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Abstract. In this paper, we introduce DuelGAN, a generative adversarial
network (GAN) solution to improve the stability of the generated samples
and to mitigate mode collapse. Built upon the Vanilla GAN’s two-player
game between the discriminator D1 and the generator G, we introduce a
peer discriminator D2 to the min-max game. Similar to previous work
using two discriminators, the first role of both D1, D2 is to distinguish
between generated samples and real ones, while the generator tries to
generate high-quality samples which are able to fool both discriminators.
Different from existing methods, we introduce a duel between D1 and
D2 to discourage their agreement and therefore increase the level of
diversity of the generated samples. This property alleviates the issue of
early mode collapse by preventing D1 and D2 from converging too fast.
We provide theoretical analysis for the equilibrium of the min-max game
formed among G,D1, D2. We offer convergence behavior of DuelGAN
as well as stability of the min-max game. It’s worth mentioning that
DuelGAN operates in the unsupervised setting, and the duel between
D1 and D2 does not need any label supervision. Experiments results on
a synthetic dataset and on real-world image datasets (MNIST, Fashion
MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that DuelGAN
outperforms competitive baseline work in generating diverse and high-
quality samples, while only introduces negligible computation cost. Our
code is publicly available at https://github.com/UCSC-REAL/DuelGAN.
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1 Introduction

Vanilla GAN (Generative Adversarial Nets [16]) proposed a data generating
framework through an adversarial process which has achieved great success in im-
age generation [16,23,51,15,6,63,49,38,47,4,18,12], image translation [64,62,11,54],
and other real-life applications [22,35,48,43,3,58,29,42,61,31,53]. However, train-
ing Vanilla GAN is usually accompanied with a number of common problems,
for example, vanishing gradients, mode collapse and failure to converge. Unfor-
tunately, none of these issues have been completely addressed. There is a large
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amount of follow up work on Vanilla GAN. Due to space limitations, we only
discuss the two most related lines of works.

Stable and Diverse GAN Training. Several stabilization techniques have
been implemented in GAN variants. Modifying architectures is the most ex-
tensively explored category. Radford et al. [45] make use of convolutional and
convolutional-transpose layer in training the discriminator and generator. Karras
et al. [23] adopt a hierarchical architecture and trains the discriminator and
generator with progressively increasing size. Huang et al. [21] proposed a gener-
ative model which consists of a top-down stack of GANs. Chen et al. [8] split
the generator into the noise prior and also latent variables. The optimization
task includes maximizing the mutual information between latent variables and
the observation. Designing suitable loss functions is another favored technique.
Successful designs include f -divergence based GAN [41,36] (these two approaches
replace loss functions of GAN by estimated variational f -divergence or least-
square loss respectively), introducing auxiliary terms in the loss function [37] and
integral probability metric based GAN [5,18,26,44]. A detailed survey of methods
for stabilizing GANs exists [57].

Multi-Player GANs. Multi-player GANs explore the situation where there
are multiple generators or multiple discriminators. The first published work to
introduce multiple discriminators to GANs is multi-adversarial networks, in which
discriminators can range from an unfavorable adversary to a forgiving teacher [13].
Nguyen et al. [40] formulate D2GAN, a three-player min-max game which utilizes a
combination of Kullback-Leibler (KL) and reverse KL divergences in the objective
function and is the most closely related to our work. Albuquerque et al. [1] show
that training GAN variants with multiple discriminators is a practical approach
even though extra capacity and computational cost are needed. Employing
multiple generators and one discriminator to overcome the mode collapse issue
and encourages diverse images has also been proposed [20,14].

In contrast to the above existing work, we demonstrate the possibility of
improving GAN training with a computationally light modification by adding only
one competing discriminator. We introduce a duel game among two discriminators
and demonstrate the benefits of doing so in stabilizing and diversifying the training.
Our main contributions summarize as follows:

– We introduce a duel between two discriminators to encourage diverse pre-
dictions and avoid early failure. The intuition is that predictions with high
consensus will be discouraged, and effectively both discriminators are re-
warded for having diverse predictions. The introduced game between the two
discriminators results in a different convergence pattern for the generator.

