ F ′ with xe∗ < 1 (since otherwise the LP would not be satisfiable,
contradicting Lemma 2.1 and the fact that G itself is a valid k-EFTS). Let e∗ = {u, v}. Since
e∗ 6∈ F ′, and F ⊆ F ′, we know that e∗ cannot be part of any cuts in G of size at most k, and thus
the minimum u− v cut in G has more than k edges.

On the other hand, if we extend x to F ′ by setting xe = 1 for all e ∈ F ′, then since S is a
violated constraint we have that∑

e∈δG(S)

xe =
∑

e∈δG(S)\F ′
xe + |F ′ ∩ δG(S)| < fF ′(S) + |F ∩ δG(S)|

= min(k, |δG(S)|)− |δG(S) ∩ F ′|+ |δG(S) ∩ F ′|
= k.

Thus if we interpret x as edge weights (with xe = 1 for all e ∈ F ), if we compute the minimum s− t
cut we will find a cut S′ with more than k edges (since all u− v cuts have more than k edges) with
total edge weight strictly less than k. Let S′ be this cut. Thus

∑
e∈δG(S′)\F ′ xe < k−|δG(S′)\F ′| =

fF ′(S
′), so S′ is also a violated constraint.

Hence for our separation oracle we simply compute a minimum s− t cut using x as edge weights
for all s, t ∈ V , and if any cut we finds corresponds to a violated constraint then we return it. By
the above discussion, if there is some violated constraint then this procedure will find some violated
constraint. Thus this is a valid separation oracle.

Lemma B.1. Let F ′ ⊇ F . If A and B are nonempty cuts for fF ′, then either A \B and B \A are
nonempty cuts, or A ∩B and A ∪B are nonempty cuts.

Proof. Let

S1 = δG(A \B, V \ (A ∪B)), S2 = δG(A \B,B \A), S3 = δG(A \B,A ∩B),

S4 = δG(B \A, V \ (A ∪B)), S5 = δG(B \A,A ∩B), S6 = δG(A ∩B, V \ (A ∪B)).

Suppose that A \ B and A ∩ B are both empty cuts. Each edge in δG(A) is in S1, S2, S5, or S6.
Additionally, S1 and S2 are subsets of δG(A \B), while S5 and S6 are subsets of δG(A ∩B). This
means that every edge in δG(A) is in an empty cut, and so all edges in δG(A) are in F ′. Thus A is
an empty cut, contradicting the assumption of the lemma. Thus at least one of A \B and A∩B is
nonempty. If we instead assume that B \ A and A ∩ B are empty cuts, then we can use a similar
argument to prove that B is an empty cut. This proves that at least one of B \ A and A ∩ B are
nonempty. Hence if A∩B is empty, then both A \B and B \A are nonempty, proving the lemma.

Now suppose that A \B and A ∪B are both empty cuts. Each edge in δG(B) is in S2, S3, S4,
or S6. Additionally, S2 and S3 are subsets of δG(A \B), while S4 and S6 are subsets of δG(A∪B).
This means that every edge in δG(B) is in an empty cut, and so all edges in δG(B) are in F ′. Thus
B is an empty cut, contradicting the assumption of the lemma. Thus at least one of A \ B and
A∪B is nonempty. If we instead assume that B \A and A∪B are empty cuts, then we can use a
similar argument to prove that A is empty, and hence at least one of B \A and A∪B is nonempty.
Hence if A ∪B is empty, then both A \B and B \A are nonempty, proving the lemma.

Thus either both A \ B and B \ A are nonempty, or both A ∩ B and A ∪ B are nonempty,
proving the lemma.
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Proof of Theorem 2.4. Let F ′ ⊇ F , and suppose A and B are nonempty cuts. Let

S1 = δG(A \B, V \ (A ∪B)), S2 = δG(A \B,B \A), S3 = δG(A \B,A ∩B),

S4 = δG(B \A, V \ (A ∪B)), S5 = δG(B \A,A ∩B), S6 = δG(A ∩B, V \ (A ∪B)).

We also let si = |Si ∩ F ′| for i ∈ [6].
A andB are nonempty cuts, soA andB must be large cuts and min(k, |δG(A)|) = min(k, |δG(B)|) =

k. Each edge in δG(A) is in exactly one of S1, S2, S5, and S6, and each edge in δG(B) is in exactly one
of S2, S3, S4, and S6, so we have that |δG(A)∩F ′| = s1+s2+s5+s6 and |δG(B)∩F ′| = s2+s3+s4+s6.
We therefore have the following:

fF ′(A) = min(k, |δG(A)|)− |δG(A) ∩ F | = k − s1 − s2 − s5 − s6
fF ′(B) = min(k, |δG(B)|)− |δG(B) ∩ F | = k − s2 − s3 − s4 − s6

=⇒ fF ′(A) + fF ′(B) = 2k − s1 − 2s2 − s3 − s4 − s5 − 2s6. (1)

A and B are nonempty so by Lemma B.1, either A \B and B \A are nonempty cuts, or A∩B
and A∪B are nonempty cuts. Suppose first that A\B and B \A are nonempty cuts, which implies
that min(k, |δG(A \ B)|) = min(k, |δG(B \ A)|) = k. Each edge in δG(A \ B) is in exactly one of
S1, S2, and S3, and each edge in δG(B \ A) is in exactly one of S2, S4, and S5, so we have that
|δG(A \ B) ∩ F ′| = s1 + s2 + s3 and |δG(B \ A) ∩ F ′| = s2 + s4 + s5. Putting this all together, we
get the following for fF ′(A \B) and fF ′(B \A):

fF ′(A \B) = min(k, |δG(A \B)|)− |δG(A \B) ∩ F ′| = k − s1 − s2 − s3
fF ′(B \A) = min(k, |δG(B \A)|)− |δG(B \A) ∩ F ′| = k − s2 − s4 − s5

=⇒ fF ′(A \B) + f(B \A) = 2k − s1 − 2s2 − s3 − s4 − s5.

This and (1) imply that fF ′(A)+fF ′(B) ≤ fF ′(A\B)+fF ′(B \A) if A\B and B \A are nonempty
cuts.

Now suppose thatA∩B andA∪B are nonempty cuts, and so min(k, |δG(A\B)|) = min(k, |δG(B\
A)|) = k. Each edge in δG(A ∩B) is in exactly one of S3, S5, and S6, and each edge in δG(A ∪B)
is in exactly one of S1, S4, and S6, so we have that |δG(A ∩ B) ∩ F ′| = s3 + s5 + s6 and
|δG(A ∪B) ∩ F ′| = s1 + s4 + s6. Putting this all together, we get the following for fF ′(A ∩B) and
fF ′(A ∪B):

fF ′(A ∩B) = min(k, |δG(A ∩B)|)− |δG(A ∩B) ∩ F ′| = k − s3 − s5 − s6
fF ′(A ∪B) = min(k, |δG(A ∪B)|)− |δG(A ∪B) ∩ F ′| = k − s1 − s4 − s6

=⇒ fF ′(A ∩B) + fF ′(A ∪B) = 2k − s1 − s3 − s4 − s5 − 2s6.