– Theoretically, we derive the equilibrium for discriminators and the generator.
We show how DuelGAN alleviates the vanishing gradient issue and mode
collapse intuitively and empirically. We derive evidence for how the peer
discriminator helps the dynamics of the learning. In addition, we demonstrate
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that if the peer discriminator is better than a random guess classifier, the
intermediate game and the objective function in DuelGAN are stable/robust
to a bad peer discriminator.

– Experimental results on a synthetic dataset validate that DuelGAN addresses
mode collapse. Results on real datasets demonstrate that DuelGAN generates
high-quality image samples compared with baseline works. Besides, the
introduced duel-game could also be viewed as a regularizer which complements
well with existing methods and further improves the performance.

2 Background

We first review Vanilla GAN and D2GAN, which are the most relevant to
understanding our proposed DuelGAN.

Vanilla GAN [16]. Let {xi}ni=1 ✓ X denote the given training dataset drawn
from the unknown distribution pdata. Traditional GAN formulates a two-player
game: a discriminatorD and a generatorG. To learn the generatorG’s distribution
over X , G maps a prior noise distribution pz(z) to the data space. 8x 2 X , D(x)
returns the probability that x belongs to pdata rather than pg, where pg denotes
the distribution of G(z) implicitly defined by G. GAN trains D to maximize the
probability of assigning the correct label to both training samples and those from
the generator G. Meanwhile, GAN trains G to minimize log(1�D(G(z))).

min
G

max
D

V (D,G) =Exspdata [logD(x)] + Ezspz

h
log

⇣
1�D

�
G(z)

�⌘i
. (1)

D2GAN [40]. D2GAN is the most closely related method to DuelGAN. This
three-player game aims to solve the mode collapse issue and the optimization
task is equivalent to minimize both KL divergence and Reverse-KL divergence
between pdata and pg. The formulation of D2GAN comes as follows:

min
G

max
D1,D2

V (D1, D2, G) =↵ · Exspdata [logD1(x)] + Ezspz

⇥
�D1

�
G(z)

�⇤

+ Exspdata [�D2(x)] + � · Ezspz

⇥
logD2

�
G(z)

�⇤
, (2)

with 0  ↵,�  1. Given a sample x in data space, D1(x) rewards a high score
if x is drawn from pdata, and gives a low score if generated from the generator
distribution pg. In contrast, D2(x) returns a high score for x generated from pg
and gives a low score for a sample drawn from pdata. A large ↵ induces multiple
modes of pg, but may include undesirable samples, while a large � induces the
single mode. However, it is non-trivial to make a balance of these two terms in
practice; if Di fails/crashes (unstable), the overall training is influenced. And Di

won’t be corrected since there is no interaction between discriminators!
Our work is similar to D2GAN in containing a pair of discriminators, instead of

discriminators with different goals, we use identical discriminators and introduce
a duel/competition between them.
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Fig. 1. Illustration of the proposed DuelGAN. Compared with Vanilla GAN, DuelGAN
has one more identical discriminator and a Duel Game between two discriminators.
The introduced Duel Game induces diversified generated samples by discouraging the
agreement between D1 and D2. In D2GAN, although both discriminators are trained
with different loss functions, they do not interfere with each other in the training.

3 DuelGAN: A Duel Between Two Discriminators

In this section, we first give the formulation and intuition of DuelGAN. Then we
will present the equilibrium strategy of the generator and the discriminators.

3.1 Formulation

Similar to related works, we assume that the data follows the distribution pdata,
our ultimate goal is to achieve pg = pdata where pg is the generator’s distribution.
DuelGAN formulates a three-player game which consists of two discriminators
D1, D2 and one generator G. Denote by pduel an equal mixture of pdata, pg, 8x:
pduel(x) = [pdata(x)+pg(x)]/2. Recall that pz denotes the prior noise distribution,
now we are ready to formulate the min-max game of DuelGAN as follows:

min
G

max
D1,D2

L(D1, D2, G)

=min
G

max
D1,D2

Exspdata [logD1(x)] + Exspdata [logD2(x)]

+ � ·Duel-D+ Ezspz [log (1�D1 (G(z)))] + Ezspz [log (1�D2 (G(z)))], (3)

where Duel-D introduces the duel (a peer competition game) among D1, D2,
defined as:

Duel-D = Exspduel

"
`
⇣
D1(x),

�
D2(x) >

1

2

�⌘

| {z }
Term 1a

�↵ · `
⇣
D1(xp1),

�
D2(xp2) >

1

2

�⌘
#

| {z }
Term 1b

+Exspduel

"
`
⇣
D2(x),

�
D1(x) >

1

2

�⌘

| {z }
Term 2a

�↵ · `
⇣
D2(xp1),

�
D1(xp2) >

1

2

�⌘
#

| {z }
Term 2b

.