This and (1) imply that fF ′(A)+fF ′(B) ≤ fF ′(A∩B)+fF ′(B∪A) if A∩B and A∪B are nonempty
cuts.

Proof of Lemma 2.7. Let L be a maximal laminar family of tight sets. Lemma 2.6 implies that
Span(L) = Span(T ), so it suffices to upper bound the number of sets in L. And since we care
about the span, if there are two sets S, S′ with AG(S) = AG(S′) then we can remove one of them
from L arbitrarily, so no two sets in L have identical rows in the constraint matrix.

Any set that consists of exclusively low degree nodes cannot be tight, since the set has no
corresponding row in the constraint matrix. Thus, all sets in L must contain at least one high
degree node, and hence all minimal sets in L have at least one high degree node.
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Let S ∈ L, and let S′ ⊃ S so that every node in S′ \ S is a low-degree node. Then every edge
edge in (δG(S) \ δG(S′)) ∪ (δG(S′) \ δG(S)) must be incident on at least one low-degree node and
hence is in F . Thus AG(S) = AG(S′), and hence S′ is not in L. Therefore, any superset S′ in the
laminar family of some other set S in the laminar family must have at least one more high degree
node than S.

Since any minimal set in L has at least one high degree node, and every set in L contains at
least one more high degree node than any set in L that it contains, if we restrict each set in L to the
high-degree nodes then we have a laminar family on the high-degree nodes. Thus |L| ≤ 2nh−1.

C Reduction to RSND on 2-Connected Graphs

In this section, we give a reduction from the Relative Survivable Network Design (RSND) problem
on general graphs to the RSND problem on 2-connected graphs. We then use this reduction to give
a 2-approximation algorithm for the special case of RSND in which all demands are at most 2.

C.1 Definitions

Let G′ = (V,E′) be the subgraph of G obtained by removing all edges in cuts of size 1 from G. We
now construct the component graph GC as follows.

Definition 7. Let GC = (VC , EC) be a component graph, where each connected component C ∈ G′
is represented by a vertex vC ∈ VC . Let Ci and Cj be connected components in G′. The edge
(vCi , vCj ) is in EC if and only if there exists vertices i ∈ Ci and j ∈ Cj , such that (i, j) ∈ E.

It is easy to see that GC is a tree and that every connected component of G′ is 2-edge connected.

Definition 8. A vertex t ∈ V is a terminal vertex if t is adjacent to at least one edge in E \ E′.
For each terminal vertex t, let Pt be the set of vertex pairs, (u, v), such that u and v are in different
connected components in G′, and such that every u− v path uses an edge in E \ E′ that has t as
an endpoint.

C.2 Reduction

We are now able to give a reduction to RSND on 2-connected graphs. Going forward, it will be
easier to refer to RSND demands using a demand function. We say that an RSND instance on
graph G with demands {(si, ti, ki)}i∈[`] has a corresponding demand function, r : V × V → Z, such
that r(si, ti) = ki for all i and r(u, v) = 0 for all other pairs.

Reduction: We reduce from an RSND instance on input graph G = (V,E) with demand function
r(u, v) on vertex pairs u, v ∈ V and edge weights w : E → R≥0 to a new instance of RSND. The
new instance is on graph GR, has edge weight function wR, and a demand function rR(u, v). The
input graph and edge weight function are unchanged: We set GR = G and wR = w. Now we define
rR(u, v). For each connected connected component C ∈ G′, the reduction is as follows:

1. For each vertex pair u, v ∈ C such that u and v are not terminal vertices, set rR(u, v) = r(u, v)

2. For each vertex pair u, t ∈ C such that u is not a terminal vertex and t is a terminal vertex,

set rR(u, t) = max

{
r(u, t), max

v:(u,v)∈Pt

r(u, v)

}
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3. For each vertex pair t1, t2 ∈ C such that t1 and t2 are terminal vertices, set

rR(t1, t2) = max

{
r(t1, t2), max

(v,w)∈Pt1∩Pt2

r(v, w)

}
.

For all vertex pairs u, v such that u and v are in different connected components in G′, if r(u, v) > 0
then we set rR(u, v) = 1.

Lemma C.1. Any feasible solution to the RSND problem on input graph G with edge weight
function w(e) and demand function r(u, v) is also a feasible solution to the RSND problem on input
graph GR with edge weight function wR(e) and demand function rR(u, v).

Proof. We show that given a feasible subgraph HA to the original instance, HA is also a feasible
solution to the reduction instance (and thus has the same cost). In particular, we will show that
for each vertex pair u, v ∈ V , for any edge fault set F with |F | < rR(u, v), u and v are connected in
G \F if and only if they are connected in HA \F . When this property holds for a fixed vertex pair
u, v in HA, we say that u and v are relative fault tolerant with respect to G under the reduction
instance (that is, with demand function rR(u, v)). We will show that u and v are relative fault
tolerant with respect to G under the reduction instance. We have the following cases:

1. Vertices u and v are in the same connected component C in G′, and neither u nor v is a
terminal vertex. Then, rR(u, v) = r(u, v). Both RSND instances have the same demand for
the vertex pair. The subgraph HA is a feasible solution to the original instance, so u and v
are relative fault tolerant with respect to G under the original instance. Therefore, u and v
in must still be relative fault tolerant with respect to GR under the reduction instance in this
case.

2. Vertices u and v are in the same connected component C in G′, and exactly one of u and
v is a terminal vertex. Suppose without loss of generality that v is the terminal vertex.
First, suppose that rR(u, v) = r(u, v). Both instances have the same demand for this vertex
pair, so the argument is identical to that given in Case 1. Now suppose that rR(u, v) =
maxx:(u,x)∈Pv

r(u, x). Let x = arg maxx:(u,x)∈Pv
r(u, x).

� Suppose u and x are connected in G \ F , where |F | < r(u, x) = rR(u, v). Vertices u
and x are in different connected components in G′, and every u − x path must use an
edge in E \E′ that has v as an endpoint. Therefore, u and v must also be connected in
G \ F . Since HA is a feasible solution to the original instance, we have that if u and x
are connected in G \ F for some fault set F with |F | < r(u, x), then u and x are also
connected in HA \ F . Combining this with the fact that a path from u to x implies a
path from u to v gives us the following: If u and x are connected in G \F for some fault
set F with |F | < r(u, x) = rR(u, v), then u and v are connected in both G \ F and in
HA \F . Therefore, since u and x are connected in G \F (and in HA \F ), u and v must
be connected in HA \F . This means that u and v are relative fault tolerant with respect
to G under the reduction instance in this case.

� Now suppose u and x are not connected in G \ F , but u and v are still connected in
G\F , for some fault set F with |F | < r(u, x) = rR(u, v). Since GC is a tree and u and v
are in the same connected component, C ∈ G′, vertices u and v can only be separated in
HA by edges in E(C). Therefore we only consider the edges in F that are in E(C). Let
FC = E(C) ∩ F , and note that u and v are connected in G \ FC . We will show that u
and v must also be connected in HA \FC (and therefore in HA \F ). Vertices u and v are
connected in G \ FC , and FC ⊆ E(C); therefore, u and x are also connected in G \ FC .
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Additionally, since |FC | < r(u, x), we have the following: If u and x are connected in
G \ FC , then u and x are also connected in HA \ FC . This implies that u and v are
connected in HA \ FC , and therefore in HA \ F , meaning that u and v are relative fault
tolerant with respect to G under the reduction instance in this case.

3. Vertices u and v are in the same connected component C in G′, and both u and v are terminal
vertices. First, suppose that rR(u, v) = r(u, v). Both instances have the same demand for
the vertex pair, and so the argument is identical to that given in Case 1. Now suppose that
rR(u, v) = max(x,y)∈Pu∩Pv

r(x, y). Let (x, y) = arg max(x,y)∈Pu∩Pv
r(x, y).

� Suppose x and y are connected in G \ F , where |F | < r(x, y) = rR(u, v). Vertices x and
y are in different connected components in G′, and every x − y path must use an edge
that has u as an endpoint and an edge that has v as an endpoint. Therefore, u and v
must also be connected in G \ F . Additionally, HA is a feasible solution to the original
instance, so we have that if x and y are connected in G \ F for some fault set F with
|F | < r(x, y), then x and y are also connected in HA \ F . Combining this with the fact
that a path from x to y implies a path from u to v gives us the following: If x and y
are connected in G \ F for some fault set F with |F | < r(x, y) = rR(u, v), then we have
that u and v are also connected in both G \ F and in HA \ F . Therefore, u and v must
be connected in HA \ F , and so u and v are relative fault tolerant under the reduction
instance in this case.

� Now consider the case when x and y are not connected in G\F , but u and v are connected
in G \ F , for some fault set F with |F | < r(x, y) = rR(u, v). Since GC is a tree, u and
v can only be separated in HA by edges in E(C). Therefore, we only consider the edges
in F that are in E(C). Let FC = E(C) ∩ F , and note that u and v are connected in
G \ FC . We will show that u and v must also be connected in HA \ FC (and therefore
in HA \ F ). Vertices u and v are connected in G \ FC , and FC ⊆ E(C); therefore, x
and y are also connected in G \ FC . Additionally, because |FC | < r(x, y), we have that
if x and y are connected in G \ FC , then x and y are also connected in HA \ FC . This
implies that u and v are connected in HA \ FC , and therefore in HA \ F . Thus, u and v
are relative fault tolerant with respect to G under the reduction instance in this case.

4. Vertices u and v are in different connected components in G′. There is only one edge-disjoint
path from u to v in G. In the reduction instance, if rR(u, v) = 1 then r(u, v) > 0. Since HA

is feasible, if r(u, v) > 0, then there is a single path from u to v in HA if there is a path from
u to v in G. Therefore, the demand rR(u, v) = 1 is always satisfied in HA, and so u and v
are relative fault tolerant with respect to G under the reduction instance.

We now show that a feasible solution to the reduction RSND instance is a feasible solution to
the original instance.

Lemma C.2. Any feasible solution to the RSND problem on input graph GR with edge weight
function wR(e) and demand function rR(u, v) is also a feasible solution to the original RSND
problem on input graph G with edge weight function w(e) and demand function r(u, v).

Proof. We show that given a feasible solution subgraph HB to the reduction instance, HB is also
a feasible solution to the original RSND instance (and thus has the same cost). If vertices u and
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v are in the same connected component in G′, then rR(u, v) ≥ r(u, v). As a result, u and v are
relative fault tolerant with respect to G under the original instance.

Suppose instead that u and v are in different connected components. Let Cu and Cv be different
connected components in G′, and let u ∈ Cu and v ∈ Cv be vertices in these components. We will
show that if u and v are connected in G \ F , where F is an edge fault set with |F | < r(u, v), then
u and v are connected in HB \ F .

The component subgraph GC is a tree and u and v are in different components, so there is a
size 1 cut that separates u and v in G. Therefore, if u and v are connected in G \ F for some edge
fault set F , then F cannot have an edge from any of the size 1 cuts that separate u and v. Note
that all other size 1 cuts are not on any u-v path. As a result, we only need to consider fault sets
F such that |F | > 1 and F does not contain size 1 cuts. Any such F must have all edges within
the connected components of G′. We can assume without loss of generality that all edges in F are
in the same connected component in G′. We will now show that if u and v are connected in G \F ,
where |F | < r(u, v), then F cannot separate u or v from any of its terminal vertices in HB \F (and
therefore u and v are connected in HB \ F ).

Suppose F , with |F | < r(u, v), is one of these fault sets, and that without loss of generality
that F ⊆ E(Cu) (the argument is identical when F ⊆ E(Cv); we will later handle the case when
F ⊆ E(Ci) where i 6= u, v). Let tu ∈ Cu be the terminal vertex such that (u, v) ∈ Ptu . Since
r(u, v) ≤ rR(u, tu), we have that if u and tu (v and tv) are connected in G \ F , then u and tu (v
and tv) are connected in HB \ F .

Now suppose that u and v are connected through some other connected component, Ci, such
that u, v /∈ Ci. Also, let t1 and t2 be terminal vertices in Ci such that (u, v) ∈ Pt1 ∩ Pt2 . Suppose
in addition that F ∈ Ci, and that there is a path from u to t1 and a path from v to t2 in G \ F .
If t1 6= t2, then because r(u, v) ≤ rR(t1, t2), we have that if t1 and t2 are connected in G \ F , then
they are connected in HB \ F . We have shown that if u and v are connected in G \ F , where
|F | < r(u, v), then in HB, F cannot separate u or v from any of their terminal vertices.

Finally, we consider the empty fault set. That is, we want to show that if u and v are connected
in G, then they are connected in HB. For every vertex pair u, v, if r(u, v) > 0, then rR(u, v) = 1.
Subgraph HB is feasible, so if rR(u, v) = 1 then there is a path from u to v in HB if there is a path
from u to v in G. This means that if r(u, v) > 0, there is a path from u to v in HB if there is a
path from u to v in G. Since there is only 1 edge-disjoint path from u to v in G, we have that u
and v are relative fault tolerant with respect G under the original instance.

We have shown that any feasible solution to one instance is also a feasible solution to the other.
This also implies that the optimal solution to both the original and reduction instances is the same,
and has the same value. We now give a corollary that allows us to assume that any input graph of
an RSND instance is 2-edge connected.

Theorem C.3. If there exists an α-approximation algorithm for RSND on 2-edge connected graphs,
then there is an α-approximation algorithm for RSND on general graphs.