(4)
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In Duel-D, xp1 and xp2 are drawn randomly from pduel and that x, xp1 and xp2

are independent with each other. (·) is the indicator function, ↵,� 2 [0, 1] are
hyper-parameters controlling the disagreement level and the weight of the compe-
tition game between two discriminators, respectively. ` is an evaluation function,
for simplicity, we adopt ` = log(·), as commonly used in other terms in the
min-max game. Thus, for i 2 {0, 1}, we have:

`(Di(x), y) =

(
log

�
Di(x)

�
if y = 1;

log
�
1�Di(x)

�
if y = 0.

(5)

To clarify the differences among Vanilla GAN [16], D2GAN [40] and DuelGAN,
we use an workflow to illustrate in Figure 1. The key differences in DuelGAN’s
formulation can be summarized as follows:
• Compared with Vanilla GAN (see Eqn.(1)), DuelGAN (see Eqn.(3)) introduces
a peer discriminator D2 which has the same objective function as D appeared
in Eqn.(1). An intermediate duel game Duel-D is added which will be explained
below.

• The differences between D2GAN (see Eqn.(2)) and DuelGAN are highlighted
with the underscores in red. Primarily, there is no interaction between dis-
criminators in D2GAN, while our Duel-D term introduces another duel game
between the discriminators, which we explain below. In addition to Duel-D,
the objective function in DuelGAN encourages both discriminators to fit per-
fectly on both training samples and generated samples. While in D2GAN, one
discriminator fits overly on training samples, the other fits overly on generated
samples.

Competition Introduced by Duel-D. Duel-D bridges D1 and D2 by intro-
ducing 4 terms specified in Eqn.(4). Since we do not expect arbitrarily different
discriminators, and both Dis should play against the generator G, Term 1a and
Term 2a encourage agreements between D1 and D2. With only these two terms,
D1 and D2 will eventually be encouraged to converge to agree with each other.
Mode collapse issue remains a possibility. DuelGAN introduces Term 1b and
Term 2b to the objective function which punish D1 and D2 from over-agreeing
with each other (where the duel happens), especially at the early phase of training.
Particularly, the Term 1b and 2b are evaluating the agreements of D1 and D2 on
two entirely independent samples xp1 , xp2 . Because of the independence, the two
discriminators’ predictions should not match with high probability. Note that
the calculation of Duel-D does not need label supervisions, which distinguishes
our work from other works that introduces multiple discriminators but would
require additional label supervisions [11].

We provide more details of our intuition as well as theoretical evidences of
this property in Section 4.
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3.2 The Max Game of Discriminators

Denote the true label of x as y = 1 if x comes from pdata, otherwise, y = 0.
For any given generator G, let us first analyze the best responding/optimal
discriminator D⇤

i,G(x), i 2 1, 2. We define the following quantities:

ri,G(x) := Pxspduel

⇣ �
Di(x) >

1

2

�
= 1

⌘
, pi,G := Exspduel [ri,G(x)], (6)

where ri,G(x) represents the probability/confidence of x being categorized
as the real data by Di and pi,G is the expectation of ri,G(x) for x ⇠ pduel. Let
r̂⇤i,G(x) := ri,G(x)� ↵ · pi,G. Given discriminator Di, when there is no confusion,
we use Dj to denote the peer discriminator without telling j 6= i in later sections.