Proof. Suppose we have an α-approximation algorithm for RSND on 2-edge connected graphs.
An α-approximation algorithm for RSND on general graphs is as follows: Perform the reduction
described above, and run the α-approximation algorithm for RSND on 2-edge connected graphs
on each connected component in G′ (recall that each component is 2-edge connected). Then, for
each edge e ∈ E \ E′, we include e in the solution subgraph H if there exists a pair of connected
components Ci, Cj ∈ G′ such that e is on the path from Ci and Cj and there exists vertices vi ∈ Ci
and vj ∈ Cj such that rR(vi, vj) > 0.
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The algorithm returns a subgraph that is a feasible solution to the reduction instance, so the
subgraph is a feasible solution to the original RSND instance by Lemma C.2. Now we will show that
the algorithm gives an α-approximation of the RSND problem. Let H be the solution subgraph
returned by the algorithm, and let H∗ be the optimal solution to the RSND problem instance.
Let C1, C2, . . . , C` be the connected components of G′. For a fixed connected component Ci, let
Hi = H[Ci] be the subgraph of H induced by component Ci, and let H∗i = H∗[Ci] be the subgraph
of H∗ induced by Ci. Let c(S) denote the total weight of a subgraph S, and c(T ) denote the sum
of the weights of each edge in the edge set T .

Each connected component under the reduction instance is an instance of the RSND problem on
2-edge connected graphs, and the algorithm runs the α-approximation for 2-edge connected RSND
on each instance. Hence c(Hi) ≤ α · c(H∗i ) for all i. Summing over all connected components, we
get that ∑̀

i=1

c(Hi) ≤ α ·
∑̀
i=1

c(H∗i ).

Finally, let Ẽ be the set of edges from size 1 cuts in G that are included in the algorithm
solution H. Additionally, let Ẽ∗ be the set of edges from size 1 cuts in G that are included in
the optimal solution. Any edge e from a size 1 cut must be included in any feasible solution if e
connects a vertex pair with positive demand. The algorithm only selects the edges from size 1 cuts
that must be included in any feasible solution, so Ẽ = Ẽ∗. Putting everything together, we have
the following:

c(ALG) =
∑̀
i=1

c(Hi) + c(Ẽ) ≤ α
∑̀
i=1

c(H∗i ) + c(Ẽ) ≤ α

(∑̀
i=1

c(H∗i ) + ·c(Ẽ∗)

)
= α · c(OPT ).

C.3 Special Case: 2-RSND

The k-RSND problem is a special case of the RSND problem. In k-RSND, the input is still a graph
G = (V,E) and a demand for each vertex pair; however, all demands are at most k.

Theorem C.4. There is a 2-approximation algorithm for 2-RSND.

Proof. For every vertex pair u, v in a two-connected graph, the number of edge disjoint paths from
u to v is at least 2. Therefore, an instance of 2-connected 2-RSND is an instance of SND, and
hence Jain’s 2-approximation for SND [18] is 2-approximation for 2-RSND on 2-connected graphs.
By Theorem 3.1, this gives a 2-approximation algorithm for 2-RSND on general graphs.

Unfortunately, this algorithm does not directly extend to larger demand upper bounds. If we
require the connected components in G′ to be k-edge connected, where k is the demand upper
bound, then the edges in E \E′ may not form a tree on the components of G′. This would require
some other means for selecting edges between these connected components. If we instead carry
out the reduction from Theorem 3.1, then each connected component would still be an instance of
general RSND, since there may be demands that are larger than 2, while each connected component
is only guaranteed to be 2-edge connected.

D Proof of Lemma 4.2 (Structure Lemma)

Let i ≤ j, let H be a subgraph of G, and let Hi = H[Ri]. We will say that an edge e is between
subgraphs Hi and Hj , or that e is within the subchain that starts at Hi and ends at Hj , if the
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following is true: Either edge e is in E(Hk) such that i ≤ k ≤ j, or i 6= j and e ∈ Sk such that
i ≤ k ≤ j − 1. Before we begin the proof, we will need a lemma that describes the connectivity of
vertices in V(i,`) and V(j,r) in G when there are no edge faults between components Ri and Rj .

Lemma D.1. In the s − t 2-chain of G, consider the subchain that starts at Gi and ends at Gj,
inclusive, where i ≤ j. Then for every u ∈ V(i,`), there is a path from u to V(j,r). Similarly, for
each u ∈ V(j,r), there is a path from u to V(i,`). These paths only use edges within the subchain that
starts at Gi and ends at Gj.

Proof. First we will show that for any subgraph Gk within the subchain, where Gk = G[Rk], there
is a path in Gk from V(k,`) to each vertex in V(k,r). Fix Gk with i ≤ k ≤ j. Suppose for the
sake of contradiction that at least one vertex vkr1 ∈ V(k,r) is not reachable from V(k,`) in Gk. If
|V(k,r)| = 1, then there is no path from V(k,`) to V(k,r) in Gk. This means there is a size 0 cut in Gk,
and therefore a size 0 cut in G. But G is 2-connected, so this gives a contradiction. If |V(k,r)| = 2,
let V(k,r) = {vkr1 , vkr2}. Then, the edge in Sk that is incident on vkr2 is a (V(k,`), t)-separator in

G \ ∪k−1j=0Rj with size 1, meaning that Sk is not minimal. This contradicts the assumption that Sk
is an important separator. Therefore, in Gk, each vertex in V(k,r) must be reachable from V(k,`) in
Gk.

Now we show via a similar argument that in Gk, there is a path from each vertex in V(k,`) to
V(k,r). Fix Gk with i ≤ k ≤ j. Suppose for the sake of contradiction that at least one vertex
vk`1 ∈ V(k,`) is not reachable from V(k,r) in Gk. If |V(k,`)| = 1, then there is no path from V(k,`)
to V(k,r) in Gk, meaning there is a size 0 cut in G. This contradicts the assumption that G is
2-connected. If |V(k,`)| = 2, let V(k,`) = {vk`1 , vk`2}. Then, the edge in Sk−1 that is incident on

vk`2 is a (V(k−1,`), t)-separator in G \ ∪k−2j=0Rj with size 1, meaning that Sk−1 is not minimal. This
contradicts the assumption that Sk−1 is an important separator.

We have shown that for each subgraph Gk in the subchain starting at Gi and ending at Gj ,
each vertex in V(k,r) is reachable from V(k,`), and V(k,r) is reachable from each vertex in V(k,`) in Gk.
This implies that each vertex in V(j,r) is reachable from V(i,`), and that V(j,r) is reachable from each
vertex in V(i,`), using only edges in the subchain from Gi to Gj . This can been seen via a proof by
induction on the number of components into the s− t 2-chain.

D.1 Only if

We are now ready to prove that the properties in Lemma 4.2 are necessary. Suppose subgraph H
is a feasible solution, and suppose for the sake of contradiction that for some important separator
Si in the chain, there is an edge e1 ∈ Si that is not in H. Let e2 be the other edge in Si (note that
e2 must exist since |Si| = 2 for all i). First, suppose that e2 is in H. We will show that s and t are
connected in G\{e2} but that they are not connected in H \{e2}, giving a contradiction. Separator
Si is a size 2 s − t cut, so s and t are not connected in H \ {e2}. Now we just need to show that
they are connected in G \ {e2}. There are no edge faults between G0 and Gi, so by Lemma D.1
there is a path from V(0,`) = s to each vertex in V(i,r) that only uses edges between G0 and Gi. In
G \ {e2}, one vertex in V(i,r) is adjacent to a vertex in V(i+1,`); they share the edge e1. Therefore
there is a path from a vertex in V(i,r) to a vertex in V(i+1,`) that only uses the edge e1. Finally,
there are no edge faults between Gi+1 and Gp, so again by Lemma D.1 there is a path from each
vertex in V(i+1,`) to V(p,r) = t, using only edges between Gi+1 and Gp. Putting everything together,
we have that s and t are connected in G \ {e2} but are not connected in H \ {e2}, contradicting
the assumption that H is feasible. Now suppose that e2 is not in H. Then, s and t are connected
in G but not in H. This also contradicts the assumption that H is feasible, and so H must have
all edges in ∪p−1j=0Sj .
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Now suppose that H is feasible, but suppose for the sake of contradiction that Property 1 in the
statement of Lemma 4.2 is not satisfied in Hi. This means there are fewer than three edge-disjoint
paths from V(i,`) to V(i,r) in Hi, and so by Menger’s theorem there is some cut S′i of size 2 that
separates V(i,`) and V(i,r) in Hi. This directly implies that S′i also separates V(i,`) from t in Hi. Cut
S′i is therefore a (V(i,`), t)-separator of size 2 with R′i ⊂ Ri, where R′i is the set of vertices reachable

from V(i,`) in (G \ ∪i−1j=0Rj) \ S′i. Separator Si is therefore not an important (V(i,`), t)-separator in

G \ ∪i−1j=0Rj , contradicting our decomposition construction.
Suppose again that H is feasible, but now suppose for the sake of contradiction that Property

2 in the statement of Lemma 4.2 is not satisfied in Hi. Without loss of generality 1, let vr1 ∈ V(i,r)
be a vertex such that the RSND demand (V(i,`), vr1 , 2) is not satisfied in Hi. That is, there exists
some edge fault e ∈ E such that there is a path from V(i,`) to vr1 in Gi \ {e}, but there is no path
in Hi \ {e}. We will now show that there exists a fault set F with |F | ≤ 2 such that s and t are
connected in G \F but are disconnected in H \F . This would imply that H is not feasible, giving
a contradiction. There are two cases:

� |V(i,r)| = 1. Let F = {e}. There is no path from V(i,`) to V(i,r) in Hi \F , and therefore no path
from s to t in H \ F . There are no faults between G0 and Gi−1, inclusive, so by Lemma D.1
there is a path from V(0,`) = s to each vertex in V(i−1,r) in G\F , using only edges between G0

and Gi−1. There are no faults in Si−1, so there is also a path from s to each vertex in V(i,`),
using only edges between G0 and Gi. As previously stated, there is a path from at least one
vertex in V(i,`) to vr1 ∈ V(i,r) in Gi \F . There are no faults in Si, so there is a path from vr1 to
each vertex in V(i+1,`), using only edges in Si. Finally, there are no faults between Gi+1 and
Gp inclusive, so by Lemma D.1 there is a path from V(i+1,`) to V(p,r) = t in G \ F , using only
edges between Gi+1 and Gp. Putting everything together, there is an s− t path in G \F , but
there is no s− t path in H \ F , giving a contradiction to the assumption that H is a feasible
solution.

� |V(i,r)| = 2, with V(i,r) = {vr1 , vr2}. Let f denote the edge in Si incident on vr2 , and set
F = {e, f}. In H \F , there is no path from V(i,`) to V(i+1,`). Therefore there is no path from
s to t in H \ F . There are no faults between G0 and Gi−1, inclusive, and no faults in Si−1,
so by Lemma D.1 there is a path from s to each vertex in V(i,`) in G \ F , using only edges
between G0 and Gi. As previously stated, there is a path from at least one vertex in V(i,`) to
vr1 ∈ V(i,r) in Gi \ F . Since the single edge fault in Si, f , is not incident on vr1 , there is a
path from vr1 to a vertex in V(i+1,`), only using the remaining edge in Si. Finally, by Lemma
D.1, there is a path from each vertex in V(i+1,`) to t in G \ F , which only use edges between
Gi+1 and Gp. Putting everything together, there is an s − t path in G \ F , but there is no
s− t path in H \ F , giving a contradiction to the assumption that H is a feasible solution.

Suppose again that H is a feasible, but now suppose for the sake of contradiction that Property 3
in the statement of Lemma 4.2 is not satisfied in Hi. Let v`1 ∈ V(i,`) and vr1 ∈ V(i,r) be vertices
such that the RSND demand (v`1 , vr1 , 1) is not satisfied in Hi. This means there is a path from v`1
to vr1 in Gi, but there is no path in Hi. We will now show that there exists a fault set, F , with
|F | ≤ 2, such that s and t are connected in G \F but are disconnected in H \F . This would mean
that H is not a feasible, giving a contradiction. There are three cases:

1WLOG because the argument is symmetric: If we choose v`1 ∈ V(i,`) instead to be the vertex such that the
RSND demand (V(i,r), v`1 , 2) is not satisfied in Hi, then the fault sets are F = {e} (if |V(i,`)| = 1) and F = {e, f} (if
|V(i,`)| = 2), where e is an edge such that v`1 and V(i,r) are connected in Gi \ {e} but not in Hi \ {e}, and f is the
edge in Si−1 incident on v`2 .
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� |V(i,`)| = |V(i,r)| = 1. Let F be the empty set. There is no path from V(i,`) to V(i,r) in Hi, and
therefore no s− t path in H. G is 2-edge connected, so there is a path from s to t in G. This
is a contradiction to the assumption that H is a feasible.

� Exactly one of V(i,`) and V(i,r) has size 2. Without loss of generality (since the other case
is symmetric), let V(i,r) = {vr1 , vr2}. Let f denote the edge in Si incident on vr2 , and set
F = {f}. In H \F , there is no path from V(i,`) to V(i+1,`). Therefore there is no s− t path in
H \ F . There are no faults between G0 and Gi, inclusive, so by Lemma D.1 there is a path
from s to each vertex in V(i,r) in G \ F , using only edges between G0 and Gi. There is also a
path from vr1 to a vertex in V(i+1,`), only using an edge in Si. Finally, by Lemma D.1, there
is a path from each vertex in V(i+1,`) to t, using only edges between Gi+1 and Gp. Putting
everything together, there is an s− t path in G\F , but there is no s− t path in H \F , giving
a contradiction to the assumption that H is a feasible solution.