Proposition 1 For G fixed, denote by w := � ·(1�↵), the optimal discriminators
D1, D2 are given by:

D⇤
i,G(x) =

pdata(x) + � · r̂⇤j,G(x) · pduel(x)
pdata(x) + pg(x) + w · pduel(x)

, i = 1, 2. (7)

3.3 The Min Game of the Generator

Remember that the training objective for Di can be interpreted as maximizing
the log-likelihood for estimating the conditional probability P(Y = y|x) where Y
indicates whether x comes from pdata (with y = 1) or from pg (with y = 0). With
the introduce of Duel Game, the distributions pdata and pg in the Vanilla GAN
got changed due to the appearance of pduel. Thus, we define the corresponding
updated distributions in DuelGAN w.r.t. discriminator Di as pdatai and pgi ,
respectively. For a clean presentation, we defer the exact form of pdatai , pgi in
Appendix (Eqn.(22)).

Denote C(G) := maxD L(G,D1, D2), the inner-max game (C(G)) can be
rewritten as (straightforward in the proof of Proposition 1 which is available in
the Appendix B.1):

C(G) =Exspdata1
[logD⇤

1,G(x)] + Exspg1

⇥
log

�
1�D⇤

1,G(x)
�⇤

+Exspdata2
[logD⇤

2,G(x)] + Exspg2

⇥
log

�
1�D⇤

2,G(x)
�⇤
. (8)

Theorem 1. When ↵ = 0, rj,G(x) = 1/2, the global minimum of the virtual
training criterion C(G) is achieved if and only if pdata = pg. At this point, C(G)
achieves the value of � log 16.

When rj,G(x) = 1/2? Note that rj,G(x) is merely representing the probability
that Dj classifies x to be real samples, pj,G is the probability that Dj classifies
a random sample as the real one. Without loss of generality, we assume real
and generated samples are of uniform/equal prior. At the very beginning of the
training process, the discriminator can do well in distinguishing real or generated
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samples, since the generator at this time generates low-quality samples. In this
case, rj,G(x) is supposed to approach its max/min value, for example, rj,G(x) ! 0
if x is from generated samples, and otherwise, rj,G(x) ! 1. During the training
process, the generator progressively tries to mislead the predictions made by
discriminators, which means the discriminator can not decide whether the sample
is being fake or real. Thus, rj,G(x) ! 1/2. At this time, for ↵ = 0, i = 1, 2, we
have:

D⇤
i,G(x) =

pdata(x) + � · r̂⇤j,G(x) · pduel(x)
pdata(x) + pg(x) + � · pduel(x)

!
pdata(x) +

�

2
· pduel(x)

pdata(x) + pg(x) + � · pduel(x)
.

(9)

This allows us to rewrite C(G)/2 as: Exspdatai

h
log

pdata(x)+
�
2 ·pduel(x)

pdata(x)+pg(x)+�·pduel(x)

i
+

Exspgi

h
log

pg(x)+
�
2 ·pduel(x)

pdata(x)+pg(x)+�·pduel(x)

i
. Our subsequent proof is then based on the

above reformulation. Due to space limits, we defer the formal statement of
DuelGAN algorithm to the beginning of Appendix.

4 Properties of DuelGAN

In this section, we first illustrate how DuelGAN alleviates common issues in GAN
training, for example, the vanishing gradients issue and the mode collapse issue.
Then we present properties of DuelGAN including its stability guarantee and
converging behavior.

4.1 DuelGAN and Common Issues in GAN Training

Vanishing Gradients Issue. In training GAN, discriminators might be too
good for the generator to fool with and to improve progressively. When train-
ing with neural networks with back-propagation or gradient-based learning
approaches, a vanishing small gradient only results in minor changes even with a
large weight. As a result, the generator training may fail due to the vanishing
gradients issue.

Mode Collapse Issue. Mode collapse refers to the phenomenon that the
generator will rotate through a small set of output types. For the given fixed
discriminator, the generator over-optimizes in each iteration. Thus, the corre-
sponding discriminator fails to learn its way out of the trap.

How DuelGAN Alleviates the Vanish Gradient and Mode Collapse.

DuelGAN alleviates the above two issues by preventing discriminators from
"colluding" on its discrimination ability. In DuelGAN, for either discriminator Di,
recall that xp1 and xp2 are randomly drawn from pduel which are independent
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from each other. Then the max game of Di, given its peer discriminator Dj , is
to perform the following task:

max
Di

L(Di, G)|Dj

=max
Di

Term a○z }| {
Exspdata [logDi(x)] + Ezspz

h
log

⇣
1�Di

�
G(z)

�⌘i

+� · Exspduel

h
`
⇣
Di(x),

�
Dj(x) >

1
2

�⌘

| {z }
Term b○

�↵ · `
⇣
Di(xp1),

�
Dj(xp2) >

1
2

�⌘

| {z }
Term c○

i
. (10)

Term a○ maximizes the probability of assigning the correct label to both real
samples and generated samples. Term b○ maximizes the probability of matching
predicted label with peer discriminator predicted ones. In other words, Term
b○ controls the agreement level of Di with respect to its peer discriminator
Dj . However, note that Term c○ checks on the predictions of Dj on two dif-
ferent tasks xp1 , xp2 . When Di agrees/fits overly on Dj , Term c○ returns a
lower value if Dj ’s predictions on these two different tasks are matching, math-
ematically,

�
Dj(xp1) > 1/2

�
= (Dj

�
xp2) > 1/2

�
. And Term c○ will return a

high value if Dj ’s predictions on these two different tasks are indeed different�
Dj(xp1) > 1/2

�
6=

�
Dj(xp2) > 1/2

�
. The weight ↵ controls this disagreement

level compared with Term b○ by referring to the fact that a larger ↵ encourages
more disagreement/diverse predictions from discriminators.

Based on the above intuitions, when two discriminators are of a high disagree-
ment level, there exists a set Sdis such that (Di(x) > 1/2) 6= (Dj(x) > 1/2)
for x 2 Sdis and Sdis is non-negligible. Therefore, there exists at least one dis-
criminator Di that can’t perfectly predict labels (real/generated) of given data
samples. The generator will then be provided with sufficient information, e.g.,
information or features that can be extracted from Sdis, to progress. This prop-
erty helps us address the vanishing gradients issue. As for the mode collapse
issue, suppose the over-optimized generator is able to find plausible outputs for
both discriminators in the next generation. However, note that optimization is
implemented on mini-batches in practice, the randomly selected samples xp1 , xp2

in Duel-D as well as the dynamically changing weights ↵,� can bring a certain
degree of randomness in the next generation. Thus, rotating through this subset
of the generator’s output types could not force Term c○ to remain unchanged, so
that the discriminators won’t maintain a constant disagreement level and they
unlikely get stuck in a local optimum.

To theoretically demonstrate how DuelGAN alleviates the mode collapse issue,
we borrow from [32] and formalize the mode collapse issue as:

Definition 1. Data distribution pdata and a generator pg in vanilla GAN exhibit
(✏, �)-mode collapse for some 0  ✏ < �  1 if 9 a set S ✓ X such that
pdata(S) � � and pg(S)  ✏.

A generator with a small � or a large ✏ indicates a mild mode collapse issue
(the better mode coverage). For Di in DuelGAN, we could replace the distribution
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pdata, pg by pdata,i := ci,1 ·pdata+(1�ci,1) ·pg and pg,i := (1�ci,2) ·pdata+ci,2 ·pg,
respectively, for some distributions ci,1(x), ci,2(x) (� 1

2 ), which implicitly encode
the information of �, r̂⇤j,G (appeared in Eqn. (7)). We have:

Theorem 2. Suppose 9S ✓ X such that the Vanilla GAN has the (✏, �)-mode
collapse, DuelGAN has (✏d, �d)-mode collapse given S, where:

�d :=Ex2S [ci,1(x)] · Ex2S [pdata(x)] + Ex2S [(1� ci,1(x))] · Ex2S [pg(x)] + Cov(ci,1, pdata � pg),

✏d :=Ex2S [ci,2(x)] · Ex2S [pg(x)] + Ex2S [(1� ci,2(x))] · Ex2S [pdata(x)] + Cov(ci,2, pg � pdata).

In the mode collapse scenario where Dj is fooled by G easily, we have ci,1, ci,2 !
(1 + 1

2 )/2 = 3
4 and Covariance terms become 0. Note that 0  Ex2S [pg(x)]  ✏ <

�  Ex2S [pdata(x)]  1, we then have: �d < � and ✏d > ✏, the mode collapse issue
is alleviated with the introduce of duel game.

In Section 5.1, we use synthetic experiments to show that DuelGAN addresses
mode collapse issues. And we include more empirical observations of the com-
petition introduced by Duel-D in the Appendix C.5, i.e., the stability of the
DuelGAN training, and the visualization of agreement levels between D1 and D2

due to the introduce of the duel game.