� V(i,`) and V(i,r) have size 2. Let V(i,`) = {v`1 , v`2} and V(i,r) = {vr1 , vr2}. We also let f1
denote the edge in Si−1 incident on v`2 , and let f2 denote the edge in Si incident on vr2 . Set
F = {f1, f2}. In H \ F , there is no path from V(i−1,r) to V(i+1,`). Therefore, there no s − t
path in H \ F . There are no faults between G0 and Gi−1, inclusive, so by Lemma D.1 there
is a path from s to each vertex in V(i−1,r) in G \ F , using only edges between G0 and Gi−1.
There is only one fault in Si−1, so there is a path from one vertex in V(i−1,r) to v`1 ∈ V(i,`),
only using the remaining edge in Si−1. There is also a path in Gi \ F from v`1 to vr1 , by
our assumption. Finally, vr1 has a path to a vertex in V(i+1,`), which only uses the remaining
edge in Si. By Lemma D.1, each vertex in V(i+1,`) has a path to t, using only edges between
Gi+1 and Gp. Putting everything together, there is an s − t path in G \ F , but there is no
s− t path in H \ F , giving a contradiction to the assumption that H is a feasible solution.

D.2 If

Now we prove that the properties stated in Lemma 4.2 are sufficient. Suppose all edges in ∪p−1j=0Sj
are in H, and suppose all 3 properties in the statement of Lemma 4.2 are met for all Hi. For all
possible fault sets F , with |F | ≤ 2, we will show that if s and t are connected in G \ F , they must
also be connected in H \ F , and therefore H is feasible. Let F = {f1, f2} be the fault set, and
suppose s and t are connected in G \ F . We will first show that if there are no faults between Hi

and Hj , then in H, each vertex in V(j,r) is reachable from V(i,`), and each vertex in V(i,`) has a path
to V(j,r).

Lemma D.2. Let H be a subgraph of G, and suppose that all properties in the statement of Lemma
4.2 are met by Hi for all i. Consider the subchain that starts at Hi and ends at Hj, where i ≤ j.
Then, there is a path from each vertex in V(i,`) to the vertex set V(j,r), and a path from the vertex
set V(i,`) to each vertex in V(j,r) in H. These paths only use edges within the subchain that starts
at Hi and ends at Hj.

Proof. We have shown in Lemma D.1 that if subgraph Gk is in the subchain that begins at Gi
and ends at Gj , then each vertex in V(k,r) is reachable from V(k,`), and V(k,r) is reachable from
each vertex in V(k,`). For each subgraph Hk in the subchain from Hi to Hj , the RSND demands
{(u, v, 1) : (u, v) ∈ V(i,`) × V(i,r)} are satisfied (Property 3 of Lemma 4.2). That is, if vk` ∈ V(k,`)
and vkr ∈ V(k,r) are connected in G, then they are connected in H. Therefore, we also have that in
Hk, each vertex in V(k,r) is reachable from V(k,`), and V(k,r) is reachable from each vertex in V(k,`).
This also implies that in H, each vertex in V(j,r) is reachable from V(i,`), and each vertex in V(i,`)
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has a path to V(j,r), using only edges within the subchain from Hi to Hj . This can been seen via a
proof by induction on the number of components into the chain.

For all i, let component Ri with separator Si−1 (if it exists) together be the ith section of the
chain. Section i is considered earlier in the chain than section j if i < j. We divide the s − t
2-chain into subchains as follows. Suppose edge fault f1 is in section i, and f2 is in section j, where
i ≤ j. Then the first subchain, L1, begins at R0 and ends at Ri, inclusive. The second subchain,
L2, begins at R0 and ends at Rk, inclusive. If i = k, then L1 and L2 are the same subchain. Let
LGα denote the subchain of G induced by Lα, and let LHα denote the subchain of H induced by Lα.

We now prove a series of lemmas. Lemma D.3 states which vertices at the end of L1 are
reachable in LH1 \F given what is reachable in LG1 \F . Lemma D.4 uses Lemma D.3 to prove that
when the two edge faults are in different sections of the chain and s and t are connected in G \ F ,
then s and t are connected in H \F . Lemma D.5 shows that when both edge faults are in the same
section, s and t are connected in H \ F if they are connected in G \ F

Lemma D.3. Let F = {f1, f2} be the fault set, where f1 and f2 are in sections i and j, respectively,
with i < j. Suppose there is an s− t path in G \F . Consider subchain L1, as defined above. Then,
every vertex in V(i,r) that is reachable from s in LG1 \ F is also reachable from s in LH1 \ F .

Proof. There are no faults from R0 to Ri−1, so by Lemmas D.1 and D.2, in G and in H, there is
a path from s to each vertex in V(i−1,r), using only edges between G0 and Gi−1, and between H0

and Hi−1, respectively. There are two cases: f1 ∈ Ri and f1 ∈ Si−1.

� Suppose first that f1 ∈ Ri. There is a path from s to t in G \F , so there must also be a path
from V(i,`) to at least one vertex in V(i,r) in Gi \ F . Suppose there is a path in Gi \ F from
V(i,`) to vir ∈ V(i,r); that is, there is a path from V(i,`) to vir after the removal of f1. Property
2 from Lemma 4.2 is satisfied in Hi. Therefore, in Hi, V(i,`) and vir must also be connected
after the removal of f1. Thus, if a vertex in V(i,r) is reachable from V(i,`) in Gi \ F , then that
same vertex is reachable from V(i,`) in Hi \ F . Note that since there are no faults in Si−1, we

can also say that if a vertex u ∈ V(i,r) is reachable from the vertex set V(i−1,r) in LG1 \F , then

u is reachable from V(i−1,r) in LH1 \ F .

� Now suppose that f1 ∈ Si−1. Without loss of generality, let f1 be incident on vertex vi`1 ∈
V(i,`). If |V(i,`)| = 1, then in G and in H, vi`1 is adjacent to both vertices in V(i−1,r). Therefore,
after the removal of f1, vi`1 is still adjacent to a vertex in V(i−1,r) in G \ F and in H \ F .
Additionally, there are no faults in Ri, so by Lemmas D.1 and D.2, there is a path from
V(i,`) = {vi`1} to each vertex in V(i,r) in Gi \ F and in Hi \ F . Putting it all together, in

LG1 \ F and in LH1 \ F , there is a path from V(i−1,r) to each vertex in V(i,r) that uses only
edges in Si−1 and in Ri. If |V(i,`)| = 2, then let V(i,`) = {vi`1 , vi`2}. Recall that f1 ∈ Si−1 is
incident on vi`1 ∈ V(i,`). We therefore have that any path into V(i,`) from V(i−1,r) must visit
vi`2 . Since there is an s − t path in G \ F , there must also be a path from vi`2 to V(i,r) in
Gi \ F . Property 3 from Lemma 4.2 is satisfied in Hi. Therefore, if there is a path from vi`2
to a vertex vir1 ∈ V(i,r) in Gi, then there is a path from vi`2 to vir1 in Hi. Putting everything

together, we have the following: If there is a path from V(i−1,r) to a vertex u ∈ V(i,r) in LG1 \F ,

then there is a path from V(i−1,r) to u in LH1 \ F .