4.2 Stability and Convergence Behavior

In Section 4.1, we discussed the significant role of the introduced intermediate
duel game. Now we discuss the potential downsides of introducing a second
discriminator. Particularly, we are interested in understanding if the introduce
of a peer discriminator Dj will disrupt the training and make the competition
game with Di unstable. Suppose Dj diverges from the optimum in the max game,
in other words, the diverged peer discriminator eDj fails to provide qualified
verification label Y ⇤

j (given by D⇤
j,G), and provides eYj instead. Denote by:

edata,j := P(eYj = 0|Y ⇤
j = 1), eg,j := P(eYj = 1|Y ⇤

j = 0). (11)

For any peer discriminator Dj , Dj may be a diverged peer discriminator eDj or
an optimal one D⇤

j,G, we denote the Duel Game of Di given Dj as:

Duel(Di)|Dj :=Exspduel

h
`
⇣
Di(x),

�
Dj(x) >

1
2

�⌘
� ↵ · `

⇣
Di(xp1),

�
Dj(xp2) >

1
2

�⌘i
.

(12)

Theorem 3 explains the condition of stability (for Di) when its peer discriminator
in DuelGAN diverges from the corresponding optimum.

Theorem 3. Given G, suppose Di has enough capacity, and at one step of
Algorithm 1 (Appendix), if edata,j+eg,j < 1, ↵ = 1, the duel term of discriminator
Di is stable/robust with diverged peer discriminator eDj. Mathematically,

max
Di

Duel(Di)| eDj
is equivalent with max

Di

Duel(Di)|D⇤
j,G

. (13)
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The above theorem implies that a diverging and degrading peer discriminator
Dj will not disrupt the training of Di.

Remark 1. Note that assuming uniform prior of real and generated samples, the
condition to be stable is merely requiring that the proportion of false/wrong Dj ’s
prediction is less than a half (random guessing). This condition can be easily
satisfied in practice. Thus, Theorem 3 provides the stability/robustness guarantee
when the peer discriminator diverged from its optimum.

Build upon Theorem 1, with sufficiently small updates, Theorem 4 presents
when pg converges to pdata.

Theorem 4. If G and Dis have enough capacity, and at each step of Algorithm
1, Dis are allowed to reach its optimum given G, Di is updated so as to improve
the criterion in Eqn.(10), and pg is updated so as to improve:

C(G) =Exspdata1
[logD⇤

1,G(x)] + Exspg1

⇥
log

�
1�D⇤

1,G(x)
�⇤

+Exspdata2
[logD⇤

2,G(x)] + Exspg2

⇥
log

�
1�D⇤

2,G(x)
�⇤
. (14)

If � = 0 (remove the duel game to end the training and lead to convergence), we
have D⇤

1,G = D⇤
2,G, pg converges to pdata.

5 Experiments

In this section, we empirically validate the properties of DuelGAN through a set
of datasets, including a synthetic task and several real world datasets ranging
from hand-written digits to human faces.

5.1 Experiment Results on Synthetic Data

We apply the experiment and model structures proposed in UnrolledGAN [37]
to investigate whether the DuelGAN design can prevent mode collapse. This
experiment aims to generate eight 2D Gaussian distributions with a covariance
matrix 0.02I, arranged around the same centroid with radius 2.0. Vanilla GAN
fails on this example. D2GAN has been shown to outperform UnrolledGAN, so
we include it as an alternate method which performs well.

Figure 2 shows symmetric KL-divergence, Wasserstein distance, and a visual-
ization of results with Vanilla GAN, D2GAN, and DuelGAN. Knowing the target
distribution pdata, we can employ symmetric KL divergence and Wasserstein
distance, which calculate the distance between the true pdata and the normalized
histogram of 10,000 generated points. On the left of Figure 2, the plots for
symmetric KL-divergence and Wasserstein distance show that DuelGAN has a
much better score than Vanilla GAN and slightly better than D2GAN.

On the right side of Figure 2 is a visualization of 512 generated blue samples
points, together with red data points drawn from the true distribution. Vanilla
GAN generates data points around only a single valid mode of the data distribu-
tion. D2GAN and DuelGAN distribute data around all eight mixture components,
demonstrating the ability to resolve modal collapse in this case.
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Fig. 2. Comparison of Vanilla GAN, D2GAN, and proposed DuelGAN on 2D synthesized
data. The top-left graph shows the symmetric KL divergence over the training iterations,
while the bottom left graph shows the Wasserstein distance. Both metrics compare the
generated data points to data points drawn from the true target distribution. DuelGAN
has the best performance. The right side visualizes generated blue data points and true
red pdata data points. Note that Vanilla GAN has a clear mode collapse which both
D2GAN and DuelGAN avoid.

5.2 Experiments on Real Image Datasets

We tested the proposed DuelGAN and baseline methods on MNIST [28], Fash-
ionMNIST [59], CIFAR-10 [27], STL-10 [10], CelebA [34] and VGGFace2 [7]. For
quantitative evaluation, we adopt Fréchet Inception Distance (FID) [19] and
Inception score(IS) [46] as the evaluation metric. FID summarizes the distance
between the Inception features of the generated images and the real images. A
lower FID indicates both better accuracy and higher diversity, so that a batch
of generated images with good accuracy but identical to each other will have a
poor FID score. A higher IS score indicates a higher generated image quality.

Baseline Methods. We reproduce/report the performance of a list of existing
baseline methods, including: DCGAN [45], D2GAN [40], WGAN [18], DRAGAN
[26], LSGAN [44], MicroBatchGAN [39], Dist-GAN [50], PresGAN [12], and
QSNGAN [17]. We used the same generator and discriminator backbone for all
the comparison methods in each dataset unless specified by the original author.
We recorded the best performing checkpoints when evaluating each method.

Grey-Scale Images. MNIST [28] and FashionMNIST [59] are small grey-scale
image datasets including 60,000 training and 10,000 testing 28⇥28 gray-scale
images of hand-written digits and clothing. Since they are of small-scale, we
adopt the shallow version of the generator and discriminators to generate the
grey-scale images. We include a comprehensive comparison via FID score in Table
1. And the first two columns in Table 1 show our method has the best FID score
among all tested methods. Figure 3 (left) shows FashionMNIST image results.
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Table 1. Experiment FID score results of grey-scale image dataset: MNIST and
FashionMNIST; natural scene image dataset: CIFAR-10 and STL-10; human face image
dataset: CelebA and VGGFace2. Baseline results denoted with (*) were extracted from
the original paper report, not independently run in our experiments.

MNIST FasionMNIST CIFAR10 STL-10 CelebA VGG
DCGAN [45] 19.86 24.78 27.45 59.79 17.38 49.99
WGAN* [18] 14.07 28.24 35.37 60.21 15.23 39.24
DRAGAN [26] 66.96 62.64 36.49 91.07 14.57 50.20
D2GAN [40] 22.20 29.33 27.38 54.12 17.30 20.67
Dist-GAN* [50] – – 22.95 36.19 23.70 –
PresGAN* [12] 42.02 – 52.20 – – –
LSGAN [44] 23.80 43.00 51.42 70.37 15.35 55.96
MicroBatchGAN* [39] 17.10 – 77.70 – 34.50 –
QSNGAN* [17] – – 31.97 59.61 – –
DuelGAN (ours) 7.87 21.73 21.55 51.37 13.95 19.05

Natural Scene Images. CIFAR-10 [27] and STL-10 [10] are natural scene RGB
image datasets. CIFAR-10 includes 50K training and 10K testing 32⇥32 images
with ten unique categories: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. STL-10 is sub-sampled from ImageNet, and has more diverse
samples than CIFAR-10, containing about 100K 96⇥96 images. We adopt the
deep version of the generator and discriminator to generate 32⇥32 RGB images.
Table 1 middle two columns show FID score results. Note that the introduce of
competitive Duel Game in two discriminator GAN setup, brings performance
boost in all the experiments. Figure 3 (middle) shows STL-10 image results.

Fig. 3. Image results generated by proposed DuelGAN. Left: FashionMNIST, grey-scale
clothing images; Middle: STL-10, natural scene images; Right: CelebA, large-scale
celebrate face images.