We have shown that if section i has exactly one fault, then every vertex in V(i,r) that is reachable

from V(i−1,r) in LG1 \ F is also reachable from V(i−1,r) in LH1 \ F . Recall that in G and in H, there
is a path from s to each vertex in V(i−1,r) that only uses edges between G0 and Gi−1, and between

25



H0 and Hi−1, respectively. We therefore have that every vertex in V(i,r) that is reachable from s in

LG1 \ F is also reachable from s in LH1 \ F .

In the following lemma, we will use Lemma D.3 to prove that if the edge faults in F are in
different sections of the s− t 2-chain, then there is an s− t path in G \ F if and only if there is an
s− t path in H \ F .

Lemma D.4. Let F = {f1, f2} be the fault set, where f1 and f2 are in sections i and j, respectively,
with i < j. Suppose there is an s− t path in G \F . Consider subchain L2, as defined above. Then,
at least one vertex in V(j,r) is reachable from s in LH2 \ F , and there is an s− t path in H \ F .

Proof. There is an s − t path in G \ F , so at least one vertex in V(i,r) must be reachable from s

in LG1 \ F . Let vir1 be this vertex. By Lemma D.3, we also have that vir1 is reachable from s in
LH1 \F . There are no faults between sections i and j, not inclusive, so using Lemmas D.1 and D.2,
we can say that in both G \ F and in H \ F , there is a path from vir1 to V(j−1,r), using only edges
in Si and in the subchain from Gi+1 to Gj−1, or in the subchain from Hi+1 to Hj−1, respectively.
Additionally, Property 3 of Lemma 4.2 is met for all Hi. Therefore, if G has a path from vir1 to
a particular vertex u ∈ V(j−1,r) that only uses edges in Si and in the subchain from Gi+1 to Gj−1,
then H also has a path from vir1 to u that only uses edges in Si and in the subchain from Hi+1

to Hj−1. We therefore have that every vertex in V(j−1,r) that is reachable from s using only edges
between G0 and Gj−1 is also reachable from s using only edges between H0 and Hj−1. Now, we
have two cases: f2 is in Rj or f2 is in Sj−1.

� We first consider the case with f2 ∈ Rj . There is an s− t path in G \ F , and let P be such a
path. There must be at least one vertex in V(j−1,r) that is in P in G \F (otherwise, P would
not be an s− t path in G \ F ). Let vj−1,r be such a vertex. As proved in the first paragraph
of this proof, we also have that there is a path from s to vj−1,r in H \ F , using only edges
between H0 and Hj−1. Let vj` be the vertex in V(j,`) that is in P and adjacent to vj−1,r.
There are no faults in Sj−1, so there is also a path from s to vj` that only uses edges between
G0 and Gj−1, or between H0 and Hj−1, and an edge in Sj−1. Since P is an s − t path in
G \ F that uses vj`, there is a path from vj` to t in G \ F that only uses edges between Gj
to Gp. This also means there is a path from vj` to V(j,r) in Gj \ F . Since Property 2 from
Lemma 4.2 is met on subgraph Hj , there must also be a path from vj` to V(j,r) in Hj \ F .
There are no faults in Sj , implying that in H \F , there is also a path from vj` to a vertex in
V(j+1,`), using only edges in Hj and an edge in Sj .

� We now consider the case with f2 ∈ Sj−1. At least one vertex in V(j−1,r) is reachable from s
in G \ F , using only edges between G0 and Gj−1 (otherwise there would be no s− t path in
G \ F ). Suppose first that all vertices in V(j−1,r) are reachable from s in G \ F , using only
edges between G0 and Gj−1. Then, each vertex in V(j−1,r) is reachable from s in H \ F as
well, using only edges between H0 and Hj−1 (proved in paragraph 1 of this proof). There is
one remaining edge in Sj−1, so in G \ F and in H \ F , there must be a path from V(j−1,r) to
one vertex vj` ∈ V(j,`) that only uses the remaining edge in Sj−1. Now suppose exactly one
vertex in V(j−1,r) is reachable from s in G \ F , using only edges between G0 and Gj−1. Let
vj−1,r be this vertex. Therefore (proved in paragraph 1 of this proof), vj−1,r is also reachable
from s in H \ F , using only edges between H0 and Hj−1. We can assume that |V(j−1,r)| = 2,
since the |V(j−1,r)| = 1 case is covered by the previous argument. If f2 is the edge in Sj−1 that
is incident on vj−1,r, then there is no s − t path in G \ F . This contradicts the assumption
that there is an s− t path in G \F . Therefore, there must be a path in G \F , and in H \F ,
from vj−1,r to a vertex vj` ∈ V(j,`), using only the non-fault edge in Sj−1.
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We have shown that in H \ F , there is a path from s to at least one vertex vj` in V(j,`) that only
uses edges between H0 and Hj−1 and in Sj−1. Additionally, there are no faults between Hj and
Hp, so by Lemma D.2, vj` has a path to V(p,r) = {t} that only uses edges between Hj and Hp.
Putting it all together, in H \ F , there is a path from s to t.

Now we will show that if the edge faults in F are in the same section of the s− t 2-chain, then
there is an s− t path in G \ F if and only if there is an s− t path in H \ F

Lemma D.5. Let F = {f1, f2} be the fault set, where f1 and f2 are both in section i. Suppose
there is an s− t path in G \ F . Consider subchain L1, as defined above. Then, at least one vertex
in V(i,r) is reachable from s in LH1 \ F , and there is an s− t path in H \ F .

Proof. There are no faults between R0 and Ri−1, so by Lemmas D.1 and D.2, in G\F and in H \F ,
each vertex in V(i−1,r) is reachable from s, using only edges between G0 and Gi−1, or between H0

and Hi−1, respectively. We have two cases: Either both f1 and f2 are in Ri or, without loss of
generality, f1 ∈ Si−1 and f2 ∈ Ri. Note that f1 and f2 cannot both belong in Si−1 because this
would contradict the assumption that there is an s− t path in G \ F .

� First consider the case with f1 and f2 in Ri. In Gi, there are at least 3 edge-disjoint paths
from V(i,`) to V(i,r); otherwise, by Menger’s theorem, there is a cut of size at most two
that separates V(i,`) from V(i,r). This would mean that Si cannot be an important (V(i,`), t)-

separator of G \ ∪i−1j=0Rj . Since Property 1 in Lemma 4.2 is met in Hi, there must also be 3
or more edge-disjoint paths from V(i,`) to V(i,r) in Hi. Therefore, there is a path from V(i,`) to
V(i,r) in Hi \ F . There are no faults in Si−1, so we can also say there is a path from V(i−1,r)
to V(i,r) in LH1 \ F .