Human Face Images. CelebA [34] and VGGFace2 [7] are large-scale face
datasets. CelebA includes 162,770 training and 19,962 testing images of celebrity
faces. VGGFace2 contains more than 3.3 million face images of celebrities caught
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in the ‘wild’. There are different lighting conditions, emotions, and viewing
angles. We randomly choose 200 categories from VGGFace2 and trained on the
reduced dataset. We adopt the deep version of the generator and discriminators to
generate 32⇥32 RGB images on CelebA and 64⇥64 RGB images on VGGFace2.
Table 1 last two columns show our method has the best FID score among tested
methods. Figure 3 (right) shows CelebA image results.

Implementation Details Our model architecture adopts the same generator
and discriminator backbone as DCGAN [45]. In DuelGAN, the newly introduced
discriminator is a duplicate of the first one. DuelGAN achieves low FID scores
and high IS scores when ↵ and � are simply set to constant values. However
we found that we could obtain an approximately 10% improvement through
dynamic tuning. The parameter � controls the overall weight of Duel-D, while
↵ punishes the condition when D1 over-agrees with D2. In the early training
phase, when we have an unstable generator and discriminator, we set ↵ and � to
0. As training progresses, we gradually increase these parameters to a max value,
which helps with vanishing gradients. After the midpoint of training we decrease
these parameters to help the discriminators converge, until the parameters reach
approximately 0 at the end of the training process. We adopt 0.3, 0.5 as the max
value for ↵ and �, respectively.

5.3 Duel Game as a Regularizer

Intuitively, the introduced duel game could be well applied to a large family of
GAN variants defined w.r.t a single discriminator D1 and a generator G. This is
due to the fact that Eqn.(3) could be denoted by:

min
G

max
D1,D2

L(D1, D2, G) = min
G

max
D1,D2

[GAN(D1) + � ·Duel-D+GAN(D2)] ,

(15)

where GAN(Di) := Exspdata [logDi(x)] + Ezspz [log (1�Di (G(z)))]. Thus, if
we substitute the GAN loss GAN(Di) by a state-of-the-art GAN variant, i.e.,
StyleGAN-ADA [24], one could view the duel game Duel-D as a regularizer.

We take the higher resolution version (256⇥256 RGB images) of CelebA [34]
for illustration. Clearly in Table 2, StyleGAN-ADA reaches the state-of-the-art
result on this task. And the introduced Duel-D regularizer could further improve
its performance. Figure 4 shows the corresponding generated images.

We train StyleGAN-ADA with and w/o Dual-D regularizer on three datasets.
Table 3 shows StyleGAN-ADA has higher recall score by introducing the Dual-D
regularizer. This indicates the duel game regularizer could alleviate mode collapse
issue and have a better mode coverage.

More Experiment Results. Due to space limits, we defer more experiment
results to the Appendix C, including: an ablation study of hyper-parameters
tuning; experiment validations about the stability of training; the visualization
of the duel game between D1 and D2.
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Table 2. Experiment FID score results of CelebA (256⇥256 RGB images). Baseline
results denoted with (*) were obtained from the original paper report.

Method GLF* [60] MSP* [30] NCP-VAE* [2] LSGM* [52] StyleGAN-ADA [24] StyleGAN-ADA+Duel-D
FID 41.80 35.00 24.79 7.22 4.85 4.32

Table 3. Comparisons of recall (") on 3 datasets (StyleGAN-ADA w/o a duel game).

Methods FFHQ CelebA CIFAR-10
StyleGAN-ADA 0.61 0.75 0.49
StyleGAN-ADA + Dual GAME 0.67 0.83 0.60

Fig. 4. Image results generated by proposed DuelGAN. (Trained on CelebA 256⇥256
RGB images. More generated images are deferred to the Appendix C.)

6 Conclusion

We propose DuelGAN which introduces a peer discriminator to Vanilla GAN.
The role of the peer discriminator is to allow an intermediate game (duel game)
between discriminators. Theoretical analysis demonstrates that the introduced
duel game incentivizes incremental improvement, addresses vanishing gradients
and mode collapse issues, punishes over-agreements among discriminators and
is stable with diverged peer discriminator. Experimental results on a synthetic
dataset and multiple real world datasets validate that DuelGAN produces high
quality images, with lower error than competing techniques.
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