� Next, consider the case with f1 ∈ Si−1 and f2 ∈ Ri. Suppose without loss of generality that
f1 is incident on vertex vi`1 ∈ V(i,`). We first consider the case with |V(i,`)| = 1. Since vi`1 is
adjacent to both vertices in V(i−1,r), there is still a path from V(i−1,r) to vi`1 in H \ F using
only the remaining edge in Si−1. Additionally, there are at least 3 edge-disjoint paths from
vi`1 to V(i,r) in Hi. There is only one fault, f2, in Ri. Thus, in Hi \ F , there must be a path
from vi`1 to V(i,r). Now we consider the case with |V(i,`)| = 2. Let V(i,`) = {vi`1 , vi`2}. Since
f1 ∈ Si−1 is incident on vi`1 , any path from V(i−1,r) to V(i,`) in G \ F and in H \ F must use
the edge incident on vi`2 , and must visit vi`2 . Since there is a path from s to t in G \F , there
must also be a path from vi`2 to V(i,r) in Gi \ F . Property 2 in Lemma 4.2 is satisfied in Hi.
Therefore, if there is a path from vi`2 to V(i,r) in Gi \F , then there must also be a path from
vi`2 to V(i,r) in Hi \ F . Therefore, we have a path from V(i,`) (and from V(i−1,r))) to V(i,r) in
H \ F .

We have shown that there is a path from V(i−1,r) to V(i,r) in LH1 \ F . Additionally, there are no
faults in Si, so in H \ F there is also a path from each vertex in V(i,r) to V(i+1,`) that only uses
an edge in Si. Finally, there are no faults between Hi+1 and Hp, inclusive, so by Lemma D.2,
each vertex in V(i+1,`) has a path to V(p,r) = {t}, using only edges between Hi+1 and Hp. Putting
everything together, in H \ F , there is a path from s to t.

Lemmas D.4 and D.5 together clearly imply the “if” direction of Lemma 4.2.
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E Proofs from Section 4.2

Proof of Lemma 4.4. For each i, let Hi denote the subgraph of H induced by Ri and let Gi denote
the subgraph of G induced by Ri. We will show that H satisfies the conditions of Lemma 4.2, and
hence is feasible. By construction, H contains all edges S in the important separators.

To show property 1 of Lemma 4.2, recall that in each Hi we included the edges selected via a
min-cost flow algorithm from V(i,`) to V(i,r) with flow 3. Since there are at least three edge-disjoint
paths from V(i,`) to V(i,r) in Gi (by Lemma 4.2 since G itself is feasible), this will return three
edge-disjoint paths from V(i,`) to V(i,r). Hence H satisfies the first property.

Property 2 of Lemma 4.2 is direct from the algorithm, since Hi includes the output of the 2-
RSND algorithm from Theorem 3.2 when run on demands

{
(V(i,`), vr, 2) : vr ∈ V(i,r)

}
∪
{

(V(i,r), v`, 2) : v` ∈ V(i,`)
}

.
Similarly, within each component Hi in the s− t 2-chain, the edges selected by the Steiner Forest
algorithm form a path from vertex v` ∈ V(i,`) to vertex vr ∈ V(i,r) if v` and vr are connected in G.
This satisfies Property 3 in Lemma 4.2.

Proof of Lemma 4.5. Let Hi = H[Ri] be the subgraph of H induced by Ri, and let H∗i = H∗[Ri]
be the subgraph of the optimal solution induced by Ri. We also let HM

i denote the subgraph of
Hi returned by the min-cost flow algorithm run on Ri (i.e., the set of edges with non-zero flow),
let HN1

i and HN2

i denote the subgraphs returned by the first and second 2-approximation 2-RSND
algorithms run on Ri, respectively, and we let HF

i denote the subgraph of Hi returned by the
Steiner Forest algorithm on Ri. We also let M∗i be the optimal solution to the Minimum-Cost
Flow instance on Ri, let N1∗

i and N2∗
i be the optimal solutions to the first and second 2-RSND

instances on Ri, respectively, and let F ∗i be the optimal solution to the Steiner Forest instance

on Ri. Subgraph HM
i is given by an exact algorithm, subgraphs HN1

i and HN2

i are given by a 2-
approximation algorithm, and subgraph HF

i is given by a
(
2− 1

k

)
-approximation algorithm. Note

that there are at most 4 terminal pairs in the Steiner Forest instance, so k ≤ 4 and the algorithm
gives a 7

4 -approximation. Hence we have the following for each component Ri:

w(HM
i ) = w(M∗i ) w(HN1

i ) ≤ 2w(N1∗
i )

w(HN2

i ) ≤ 2w(N2∗
i ) w(HF

i ) ≤ 7

4
w(F ∗i ).

Summing over all components in the chain, we get the following:

p∑
i=0

w(HM
i ) =

p∑
i=0

w(M∗i )

p∑
i=0

w(HN1

i ) ≤ 2 ·
p∑
i=0

w(N1∗
i )

p∑
i=0

w(HN2

i ) ≤ 2 ·
p∑
i=0

w(N2∗
i )

p∑
i=0

w(HF
i ) ≤ 7

4
·

p∑
i=0

w(F ∗i ).

We also have that

w(Hi) ≤ w(HM
i ) + w(HN1

i ) + w(HN2

i ) + w(HF
i ).

Summing over all components in the chain and then substituting the above, we get the following:

p∑
i=0

w(Hi) ≤
p∑
i=0

w(HM
i ) +

p∑
i=0

w(HN1

i ) +

p∑
i=0

w(HN2

i ) +

p∑
i=0

w(HF
i )

≤
p∑
i=0

w(M∗i ) + 2 ·
p∑
i=0

w(N1∗
i ) + 2 ·

p∑
i=0

w(N2∗
i ) +

7

4
·

p∑
i=0

w(F ∗i ).
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The optimal subgraph H∗ is a feasible solution, so by Lemma 4.2, each property in the lemma
statement must be met on subgraph H∗i for all i. For all properties in the lemma to be satisfied
on H∗i , the set of edges E(H∗i ) must be a feasible solution to each of the Minimum-Cost Flow,
2-RSND, and Steiner Forest instances on Ri. Therefore, the cost of H∗i must be at least the cost
of the optimal solution to each of the Minimum-Cost Flow, 2-RSND, and Steiner Forest instances.
We therefore have the following:

p∑
i=0

w(Hi) ≤
p∑
i=0

w(H∗i ) + 2 ·
p∑
i=0

w(H∗i ) + 2 ·
p∑
i=0

w(H∗i ) +
7

4
·

p∑
i=0

w(H∗i ) ≤ 27

4
·

p∑
i=0

w(H∗i ).

Finally, we must account for the edges between components in the s − t 2-chain. Let S be the
set of edges between components in the chain that are included in the algorithm solution, and let
S∗ be the set of edges between components included in the optimal solution. By Lemma 4.2, any
feasible solution must include all edges between the components of the chain. We therefore have
that S = S∗ and we get the following:

w(H) =

p∑
i=0

w(Hi) + w(S) ≤ 27

4

p∑
i=0

w(H∗i ) + w(S) ≤ 27

4

(
p∑
i=0

w(H∗i ) + w(S∗)

)
≤ 27

4
w(H∗).
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